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Evaluating the Impact of Possible Dependencies
on Architecture-level Maintainability
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Abstract—Dependencies among software entities are the foundation for much of the research on software architecture analysis and
architecture analysis tools. Dynamically typed languages, such as Python, JavaScript and Ruby, tolerate the lack of explicit type
references, making certain dependencies indiscernible by a purely syntactic analysis of source code. We call these possible
dependencies, in contrast with the explicit dependencies that are directly manifested in source code. We find that existing architecture
analysis tools have not taken possible dependencies into consideration. An important question therefore is: to what extent will these
missing possible dependencies impact architecture analysis? To answer this question, we conducted a study of 499 open-source
Python projects, employing type inference techniques and type hint practices to discern possible dependencies. We investigated the
consequences of possible dependencies in three software maintenance contexts, including capturing co-change relations recorded in
revision history, measuring architectural maintainability, and detecting architecture anti-patterns that violate design principles and
impact maintainability. Our study revealed that the impact of possible dependencies on architecture-level maintainability is
substantial—higher than that of explicit dependencies. Our findings suggest that architecture analysis and tools should take into
account, assess, and highlight the impacts of possible dependencies caused by dynamic typing.

Index Terms—dynamic typing, possible dependency, software architecture, empirical study.

1 INTRODUCTION

Dependencies among source code entities are the foun-
dation for many software architecture analyses, including
architecture recovery [1][2][3], architectural metrics [4][5],
architectural problem or anti-pattern detection [6][7][8],
change impact analysis [9], defect prediction [10][11], etc.
Many language features may cause syntactic dependencies
to be invisible in source code, such as polymorphism, cast-
ing, and reflection. This problem is more prominent due
to dynamic typing in popular dynamic languages, such as
Python, JavaScript, and Ruby. Dynamic typing [12] tolerates
the lack of type information, making certain syntactic de-
pendencies invisible in source code. In our research we call
the “invisible” syntactic dependencies possible dependen-
cies to contrast them with explicit dependencies that are
directly manifested in source code.

We checked multiple popular commercial architec-
ture analysis tools, such as Lattix Architect [13], Struc-
ture101 [14], Understand [15] and DV8 [16], and found that
these tools rarely if ever extract possible dependencies when
analyzing systems written in dynamic languages. To the best
of our knowledge, dependency-based software architecture

o * W. Jin is the corresponding author, and with the School of Soft-
ware Engineering, Xi'an [Jiaotong University, China. Email:  jin-
wuxia@mail.xjtu.edu.cn

e W. Jin, D. Zhong and T. Liu are with Ministry of Education Key Lab-
oratory of Intelligent Networks and Network Security (MOEKLINNS),
Xi'an [iaotong University, China. Email: zhongdh@stu.xjtu.edu.cn,
tingliu@mail xjtu.edu.cn.

o Y. Cai is with the Department of Computer Science, Drexel University,
USA. Email: yfcai@cs.drexel.edu

e R. Kazman is with the Department of Information Technology Manage-
ment, University of Hawaii, USA. Email: kazman@hawaii.edu

Manuscript received X, 2021; revised X, X.

uthorized licensed use limited to: Drexel University. Downloaded on November 14,2022 at 03

analysis has almost never taken possible dependencies into
consideration. Thus our motivating research question is:
to what extent will these missing possible dependencies
impact software architecture analysis? It is important to
explore this question to advance our understanding of pos-
sible dependencies, thus better analyzing the architectures
of systems written in dynamic languages.

We use a simple example to illustrate the problem and
hence our motivation. We implemented two versions of
a small system applying a visitor pattern [17] using Java
and Python respectively, and then reverse-engineered de-
pendencies among the source files using Understand. We
represent these dependencies in two design structure matrix
(DSM), as shown in Figure 1. In each DSM, rows and
columns denote source files listed in the same order. The
numbers along the diagonal indicate self-dependency. Cell
(i,7) with “x” denotes that the file in row i syntactically
and explicitly depends on the file in column j, as reported
by Understand. For example, the “x” in row 2, column 1 of
Figure 1(b) means that Body.py depends on CarElement.py.

In Figure 1(a), CarElement is the base class of the con-
crete element classes listed in rows 2, 3, 4, and 6. Since
Java forces explicit type declaration, the visitor interface,
CarElementVisitor, has to explicitly refer to the four concrete
element classes, i.e., the sub-classes of CarElement, hence
the dependencies in row 5. Similarly, since each concrete
element class has to accept a visitor object, they all have to
refer to CarElement Visitor, hence the dependencies in column
5, forming a dependency cycle highlighted by the blue
shading. By contrast, in Figure 1(b) all these dependencies
and blue cycle are “invisible” to Understand: CarElementVis-
itor.py takes the same role as CarElementVisitor.java, but
it doesn’t explicitly depend on any of the car elements,
and vice versa. Based on the dependencies extracted by
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1 2 3 4 5 6 7 8
1 CarElementjava 1) X
2 Body.java X @ X
3 Wheeljava X ) X
4 Enginejava X '(4) X
5 CarElementVisitor.java X X X (5) X
6 Carjava X X x x x 7
7 CarElementPrintVisitor.java X X X X X '(7)
8 CarElementDoVisitor java X X X X X '(8)

(a) The DSM recovered from Java code

2
1 2 3 4 5 6 7 8
1 CarElement.py '(1)
2 Body.py x 7@
3 Wheel.py X c)
4 Engine.py X " (4
5 CarElementVisitor.py '(5)
6 Carpy X X X X " (6)
7 CarElementDoVisitor.py X '(7)
8 CarElementPrintVisitor.py X '(8)

(b) The DSM recovered from Python code

Fig. 1. Explicit dependencies among files in the Java version and Python version

Understand, it appears that the practice of dynamic typing
decouples software entities (only 9 dependencies in Python
version whereas 26 dependencies in Java one), making the
Python implementation appears to be better modularized
and easier to maintain than the Java one.

We suspect that this is misleading since the Python and
Java version implemented exactly the same pattern with
exactly the same functionality. These “invisible” dependen-
cies in Python may still have consequences. For example,
if the methods defined in CarElementVisitor.py change, other
program elements using these methods may have to change
accordingly and vice versa, imposing a nontrivial architec-
tural impact.

To quantitatively assess impacts of possible dependen-
cies on architecture-level maintainability, we considered
three ways of capturing measuring maintenance difficulty:
capturing co-changed files [18][19], measuring architec-
tural maintainability [4][5], and detecting architectural anti-
patterns [8][20]. To explore these three measures, we con-
ducted an empirical study using 499 open-source Python
projects (41 million SLOC) collected from Github, with
diverse sizes and domains. We extended ENRE [21] to
extract possible dependencies from source code, employ-
ing existing type inference techniques [22][23][24][25] and
type hint practices [26]. We extracted file-level explicit and
possible dependencies, and mined 1,311,620 change-related
and 277,381 issue-related revision commits. Based on this
dataset!, we investigated three research questions (RQs):

RQ1: To what extent will the ability to capture co-change
relations be altered when considering possible dependen-
cies?

RQ2: To what extent will possible dependencies impact
architectural maintainability scores?

RQ3: To what extent will possible dependencies impact
architectural anti-pattern detection?

Our results reveal that: (1) adding possible dependencies
significantly improves the precision, recall, and F1 scores of
capturing co-change relations;(2) on average, a file involved
in possible dependencies requires 30% more maintenance
effort than a file involved in explicit dependencies; (3)
considering possible dependencies helps reveal previously
indiscernible architectural anti-pattern instances, and detect
severely problematic files with architectural connections.
What is more, among files involved in architectural anti-
patterns, those files that have both explicit and possible
dependencies should be given higher priority in mainte-

1. https:/ / github.com /xjtu-enre /2022TSEPossibledepData
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nance activities since they impact change-proneness and
bug-proneness the most.

Our study provides strong evidence that the level of
architectural maintainability impact imposed by these
possible dependencies is nontrivial, and in fact surpris-
ingly high compared with explicit dependencies. But the
“invisible” nature of possible dependencies makes it more
difficult to find them, to understand them, and to change
them. Our results thus benefit architecture analysis and
tools, providing concrete evidence that they should assess
and emphasize the impact of possible dependencies, due to
dynamic typing, on architecture-level maintainability .

In summary, this work makes the following contribu-
tions:

(1) We contribute a prototype tool that employs type
inference techniques and type hint practices to infer possible
dependencies in Python code.

(2) We present an empirical study on possible dependen-
cies, revealing the non-trivial impact imposed by possible
dependencies on architecture-level maintainability.

(3) We illustrate the benefits of analyzing possible depen-
dencies on architecture analysis of dynamic languages, sug-
gesting how such dependencies can promote co-change pre-
diction, architecture management, and tool enhancement.

(4) We provide a benchmark collected from 499 open
source projects for continued research on possible depen-
dencies due to dynamic typing in Python software projects.

This paper is an extended version of our conference
paper [27]. We extend our previous work in several ways.
First, we improved the possible dependency extraction by
employing type hint practices and we formally illustrated
our extraction approach. Second, we extended the Python
subjects studied—from 105 projects in our original study
to 499 projects in the current, more comprehensive study.
Third, we re-organized our research questions with a focus
on the impact of possible dependencies on architecture-
level maintainability, added an investigation of the impact
on architecture anti-patterns, and revealed new findings.
Fourth, we extended the benchmarks used in dependency
verification and co-change capture. Lastly, we improved
the work throughout including the key concept definition,
study design, potential impact of our study, related work,
and threats to validity.

In the rest of this paper: Sections 2 presents the possible
dependency extraction approach. Sections 3, 4, and 5 report
the study setup, study results, and potential impact of our
empirical study. Sections 6 and 7 discuss the threats to
validity and related work. Section 8 draws conclusions.
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2 METHODOLOGY

This section illustrates the concepts and the approach pro-
posed in our possible dependency extraction tool, using the
Python example shown in Figure 2.

2.1 Key Concepts

The key concepts used in this paper include entity, explicit
dependency, and possible dependency.

1 import json 15 class ClassB(ClassA):
2 class ClassE: 16 def ml(self):

3 def m(self): 17 print("B.m1")
4 18 def m2(self):

5 19 print("B.m2")
6 def f1(): 20

7 obj = ClassE() 21 class ClassC:

8 obj.m() 22 def ml(self):

9 23 print("C.m1")
10 class ClassA: 24

11 def ml(self): 25 def f4(rl,r2):

12 print("A.m1") 26 Me1omI()

13 def m2(self): 27 irl.m2() |

14 print("A.m2") 28 Ir2.m(y |

Fig. 2. A snippet of test.py

Entity. A code entity e is an object with a given name
or identifier. An entity can be a variable, function, class,
module, etc. In Figure 2, entities include ClassE, ClassE.m(),
f10), obj, etc.

Dependency. According to Baldwin and Clark’s defi-
nition [28], e, depends on e, if changes to e, may cause
e, to change. A dependency is denoted as e, — e,. A
dependency can be a syntactic dependency extracted from
source code, a semantic dependency extracted from the textual
information of source code, or a historical dependency as
recorded in the revision history [29][30][31][32].

Our work focus on syntactic dependencies. Syntactic
dependencies are extracted in a static analysis based on an
intermediate representation (i.e., AST) of the source code.
The use of dynamic language features incurs some syn-
tactically invisible and non-deterministic dependencies that
only can be determined at run-time; we call these possible
dependencies. Considering the inherent non-determinism, we
identify two types of syntactic dependencies in dynamic
languages like Python:

a. Explicit dependency. We define explicit dependency
as the syntactic dependency relations that are explicitly
manifested in source code. An explicit dependency e, — e,
satisfies one of the following conditions: 1) The depended
entity e, or its parent entity is explicitly imported; 2)
The type of e, or its parent entity is declared explicitly
in its visible scope. For example, Figure 2 shows that
m() = json.dumps() (Line 4), f1() — ClassE() (Line 7),
and f1() — ClassE.m() (Line 8) are explicit dependencies.

b. Possible dependency. We define possible dependency
as a syntactic dependency relation that is not explicitly
manifested due to the use of dynamic features. The targets
of possible dependencies may be resolved into more than
one type, and such dependencies can, in general, only be
determined at run-time. We denote a possible dependency as
P, = e; — ey, where i is the number of possible types
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which e, can be resolved to. In particular, P means entity
ey can only be resolved into one type. F;~; means that
the dependency is non-deterministic: for e,, there are 7
candidate types. In Figure 2, f4() — r2.m() (Line 28) isa P;
dependency since 72 can only be ClassE. f4() — r1.m1()
(Line 26) is a P, dependency because r1 has two possible
types, ClassA and ClassB.

The Scope of Our Work. As aforementioned, possible de-
pendencies are related to the usage of dynamic features.
Dynamic features in Python include dynamic typing which
permits the omission of type declarations, introspection
which examines the state of an object at run-time, object
changes that can update or change an object at run-time,
code generation that executes code at run-time and so on
[33][34]. This work will consider possible dependencies due
to dynamic typing manifested as a lack of type declarations.
Our work is the first step towards shedding a light on the
architectural impacts of possible dependencies.

2.2 The Framework Overview

To support our study on the architectural impact of possible
dependencies, we design an approach to extract possible
dependencies by incorporating the concept of F; possible
dependencies, the type inference technique [35], and type
hint practices? into an extension of our previous tool named
ENRE [21]. The prototype tool that supports extracting
possible dependencies is publicly available °.

Our possible dependency extraction approach assumes
that possible dependencies could be extracted from type
hints since possible dependencies are due to the lack of type
information. Based on this assumption, our approach uses
attribute constraints [35] to infer objects’ types and thus
possible dependencies. In addition, our approach directly
extracts type annotations from stub files if they are provided
in a Python project. In type hint practice, a Python stub
file (with name *.py¢) contains only type annotations with
empty function bodies. Such type annotations in a stub file
are usually maintained by developers for a corresponding
source file. Using django (version:stable/2.2.x)* as an ex-
ample, Figure 4(b) shows decorators.py in this project, and
Figure 4(a) shows the corresponding stub file (i.e., decora-
tors.pyi) managed in django-stubs®. We can see that the stub
file specifies the type information for function register: the
type of models is Type[ Model], the type of site is Optional[Any],
and register returns an object of Callable type.

Figure 3 shows our possible dependency extraction
framework employing ENRE, merge-pyi (part of the Py-
type® tools), and Mypy’, shown in blue rectangles. Both
Pytype merge-pyi and Mypy can analyze Python code with
type hints practice, thus facilitating possible dependency ex-
traction. Pytype merge-pyi can merge Python source code and
its corresponding stub files which contain type annotations,
and Mypy infers types from python type-annotated code.
The input of this framework is source code, and the output

2. https:/ /www.python.org/dev/peps/pep-0484/
3. https:/ / github.com/xjtu-enre /ENRE-go-python
4. https:/ /github.com/django/django

5. https:// github.com/typeddjango/ django-stubs/
6. https:/ / github.com/google/pytype

7. http:/ /www.mypy-lang.org
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Fig. 3. The possible dependency extraction framework

is a set of possible dependencies, Dp, where P; denotes the
type of possible dependency. This framework contains three
components:

1) Entity Identification. This component, provided by
ENRE, carries out lexical and syntactic analysis of source
code, resolving the code entities F = {e} and the expres-
sion set XP = {xzp}. An entity is defined using a tu-
ple of attributes, including id,quali fied N ame,short Name,
etc. Each expression, zp is denoted as (pythonfile,
linenumber,exp, fromname, toname) that implies possible
dependencies.

For example, in Figure 2, Line 26 in fest.py contains one
expression, zp; = (test.py, 26,r1.m1(), f4,m1). It indicates
one unresolved dependency from f4 toml,ie., f4 — mlat
Line 26 in test.py, and the type of r1 has not been resolved.

2) Inference and Refinement. This component processes
an expression, zp € XP, if its source code file has no
corresponding stub file that contains type hints introduced
by PEP484. Following the attribute constraints proposed by
Xu et al. [35], this component produces the intermediate
structure O that indicates all of the possible dependencies.
Then it refines O by the Refinement Inference with different
rules. Finally, it extracts a set of possible dependencies, Dp,,
from the refined O.

3) Type Extraction. For an expression xp, this component
deals with source code that has a corresponding stub file.
This component first uses Pytype merge-pyi to merge the
source code file and the corresponding stub file, produc-
ing type-annotated source code. After statically instrument-
ing xp by adding reveal_type() statements into the type-
annotated code, this component leverages Mypy to extract
types of entities contained in xp. Based on xp and the
obtained type information, it generates Dp, .

We will introduce Inference and Refinement, and Type
Extraction in the following two sections. The notation used
in the algorithms is described in Table 1.

23

This section will illustrate possible dependency extraction
without stub files using the Python example in Figure 2.

Inference and Refinement

23.1

Using E and X P as the inputs, this module follows attribute
constraints [35] to infer all of the possible dependencies.
This is based on duck typing, i.e., the type of an object is
determined by how its attributes are used by others [36].
This module outputs an intermediate data structure, O =

Inference by Attribute Constraint

uthorized licensed use limited to: Drexel University. Downloaded on November 14,2022 at 03

\| Possible
1 dependency
/ ( Dp')
[ Pytype || Type- | Statement || . Y
' anil - M :
| merge-pyi | siﬁ?cogat M: ¥ Py :
TABLE 1
Basic notation
Symbol Description
e A code Entity.
er —> ey A Dependency from ez to ey.
xp An Expression in code.
a An Atomic Expression extracted from xp.
s,sc€k The visible Scope of xp or a.
T A hierarchical structure from zp.
Caq A set of candidate types of a.
={e} A set of entities.
XP={zp} A set of expressions.
O ={(s,a,Ca)} An intermediate set.

Dp, = {exz — ey} A setof P; possible dependencies.

{(s, a, C,)}, to record possible dependencies, where s € E
is an entity that denotes code scope, a is an atomic expression
extracted from xp, and C, denotes the set of candidate types
of a.

It first classifies all non-private members of class entities
based on their signatures, and then generates f;,, mapping
each signature to a set of class members. For example, in
Line 10-28 in Figure 2:

fsig(m1()) = {ClassA.m1(), ClassB.m1(), ClassC.m1()}
fsig(m2()) = {ClassA.m2(), ClassB.m2()}

For an expression, xp;, in a scope s, this module first
generates a hierarchical structure, T;, by splitting the exp;
of zp; into atomic expressions, and denotes their parent-
child relations. For example, the result of splitting zp; is
Ty =< a1, as >, where a1 = rl, ag = r1.m1(), and a; is
the parent of ay, forming a layered structure: if a; is in layer
1, ag is in layer ¢ + 1.

Then this module resolves each a in T;: if an atomic
expression, a;, is at the lowest layer of T}, then its candidate
types are denoted as C,;, = fsig(getName(a;)), which
returns all the types that match the signature of a;. If a;
is not at the bottom layer, its Ca]. will be resolved as the
parents of its children’s candidate types.

Consider the above 77 as an example. The can-
didate types of a; = rl.ml() will first be re-
solved as Crimig = Cre) = fag(ml() =
{ClassA.m1(),ClassB.m1(),ClassC.m1()}. After that,
the candidate types of its parent, a; = r1, will be resolved
as Cpp = Cr,1y = {ClassA,ClassB,ClassC}. Other
expressions are processed in the same way. After that, the
following elements will be added to O:

@ (f4(),r1,Cr 1)), where
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Cr ) = {ClassA, ClassB, ClassC}

&) (f4()7 Tl.ml(), CT1(2))/ where

Cry2) = {ClassA.ml1(), ClassB.m1(), ClassC.m1()}
@ (f4(),r1,Cry1)), where Cr,1) = {ClassA,ClassB}
@ (f4()7 Tl.m?(), CT2(2)), where

Cry(2) = {ClassA.m2(), ClassB.m2()}

® (f40),72,Cry(1y), where Cr,1) = {ClassE}

® (f4(),r2.m(), Cry(2)), where Cry (o) = {ClassE.m()}

Now based on O, we infer the possible dependencies:
f40) — rl and f4() — rl.ml() are P; possible de-
pendencies as |Cr1| = |Cripmip] = 3; f4() — rl and
f4() — r1.m2() are P, possible dependencies; f4() — r2
and f4() — r2.m() are Py possible dependencies.

232

This module refines the intermediate structure O, using the
Scoping Rule and the Priority Rule. Next it extracts a set of
possible dependencies, Dp,, from the refined O.

Scoping Rule: Using this rule, this module first groups
together atomic expressions within the same scope. In the
above example, the elements (D and @ in O should be
grouped together since they indicate that r1 is within the
scope of f4(), and their candidate types should be the same.
Their candidate types are refined to be the intersection of
their original Cy: C' = Cpy(1) N Cra1y={ClassA, ClassB}.
Accordingly, the candidates of their children are also
updated: Crp 2y = {ClassA.ml(),ClassB.m1()} and
Cr,(2) = {ClassA.m2(), ClassB.m2()}.

Priority Rule: For a candidate type set containing more
than one type, if one type inherits from another, we remove
the sub-type from the candidate set. This rule follows the
Liskov Substitution Principle [37]: if an entity depends on
parent/abstract type, then any sub-types can be substituted
with each other wherever the parent type is used.

Inference Refinement

In this example, within candidate set
{ClassA,ClassB}, ClassB inherits from ClassA.
As result, Cr, () and Cp,q) will be refined as
Cr,qy = Cr,a) = {ClassA}, and their children

will also be updated: Cr,(2) =
Cry2) = {ClassA.m2()}.

At this point, the set O in this example is updated as
follows:

( f4(),r1,Cp 1) = {ClassA} )
( f40),r1.m1(), Cr, (2) = {ClassA.m1()} )
( f40),r1,Cp,1) = {ClassA} )
( f40),71.m2(), Cry(2) = {ClassA.m2()} )

We can now derive a set of P; possi-
ble dependencies from O: D, = {f4() —
ClassA, fA4() — ClassAml(), f4() — ClassA.m2(),
f4() — ClassE, f4() — ClassE.m()}. We can see that
these rules refine some non-deterministic dependencies
P, (less likely to occur at run-time) into P; dependencies
(more likely to occur) at run-time.

{ClassA.m1()}, and

2.4 Type Extraction

In addition to possible dependencies that can be extracted
by the above Inference and Refinement component, possible
dependencies can also be extracted from stub files that
contain type hints (when such stub files are provided) as
shown in the Type Extraction component in Figure 3. We
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introduce Type Extraction using the Python example shown
in Figure 4.

1) Pytype merge-pyi. Given the source code (*.py) and the
stub file (*.pyi) of a Python file, Pytype merge-pyi merges the
two files and outputs type-annotated source code.

For an example, Figure 4(b) shows decorators.py in django
(version:stable/2.2.x) project, and Figure 4(a) corresponds
to its stub file named decorators.pyi). merge-pyi copies type
annotations located in Figure 4(a) into the source code in
Figure 4(b). The type-annotated code is shown in Figure 4(c)
and the code lines prefixed with + are newly added.

2) Statement Instrument. This module visits the AST
(Abstract Syntax Tree) of type-annotated source code to
record locations of objects in the code. The data structure
of an object location is (filename, objectname, startLine,
endLine, startColumn, endColumn), where filename is
the file that contains the object, objectname is the identifier
of the object, startLine and endLine correspond to the line
numbers of the first and last character of the objectname,
and startColumn and endColumn correspond to the col-
umn numbers. Next, this module instruments a statement,
reveal_type(objectname), for each object according to the
recorded position.

For the object named models in Figure 4(c), its location
is denoted as (django/contrib/admin/decorators.py,
models,5,5,15,20). In terms of the location, re-
veal_type(models) statement will be added as shown in
Figure 4(d).

3) Mypy. Mypy analyzes the instrumented source
code and outputs the set of types (i.e., typeSet) for
an object. We used typeSet since an object may be re-
solved as more than one type. Combining the identified
typeSet and the pre-recorded location of an object, we can
now deduce (filename, objectname, startLine, endLine,
startColumn, endColumn,typeSet) for each object.

Recalling models in Figure 4(d), Mypy identifies the
typeSet of models as {django.db.models.base.Model}. Com-
bining typeset and the data structure from models, we can

get:

b=(django/contrib/admin/decorators.py,
models,5,5,15,20,{django.db.models.base.Model})

Since django.db.models.base.Model is declared in django/d-
b/models/base.py, the above b indicates one P; possible de-
pendency at file level:

django/contrib/admin/decorators.py —
django/db/models/base.py

3 STUDY SETUP

This section will illustrate the research questions, subjects,
the collected data, and evaluation methodology for our
empirical study. Since P;~; dependencies are rare and unde-
terministic [27], we will form a conservative baseline using
the union of explicit dependencies and P; possible depen-
dencies in this study, which contains the minimal number of
“deterministic” syntactic dependencies that should be taken
into consideration.

3.1 Research Questions

To evaluate the impact of possible dependencies on
architecture-level maintainability, we consider the three
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#django-stubs/contrib/admin/decorators.pyi

from typing import Any, Callable, Optional, Type

from django.db.models.base import Model

def register(*models: Type[Model], site: Optional[Any] = ...) -> Callable: ...

(a) decorators.pyi (stub file)

#django/contrib/admin/decorators.py
+ from typing import Any, Callable, Optional, Type
+ from django.db.models.base import Model

+ def register(*models: Type[Model], site: Optional[Any] = ...) -> Callable
def _model_admin_wrapper(admin_class):
if not models:
raise ValueError('At least one model must be passed to register.")

(c) decorators.py (type-annotated source code)

Fig. 4. An example of Type Extraction in Django

maintenance contexts mentioned in the introduction: cap-
turing co-changed files, architectural maintainability mea-
surements, and detecting architecture anti-patterns. Given
these contexts we investigate three research questions (RQs):

RQ1: To what extent will the ability to capture co-
change relations be altered when considering possible de-
pendencies? Exploring this question will help understand
if possible dependencies are a significant factor in causing
co-changes when maintaining source files.

RQ2: To what extent will possible dependencies im-
pact architectural maintainability scores? Answering this
question will indicate how possible dependencies impact
maintainability scores and to what extent they would cause
additional maintenance costs, as compared with explicit
dependencies.

RQ3: To what extent will possible dependencies im-
pact architectural anti-pattern detection? This question will
advance our understanding regarding how strongly anti-
patterns that are detected when considering possible depen-
dencies could impact bug-proneness and change-proneness
of a software system. These possible dependencies could
therefore reveal highly problematic files that should be
given attention during refactoring and maintenance activ-
ities.

3.2 Subject Collection and Statistics

o 864 Filter out b
Initial Search #commit<]g0
704]
P Filter out by Filter out demos,
Lijst i #File<40 or 665 Jorks, and
#PyFile<8 tutorials

Fig. 5. Project collection and filtering

To minimize the possible bias caused by project
domain or size, we queried and chose open-source Python
projects sorted by their number of stars from Github
using the Github REST API. Figure 5 depicts the project
collection and filtering workflow. We initially collected
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#django/contrib/admin/decorators.py
def register(*models, site=None):
def _model_admin_wrapper(admin_class):
if not models:
raise ValueError('At least one model must be passed to register.")

(b) decorators.py (source code)

#django/contrib/admin/decorators.py
from typing import Any, Callable, Optional, Type
from django.db.models.base import Model

def register(*models: Type[Model], site: Optional[Any] = ...) -> Callable
+ reveal_type(models)
def _model_admin_wrapper(admin_class):
if not models:
raise ValueError('At least one model must be passed to register.')

(d) decorators.py (source code ready for Mypy)

864 projects with their latest versions. Since our study
required a well-managed revision history, we filtered
out projects with fewer than 100 commits. We also
removed the repeated or forked projects, and tutorial
projects if their textual description contains the keywords
tutor|tutorial|course|exercise|guide|note|demo|example|sample.
After this operation, there were 665 projects remaining. We
further excluded small projects where the number of files
is smaller than 40 or the number of Python files is smaller
than 8. In the end we collected 499 projects as the subjects
of our study.

For each project we collected its revision history from
the version control system Git. The revision history covers
a time range from the beginning to the latest version of
a project. We only considered the commits in which a
source file is modified; commits that only added files are
ignored since we are focused on co-change and maintenance
activities. An issue-related commit is a commit labeled with
an issue ID.

Table 2 summarizes the demographic information of
the projects that we analyzed: #File—total number of files;
#LoC—total lines of code; #PyFile and #PyLoc—Python files
and Python LoC only; #AvgLoCPerPyFile—average LoC
per Python file, i.e., % ; #Commit—total number of
commits in the revision history; #Committer—total number
of contributors; #IssueCommit and #IssueCommitter—issue-
related commits and committers as recorded in the revision
history. Figure 6 shows the violin plots with the distribution
of these attributes. Min, Median, and Max in Table 2 corre-
spond to the minimum, median, and maximum values over
all projects.

Table 3 lists the domain® distribution of our collected
projects. For example, the first row in Table 3 shows that
25.9% (129 out of 499) projects belong to the Software
Development domain. We observe that our subjects cover
diverse domains; the top 3 popular application domains
include Software Development (25.9%), Web and Internet
Development (25.3%), and Scientific and Numeric (21.4%).

8. https:/ /legacy.python.org/about/apps/
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TABLE 2
The investigated Python projects
#Subject Statistic =~ #File #LoC #Commit #IssueCommit#Commiter#lssueCommitter #PyFile #PyLoC  #AvgLoCPerPyFile
Min 41 473 100 0 1 0 8 473 9.27
499 Medium 182 264,98 1,160 138 83 28 134 16,866 126.96
Max 8,224 2,728,799 498,49 12,717 2,837 1,971 3636 774,125 3303.69
Sum 224,642 41,126,375 1,311,620 277,381 82,079 40,412 132310 21,446,298 /
4 o 4 4
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Fig. 6. The distribution of projects
TABLE 3 1) We used the possible dependency extraction approach
The distribution of project domain in Section 2 to detect expressions that imply possible de-
: pendencies and to resolve these dependencies. The results
Domain Percentage

Software Development
Web and Internet Development
Scientific and Numeric

25.9% (129)
25.3% (126)
21.4% (107)

Desktop GUIs 5.6% (28)
Game and 3D Graphics 3.4% (17)
Database Access 2.8% (14)
Image Processing and Computer Vision = 2.4% (12)
Network Programming 2.0% (10)
Education 1.6% (8)

Others 9.6% (48)

3.3 Dependency Extraction and Verification

This section will introduce dependency extraction, depen-
dency verification, and the statistics of these dependencies
extracted from the subjects.

3.3.1 Dependency Extraction

We used the Understand tool to extract explicit dependen-
cies from the source code of each project. Understand can
identify explicit dependencies such as method calls, variable
references, and module or file importing. This tool has been
widely used in both academic research [38][39][40] and
industry [13][14].

We then used the possible dependency extraction ap-
proach in Section 2 to detect possible dependencies from
source code.

3.3.2 Dependency Verification

We verified the possible dependencies by collecting bench-
marks from execution traces. The process is as follows:
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are simply denoted as D = {d} where d=(pythonfile,
linenumber, exp, fromname, toname, typeSet). For ex-
ample in docutils’ (v0.12), d = (peps.py, 130, pep_type =
para.astext(), peps.py, astext, {nodes}). This means that
pep_type = para.astext() is an expression at line 130 in
peps.py. peps.py calls para.astext(), thus fromname is
peps.py and toname is astext(). typeSet = {nodes} is the
resolved result, meaning that para is resolved as the type
of nodes. This record d indicates one P; dependency is ex-
tracted, i.e., peps.py — nodes.astext() since |typeSet| = 1.

2) We collected dependencies from execution traces. We
did this in two ways. We relied on MonkeyType!® to execute
test cases included in projects. MonkeyType, published by
Instagram, uses the sys.setprofile hook provided by Python
to interpose among function calls, dumping call traces into
a SQLite database. In addition we executed test cases in-
cluded in various projects and traced executions by a Python
module called trace!. Employing MonkeyType and the trace
module, we extracted the dependencies T' = {t} from
these executions, where t=(pythonfile, linenumber, exp,
fromname, toname, typeSet), the same representation as
d.

3) We generated P, and P, possible dependency
benchmarks by filtering 7. For ¢t € T, if the
(filename, linenumber, exp) is equal to that of d € D,
add ¢t into P,, benchmarks. Add t into P; benchmarks if

9. https:/ / github.com/docutils-mirror/docutils
10. https:/ /github.com/instagram /monkeytype
11. https:/ /docs.python.org/3.7 /library / trace.html
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the |typeSet| = 1, ie., Pibenchmarks C P,benchmarks.
We used (filename, linenumber, exp) for filtering instead
of (filename, exp) since some expressions with the same
string and located in the same Python file may be located in
different code lines or blocks, perhaps implying distinctive
dependencies.

4) We evaluated the accuracy of possible dependencies.
If the typeSet of d is completely equal to or is the base-
class set of typeSet of t in the benchmarks, we considered
that the possible dependency indicated by d is verified to be
correct. Since the benchmarks were collected by filtering the
execution traces against the expressions that imply possible
dependencies, the value of the recall is equal to that of the
precision. Thus we used P; accuracy (or P, accuracy) to
denote the precision or recall against P, benchmarks (or
P, benchmarks).

We selected 8 projects for detailed evaluation. As
summarized in Table 4, 1217 P; benchmarks and 1868
P, benchmarks were collected in total. Against 1217
Py benchmarks, 1184 P; dependencies were resolved cor-
rectly, i.e., P accuracy is 1184/1217 = 0.97. P,, accuracy
is 0.86 against P, benchmarks. The incorrect results are
sometimes caused by the possible dependencies between
source code and Python libraries, which our tool is unable to
detect. P,, accuracy is lower than P; accuracy since it is dif-
ficult for execution traces to cover all possible dependencies.
Thus, we formed a conservative baseline using the union of
explicit dependencies and P; possible dependencies in the
following study.

3.3.3 Statistics of the Collected Dependencies

We summarized the P; possible dependencies and explicit
dependencies extracted from the 499 studied projects. The
dependencies extracted among methods or classes can be
aggregated into dependencies among files. Since many
architecture-level analyses use file pairs as atomic units of
analysis, we will observe the distribution of file-level P;
possible dependencies.

Percentage (%)

100 —_ 8 - 8
80

— 60

De — D, N Dy, —g—
8
o

= 70.64%

Dp, De=DeNDp, Dy, = DN Dy Do Dy

(a) The set of dependencies (b) The boxplots of dependencies

Fig. 7. The distribution of file-level dependencies

Figure 7(a) depicts the aggregated file-level P, possible
dependencies, Dp,, and how they overlap with explicit
dependencies, D,, averaged over all 499 projects. Figure
7(b) depicts the ranges of their percentages and overlaps,
labeled with the mean values of all percentage scores. It
shows that, of all the baseline dependencies containing
D.UDp,,20.47% of them only have possible dependencies,
ie., .Dp1 —D.N Dpl.

The results show that file-level P; possible dependencies
(Dp,) represent a significant portion (20.47% on average) of
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all uniquely resolvable file-level dependencies(D. U Dp,).
For the following study, we use D. U Dp, as a baseline since
many architecture-level analyses use file pairs as atomic
units of analysis.

3.4 Evaluation Setup

Based on the subjects with their revision history and depen-
dencies, we investigated the impact of possible dependen-
cies on architecture-level maintainability by studying the
three research questions in Section 3.1. That is, we evaluate
the impact of possible dependencies on historical co-change
capturing (RQ1), the impact on architectural maintainability
measurements (RQ2), and the impact on architectural anti-
pattern detection (RQ3).

3.4.1 The Setup for RQ1

Much prior research has leveraged revision history, focusing
on how files are committed together, as a benchmark for
understanding co-change relations [41], change impact anal-
ysis [42][43], and identifying problematic modules [44][5].
The underlying assumption is that related files are more
likely to be changed together. The question in the context
of our research is: to what extent will the ability to capture
co-change relations be altered when considering possible depen-
dencies? If this ability is significantly improved, it would
indicate that possible dependencies are an important factor
causing co-changes. The evaluation process for RQ1 is as
follows:

1) Benchmark Generation.

We collected file-level co-change relations as benchmarks
from every project’s revision history. As defined in the work
of [30][45], co-change coupling is a measure of the degree
to which two entities co-evolve or change together, based
on their evolution history. To mitigate possible bias in our
study, we enriched the co-change relation collection process
and obtained two kinds of benchmarks:

Co-change Benchmark A. According to prior work
[40][46], we consider a pair of files having a co-change
relation if they were committed at the same time. Prior work
often used arbitrary thresholds to determine “meaningful”
co-change relations [40], while it is unclear if a particular
threshold is generalizable. To conduct a rigorous study,
we assembled 20 co-change benchmarks (using 20 different
threshold settings), Benchmark;, i = 1,2,...,20, from the
revision history of each project, each containing a set of file
pairs that have changed together at least ¢ times. The larger
the ¢, the more times two files were committed together, and
hence the stronger their relationship. From Benchmark; to
Benchmarksg, the co-change relations become less random
and more meaningful.

Co-change Benchmark B. Existing studies [47][48][49]
have argued that co-changed files were not only those
committed at the same time but also co-changed files could
be committed during a short time interval. For instance,
if a change to file; is typically followed by a change to
filey, the two files would be considered as co-change files.
Based on this assumption, we followed the work of [49]
to collect co-change benchmarks by setting two parameters,
time distance and commit distance. time distance is the maximal
duration where files in commits within this time restriction
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TABLE 4
The Benchmarks and verification results

Project P; benchmarks Py correct Py accuracy Py benchmarks Py correct Py accuracy
glance 15 12 0.80 18 12 0.67
docutils 375 359 0.96 513 360 0.71
pythonvisitor 12 12 1.00 12 12 1.00
python-patterns 17 17 1.00 21 17 0.81
algorithms 14 13 0.93 15 14 0.93
pygorithm 18 18 1.00 48 48 1.00
mypy 217 209 0.96 681 597 0.88
mimesis 549 544 0.99 560 555 0.99
summary 1,217 1,184 0.97 1,868 1,615 0.86

TABLE 5 benchmarks. If the scores using D. U Dp, is larger than

Co-change Benchmark A and Benchmark B

those using D., we could conclude that considering possible
dependencies can improve the potential of capturing co-

Benchmark A
1 2 3 4 5 change relations. Figure 8, Figure 9, and Table 7 show the
23346372 10799168 6590282 4404330 3027070 measurement results.
6 7 8 9 10
2158212 1464692 1069782 808434 656658 8.4.2 The Setup for RQ2 .
1 » 1 " 15 We consider if maintainability measures are improved af-
517092 438404 379060 325922 270842 ter considering possible dependencies and assess if these
16 17 18 9 2 changes allow us to better reveal the true maintainability
227164 197722 165742 132144 104234 1gve1 of a project. If.the answer is Positive, we will try tF)
figure out why possible dependencies make such a contri-
Benz};r;%rk B bution. The evaluation process is as follows:

will be considered as co-changing. commit distance, is the
minimal number of common commits where file; and files
were revised within the time constraint. When setting time
distance=0 and commit distance=1, the generated benchmarks
are same as the Benchmark; in Benchmark A. As suggested
by Bird et al. [50], for each project, we configured the
threshold of time distance as the third quartile value in the
distribution of time intervals between continuous commits
and set the threshold of commit distance as 20.

Benchmark Summary. For all benchmarks, we used 301
of the 499 projects as subjects because we can obtain all
the required benchmark data from their revision histories.
The other 198 projects were excluded as several benchmarks
were unavailable given the rigorous parameter settings. The
collected co-change relation benchmarks are summarized
in Table 5. For example, the total number of co-change
file pairs is 23,346,372 in Benchmark; of Benchmark A,
and the number for Benchmark B is 67,778. It is obvious
that benchmark size becomes smaller with the larger i of
Benchmark; contained in Benchmark A.

2) Co-change Capturing. We measured the ability of a
set of dependencies, D, to reflect co-change relations in the
benchmarks using Precision, Recall, and F scores:

Precision (P(D))—the percentage of file pairs in the
dependency set that are also in the co-change benchmark;

Recall (R(D))—the percentage of file pairs within the co-
change benchmark that are captured by the dependency set;

F score (Fy(D))—the harmonic average of the precision
and recall.

The larger the P(D), R(D) and Fj(D) values, the
stronger the potential of D to reflect co-change relations.
We thus computed the precision, recall, and F; scores of
D, and D, U Dp,, for each project against each of the 20
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1) Maintainability Measurement. Using the Decoupling
Level (DL) and Propagation Cost (PC) metrics [4][5] as
two state-of-the-art architectural maintainability metrics, we
observe how a project’s scores change based on D, and
D.UDp,.Both DL and PC are calculated based on file-level
dependencies. DL assesses how well files are decoupled into
independent modules [5]. PC measures how tightly coupled
a system is by calculating how changes may propagate
through direct and indirect dependencies among files [4].
The higher the DL (or the lower the PC), the better the
architectural maintainability [5]. Table 8 lists the results.

2) Correlation Calculation. We next consider which
DL/PC scores better reflect the actual maintainability level
of a project: scores based on D, or scores based on D.UDp,,
as shown in Table 8. Following the work of Mo et al. [5], we
assessed which set of DL and PC scores are better correlated
with actual maintenance effort, as reflected by six measures
mined from each project’s revision history. If the scores
based on the consideration of possible dependencies are
more strongly correlated with the ground-truth based on re-
vision history, we assume that these scores more accurately
reflect the true maintainability level of the projects.

Using a project’s history as its ground-truth, we used the
six maintainability measures from prior work [5]:

Change/Bug Commit Overlap Ratio (i.e, CCOR and
BCOR)—the extent to which a file is modified by different
bug-fixing or change commits;

Change/Bug Commit Fileset Overlap Ratio (CCFOR and
BCFOR)—the extent to which a file is committed by dif-
ferent committers;

Change/Bug Pairwise Committer Ouverlap (CPCO and
BPCO)—the likelihood that two committers need to com-
municate based on whether they committed changes to the
same set of files.

For these measures of a project to be reliable, it requires
that the code repository is well managed—with bug issues
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and change issues properly tagged—and with a sufficient
amount of history. Based on these criteria we conducted
correlation analysis between dependency-based DL (and
PC) scores and the history-based maintainability ground-
truth. Since the score distribution presents outliers, we used
the Spearman correlation coefficient—which is robust with
respect to outliers and is a non-parametric version of the
Pearson correlation coefficient—to analyze the correlation
[51]. The stronger the correlation, the better these scores
reflect a project’s true maintainability. Table 9 lists the cor-
relation analysis results, indicating that the consideration
of possible dependencies better reflects the ground-truth of
maintainability levels, as we will discuss in Section 4.2.2.

3) Potential Cause Analysis. We further investigate
why the maintainability scores without considering possible
dependencies appear to be better than they actually are, as
will be revealed in Sections 4.2.1 and 4.2.2. We compare
the maintenance effort of filep, (i.e., files involved in P;
dependencies) vs. file, (i.e., files involved in explicit depen-
dencies) measured based on the revision history of projects.
We hypothesize that, if the maintenance effort of filep, is
greater, it means that a file with possible dependencies incur
higher maintenance cost than that of explicit dependencies,
and thus missing possible dependencies could distort the
maintainability scores.

By mining the revision history of each project, we used
Kemty Kioer Kauthorr Kissuer Kissuecmt, and KisgueLoc t0
comprehensively assess the relative maintenance cost of a
filep, as compared with that of a file., from 6 dimensions,
similar to the work of Mo et al. [5]. The six measures are
defined as follows:

K __ #commit of a filep, (avg.)
cmt = “Hcommit of a file, (avg.)
K __ #changeLoc of a filep, (avg.)
loc = "ZchangeLoc of a file. (avg.)
K __ #author of a filep, (avg.)
author = #author of a file. (avg.)
K, _ #issue of a filep; (avg.)
1ssue —  Hissue of a file. (avg.)
#issueCmt of a filep, (avg.)
#issueCmt of a filee (avg.)
#issueLoc of a filep, (avg.)
#issueLoc of a file. (avg.)

KissueCmt -

KissueLoc -

where, #commit—the number of commits made to change
a file; #changeLoc—the total lines of changed code when
modifying a file; #author—the number of developers for
maintaining a file; #issue—the number of issues that a file
gets involved; #issueCmt—the number of commits of a file
for fixing issues; #issueLoc—the total lines of code changed
to a file for fixing issues. The bigger these measures, the
more maintenance cost spent on a file.

For a project, if one of the 6 scores is bigger than 1, it
means that files involved in possible dependencies incur
more maintenance effort, measured in a given dimension,
than those involved in explicit dependencies. FigurelO de-
picts the boxplots of these scores on our subjects.

3.4.3 The Setup for RQ3

Architecture anti-patterns [20] are defined as the connec-
tions among files that violate design principles and im-
pact bug-proneness and change-proneness, leading to se-
vere maintenance effort. Since anti-patterns are defined and
detected based on code dependencies, we study to what
extent and how the architecture anti-patterns detected by
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D.UDp, are different from those by D.. Then we verify the
anti-patterns detected by D. U D p, by investigating whether
the affected files (i.e., those files involved in anti-patterns)
require more maintenance effort than non-affected files. If
the answer is positive, we will try to distinguish the most
influential files by categorizing the affected files from the
perspective of dependency type. The most influential files
often incur the greatest maintenance costs, thus deserving
special attention. The evaluation setup is as follows:

1) Anti-pattern Detection. Our study considered the six
architecture anti-patterns defined by Mo et al. [8], includ-
ing Unstable Interface (UIF), Modularity Violation Group
(MVG), Unhealthy Inheritance Hierarchy (UIF), Crossing
(CRS), Clique (CLQ), and Package Cycle (PKG). Table 6
describes these anti-patterns.

Detection of these anti-patterns has been automated by
the DV8 tool [16]. We referred to the work of Mo et al. [20]
to configure the parameters used in detecting anti-patterns.
The parameter values for detection based on D, are consis-
tent with those based on D, U Dp, .

2) Change Qualifying. We first counted the number of
anti-pattern instances (i.e., #Instance) and the proportion
of source files affected by these anti-patterns (i.e., affected
file%) for the detection based on D, and D, U Dp, respec-
tively. Table 10 lists the results averaged on the studied
projects. Each row corresponds to the result of each archi-
tecture anti-pattern.

We then use django as an example to observe how possi-
ble dependencies change the anti-pattern detection results.
We manually inspected django to pinpoint the difference be-
tween anti-pattern instances identified using D. U Dp, ver-
sus those identified using D.. As compared with instances
identified using D., we categorize the instances identified
using D, U Dp, into five types: Type_same, Type_larger,
Type_smaller, Type_new, and Type_partial. To formally
illustrate these types, we use Instance(D. U Dp, , i) to denote
an instance detected by D, U Dp,, use Instance(De,i) to
denote an instance detected by D., and label their affected
file sets as affectedfileSet(D.UDp, , ) and affectedfileSet(D., i),
respectively. The formal definitions of the five types are as
follows:

Type_same means that Instance(D. U Dp, , i) is the same
as the corresponding Instance(D., ). That is,

affectedfileSet(D. U Dp, , i) = affectedfileSet(D., 1)

Type_larger means that Instance(D, U Dp, , i) is derived
from the corresponding Instance(D., i), but with more files
involved. That is,

affectedfileSet(D. U Dp, , i) 2 affectedfileSet(D,, 1)

Type_smaller means that Instance(D.UDp, , i) is derived
from the corresponding Instance(D., i), but with fewer files
involved. That is,

affectedfileSet(D. U Dp, , i) C affectedfileSet(D,, )

Type_new means that Instance(D. U Dp,,i) is newly
revealed, invisible using D, only. That is,

affectedfileSet(D. U Dp, ,i)N affectedfileSet(D., i) = ()

Type_partial means that Instance(D.UDp, , ) is partially
overlapping with that using D., and vice versa. That is,
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TABLE 6
The architecture anti-patterns studied in this work

Anti-pattern Definition

Unstable Interface (UIF)
other files.
Unhealthy Inheritance (UHI)

refers to the design rule file that is structurally depended by and is changed frequently with many

refers to the problematic hierarchical structure where a parent class depend on one of its children,

or a client of a class depends on both the base class and its children.

Crossing (CRS)
Clique (CLQ)

is a set of files where a file has both high fan-in and high fan-out with other files.
connects a group files whose structural dependencies form a strongly connected graph so that

changes to any files would propagate to any other files within this group.

Modularity Violation Group (MVG)

describes two structurally independent modules that should evolve independently but actually co-

change frequently in revision history.

Package Cycle (PKG)

means the two packages structurally depend on each other, violating the hierarchical package

structure of a software system.

affectedfileSet(D. U Dp, ,i)N affectedfileSet(De, i) # ()
and affectedfileSet(D. U Dp, i) ¢ affectedfileSet(D., i)
and affectedfileSet(D. U Dp, i) P affectedfileSet(D., i)

Table 12 shows these types of anti-pattern instances
detected by D, U Dp, in django. We will explain the results
for each kind of ant-pattern through examples in Section
4.3.1.

3) Anti-pattern Verification. Following the work of Mo
et al. [20], we further investigate whether the affected files
detected by D. U Dp, are more error-prone and change-
prone than non-affected files, and how the results are differ-
ent from that of D, only. The assumption is: if the files in
anti-patterns are truly error-prone and change-prone, these
files may be problematic and may have substantial impacts
on maintenance. For this reason developers must be aware
of these architectural connections when making changes or
fixing bugs [20].

We first measure the change-proneness and
error-proneness of a file by computing its #issue,
#author, #changeCmt, #changeLoc, #issueCmt and
#issueLoc—the same six measures used in RQ2. In
terms of each measure, for each project we compute
the Increase(D.,) and Increase(D. U Dp,), where
Increase(D.) (or Increase(D. U Dp,)) is the average
rate of the error- or change-proneness measurement of
an affected file compared to that of a non-affected file in
anti-patterns detected by D. (or D. U Dp,). If the value
of Increase is larger than 100%, the files involved in the
detected anti-patterns are the truly problematic portion that
consumes more maintenance effort.

Then we compare Increase(D. U Dp,) with
Increase(D.) by  computing  A(increase) =
Im:rease(DeUDpl)7Increase(D$) ”

Trcrease(Dy) A positive value of

A(increase) indicates that the supplementing of possible
dependencies helps identify more problematic and
architecturally connected files that incur substantial
maintenance costs. Figure 11 demonstrates the results.

4) Prioritizing Affected Files. Existing design flaw
detection tools [14][52] tend to report a large number
of problematic files, sometimes covering half of the files
in a project. So many highlighted files overwhelm users
and actually hinder them in pinpointing the truly flawed
files [53]. It is essential to distinguish and prioritize the
most influential files that require substantial maintenance
effort. Developers thus could pay more attention to these
influential files during anti-pattern remediation. Given that
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possible dependencies incur more maintenance cost than
explicit dependencies, as will be shown in Section 4.2.3,
we conjecture that possible dependencies might provide a
clue for such prioritization, which will be tested in this
RQ3. Furthermore, since existing studies [54] showed that
files with larger sizes incur more maintenance cost, we will
conduct the Wilcoxon Sign-Rank Test [55] to demonstrate
the uniqueness of the prioritization dimension provided
by possible dependencies, different from the dimension
provided by file size.

For each kind of anti-pattern, we first classify the af-
fected files into three categories, file. (i.e., a file involved
in explicit dependencies only), filep, (ie., a file involved
in possible dependencies only), and filep,n. (ie., a file
involved in both explicit and possible dependencies). Then
we evaluate the averaged #author, #issue, #changeCmt,
#changeLoc, #issueCmt, and #issueLoc, i.e., the six mea-
sures, for the affected file. files, the affected filep, files,
and the affected filep, . files. Table 14 illustrates the six
measurements of file., filep,, and file.np, participating
in anti-patterns, averaged over all projects.

4 STUDY RESULTS

Following the evaluation methodology in Section 3.4, we
will analyze the evaluation results corresponding to each
research question.

4.1 RQ1: The Impact on Capturing Co-changed Files
4.1.1 Results

Considering the two sets of collected co-change benchmarks
(i.e., Benchmark A and Benchmark B), we analyze the
precision, recall, and F1 measurements of using explicit
dependencies (D.) vs. using the combination of explicit and
possible dependencies (D, U Dp,). The results are shown in
Figure 8, Figure 9, and Table 7.

Figure 8(a) presents the precision scores, i.e., P(D,)
and P(D. U Dp,) for the investigated projects using di-
verse co-change benchmarks in Benchmark A. It shows that
P(D. U Dp,) > P(D.) except for the first five points in
the curves. We conducted the Wilcoxon Sign-Rank Test [56]
to observe whether P(D. U Dp,) scores are significantly
bigger than P(D,) scores on the investigated projects. The
P-value is less than 0.01, indicating the statistical signifi-
cance of the comparison. We then used AP(D. U Dp,) =

P(De Ug(P 51;13(136) to compute the improvement of D, U Dp,

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/ ublications_standards/publications/rights/index.html for more information.

:04 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3171288, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12
TABLE 7
The improvement of the Precision, Recall, and F; scores when adding P, dependencies (on Benchmark A)

Benchmark 1 2 3 4 5 6 7 8 9 10 11
AP(D.UDp,) -1.97% -1.71% -1.00%  -0.47%  -0.06% 0.18% 0.04% 0.45% 0.23% 0.48% 0.39%
AR(D. U Dp,) 21.13%  20.89%  22.12%  22.79%  23.21%  23.55%  23.74%  24.39%  24.59% 25.14% 25.17%
AF1(De U Dp, ) 19.92% 18.64%  18.45% 17.55% 16.35% 14.97% 13.40% 12.41% 10.91% 9.95% 8.80%

Benchmark 12 13 14 15 16 17 18 19 20 range
AP(D. U Dp, ) 0.71% 1.12% 1.37% 1.80% 2.33% 2.78% 3.06% 3.21% 3.34% -1.97%-3.34%
AR(D.UDp,) 25.87%  26.57%  26.60%  26.99%  28.01% 27.48% 27.90% 27.40%  28.49% 20.89%—-28.49%
AF1(De U Dp, ) 8.21% 7.77% 7.20% 6.98% 7.04% 6.80% 6.70% 6.40% 6.30% 6.30%—-19.92%

P(%) R(%) F1(%)
S &
8 \ ——P(D,) ——R(D,) et —— (Do)
-+ S - A,
o | % —+—P(D, U Dpy) 8 1 ——RMD,UDy) .+ o /+’:_o-o-:§;+\+ ——Fi(D, U Dpy)
1\ N R S
\ & 1 e il .o + “3:3-,
g * +'+,o":,'° o | /0/ "323-4
1y Fhy
"0.’ S t,;';f°' i -
“bq &
* ""-Q.’,’_“"’.’ &
O_IIIIII\\IIIIIIK\IIIIOﬁIITIITIIIIIIIITIIIIT 7||||||||[|\|\||||[|\
1234567 8 91011121314151617181920 1234567 8 91011121314151617181920 1234567 8 91011121314151617181920
Benchmark Benchmark Benchmark

AP(D. U Dp,) = 2.58%, AR(D. U Dp,) = 32.47%, and
AF1(D. U Dp,) = 14.87%. In summary, Figure 9 suggests
the same results on Benchmark B as Benchmark A: the
precision, recall, and F1 scores are improved when adding
possible dependencies for capturing co-change relations.

When adding P; dependencies to explicit dependencies,

Fig. 8. The precision, recall, and F; measurements against 20 benchmarks (on Benchmark A)
18% 60% 25%
16%
14% o T 20%
12% 40%
) T 21.99%] 15% 8.19%
10% 54300 5.57%| 300, 1394
0, o 0| N
8% 16.60° . 0
6% x x 20% N x x 4.1.2 Answering RQ1
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2% l J_
0% l l 0% —
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P(D,) P(DeV Dp) R(D;) R(D. U Dp,) F1(D,) F1(D. U Dp,)

Fig. 9. The precision, recall, and F; measurements (on Benchmark B)

Q

when compared with D, for each benchmark. As illustrated
in Table 7, except for the first five points in the curves, the
improvement ranges from 0.04% to 3.34%.

Figure 8(b) presents recall scores, showing that adding
possible dependencies always improves recall with P-value
less than 0.01: R(D. U Dp,) > R(D.). Similarly, we
used AR(D. U Dp,) = R(Deug(}});R(DE) to compute
the improvement of D. U Dp, when compared with D,
for each benchmark. As shown in Table 7, the values of
AR(D. U Dp,) are 20.89%-28.49%, again indicating that
the combination of D, and Dp, significantly improves the
ability to reflect co-change relations.

Figure 8(c) illustrates the Fy scores: Fy(D. U Dp,) >
F1(D.), again with P-value<0.01. The values of AF} (D, U
Dp,) range from 6.30% to 19.92%, as listed in Table 7. The
observation of the improvement of F score is consistent
with that of precision and recall scores.

Similarly, the measurement results on Benchmark B
are visualized in Figure 9, labeled with the averaged val-
ues. Consistent with the statistical test on Benchmark A,
the P-values here are also smaller than 0.01. On average,
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the precision, recall and F; scores of capturing co-change
relations are significantly improved. For the precision, both
the denominator and numerator in this formula are in-
creased when adding P; dependencies, while the value is
enhanced by 0.04%-3.34% (except for the first 5 values)
on 20 diverse benchmarks in Benchmark A, by 2.58% for
Benchmark B. The recall improvements range from 20.89%—
28.49% on Benchmark A and the improvement is 32.47% on
Benchmark B. For the F scores, the improvements range
from 6.30%-19.92% on Benchmark A and the improvement
is 14.87% on Benchmark B. These results indicate that a sig-
nificant portion of co-changes reflects possible dependencies
among files.

4.2 RQ2: The Impact on Maintainability Measures
4.2.1 Maintainability Scores based on D, vs. D, U Dp,

Recall that we computed the dependency-based maintain-
ability scores, DL and PC, using D. and D. U Dp, re-
spectively. The larger the DL scores and the smaller the
PC scores, the higher the maintainability levels of a project
[5]. Table 8 lists the measures for all projects. We observe
that, after considering Dp,, the mean DL score decreased
from 87.23% to 80.51%, and the mean PC score increased
from 9.96% to 16.16%. This analysis shows that the apparent
maintainability levels decrease after considering possible
dependencies.
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Kissuecm: = 1.37, Kissueroc = 1.30. The results show
that, on average, the maintenance cost spent on a filep, is

TABLE 8
The DL/PC value based on D. and D. U Dp,

(1.29=1)+(1.36—1)+(1.16=1)+(1.30-1)+(1.37-1)+(1.30=1)" _ g(y07

Statistic DL rC 6
D. DeUDp, De. De U Dp, larger than that spent on a file,.
Min 62.54% 51.01% 0.31% 0.31%
25th PT 82.06% 72.56% 4.20% 7.14%
50th PT 89.44% 82.45% 7.70% 13.27% 25 - o
75th PT 95.18% 90.40% 13.06% 21.81% — -
Max 100% 99.99% 25.51% 43.75% 20 - — i —_ - il 30
Mean | 87.23%  8051% 9.96% 16.16% ‘ 1120 1136 | : =
15 : Tl6 .30 .37
TABLE 9 ; L1 I —  —
Spearman correlations between DL/PC and Ground-truth 1.0 7 ! | ; E !
DL PC 0.5 - — :
D.  D.UDp,  A(%)| De D.UDp  A(%) , , | , : —
CCOR | -0.624 -0.738 18.20 | 0.641 0.751 17.16
BCOR -0.623 -0.796 27.89 0.565 0.728 28.95 Kcmt K/oc Kauthor K;ssue Kzssue(,‘mr KmuyueLoc
CCFOR| -0.615 -0.760 23.55 | 0.586 0.734 25.31
BCFOR| -0.735 -0.837 1391 | 0.641 0.762 18.77 Fig. 10. The distribution of Kemt, Kioes Kauthors Kissues KissueCmts
CPCO | -0.712 -0.727 2.09 0.695 0.727 4.69 and K Loe for all projects
BPCO | -0.754 -0.831 10.24 | 0.700 0.759 8.45 resueloc
Mean / / 15.98 / / 17.22

4.2.2 Correlations between Maintainability Scores and
Ground-truth

Table 9 displays the correlation results with all the P-values
less than 0.01, suggesting that the correlated relationships
between maintainability scores and ground-truth are sta-
tistically significant. For example, the correlation between
the DL calculated using D. and the CCOR measure is
—0.624, and this correlation is increased to —0.738 when
Dp, is taken into consideration. The A column represents
the improvement of correlation when comparing the scores
calculated using D. U Dp, vs. using D, only. It is clear that,
after supplementing D, with Dp,, the DL and PC scores
have stronger correlations with the ground-truth maintain-
ability measures: improving by 15.98% for DL and 17.22%
for PC on average.

In addition, Table 9 shows that the A value regarding
CPCO is less than those regarding the other five measures.
One possible reason is that each of the six metrics assesses
the maintainability of a project based on different assump-
tions, as explained in Section 3.4.2. To be rigorous, our
experiments employed all six maintainability measures for
a more comprehensive evaluation. The results indicate that
their A values are consistent despite slight differences in the
correlation strengths.

In general, these results show that adding possible de-
pendencies decreases the maintainability scores, and this
makes these scores more closely reflect a project’s true
maintainability, which is what we would desire of such
measures.

4.2.3 Maintenance Cost of filep, vs. file.

Figure 10 shows the boxplots of Kem:, Kioer Kauthors
Kissuer Kissuecmt, and Kissyeroc for each project. Con-
sider the first boxplot as an example. The K+ scores
are larger than 1 for at least 75% of the projects. The
statistical significance tests consistently showed P-values
less than 0.01. Similar results can be observed in the
other five boxplots. On average, for all projects, K.p: =
1.29, Kijoe = 1.36, Kuuthor = 1.16, Kissue = 1.30,

uthorized licensed use limited to: Drexel University. Downloaded on November 14,2022 at 03

4.2.4 Answering RQ2

These results show that, without P; dependencies, archi-
tectural maintainability scores appear to be better than
they actually are. When P; dependencies are included, the
scores are decreased, more accurately reflecting the real
maintainability of the system. The accuracy is improved
by 15.98% or 17.22%. We observe that files involved in
possible dependencies incur about 30% more maintenance
costs than those in explicit dependencies, on average. One
potential implication is that possible dependencies (invisible
to source code) are more difficult to understand and to
change, consequently consuming more maintenance effort.

4.3 RQ3: The Impact on Architecture Anti-pattern De-
tection

4.3.1 Anti-pattern Changes

Table 10 lists the number of anti-pattern instances (#Instance)
and the percentage of affected files (affectedfile’) detected
based on D, and D, U Dp,, averaged over all projects. For
example, the average number of UIF instances based on D,
and D, U Dp, is 7.6 and 10.2, respectively. Tablel1l shows
the Wilcoxon Sign-Rank Test to check whether #Instance
detected by D, is significantly smaller than that by D.UDp,
over all projects.

The results in Table 10 and Table 11 indicate that, except
for the MVG anti-pattern, both #Instance and affectedfile%
significantly increase after taking into account Dp, (P-
value<0.001). This suggests that seemingly problematic but
isolated files turn out to in fact be architecturally connected
(through possible dependencies), and these connections
have an impact on a software system. On average, the
MVG anti-pattern appears to decrease slightly in terms of
affectedfile% while the decrease is statistically significant (P-
value<0.001) on all individual projects. Prior work reported
that “unnamed” coupling is an undetectable symptom of
modularity violation [57]. Our results suggest that possible
dependencies can explain a portion of “unnamed” coupling
incurred by dynamic language feature. Possible dependen-
cies couple together different “modules” that evolve to-
gether. Consequently, a consideration of possible dependen-
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TABLE 10
The number of instances and the percentage of affected files of
anti-patterns detected from D. and D, U Dy,

De De U Dp,
#Instance  #affectedfile%  #Instance  #affectedfile%
UIF 7.6 49.00% 10.2 53.70%
UHI 4.3 8.10% 6.5 13.30%
CRS 8.4 24.20% 12.5 34.30%
CLQ 1.3 4.30% 1.7 13.90%
PKG 7.8 18.30% 14.8 32.20%
MVG 13.2 33.80% 13.2 33.20%
TABLE 11

The P-values of the Wilcoxon Sign-Rank Tests among #lInstance or
#affectedfile% of anti-patterns detected from D. and D. U Dy,

#Instance #affectedfile%
before<after before>after before<after before>after
UIF <0.001 1 <0.001 1
UHI <0.001 1 <0.001 1
CRS <0.001 1 <0.001 1
CLQ <0.001 1 <0.001 1
PKG <0.001 1 <0.001 1
MVG 0.911 0.09 1 <0.001

Note: The P-values in the column before<after indicate that whether
the results before considering D p, is significantly smaller than that
after this consideration. P-values in before>after are the vice versa.

cies leads to a smaller (and maybe more accurate) number
of files affected by MVG anti-pattern.

4.3.2 Qualifying Changes

We will show, in the analysis of the django project, how
possible dependencies lead to anti-pattern changes, and we
have categorized the detected instances. This categorization
was introduced in Section 3.4.3. Table 12 summarizes these
types of anti-pattern instances detected by D, U Dp, in
django. We now explain the results for each kind of ant-
pattern.

1) UIF anti-pattern. The value of #Type_same in the UIF
column in Table 12 indicates that all of 42 UIF instances
detected by D. are same included in the instances detected
by D, U Dp,. Indicated by #Type_new, other 4 UIF instances
detected by D. U Dp, cannot be detected by D.. The
results indicate that supplementing possible dependencies
can uncover the originally invisible UIF instances. Appendix
A Figure 12(a) shows one of those 4 newly-detected UIF
instances.

2) UHI anti-pattern. As shown in the UHI column in
Table 12, 49 UHI instances are detected by D, U Dp, while
46 UHI instances are detected by D, in total. 28 instances
revealed by D, U Dp, are same as those revealed by D..

TABLE 12
Categorizing anti-pattern instances detected by considering D p,
in django
UIF UHI CRS PKG CLQ MVG
#Total 46 49 67 85 10 63
#Iype_same 42 28 28 60 8 50
#Type_larger 0 18 33 16 2 0
#Type_smaller 0 0 0 0 0 12
#Iype_new 4 3 6 9 0 0
#Type_partial 0 0 0 0 0 1
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TABLE 13
The changes of CLQ instances after considering Dp, in django
D.UDp De .
CLQid CLOsize CLQid CLQsize Ov&happed Difference

1 224 12,8 127 127 97

2 9 3 8 8 1

3 8 4 8 8 0

4 6 5 6 6 0

5 2 6 2 2 0
6 2 7 2 2 0
7 2 9 2 2 0
8 2 10 2 2 0

9 2 12 2 2 0

10 2 11 2 2 0

Among the remaining 21 instances revealed by D. U Dp,,
18 instances are derived from the instances revealed by D..
These derived instances contain the same base class files
as those revealed by D., but connect a larger number of
files depending on both parent class files and child class
files. The additional 3 UHI instances are newly revealed by
D. U Dp, while invisible in D,, one of which is illustrated
in Appendix A 12(b).

3) CRS anti-pattern. As for CRS anti-pattern, from Table
12, we observe that among 67 instances in D. U Dp;:
6 instances are newly detected while invisible in D.; 28
instances are the same as the corresponding instances in
D,; the remaining 33 instances are derived from those in
D, only, with the same crossing center files but involving
a larger number of fan-in/fan-out files due to possible
dependencies. Appendix A Figure 12(c) illustrates one CRS
instance which was originally undetectable.

4) PKG anti-pattern. Similarly, we analyze the PKG in-
stances in D, U Dp, and those in D,, as listed in Table
12. Among the 85 instances in D, U Dp,, 60 instances are
Type_same, 9 instances are Type_new, and the other 16
instances are Type_larger, presenting the same package-
level cycles as those in D, but infecting more files in
cycles. Appendix A Figure 12(d) depicts one Type_new PKG
instance, where possible dependencies create a new relation
between two packages, producing a new package cycle.

5) CLQ anti-pattern. Similarly, Table 12 shows that 10
CLQ instances are detected in D, U Dp,, where 8 instances
are Type_same and 2 instances are Type_larger. Table 13
shows the inspection results. In Table 13, CLQid labels an
CLQ instance, CLQsize denotes the number of files involved
in an instance, Overlappedsize counts the files both taking
partin CLQ i by D,UDp, and CLQ j by D,, and Difference-
size counts the files that participate in CLQ i by D, U Dp,
but not in CLQ j by D..

Table 13 indicates that 8 CLQ instances (CLQid =3/4,...,
10) in D, U Dp, are the same as those (CLQid =4,5,..., 11)
in D,. The 3 separate CLQ instances (CLQid = 1,2,8) by
D. are merged into one larger instance (CLQid = 1) in
D. U Dp, with 224 files. Obviously, possible dependencies
link together the originally separate instances, growing into
a larger clique. CLQid=2 in D, U Dp, is derived from
CLQid=3 by D, with one more file (i.e., models.py) involved
due to possible dependencies, as shown in Appendix A
Figure 12(e). In total, the number of CLQ instances decreases
from 12 to 10 after considering possible dependencies but
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Fig. 11. The distribution of Increase(D.) and Increase(D. U Dp, ) in terms of the six error- or change-proneness measures for all projects

more files are involved.

6) MVG anti-pattern. As listed in Table 12, D. U Dp, and
D, respectively detect 63 MVG instances in django. Among
63 instances in D, U Dp,, 50 instances are the same as those
in D,; 12 instances are derived from those in D,, but fewer
files are affected after considering possible dependencies;
the remaining instance is Type_partial, ie., different and
partially overlapped with that of D.. Appendix A Figure
12(f) shows a MVG instance detected by D.. Here we
see how several files that were previously categorized as
being in a MVG instance are no longer considered to be in
violation after considering possible dependencies.

To sum up, our quantitative analysis of all projects
and the case study of django show that originally indis-
cernible anti-patterns can be revealed by possible dependen-
cies. Except for the MVG anti-pattern, considering possible
dependencies also leads to anti-patterns connecting more
problematic files, thus imposing a larger scope impact on
software architecture than what appears by considering D,
only. The exception is that fewer files participate in MVG
instances after supplementing possible dependencies. The
reason is that possible dependencies can reveal a portion
of “unnamed coupling” between files that have been co-
changed in revision history, which has been indicated by
the RQ1 results.

4.3.3 Anti-pattern Verification

Recall that we used increase(D,) and increase(D. U Dp,)
to evaluate the anti-patterns detected by D, and D. U Dp,.
Figure 11 depicts the distributions of these values for all
projects in terms of the six error- or change-proneness
measures, such as #author, #issue, #changeCmt, #changeLoc,
#issueCmt, and #issueLoc. Each sub-figure is labeled with
the summary results. Considering #author in Figure 11 (a),
increase(D. U Dp,) = 12.79 means that a file affected by
anti-patterns detected based on D, U Dp, requires 12.79-
1=11.79 times higher developer efforts to maintain (i.e.,
such files are 11.79 times more error-/change-prone) than
a non-affected file on average. increase(D.,) = 11.43 is
the corresponding result when anti-patterns are detected
based on D., averaged on all projects. A(increase) = 11.9%
means the value of increase based on D, U Dp, is 18.8%
larger than that based on D.. P-value=0.005 describes the
significance level of the same statistical test as RQ1 and
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RQ2, checking whether increase(D, U Dp,) is larger than
increase(De).

From Figure 11 we observe that both increase(D.) and
increase(D. U Dp,) are larger than 100%, meaning that
anti-pattern files detected by D. or D, U Dp, are more
change- or error-prone than other files in a project. We
also see that the average value of increase(D, U Dp,) is
bigger than that of increase(D.) for all six error- or change-
proneness measurements. Except for Figure 11(b) and (e),
all the P-values are less than 0.05. The P-values in Figure
11(b) and (e) are larger than 0.06 but still < 0.1. In general,

the average value over all A(increase) values is 16.5%, i.e.,
11.9%+21.0%+17.3%+11.9%+21.3%+15.5% _ 16 5%,
G 5%.

Our analyses suggest that, for anti-patterns identified
by D. U Dp,, the affected files consume more maintenance
effort than non-affected files, as indicated by increase(D, U
Dp,) > 100%. More interestingly, possible dependencies
reveal more problematic files with architectural connections,
i.e., the increase rate of maintenance effort spent on affected
file by D. U Dp, is higher than that of D, only, on average.

4.3.4 Prioritizing the Affected Files

Among all the files (i.e., filec,p,) affected by anti-patterns,
we compared the maintenance cost of file., filep,, and
fileenp,. The statistical P-values are less than 0.01, demon-
strating that the maintenance cost of file.p, is larger than
that of filep,, and the maintenance cost of filep, is larger
than that of file. with a high confidence level. Concretely,
Table 14 illustrates the six measurements of file., filep,,
and file.np, participating in anti-patterns, averaged over
all projects. For example, the #authornum row shows that,
among the files affected by UIF anti-pattern, the values
of #author metric for file., filep,, and filep . are 5.9,
7.0, and 8.1, respectively. That is, filep . requires more
maintenance effort than filep, and file., with respect to
#author. Similar results can also be observed in other
five anti-patterns, i.e., UHI, CLQ, PKG, CRS, and MVG.
Regarding the other five maintenance measures, as shown
in the remaining rows of Table 14, the results are consistent
with those regarding #authornum.

The above results indicate the average cost of main-
tenance of files affected by each anti-pattern: filep,~. >
filep, > file.. We now test whether the LoC% (i.e.,

Loc il ‘ R
——Locol faaf;foject) of filep,ne is significantly larger than
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TABLE 14
The average maintenance measures of file., filep,, and filep,ne in
UIF, UHI, CLQ, CRS, PKG, and MVG anti-patterns

UIF UHI CLQ CRS PKG MVG

#authornum filee 59 7.2 8.7 6.7 6.1 8.0
filep, 7.0 7.9 9.2 7.8 7.1 9.3

filep,ne 81 86 102 87 81 104
#issuenum filee 86 122 134 103 91 121
filep, 110 138 148 124 108 147
filep,ne 130 155 165 143 126 1638
#changecmt file. 277 373 481 324 299 409
filep, 356 425 521 393 365 502
filep,ne 444 490 604 478 443 591
#changeloc  file. 9232 11149 13884 1242.6 847.7 15737
filep, 11233 12715 14793 1144.6 10703 1433.1
filep,ne 1425.0 14341 17303 1383.7 1298.7 1646.0
#issueCmt  filee 95 135 150 115 101 135
filep, 122 153 165 138 120 163
filep,ne 145 172 185 160 140 188
#issueLoc  filec  686.0 6954 762.6 5687 4486 6425
filep, 17965 844.6 8989 7177 6116 8059
filep,ne 2381.0 8828 1031.6 837.3 7029 917.9
TABLE 15

The P-values of the Wilcoxon Sign-Rank Tests among file sizes
(Loc%) of filep,ne,filep,, and filee

Anti- Loc%of filep,ne > Loc%of filep, >
pattern Loc%of filep, Loc%of filee
UIF 0.07 0.01
UHI 0.48 0.22
CRS 0.07 0.12
CLQ 0.34 0.39
PKG 0.22 0.03
MVG 0.21 0.25

that of filep, and file.. We reported the statistical P-values
in Table 15.

The P-values larger than 0.1 in Table 15 show that file
sizes of filep . are not significantly larger than those of
filep, and file,., and file sizes of filep, are not significantly
larger than those of file.. Among all the 12 P-values, there
exist 4 values smaller than 0.1. It indicates that in most cases,
the files in file p,n.—those files most difficult to maintain—
are not strongly correlated with the size in terms of LOC.
That is, the more influential affected files indicated by
possible dependencies are not necessarily larger-size files.

These observations demonstrate that, among affected
files, the files involved in both explicit and possible de-
pendencies (i.e., file.np,) are most influential. They signif-
icantly impact change-proneness and bug-proneness, and
thus deserve special attention. A consideration of possible
dependencies thus provides a valuable insight into priori-
tizing maintenance effort.

4.3.5 Answering RQ3

Our study shows that considering possible dependencies
1) helps reveal previously indiscernible anti-patterns, or
2) leads to size increases of anti-patterns (except for the
MVG anti-pattern), thus revealing connections among more
problematic files and reflecting a larger-scope impact than
what is revealed by considering D, only. The differences
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observed in the MVG anti-patterns occur because possible
dependencies couple together co-changed modules, reveal-
ing that some of the files that were previously understood
to be in modularity violation relationships were not in fact
so related. The addition of possible dependencies makes
the detection of the MVG pattern more accurate. We also
verified the anti-patterns identified by D. U Dp, are truly
problematic, consuming more maintenance effort than non-
affected files. The increased rate of maintenance cost is
16.5% higher than that detected by D, only. A more inter-
esting finding is that the affected files involved in both ex-
plicit and possible dependencies are most influential. They
significantly impact change-proneness and bug-proneness
relative to other affected files. This observation provides an
alternative and unique consideration for prioritizing anti-
pattern refactoring: users should pay special attention to
the affected files within the overlap between explicit and
possible dependencies.

5 DISCUSSION: POTENTIAL IMPACTS

Our study reveals the substantial impact of possible de-
pendencies on architecture maintainability, indicating that
architecture analysis and analysis tools should assess and
even emphasize the impact of such dependencies.

1) Change Prediction. Our results from RQ1 indicate
that possible dependencies are an important factor caus-
ing co-changes among files. We envision that adding in
possible dependencies will improve the performance of
prediction-related research for dynamic languages, such as
the prediction of future code changes [9][58] and defect
localization [10][59][60]. Some methods of change impact
analysis [43][61] rely on co-change relations from a long-
period revision history. Since our study shows that possible
dependencies (extracted from source code) can capture a
portion of co-changes, we believe that considering possible
dependencies would contribute to an earlier and more ac-
curate prediction of an architectural-level change influence.
We will verify this assumption in the future.

2) Architecture Management. Our results suggest that
design metrics, such as cohesion [62], coupling [63], and
maintainability [5] measures, should account for possible
dependencies. Otherwise, these measures may be inaccu-
rate, for dynamic languages. As shown in RQ?2, after consid-
ering possible dependencies, architectural maintainability
scores are decreased, more accurately reflect reality.

Since source files related to possible dependencies take
more maintenance cost than explicit dependencies as indi-
cated in RQ2, we envision that the awareness of possible
dependency related changes could help better understand
and manage architectural change or erosion [64][61] during
software evolution and maintenance.

3) Refactoring Prioritization. Our study of architecture
anti-pattern detection indicates that the flawed files within
the overlap between explicit and possible dependencies are
most bug-prone and change-prone. Prior design flaw detec-
tion tools, such as SonarQube [52] and Structurel01 [14],
tend to report a large number of flawed files, sometimes
covering almost 50% of the files in a project. Recent work,
such as ArchRoot [65] and Active Hotspots [53] focus on
pinpointing the truly problematic ones, the minimal number

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorg/ ublications_standards/publications/rights/index.html for more information.

:04 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3171288, IEEE

Transactions on Software Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

of problematic file sets. Complementary to that research, our
study of RQ3 provides a unique alternative for maintenance
prioritization: the flawed files within the overlap between
explicit and possible dependencies are most influential and
incur severe maintenance issues. We also envision that pay-
ing attention to such files could promote a more appropriate
and effective alignment of maintenance effort.

4) Tool Improvement. Even though type inference tech-
niques have been widely studied [22][23][24][25], we have
checked that popular commercial architecture analysis tools,
such as Lattix [13], Structurel01 [14], DV8 [16], have not
employed these techniques and possible dependencies. We
reported study results to the architects of DV8 and De-
pends [66]. They verified our findings and decided to in-
clude possible dependencies as enhancements to their tools.

5) Other Suggestions. On one hand, these results sug-
gest that developers should be aware of code objects with
possible dependencies when changing code, and they can
highlight such objects by type hints introduced in Python
PEP484 [26]. On the other hand, static languages like JAVA
and C++ support dynamic features, such as JAVA reflec-
tion [67] and the usage of dynamic bindings [68]. Prior
research [69][70] of dynamic bindings shows that including
dynamic information improves the performance of architec-
ture recovery, a technique to reconstruct the module view
of the software architecture. Inspired by these work, we will
generalize our study on static languages.

6 THREATS TO VALIDITY

This section describes the threats that could affect the valid-
ity of our studies in this paper.

Reliability. The first threat is related to the imprecision
of dependency extraction tools. We acknowledge the exis-
tence of various tools for dependency identification, such as
the Dependency Finder [71], Sourcetrail [72], and Depends
[66]. We chose a commercial tool named Understand to
detect explicit dependencies since it is widely accepted in
industry [13][14][39]. We provided a dependency extraction
approach based on ENRE [21] to detect possible depen-
dencies by employing type inference techniques, which are
also utilized in the empirical study by Chen et al. [12].
It is difficult to verify the large number of possible de-
pendencies for all 499 projects. To mitigate this threat, we
adopted two ways to verify possible dependencies. On one
hand, as shown in Section 3.3.2, we automatically collected
benchmarks from execution traces of eight projects of the
studied subjects to evaluate 1217 P; possible dependencies
(the accuracy is 97% indicated by Table 4). On the other
hand, we randomly sampled 1000 dependencies from all
the 133,100 file-level P; possible dependencies for a manual
verification. Two authors of this paper participated in this
sanity check, achieving more than 90% accuracy. All our
study in RQ1, RQ2 and RQ3 only considered the P; de-
pendencies and explicit dependencies at file level to form
a conservative baseline for the study. Our results would
only be strengthened if P;~; dependencies could be further
resolved in the future.

Another threat is the domain analysis of our subjects
related to Table 3. We recruited five research volunteers (in-
cluding one PhD student and four other graduate students)
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to label the domain of each Python project, following the
application domain categories introduced in Python offi-
cial community (https://legacy.python.org/about/apps/).
To mitigate any subjectivity threat, they cross-validated their
results and reached consensus after an independent labeling
step.

To be rigorous, we reported all of the correlation anal-
yses and comparison analyses with statistical significance
indicated by P-values. Due to the existence of outliers,
we employed the Spearman correlation coefficient in RQ2.
We compared two populations in all studies through
the Wilcoxon signed-rank test using paired samples. We
adopted this statistical test to check whether one data vector
is significantly larger or smaller than another one, along
with showing the mean distribution.

Construct Validity. First, we focused our analysis on
the modular structure view of the software architecture.
The dependency-based architectural metrics (DL and PC
for RQ2) and anti-pattern detection (for RQ3) used in this
work are based on a software module view. One threat
is that our study does not generalise to all views of the
software architecture like component-connector structures
[73]. The modular structure is most commonly used by
software practitioners [70]. Thus we choose this view for
our study.

Second, different techniques may produce different ob-
servations. To mitigate this threat, we used the state-of-the-
art architecture analysis techniques and diverse metrics with
comprehensive ground-truth measures in this study. In the
future, we will employ other analysis techniques for further
validation.

Other threats are about the extent of influence of param-
eter settings. We used co-change history to explore RQI.
Prior work often used arbitrary thresholds to determine co-
change relations [40]. It is unclear if a particular threshold
setting is generalizable. To mitigate this threat, our study
used 20 co-change benchmarks (i.e., 20 different threshold
settings), Benchmark;,7 = 1,2, ..., 20, each containing file
pairs that have changed together at least ¢ times. Moreover,
architecture anti-pattern detection for RQ3 involves parame-
ter settings. The change to the configuration would produce
different anti-pattern instances. To partially mitigate this
threat, we used the default settings recommended by the
prior work [39][46].

Internal Validity. Our finding in RQ2 shows that the
affected files, which involve possible dependencies, con-
sume more maintenance costs than other files. We explored
the correlation between source files involved in possible
dependencies and software maintainability. However, we
are not claiming causal relations. The study of how possible
dependencies incur maintenance effort will be our future
work.

Another threat is that other factors (i.e., file size) may
lead to the observation, i.e., files involved in possible de-
pendencies have a higher maintenance cost than those with
explicit dependencies. For example, files with more lines
of code always require more effort to maintain [54]. We
mitigated this threat by conducting the Wilcoxon Sign-Rank
Test shown in Table 11, indicating little correlation between
the anti-pattern affected files with more maintenance costs
and their file sizes.
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External Validity. The main threat to external validity
is that our study on various Python projects may pro-
duce inconsistent observations. To generalize our study, we
extended our dataset to 499 popular open-source Python
projects collected from Github. These projects exhibit di-
verse sizes and domains, as depicted in Figure 6 and Table
3. Besides, our study focused on the impact of possible
dependencies on architecture maintainability by contrasting
with explicit dependencies. We have not investigated the
relation between code practices and the impact of possible
dependencies, which is future research.

Second, our study may not generalize to all the dy-
namic features of dynamic programming languages. Besides
enabling the lack of type declarations, Python supports
other kinds of dynamic features such as introspection, object
changes, code generation, and meta-abstraction [33][74][75].
Our study is, however, the first step towards understand-
ing possible dependencies created due to dynamic typing.
The resolution of possible dependencies related to dynamic
features is challenging for static program analysis. An ex-
ploration of such features through using run-time tracing
would be another feasible direction, as indicated by the
work of [33]. Moreover, other dynamic languages like Ruby
and JavaScript also lack strong typing, the same feature that
our work has studied. We are confident that our study of
this feature could be extended to these languages.

7 RELATED WORK

Code dependencies are fundamental to architecture anal-
ysis and other software analysis tasks like malware de-
tection [76][77], reuse detection [78], and test case genera-
tion [79]. Our work focus on dependency-based software
architecture analysis and this section will introduce the
related work.

7.1 Co-change Prediction

Co-change prediction techniques identify the code artifacts
needed to be modified together by a given change. The work
of Badri [18] and Petrenko [19] predicted the affected code
based on dependency graph statically extracted from source
code. Poshyvanyk et al. [31] and Wiese et al. [80] used
conceptual or semantic coupling to reason about the effects
of a change to a software system. Zimmermann [81] and
Rolfsnes [42] identified potentially relevant items based on
history or evolutionary coupling. Empirical studies [29][40]
reported that syntactic dependencies (extracted from code
syntax), semantic dependencies (extracted from code tex-
tual information), and history dependencies (extracted from
revision history) created the different but complimentary
structures of a software system. Other work [82] leveraged
hybrid features such as evolutionary and semantic informa-
tion for co-change prediction. Different from those work,
our study treated the co-change files mined from revision
history as benchmarks to analyze how likely possible de-
pendencies would capture co-change relations.

7.2 Maintainability Measurement

Much prior work focus on measuring the maintainability at
code level. Maintainable source code should present higher
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cohesiveness within code elements and lower coupling be-
tween elements. LCOM, designed by Chidamber and Ke-
merer [83], computes the lack of cohesiveness among class
method members. Briand et al. [84] designed a group of co-
hesion metrics to indicate the error-prone and defect-prone
software elements. CBO, also proposed by Chidamber [83],
are the most influential coupling metrics. CBO counts the
number of other classes that are coupled to a class.

Instead of focusing on code implementation level, archi-
tecture modularity/maintainability measures aim to com-
pare design alternatives and indicate architecture decay [5].
The work of Maccormack [4] presented the Propagation
Cost (PC) to measure how tightly source files are coupled
together based on direct and indirect dependencies among
files. On the contrary, Decoupling Level (DL) [5] evaluates
how likely a software system can be decoupled into small
and independently separate modules. The larger DL and
the smaller PC will indicate a more maintainable software
architecture. Both PC and DL assume that code dependency
structure can embody software design decisions, and thus
aid assessing architecture quality.

Our work utilized the DL and PC to observe the impact
of possible dependency on architecture maintainability and
measures.

7.3 Architecture Anti-pattern Detection

Researchers have proposed various methods to detect
architecture-level violations and smells that cause software
architecture decay or erosion, adversely impacting software
internal quality. Marinescu et al. [85] designed metric-based
rules to identify design flaws, using cohesion and complex-
ity metrics at class level. The work by Bertran et al. [86]
combined code-level metrics with architecture-level metrics
to pinpoint the smells such as “God Class” that lead to
architecture decay.

The studies by Le et al. [87] categorized four types
of architectural smells, including concerned-based smells,
dependency-based smells, interface-based smells, and
coupling-based smells, in terms of their symptoms, source,
and consequence. Arcan tool [88][89] detects dependency-
based architecture smells such as cycle dependency, un-
stable dependency, and hub-like dependency using sub-
graph pattern-based techniques. Mo et al. [8][20] identified
problematic anti-patterns that violate design principles and
impact maintainability through the combination of syntactic
dependencies and revision history records.

Recent work [53] pointed out that existing design flaw
detection tools tend to report a large number of problems,
hindering users from pinpointing the truly flawed files.
To address this issue, Qiong et al. [53] detected a few
dominating Active Hotspots which accumulate long-term
maintenance cost, by tracking the interactions among files in
software evolution. ArchRoot [65] captures the the minimal
number of design rule spaces to capture the large number
of a project’s bug-prone files with high maintenance effort.
Liu et al. [90] investigated the most problematic root files in
architecture anti-patterns. Their results revealed that active
and overlapping root files among multiple anti-patterns
should be prioritized during design problem resolution.
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Our work exploited the dependency-based anti-patterns
to explore how possible dependencies would reveal prob-
lematic file groups that incur severe architecture-level main-
tainability issues. We also explored an alternative of iden-
tifying the most severe flawed files that should having
maintenance priority.

7.4 Language Dynamic Features

Dynamic languages such as Python, JavaScript, and Ruby,
support dynamic typing code objects. Nanz et al. [91] and
Ray et al. [92] revealed that dynamic languages are more
prone to run-time defects due to the lack of static type
checking. Kleinschmager et al. [93] presented evidence that
static typing can help fix type errors. To mitigate type-
related errors, much research has explored type inference
by static code analysis [22][23][24][25]. The work of Aycock
et al. [94] and Rigo et al. [95] resolved types of objects with
unknown types based on objects of known types through
data flow analysis. Xu et al. [35] leveraged type hints im-
plied by code conventions such as variable names, code
comments, and class attribute access. Recent work proposed
neural network frameworks for type inference [96][25]. Our
work has leveraged existing type inference techniques to
detect possible dependencies and explored their impact on
architectural maintainability.

Recent research has also studied dynamic features of
programming languages, such as duck typing, introspec-
tion/reflection, object changes, code generation, and library
loading. Milojkovic et al. [97] studied how often duck typing
is used in Smalltalk. Akerblom et al. [98] inspected execution
traces to measure the degree to which the method calls
are monomorphic or polymorphic at run-time in Python.
Akerblom et al. [33] observed the usage of these features.
Wang et al. [99] demonstrated the correlation between
frequent usage of dynamic features and change-proneness
of related code. Chen et al. [12] focused on the misuse
practice of dynamic typing in Python by employing type
inference techniques. A recent work [100] detected patterns
that are followed by non-trivial type annotation practices,
and explored the features of type-annotated modules. Our
study also investigated dynamic typing, but for a different
purpose.

8 CONCLUSION

In our study of 499 open-source Python projects we explored
the architecture-level maintainability impact of possible
dependencies caused by the lack of type information in
dynamic languages. Our study presented strong evidence
that the architectural impact of possible dependencies is
nontrivial, and in fact surprisingly high compared with
explicit dependencies.

Our results benefit software research and practice by: 1)
providing empirical evidence of the impact of dynamic typ-
ing on design structures, and 2) suggesting how automated
architecture analysis tools can be improved—augmented
with possible dependencies related to dynamic typing.
These results also suggest the need to improve coding
practices in dynamic languages by making developers more
aware of the impacts of their dynamic typing choices, thus
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potentially leading to the adoption of practices that result in
more maintainable software.

APPENDIX
ARCHITECTURE ANTI-PATTERN CASES

This section depicts the anti-pattern examples detected by
considering P; possible dependencies in django project. This
part is a supplement for Section 4.3.2.

We used the DSM structure to visualize anti-pattern
instances. In the DSM in Figure 12(a), each row and each
column corresponds to a Python file in the same order;
‘X" in cell (i, 7) rendered in black color denotes the explicit
dependency only; ‘%’ in blue color means that both explicit
dependency and possible dependency exist between the
two files; ‘+” in red color denotes the possible dependency
only; the number in one cell means the number of co-
changes between two Python files. For instance, the “x,5”
in the cell (2,1) indicates that there exist both explicit and
possible dependencies from migration.py to state.py, and the
two python files have co-changed 5 times in the examined
revision history.

1) UIF instance. Figure 12(a) shows one newly-detected
UIF instances in django. state.py is an unstable interface file
that is detected by D, U Dp, but is missed by D.. Without
possible dependencies, the history influence scope of state.py
is 8 since only 8 files depend on and co-changed with
state.py. This anti-pattern instance is unable to be detected
based on D, because the history influence scope of state.py
is less than 10, the minimal threshold as configured. After
considering possible dependencies, 3 more files depend on
and co-changed with state.py, surpassing the UIF detection
threshold. That is, supplementing possible dependencies
can uncover the originally invisible UIF instances.

2) UHI instance. In Figure 12(b), “inherit” indicates that
forms.py is a parent class file and models.py is a child class file.
Besides the original dependencies from the two files, utils.py
and edit.py, to the child class file, supplementing possible
dependencies produces new connections from these two
files to the parent class file, thus constructing a UHI anti-
pattern.

3) CRS instance. Figure 12(c) illustrates one CRS in-
stance with base/operations.py as the crossing center. After
supplementing possible dependencies, base/operations.py has
4 fan-in files and 4 fan-out files, creating this CRS anti-
pattern that was originally undetectable.

4) PKG instance. Figure 12(d) depicts one PKG instance.
Without considering possible dependencies, the package
django/db/models unidirectionally depends on the package
django/core. Possible dependencies create the opposite rela-
tion between the two packages, consequently producing a
new package cycle.e

5) CLQ instance. In Figure 12(e), one more file (ie.,
models.py) involved in this CLQ anti-pattern due to possible
dependencies, making this instance become larger when
considering possible dependencies.

6) MVG instance. Figure 12(f) shows a MVG instance
detected by D.. The module including the first file has
frequently co-changed with another module composed by
the other files in this DSM. No syntactically explicit de-
pendencies exist between the two modules. After adding
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1 2 3 4 5 6 7 8 9 10 11 12
1 django/db/migrations/state.py 1) 5 5 4 6 7 3 10 10 25 3 22
2 django/core/management/commands/migrate.py %5 ) *,11 15 X13 X4 3 +,1 2 *,6 X1 3
3 django/db/migrations/executor.py %5 1 7 3) 1 *,6 X4 1 *,9 4 4 4 3
4 django/core/management/commands/makemigrations.py X4 15 1 | 4) *,11 X3 %7 -+ *,9 2
5 django/db/migrations/loader.py +.6 13 6 11 | (5) %,15 13 *,8 5 13 1 3
6 django/db/migrations/graph.py *,7 4 4 3 15 7 (6) 3 *,7 3 12 1 3
7 django/db/migrations/questioner.py ai='3) 3 1 i X13 3 | (7) 2 3 il 1 1
8 django/db/migrations/migration.py +,10 1 9 8 7 2 | (8) 5 8 5 3
9 django/db/migrations/operations/fields.py X,10 2 4 5 3 3 5 B 9) 13 9 X,26
10 django/db/migrations/autodetector.py %,25 6 4 9 13 %,12 *,7 *,8 X13 | (10) 3 X,19
11 django/db/migrations/operations/special.py %3 1 4 1 1 1 5 9 3 r (11) 10
12 django/db/migrations/operations/models.py X.22 3 3 2 3 3 1 X3 X,26 19 10 i (12)

(a) An UIF instance is newly detected by D, U Dp, while it was originally invisible by D,

1 2 3 4
1 django/forms/forms.py (1) \
2 django/forms/models.py Inherit | (2)
3 django/contrib/admin/utils.py + X (3)
4 django/views/generic/edit.py s X " @

(b) An UHI instance is newly detected by D, U Dp, while it was originally invisible by D,

1 2 3 4 5 6
1 django/db/backends/base/features.py 1) 6 10 2 11 6
2 django/db/models/expressions.py 6 r ) X,15 %*,13 X7 6
3 django/db/models/sql/compiler.py X,10 *,15 L 3) X9 X11 6
4 django/db/models/fields/__init__py 2 X,13 9 B (4) X7 5
5 django/db/backends/base/operations.py X11 +7 —+,11 +.7 6 | 17
6 django/db/backends/sqlite3/operations.py 6 X,6 6 *,5 X7 r (6)

(c) A CRS instance is newly detected by D, U Dp, while it was originally invisible by D,

1 2 3 4 5 6 7 8 9 10
1 django/db/models/base.py @) X X -+ X -+
2 django/db/models/expressions.py ) -+ X =r
3 django/db/models/options.py X ) -+ X ==
4 django/db/models/query.py X X X " @ X -+ X ==
5 django/db/models/aggregates.py * | (5) -+ X =
6 django/db/models/lookups.py X NG -+ X -+
7 django/db/models/__init__.py X X X X X r ) X =+
8 django/core/paginator.py =P = (8)
9 django/core/exceptions.py B 9)
10 django/core/__init__.py NGO
(d) A PKG instance is newly detected by D, U Dp, while it was originally invisible by D,
1 2 3 4 5 6 7 8 9
1 django/contrib/gis/db/backends/oracle/models.py Q) i -+
2 django/contrib/gis/db/models/aggregates.py ) *
3 django/contrib/gis/db/models/lookups.py r 3) X X
4 django/contrib/gis/db/backends/oracle/operations.py X X i 4) X X
5 django/contrib/gis/db/models/fields.py X ! (5) X
6 django/contrib/gis/db/models/sgl/conversion.py i (6) X
7 django/contrib/gis/db/backends/base/operations.py X r @) X
8 django/contrib/gis/db/models/functions.py X X X | (8) X
9 django/contrib/gis/db/backends/postgis/operations.py X X X B 9)
(e) A CLQ instance detected by D, U Dp, involves one more files than the corresponding instance by D,
il 2 3 4 3 6 7 8 9 10 11 12 13
1 django/db/models/sql/where.py [€)) 10 8 8 8 9 6 8 6 12 8 14 14
2 django/db/models/query_utils.py =+.10 @) X3 15 6 11 X7 6 4 10 6 X11 20
3 django/db/models/lookups.py 8 X3 B ®3) 2 1 X,6 X2 2 4 3 4 X8 3
4 django/db/models/fields/related.py 8 X15 2 |- 4) X113 10 X13 5 5 8 it X,61 X,45
5 django/db/backends/_init__py 8 6 1 13 7 (5 8 5 5 6 11 5 7 25 33
6 django/db/models/expressions.py —+9 X111 6 10 8 B (6) X8 13 3 8 2 X13 13
7 django/db/models/_init__py 6 X7 X2 X13 5 x8 T @ X5 2 5; 4 X14 X13
8 django/db/models/aggregates.py 8 6 2 5 5 X113 x5 7 8) 3 5 3 X3 4
9 django/contrib/gis/db/backends/postgis/operations.py 6 4 4 5 X6 X3 X2 3 | ©) 5 3 7 6
10 django/db/models/sql/subqueries.py 12 X,10 3 8 11 8 X5 5 5 v (10) 6 10 X,29
11 django/db/models/sql/datastructures.py 8 6 4 7 5 2 X4 3 3 6 4 (11) 5 9
12 django/db/models/fields/__init__.py 14 X11 8 61 25 X,13 X,14 3 . 10 5 B 12) X, 27
13 django/db/models/query.py i X,20 3 X.45 33 X3 X3 X4 6 X,29 9 x27 7 (13)

(f) AMVG instance detected by D, U Dp, involves three less files (as highlighted in blue rows) than the corresponding instance by D,

Fig. 12. Anti-pattern examples in django
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possible dependencies, 3 originally affected files (rendered
in blue) becomes un-affected by this MVG instance. The
reason is that some co-changed files that have no explicit
dependencies now show possible dependencies.
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