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Abstract

To build robust question answering systems,
we need the ability to verify whether an-
swers to questions are truly correct, not just
“good enough” in the context of imperfect QA
datasets. We explore the use of natural lan-
guage inference (NLI) as a way to achieve this
goal, as NLI inherently requires the premise
(document context) to contain all necessary in-
formation to support the hypothesis (proposed
answer to the question). We leverage large pre-
trained models and recent prior datasets to con-
struct powerful question conversion and decon-
textualization modules, which can reformulate
QA instances as premise-hypothesis pairs with
very high reliability. Then, by combining stan-
dard NLI datasets with NLI examples automat-
ically derived from QA training data, we can
train NLI models to evaluate QA systems’ pro-
posed answers. We show that our approach
improves the confidence estimation of a QA
model across different domains. Careful man-
ual analysis over the predictions of our NLI
model shows that it can further identify cases
where the QA model produces the right an-
swer for the wrong reason, i.e., when the an-
swer sentence does not address all aspects of
the question.

1 Introduction

Recent question answering systems perform well
on benchmark datasets (Seo et al., 2017; Devlin
et al., 2019; Guu et al., 2020), but these models
often lack the ability to verify whether an answer
is correct or not; they can correctly reject some
unanswerable questions (Rajpurkar et al., 2018;
Kwiatkowski et al., 2019; Asai and Choi, 2021),
but are not always well-calibrated to spot spurious
answers under distribution shifts (Jia and Liang,
2017; Kamath et al., 2020). Natural language in-
ference (NLI) (Dagan et al., 2005; Bowman et al.,
2015) suggests one way to address this shortcom-
ing: logical entailment provides a more rigorous

Context: The first season of the fantasy comedy television series The Good 
Place, created by Michael Schur, aired … The series focuses on Eleanor 
Shellstrop (Kristen Bell) , a woman who wakes up in the afterlife and is 
introduced by Michael (Ted Danson) to a Heaven-like utopia he designed …

Question: Who plays the bad guy in the Good Place?
Answer: Ted Danson

Premise: The series The Good Place focuses on Eleanor Shellstrop (Kristen 
Bell) , a woman who wakes up in the afterlife and is introduced by Michael 
(Ted Danson) to a Heaven-like utopia he designed.

Hypothesis: Ted Danson plays the bad guy in The Good Place.

Decontextualization of the answer sentence

Question conversion to a declarative statement

NLI Model Answer is correct, but information about Michael 
being the bad guy is missing in the premise

Not entailed, answer rejected

Figure 1: An example from the Natural Questions
dataset demonstrating how to convert a (question, con-
text, answer) triplet to a (premise, hypothesis) pair. The
underlined text denotes the sentence containing the an-
swer Ted Danson, which is then decontextualized by re-
placing The series with The series The Good Place. Al-
though Ted Danson is the right answer, an NLI model
determines that the hypothesis is not entailed by the
premise due to missing information.

notion for when a hypothesis statement is entailed
by a premise statement. By viewing the answer
sentence in context as the premise, paired with the
question and its proposed answer as a hypothesis
(see Figure 1), we can use NLI systems to verify
that the answer proposed by a QA model satis-
fies the entailment criterion (Harabagiu and Hickl,
2006; Richardson et al., 2013).

Prior work has paved the way for this applica-
tion of NLI. Pieces of our pipeline like convert-
ing a question to a declarative sentence (Wang
et al., 2018; Demszky et al., 2018) and reformulat-
ing an answer sentence to stand on its own (Choi
et al., 2021) have been explored. Moreover, an
abundance of NLI datasets (Bowman et al., 2015;
Williams et al., 2018) and related fact verification
datasets (Thorne et al., 2018) provide ample re-
sources to train reliable models. We draw on these
tools to enable NLI models to verify the answers



from QA systems, and critically investigate the
benefits and pitfalls of such a formulation.

Mapping QA to NLI enables us to exploit both
NLI and QA datasets for answer verification, but as
Figure 1 shows, it relies on a pipeline for mapping a
(question, answer, context) triplet to a (premise, hy-
pothesis) NLI pair. We implement a strong pipeline
here: we extract a concise yet sufficient premise
through decontextualization (Choi et al., 2021),
which rewrites a single sentence from a document
such that it can retain the semantics when presented
alone without the document. We improve a prior
question conversion model (Demszky et al., 2018)
with a stronger pre-trained seq2seq model, namely
T5 (Raffel et al., 2020). Our experimental results
show that both steps are critical for mapping QA
to NLI. Furthermore, our error analysis shows that
these two steps of the process are quite reliable
and only account for a small fraction of the NLI
verification model’s errors.

Our evaluation focuses on two factors. First,
can NLI models be used to improve calibration of
QA models or boost their confidence in their deci-
sions? Second, how does the entailment criterion
of NLI, which is defined somewhat coarsely by
crowd annotators (Williams et al., 2018), transfer
to QA? We train a QA model on Natural Ques-
tions (Kwiatkowski et al., 2019, NQ) and test
whether using an NLI model helps it better general-
ize to four out-of-domain datasets from the MRQA
shared task (Fisch et al., 2019). We show that by
using the question converter, the decontextualiza-
tion model, and the automatically generated NLI
pairs from QA datasets, our NLI model improves
the calibration over the base QA model across
five different datasets.1 For example, in the selec-
tive QA setting (Kamath et al., 2020), our approach
improves the F1 score of the base QA model from
81.6 to 87.1 when giving answers on the 20% of
questions it is most confident about. Our pipeline
further identifies the cases where there exists an
information mismatch between the premise and the
hypothesis. We find that existing QA datasets en-
courage models to return answers when the context
does not actually contain sufficient information,
suggesting that fully verifying the answers is a
challenging endeavor.

1The converted NLI datasets, the question con-
verter, the decontextualizer, and the NLI model are
available at https://github.com/jifan-chen/
QA-Verification-Via-NLI

2 Using NLI as a QA Verifier

2.1 Background and Motivation
Using entailment for QA is an old idea; our high-
level approach resembles the approach discussed
in Harabagiu and Hickl (2006). Yet, the execu-
tion of this idea differs substantially as we exploit
modern neural systems and newly proposed anno-
tated data for passage and question reformulation.
Richardson et al. (2013) explore a similar pipeline,
but find that it works quite poorly, possibly due to
the low performance of entailment systems at the
time (Stern and Dagan, 2011). We believe that a
combination of recent advances in natural language
generation (Demszky et al., 2018; Choi et al., 2021)
and strong models for NLI (Liu et al., 2019) equip
us to re-evaluate this approach.

Moreover, the focus of other recent work in this
space has been on transforming QA datasets into
NLI datasets, which is a different end. Demszky
et al. (2018) and Mishra et al. (2021) argue that
QA datasets feature more diverse reasoning and
can lead to stronger NLI models, particularly those
better suited to strong contexts, but less attention
has been paid to whether this agrees with classic
definitions of entailment (Dagan et al., 2005) or
short-context NLI settings (Williams et al., 2018).

Our work particularly aims to shed light on infor-
mation sufficiency in question answering. Other
work in this space has focused on validating an-
swers to unanswerable questions (Rajpurkar et al.,
2018; Kwiatkowski et al., 2019), but such ques-
tions may be nonsensical in context; these efforts
do not address whether all aspects of a question
have been covered. Methods to handle adversarial
SQuAD examples (Jia and Liang, 2017) attempt
to do this (Chen and Durrett, 2021), but these are
again geared towards detecting specific kinds of
mismatches between examples and contexts, like a
changed modifier of a noun phrase. Kamath et al.
(2020) frame their selective question answering
techniques in terms of spotting out-of-domain ques-
tions that the model is likely to get wrong rather
than more general confidence estimation. What
is missing in these threads of literature is a for-
mal criterion like entailment: when is an answer
truly sufficient and when are we confident that it
addresses the question?

2.2 Our Approach
Our pipeline consists of an answer candidate gen-
erator, a question converter, and a decontextualizer,

https://github.com/jifan-chen/QA-Verification-Via-NLI
https://github.com/jifan-chen/QA-Verification-Via-NLI


which form the inputs to the final entailment model.

Answer Generation In this work, we focus our
attention on extractive QA (Hermann et al., 2015;
Rajpurkar et al., 2016), for which we can get an
answer candidate by running a pre-trained QA
model.2 We use the Bert-joint model pro-
posed by Alberti et al. (2019) for its simplicity
and relatively high performance.

Question Conversion Given a question q and an
answer candidate a, our goal is to convert the (q, a)
pair to a declarative answer sentence d which can
be treated as the hypothesis in an NLI system (Dem-
szky et al., 2018; Khot et al., 2018). While rule-
based approaches have long been employed for this
purpose (Cucerzan and Agichtein, 2005), the work
of Demszky et al. (2018) showed a benefit from
more sophisticated neural modeling of the distri-
bution P (d | q, a). We fine-tune a seq2seq model,
T5-3B (Raffel et al., 2020), using the (a, q, d) pairs
annotated by Demszky et al. (2018).

While the conversion is trivial on many exam-
ples (e.g., replacing the wh-word with the answer
and inverting the wh-movement), we see improve-
ment on challenging examples like the following
NQ question: the first vice president of India who
became the president later was? The rule-based
system from Demszky et al. (2018) just replaces
who with the answer Venkaiah Naidu. Our neural
model successfully appends the answer to end of
the question and gets the correct hypothesis.

Decontextualization Ideally, the full context
containing the answer candidate could be treated
as the premise to make the entailment decision.
But the full context often contains many irrelevant
sentences and is much longer than the premises in
single-sentence NLI datasets (Williams et al., 2018;
Bowman et al., 2015). This length has several draw-
backs. First, it makes transferring models from the
existing datasets challenging. Second, perform-
ing inference over longer forms of text requires a
multitude of additional reasoning skills like coref-
erence resolution, event detection, and abduction
(Mishra et al., 2021). Finally, the presence of extra-
neous information makes it harder to evaluate the
entailment model’s judgments for correctness; in
the extreme, we might have to judge whether a fact
about an entity is true based on its entire Wikipedia
article, which is impractical.

2Our approach could be adapted to multiple choice QA, in
which case this step could be omitted.

We tackle this problem by decontextualizing the
sentence containing the answer from the full con-
text to make it stand alone. Recent work (Choi
et al., 2021) proposed a sentence decontextualiza-
tion task in which a sentence together with its con-
text are taken and the sentence is rewritten to be
interpretable out of context if feasible, while pre-
serving its meaning. This procedure can involve
name completion (e.g., Stewart → Kristen Stew-
art), noun phrase/pronoun swap, bridging anaphora
resolution, and more.

More formally, given a sentence Sa containing
the answer and its corresponding context C, decon-
textualization learns a model P (Sd | Sa, C), where
Sd is the decontextualized form of Sa. We train a
decontextualizer by fine-tuning the T5-3B model
to decode Sd from a concatenation of (Sa, C) pair,
following the original work. More details about
the models we discuss here can be found in Ap-
pendix B.

3 Experimental Settings

Our experiments seek to validate the utility of
NLI for verifying answers primarily under dis-
tribution shifts, following recent work on selec-
tive question answering (Kamath et al., 2020). We
transfer an NQ-trained QA model to a range of
datasets and evaluate whether NLI improves an-
swer confidence.

Datasets We use five English-language span-
extractive QA datasets: Natural Questions
(Kwiatkowski et al., 2019, NQ), TriviaQA (Joshi
et al., 2017), BioASQ (Tsatsaronis et al., 2015),
Adversarial SQuAD (Jia and Liang, 2017, SQuAD-
adv), and SQuAD 2.0 (Rajpurkar et al., 2018). For
TriviaQA and BioASQ, we use processed versions
from MRQA (Fisch et al., 2019). These datasets
cover a wide range of domains including biology
(BioASQ), trivia questions (TriviaQA), real user
questions (NQ), and human-synthetic challenging
sets (SQuAD2.0 and SQuAD-adv). For NQ, we fil-
ter out the examples in which the questions are nar-
rative statements rather than questions by the rule-
based system proposed by Demszky et al. (2018).
We also exclude the examples based on tables be-
cause they are not compatible with the task formu-
lation of NLI.3

3After filtering, we have 191,022/4,855 examples for the
training and development sets respectively. For comparison,
the original NQ contains 307,373/7,842 examples for training
and development.



Question Where was Dyrrachium 
located? (Answerable)

What naval base fell to the 
Normans? (Unanswerable)

QA Prediction Adriatic Dyrrachium

Hypothesis Dyrrachium was located in 
Adriatic.

The naval base Dyrrachium 
fell to the Normans.

Premise

Dyrrachium — one of the 
most important naval bases 
of the Adriatic — fell again 
to Byzantine hands.

Dyrrachium — one of the 
most important naval bases 
of the Adriatic — fell again 
to Byzantine hands.

NLI Prediction Entail Not Entail

Figure 2: Two examples from SQuAD2.0. The MNLI
model successfully accepts the correct answer for the
answerable question (left) and rejects a candidate an-
swer for the unanswerable one (right).

Base QA Model We train our base QA
model (Alberti et al., 2019) with the NQ dataset.
To study robustness across different datasets, we
fix the base QA model and investigate its capacity
to transfer. We chose NQ for its high quality and
the diverse topics it covers.

Base NLI Model We use the RoBERTa-based
NLI model trained using Multi-Genre Natural Lan-
guage Inference (Williams et al., 2018, MNLI)
from AllenNLP (Gardner et al., 2018) for its broad
coverage and high accuracy.

QA-enhanced NLI Model As there might ex-
ist different reasoning patterns in the QA datasets
which are not covered by the MNLI model (Mishra
et al., 2021), we study whether NLI pairs gener-
ated from QA datasets can be used jointly with the
MNLI data to improve the performance of an NLI
model. To do so, we run the QA instances in the
NQ training set through our QA-to-NLI conversion
pipeline, resulting in a dataset we call NQ-NLI,
containing (premise, hypothesis) pairs from NQ
with binary labels. As answer candidates, we use
the predictions of the base QA model. If the pre-
dicted answer is correct, we label the (premise, hy-
pothesis) as positive (entailed), otherwise negative
(not entailed). To combine NQ-NLI with MNLI,
we treat the examples in MNLI labeled with “en-
tailment” as positive and the others as negative.
We take the same number of examples as of NQ-
NLI from MNLI and shuffle them to get a mixed
dataset which we call NQ-NLI+MNLI. We use
these dataset names to indicate NLI models trained
on these datasets.

Some basic statistics for each dataset after pro-
cessing with our pipeline are shown in Appendix A.

4 Improving QA Calibration with NLI

In this section, we explore to what extent either
off-the-shelf or QA-augmented NLI models work
as verifiers across a range of QA datasets.

4.1 Rejecting Unanswerable Questions
We start by testing how well a pre-trained MNLI
model, with an accuracy of 90.2% on held-out
MNLI examples, can identify unanswerable ques-
tions in SQuAD2.0. We run our pre-trained QA
model on the unanswerable questions to produce
answer candidates, then convert them to the NLI
pairs through our pipeline, including question con-
version and decontextualization. We run the en-
tailment model trained on MNLI to see how fre-
quently it is able to reject the answer by predicting
either “neutral” or “contradiction”. For questions
with annotated answers, we also generate the NLI
pairs with the gold answer and see if the entailment
model trained on MNLI can accept the answer.

The MNLI model successfully rejects 78.5% of
the unanswerable examples and accepts 82.5% of
the answerable examples. Two examples taken
from SQuAD2.0 are shown in Figure 2. We can
see the MNLI model is quite sensitive to the infor-
mation mismatch between the hypothesis and the
premise. In the case where there is no information
about Normans in the premise, it rejects the answer.
Without seeing any data from SQuAD2.0, MNLI
can already act as a strong verifier in the unanswer-
able setting where it is hard for a QA model to
generalize (Rajpurkar et al., 2018).

4.2 Calibration
To analyze the effectiveness of the NLI models in a
more systematic way, we test whether they can im-
prove calibration of QA models or improve model
performance in a “selective” QA setting (Kamath
et al., 2020). That is, if our model can choose
to answer only the k percentage of examples it
is most confident about (the coverage), what F1
can it achieve? We first rank the examples by the
confidence score of a model; for our base QA mod-
els, this score is the posterior probability of the
answer span, and for our NLI-augmented models,
it is the posterior probability associated with the
“entailment” class. We then compute F1 scores at
different coverage values.

4.2.1 Comparison Systems
NLI model variants We train separate NLI mod-
els with MNLI, NQ-NLI, NQ-NLI+MNLI intro-
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Figure 3: Average calibration performance of our mod-
els combining the posterior from the NQ-NLI and the
QA models over five datasets. The x-axis denotes the
top k% of examples the model is answering, ranked by
the confidence score. The y-axis denotes the F1 score.

duced in Section 3, as well as with the NLI version
of the FEVER (Thorne et al., 2018) dataset, which
is retrieved by Nie et al. (2019). As suggested
by Mishra et al. (2021), an NLI model could bene-
fit from training with premises of different length;
therefore, we train an NLI model without the de-
contextualization phase of our pipeline on the com-
bined data from both NQ-NLI and MNLI. We call
this model Mishra et al. (2021) since it follows
their procedure. All of the models are initialized
using RoBERTa-large (Liu et al., 2019) and trained
using the same configurations.

NLI+QA We explore combining complementary
strengths of the NLI posteriors and the base QA
posteriors. We take the posterior probability of the
two models as features and learn a binary classifier
y = logistic(w1pQA + w2pNLI) as the combined
entailment model and tune the model on 100 held-
out NQ examples. +QA denotes this combination
with any of our NLI models.

QA-Ensemble To compare with NLI+QA, we
train another identical QA model, Bert-joint,
using the same configurations and ensemble the
two QA models using the same way as NLI+QA.

Selective QA Kamath et al. (2020) train a cal-
ibrator to make models better able to selectively
answer questions in new domains. The calibrator
is a binary classifier with seven features: passage
length, the length of the predicted answer, and the
top five softmax probabilities output by the QA
model. We use the same configuration as (Kamath
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Fever-NLI Mishra et al. (2021)

Figure 4: Average calibration performance of our NLI
models alone (not including QA posteriors) trained on
NQ-NLI over five datasets. The x-axis denotes the top
k% of examples the model is answering, ranked by the
confidence score. The y-axis denotes the F1 score.

et al., 2020) and train the calibrator on the same
data as our NQ-NLI model.

4.2.2 Results and Analysis
Figure 3 shows the macro-averaged results over the
five QA datasets. Please refer to Appendix C for
per dataset breakdown.

Our NQ-NLI+QA system, which combines the
QA models’ posteriors with an NQ-NLI-trained
system, already shows improvement over using
the base QA posteriors. Surprisingly, addition-
ally training the NLI model on MNLI (NQ-
NLI+MNLI+QA) gives even stronger results.
The NLI models appear to be complementary
to the QA model, improving performance even
on out-of-domain data. We also see that our
our NQ-NLI+MNLI+QA outperforms Mishra et
al. (2021)+QA by a large margin. By inspecting
the performance breakdown in Appendix C, we
see the gap is mainly on SQuAD2.0 and SQuAD-
adv. This is because these datasets often introduce
subtle mismatches by slight modification of the
question or context; even if the NLI model is able
to overcome other biases, these are challenging con-
trastive examples from the standpoint of the NLI
model. This observation also indicates that to better
utilize the complementary strength of MNLI, the
proposed decontextualization phase in our pipeline
is quite important.

Selective QA shows similar performance to us-
ing the posterior from QA model, which is the most
important feature for the calibrator.

Combining NLI model with the base QA models’
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Figure 5: Average calibration performance of the
MNLI model on five QA datasets. Converted vs. origi-
nal denotes using the converted question or the original
question concatenated with the answer as the hypothe-
sis. Sentence vs. decontextualized vs. full-context de-
notes using the sentence containing the answer, its de-
contextualized form, or the full context as the premise.

posteriors is necessary for this strong performance.
Figure 4 shows the low performance achieved by
the NLI models alone, indicating that NLI mod-
els trained exclusively on NLI dataset (FEVER-
NLI, MNLI) cannot be used by themselves as
effective verifiers for QA. This also indicates a
possible domain or task mismatch between FEVER,
MNLI, and the other QA datasets.

NQ-NLI helps bridge the gap between the
QA datasets and MNLI. In Figure 4, both NQ-
NLI and NQ-NLI+MNLI achieve similar perfor-
mance to the original QA model. We also find that
training using both NQ-NLI and MNLI achieves
slightly better performance than training using NQ-
NLI alone. This suggests that we are not simply
training a QA model of a different form by using
the NQ-NLI data; rather, the NQ-NLI pairs are
compatible with the MNLI pairs, and the MNLI
examples are useful for the model.

5 Effectiveness of the Proposed Pipeline

We present an ablation study on our pipeline to see
how each component contributes to the final per-
formance. For simplicity, we use the off-the-shelf
MNLI model since it does not involve training us-
ing the data generated through the pipeline. Fig-
ure 5 shows the average results across five datasets

and Figure 6 presents individual performance on
three datasets.

We see that both the question converter and
the decontextualizer contribute to the perfor-
mance of the MNLI model. In both figures, re-
moving either module harms the performance for
all datasets. On NQ and BioASQ, using the full
context is better than the decontextualized sentence,
which hints that there are cases where the full con-
text provides necessary information. We have a
more comprehensive analysis in Section 6.2.

Moreover, we see that MNLI outperforms the
base QA posteriors on SQuAD2.0 and SQuAD-
adv. Figure 6(a) also shows that the largest gap
between the QA and NLI model is on NQ, which is
unsurprising since the QA model is trained on NQ.
These results show how the improvement in the last
section is achieved: the complementary strengths
of MNLI and NQ datasets lead to the best overall
performance.

6 Understanding the Behavior of
NQ-NLI

We perform manual analysis on 300 exam-
ples drawn from NQ, TriviaQA, and SQuAD2.0
datasets where NQ-NLI+MNLI model produced
an error. We classify errors into one of 7 classes,
described in Section 6.1 and 6.2. All of the authors
of this paper conducted the annotation. The anno-
tations agree with a Fleiss’ kappa value of 0.78,
with disagreements usually being between closely
related categories among our 7 error classes, e.g.,
annotation error vs. span shifting, wrong context
vs. insufficient context, as we will see later. The
breakdown of the errors in each dataset is shown in
Table 1.

6.1 Errors from the Pipeline

We see that across the three different datasets, the
number of errors attributed to our pipeline approach
is below 10%. This demonstrates that the question
converter and the decontextualization model are
quite effective to convert a (question, answer, con-
text) triplet to a (premise, hypothesis) NLI pair. For
the question converter, errors mainly happen in two
scenarios as shown in Figure 7. (1) The question
converter gives an answer of the wrong type to a
question. For example, the question asks “How
old...”, but the answer returned is “Mike Pence”
which does not fit the question. The question con-
verter puts Mike Pence back into the question and
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Figure 6: Calibration performance of the MNLI model on three out of five QA datasets we used. Here, we
omit TriviaQA and SQuAD-adv since they exhibit similar behavior as BioASQ and SQuAD2.0, respectively. The
legends share the same semantics as Figure 5. The x-axis denotes coverage and the y-axis denotes the F1 score.

Decontext Error (NLI Prediction: Not Entail) 
Question: Who was the author of The Art of War? 
Predicted Answer / Gold Answer: Sun Tzu / Sun Tzu 
Hypothesis: Sun Tzu was the author of the art of war. 
Premise: The work, which is attributed to the ancient 
Chinese military strategist Sun Tzu ( “Master Sun”, also 
spelled Sunzi), is composed of 13 chapters. 
Full Context: The Art of War is an ancient Chinese military 
treatise dating from the Spring and Autumn period in 5th 
century BC. The work, which is attributed to the ancient 
Chinese military strategist Sun Tzu …

Question Conversion Error 
Question: How old is the vice president of the United States? 
Hypothesis: Mike Pence is the vice president of the United 
States.

Question: Theodore Roosevelt formed the Progressive Party 
when he lost the Republican nomination to William Howard 
Taft. What was the party also known as? 
Hypothesis: Theodore Roosevelt formed the Progressive 
Party when he lost the Republican nomination to William 
Howard Taft.

Figure 7: Pipeline error examples from the NQ develop-
ment set: the underlined text span denotes the answer
predicted by the QA model.

yields an unrelated statement. Adding a presup-
position checking stage to the question converter
could further improve its performance (Kim et al.,
2021). (2) The question is long and syntactically
complex; the question converter just copies a long
question without answer replacement.

For the decontextualization model, errors usually
happen when the model fails to recall one of the
required modifications. As shown in the example
in Figure 7, the model fails to replace The work
with its full entity name The Art of War.

6.2 Errors from the NLI Model

Most of the errors are attributed to the entailment
model. We investigate these cases closely and ask

ourselves if these really are errors. We categorize
them into the following categories.

Entailment These errors are truly mistakes by
the entailment model: in our view, the pair of sen-
tences should exhibit a different relationship than
what was predicted.

Wrong Context The QA model gets the right an-
swer for the wrong reason. The example in Figure 8
shows that John Von Neumann is the annotated an-
swer but it is not entailed by the premise because
no information about CPU is provided. Although
the answer is correct, we argue it is better for the
model to reject this case. This again demonstrates
one of the key advantages of using an NLI model
as a verifier for QA models: it can identify cases
of information mismatch like this where the model
didn’t retrieve suitable context to show to the user
of the QA system.

Insufficient Context (out of scope for decontex-
tualization) The premise lacks essential informa-
tion that could be found in the full context, typically
later in the context. In Figure 8, the answer Rox-
ette is in the first sentence. However, we do not
know that she wrote the song It Must Have Been
Love until we go further in the context. The need
to add future information is beyond the scope of
the decontextualization (Choi et al., 2021).

Span Shifting The predicted answer of the QA
model overlaps with the gold answer and it is ac-
ceptable as a correct answer. For example, a ques-
tion asks What Missouri town calls itself the Live
Music Show Capital? Both Branson and Branson,
Missouri can be accepted as the right answer.

Annotation Error Introduced by the incomplete
or wrong annotations – some acceptable answers



NQ TQA SQuAD2.0

Question Conversion 3 0 0 2 2 0
Decontext 0 4 0 0 0 7

Entailment 12 39 2 14 12 56
Wrong Context 0 23 0 42 0 2
Insufficient Context 0 11 0 16 0 4
Span Shifting 3 0 13 0 7 0
Annotation 5 0 11 0 10 0

Total 23 77 26 74 31 69

Table 1: Error breakdown of our NQ-NLI+MNLI ver-
ifier on NQ, TQA (TriviaQA), and SQuAD2.0. Here,
yellow and purple denote the false positive and false
negative counts respectively. False positive: NLI pre-
dicts entailment while the answer predicted is wrong.
False negative: NLI predicts non-entailment while the
answer predicted is right.

are missing or the annotated answer is wrong.
From Table 1, we see that “wrong context” cases
consist of 25% and 40% of the errors for NQ and
TriviaQA, respectively, while they rarely happen on
SQuAD2.0. This is because the supporting snippets
for NQ and TriviaQA are retrieved from Wikipedia
and web documents, so the information contained
may not be sufficient to support the question. For
SQuAD2.0, the supporting document is given to
the annotators, so no such errors happen.

This observation indicates that the NLI model
can be particularly useful in the open-domain set-
ting where it can reject answers that are not well
supported. In particular, we believe that this raises
a question about answers in TriviaQA. The support-
ing evidence for the answer is often insufficient to
validate all aspects of the question. What should
a QA model do in this case: make an edu-
cated guess based on partial evidence, or reject
the answer outright? This choice is application-
specific, but our approach can help system design-
ers make these decisions explicit.

Around 10% to 15% of errors happens due to
insufficient context. Such errors could be poten-
tially fixed in future work by learning a question-
conditioned decontextualizer which aims to gather
all information related to the question.

7 Related Work

NLI for Downstream Tasks Welleck et al.
(2019) proposed a dialogue-based NLI dataset and
the NLI model trained over it improved the con-
sistency of a dialogue system; Pasunuru et al.

(2017); Li et al. (2018); Falke et al. (2019) used
NLI models to detect factual errors in abstractive
summaries. For question answering, Harabagiu
and Hickl (2006) showed that textual entailment
can be used to enhance the accuracy of the open-
domain QA systems; Trivedi et al. (2019) used a
pretrained NLI model to select relevant sentences
for multi-hop question answering; Yin et al. (2020)
tested whether NLI models generalize to QA set-
ting in a few-shot learning scenario.

Our work is most relevant to Mishra et al.
(2021); they also learn an NLI model using ex-
amples generated from QA datasets. Our work
differs from theirs in a few chief ways. First, we
improve the conversion pipeline significantly with
decontextualization and a better question converter.
Second, we use this framework to improve QA
performance by using NLI as a verifier, which is
only possible because the decontextualization al-
lows us to focus on a single sentence. We also
study whether the converted dataset is compatible
with other off-the-shelf NLI datasets. By contrast,
Mishra et al. (2021) use their converted NLI dataset
to aid other tasks such as fact-checking. Finally,
the contrast we establish here allows us to conduct
a thorough human analysis over the converted NLI
data and show how the task specifications of NLI
and QA are different (Section 6.2).

Robust Question Answering Modern QA sys-
tems often give incorrect answers in challenging
settings that require generalization (Rajpurkar et al.,
2018; Chen and Durrett, 2019; Wallace et al., 2019;
Gardner et al., 2020; Kaushik et al., 2019). Models
focusing on robustness and generalizability have
been proposed in recent years: Wang and Bansal
(2018); Khashabi et al. (2020); Liu et al. (2020) use
perturbation based methods and adversarial train-
ing; Lewis and Fan (2018) propose generative QA
to prevent the model from overfitting to simple pat-
terns; Yeh and Chen (2019); Zhou et al. (2020) use
advanced regularizers; Clark et al. (2019) debias
the training set through ensemble-based training;
and Chen and Durrett (2021) incorporate an ex-
plicit graph alignment procedure.

Another line of work to make models more
robust is by introducing answer verification (Hu
et al., 2019; Kamath et al., 2020; Wang et al., 2020;
Zhang et al., 2021) as a final step for question an-
swering models. Our work is in the same vein, but
has certain advantages from using an NLI model.
First, the answer verification process is more ex-



Entailment Error (NLI Prediction: Not Entail) 
Question: What were the results of the development of Florida's railroads? 
Predicted / Gold Answer: towns grew and farmland was cultivated / towns grew and farmland was cultivated 
Hypothesis: The results of the development of Florida's railroads were that towns grew and farmland was cultivated. 
Premise: Henry Flagler built a railroad along the east coast of Florida and eventually to Key West; towns grew and 
farmland was cultivated along the rail line.

Wrong Context Error (NLI Prediction: Not Entail) 
Question: Who developed the central processing unit (cpu)? 
Predicted Answer / Gold Answer: Jonh von Neumann / Jonh von Neumann 
Hypothesis: John von Neumann developed the central processing unit (cpu). 
Premise: On June 30, 1945, before ENIAC was made, mathematician John von Neumann distributed the paper 
entitled First Draft of a Report on the EDVAC.
Insufficient Context Error (NLI Prediction: Not Entail) 
Question: Who sang It Must Have Been Love? 
Predicted Answer / Gold Answer: Roxette / Roxette 
Hypothesis: Roxette sang it must have been love. 
Premise: Roxette are a Swedish pop rock duo, consisting of Marie Fredriksson and Per Gessle. 
Full Context: Roxette are a Swedish pop rock duo, consisting of Marie Fredriksson and Per Gessle … She went on to 
achieve nineteen UK Top 40 hits and several US Hot 100 hits, including four US number-ones with “The Look,”  
“Listen to Your Heart,” “It Must Have Been Love,”… 

Entailment Error (NLI Prediction: Entail) 
Question: who is darrell brother in The Walking Dead? 
Predicted / Gold Answer: Daryl / Merle Dixon 
Hypothesis: Daryl is darrell brother in the walking dead. 
Premise: The character Merle Dixon was first introduced in the first season of The Walking Dead as a Southern 
redneck hunter who has a younger brother, Daryl

Figure 8: Examples taken from the development sets of NQ and TriviaQA, grouped by different types of errors
the entailment model makes. The underlined text span denotes the answer predicted by the QA model. The yellow
box denotes a false positive example and the purple box denotes false negative examples.

plicit so that one is able to spot where the error
emerges. Second, we can incorporate NLI datasets
from other domains into the training of our verifier,
reducing reliance on in-domain labeled QA data.

8 Conclusion

This work presents a strong pipeline for converting
QA examples into NLI examples, with the intent
of verifying the answer with NLI predictions. The
answer to the question posed in the title is yes (NLI
models can validate these examples), with two
caveats. First, it is helpful to create QA-specific
data for the NLI model. Second, the information
that is sufficient for a question to be fully answered
may not align with annotations in the QA dataset.
We encourage further explorations of the interplay
between these tasks and careful analysis of the pre-
dictions of QA models.
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A Statistics of the Converted Datasets

The statistics of the datasets after processing
through our pipeline is shown in Table 2. Both
the premise length and the hypothesis length are
quite similar except for the premise length of Triv-
iaQA, despite their original context length differs
greatly (Fisch et al., 2019).

B Model Details

B.1 Answer Generator

We train our Bert-joint on the full NQ train-
ing set for 1 epoch. We initialize the model with
bert-large-uncased-wwm.4 The batch size
is set to 8, window size is set to 512, and the opti-
mizer we use is Adam (Kingma and Ba, 2015) with
initial learning rate setting to 3e-5.

B.2 Question Converter

Each instance of the input is constructed as
[CLS]q[S]a[S], where [CLS] and [S] are the clas-
sification and separator tokens of the T5 model
respectively. The output is the target sentence d.

The model is trained using the seq2seq frame-
work of Huggingface (Wolf et al., 2020). The max
source sequence length is set to 256 and the target
sequence length is set to 512. Batch size is set to
12 and we use Deepspeed for memory optimiza-
tion (Rasley et al., 2020). We train the model with
86k question-answer pairs for 1 epoch with Adam
optimizer and an initial learning rate set to 3e-5.
95% of question answer pairs come from SQuAD
and the remaining 5% come from four other ques-
tion answering datasets (Demszky et al., 2018).

4https://github.com/google-research/bert

Prem Len Hyp Len Word Overlap

NQ 20.0 8.0 0.22

TriviaQA 15.9 9.0 0.16
BioASQ 20.6 8.0 0.14

SQuAD 2.0 19.1 8.2 0.23
SQuAD-adv 19.0 8.2 0.26

Table 2: Statistics of the development set for each
dataset listed above. Here, “Prem len” and “Hyp len”
denote the average number of words with stop words
removed in the premise and hypothesis respectively;
“Word Overlap” denotes the Jaccard similarity between
the premise and the hypothesis.

B.3 Decontextualizer
Each instance of the input is constructed as follows:

[CLS]T[S]x1, ..., xt−1[S]xt[S]xt+1, ..., xn[S]
where [CLS] and [S] are the classification and
separator tokens of the T5 model respectively. T
denotes the context title which could be empty. xi
denotes the ith sentence in the context and xt is
the target sentence to decontextualize.

The model is trained using the seq2seq frame-
work of Huggingface (Wolf et al., 2020). The
max sequence length for both source and target
is set to 512. Batch size is set to 4 and we use
Deepspeed for memory optimization (Rasley et al.,
2020). We train the model with 11k question-
answer pairs (Choi et al., 2021) for 5 epoch with
Adam optimizer and an initial learning rate set to
3e-5.

B.4 NQ-NLI
The generated NQ-NLI training and development
set contain 191k and 4,855 (premise, hypothesis)
pairs from NQ respectively. We initialize the model
with roberta-large (Liu et al., 2019) and train
the model for 5 epochs. Batch size is set to 16, with
Adam as the optimizer and initial learning rate set
to 2e-6.

C Performance Breakdown on All
Datasets

Figures 9 and 10 show full results for Figures 4 and
3, respectively.

https://doi.org/10.18653/v1/2021.findings-acl.172
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Figure 9: Calibration performance of the NQ-NLI models on five QA datasets we used in the paper. The training
using NQ-NLI helps close the gap between the QA and the NLI models. The x-axis denotes coverage and the
y-axis denotes the F1 score.
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Figure 10: Calibration performance of the NQ-NLI models combined with the QA model on five QA datasets we
used in the paper. The combined NQ-NLI+MNLI+QA model largely outperforms the QA model on all datasets.
The x-axis denotes coverage and the y-axis denotes the F1 score.


