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Abstract

Recent systems for converting natural lan-
guage descriptions into regular expressions
(regexes) have achieved some success, but
typically deal with short, formulaic text and
can only produce simple regexes. Real-
world regexes are complex, hard to describe
with brief sentences, and sometimes require
examples to fully convey the user’s intent.
We present a framework for regex synthesis
in this setting where both natural language
(NL) and examples are available. First, a se-
mantic parser (either grammar-based or neu-
ral) maps the natural language description
into an intermediate sketch, which is an in-
complete regex containing holes to denote
missing components. Then a program syn-
thesizer searches over the regex space de-
fined by the sketch and finds a regex that
is consistent with the given string exam-
ples. Our semantic parser can be trained
purely from weak supervision based on cor-
rectness of the synthesized regex, or it can
leverage heuristically-derived sketches. We
evaluate on two prior datasets (Kushman
and Barzilay, 2013; Locascio et al., 2016)
and a real-world dataset from Stack Over-
flow. Our system achieves state-of-the-art
performance on the prior datasets and solves
57% of the real-world dataset, which exist-
ing neural systems completely fail on.!

1 Introduction

Regular expressions (regexes) are widely used in
various domains, but are notoriously difficult to
write: regex is one of the most popular tags
of posts on Stack Overflow, with over 200,000
posts. Recent research has attempted to build
semantic parsers that can translate natural lan-
guage descriptions into regexes, via rule-based

'Code and data available at https://github.com/
xiyel7/SketchRegex/

techniques (Ranta, 1998), semantic parsing (Kush-
man and Barzilay, 2013), or seq-to-seq neural net-
work models (Locascio et al., 2016; Zhong et al.,
2018a; Park et al., 2019). However, while this
prior work has achieved relatively high accuracy
on benchmark datasets, trained models still do not
generalize to real-world applications: these bench-
marks describe simple regexes with short natural
language descriptions and limited vocabulary.

Real-world regexes are more complex in terms
of length and tree-depth, requiring natural lan-
guage descriptions that are longer and more com-
plicated (Zhong et al., 2018b). Moreover, these
descriptions may be under-specified or ambigu-
ous. One way to supplement such descriptions is
by including positive/negative examples of strings
for the target regex to match. In fact, such exam-
ples are typically provided by users posting ques-
tions on Stack Overflow. Previous methods cannot
leverage the guidance of examples at test time be-
yond naive postfiltering.

In this paper, we present a framework to ex-
ploit both natural language and examples for regex
synthesis by means of a sketch. Rather than di-
rectly mapping the natural language into a con-
crete regex, we first parse the description into an
intermediate representation, called a sketch, which
is an incomplete regular expression that contains
holes to denote missing components. This rep-
resentation allows our parser to recognize par-
tial structure and fragments from the natural lan-
guage without fully committing to the regex’s syn-
tax. We then use an off-the-shelf program syn-
thesizer, mildly customized for our task, to pro-
duce a regex consistent with both the sketch and
the provided examples. Critically, this two-stage
approach modularizes the language interpretation
and program synthesis, allowing us to freely swap
out these components.

We evaluate our framework on several English
datasets. Because these datasets vary in scale, we
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Figure 1: Our regex synthesis approach from language and positive/negative examples. Natural language
is parsed into a sketch using a semantic parser. The finished sketch (the root node of the tree) is passed
to a program synthesizer, which searches over programs consistent with the sketch and examples. Each
leaf node in the search tree is a concrete regex; we return the first one consistent with all the examples.

consider two sketch generation approaches: neu-
ral network-based with a seq-to-seq model (Luong
et al.,, 2015) or grammar-based with a semantic
parser (Berant et al., 2013). We use two large-
scale datasets from past work, the KB13 dataset
of Kushman and Barzilay (2013) and the TURK
dataset of Locascio et al. (2016), augmented
with automatically-produced positive/negative ex-
amples for each regex. Our neural sketch model
can exploit these large labeled datasets, allowing
our sketch-driven approach to outperform existing
seq-to-seq methods, even when those methods are
modified to take advantage of examples.

To test our model in a more realistic setting, we
also evaluate on a dataset of real-world regex syn-
thesis problems from Stack Overflow. These prob-
lems organically have English language descrip-
tions and paired examples that the user wrote to
communicate their intent. This dataset is small,
only 62 examples; to more robustly handle this set-
ting without large-scale training data, we instanti-
ate our sketch framework with a grammar-based
semantic parser. Our approach can solve 57% of
the benchmarks, where existing deep learning ap-
proaches solve less than 10%. While more data is
needed, this dataset can motivate further work on
more challenging regex synthesis problems.

2 Regex Synthesis Framework

In this section, we illustrate how our regex syn-
thesis framework works using a real-world exam-

ple from a Stack Overflow post.> In this post,
the user describes the desired regex as “the max
number of digits before comma is 15 then accept
at max 3 numbers after the comma.” Addition-
ally, the user provides eight positive/negative ex-
amples to further specify their intent. In this in-
stance, the NL description is under-specified: the
description doesn’t clearly say whether the deci-
mal part is compulsory, and a period (.) is mis-
takenly described as a comma. These issues in
NL pose problems for systems attempting to di-
rectly generate the target regex based only on the
description.

Figure 1 shows how our framework handles this
example. The natural language description is first
parsed into a sketch by a semantic parser, which in
this case is grammar-based (Section 3.2) but could
also be neural in nature (Section 3.1). The purpose
of the sketch is to capture useful components from
the description as well as the high-level structure
of the regex. For example, the sketch in Figure 1
depicts the target regex as the concatenation of two
regexes, where the first regex likely involves com-
position of <num> and <, > in some way. We later
feed this sketch, together with positive/negative
examples, into the synthesizer, which enumera-
tively instantiates holes with constructs from our
regex DSL until a consistent regex is found.

We describe our semantic parsers in Section 3

Zhttps://stackoverflow.com/questions/19076566/regular-
expression-that-validates-decimal-18-3



S:=C|StartsWith(S)|EndsWith(S)
| Contains(S) | Optional(S)
| Repeat (S, k) | KleeneStar(S)
| RepAtLeast(S, k)
| RepRange(S, k1, k2)
| Concat(S,S)|and(S,S) | oxr(S,S)
[ O{S,..., S}

Figure 2: Regex DSL (black) and Sketch DSL (all
rules including the last rule in red). C represents
either a character class such as <let>, <num> or
a single character such as <a>, <1>. k represents
an integer.

and our synthesizer in Section 4.

Regex/Sketch DSL.  Our regex language (Fig-
ure 2) is similar to the one presented in (Lo-
cascio et al., 2016) but more expressive. Our
DSL adds some additional constructs, such as
Repeat (S, k), repeating a regex S exactly k
times, in our DSL, which is not supported by Lo-
cascio et al. (2016). This DSL is equivalent in
power to standard regular expressions, in that it
can match any regular language.

Our sketch language builds on top of our regex
DSL by adding a new construct called a “con-
strained hole” (the red rule in Figure 2). Our
sketch DSL introduces an additional grammar
symbol S and the notion of hole [J. Holes can
be produced with the rule ({51, ...,S,,}, where
each S; on the right hand side is also a sketch. A
concrete regex r belongs to the space of regexes
defined by a constrained hole if at least one of its
S; defines any concrete regex 7’ that is one of the
subtrees in r. Put another way, the regex rooted
at .S must contain a subtree that matches at least
one of the S;, but it does not have to match all of
them. However, the synthesizer we use supports
using the S; in its search heuristic to prefer certain
programs. In this fashion, the constraint serves as
a hint for the leaf nodes of the regex, but it only
loosely constraints the structure.

For example, consider the sketch shown in Fig-
ure 1. Here, all programs on the leaf nodes of the
search tree are included in the space of regexes
defined by this sketch. Note that the first two
explored regexes only include some of the com-
ponents mentioned in the sketch (e.g., <num>

and RepRange (<num>, 1, 3) ), whereas the fi-
nal correct regex happens to include every men-
tioned component.

Use of holes There is no single correct sketch
for a given example. A trivial sketch consisting
of just a single hole could synthesize to a correct
program if the examples precisely specify the se-
mantics; this reduces to a pure programming-by-
example setting. A sketch could also make no use
of holes and fully specify a regex, in which case
the synthesizer has no flexibility in its search.

Our process maintains uncertainty over
sketches in both training, by leaving them as
latent variables, and test, by feeding a k-best
list of sketches into our synthesizer. In practice,
we observe a few patterns in how sketches are
used. One successful pattern is when sketches
balance concreteness with flexibility, as shown in
Figure 1: they commit to some high-level details
to constrain the search space while using holes
with specified components further down in the
tree. A second pattern we observe is when the
sketch has a single hole at the root but enumerates
a rich set of components S; that are likely to
appear; this prefers synthesizing sketches using
these subtrees.

3 Semantic Parser

Given a natural language description L =
l1,l2,...,lyn, our semantic parser generates a
sketch S that encapsulates the user’s intent. When
combined with examples in the synthesizer, this
sketch should yield a regex matching the ground
truth regex. As stated before, our semantic parser
is a modular component of our system, so we
can use different parsers in different settings. We
investigate two paradigms of semantic parser: a
seq-to-seq neural network parser and a grammar-
based parser, as well as two ways of training the
parser: maximum likelihood estimation based on
a pseudo-gold sketch and maximum marginal like-
lihood based on whether the sketch leads to the
correct synthesis result.

3.1 Neural Parser

Following recent work (Locascio et al., 2016), we
employ a seq-to-seq model with attention (Luong
etal., 2015) as our neural parser. Here, we treat the
sketch as a sequence of tokens S = si, So,..., Sy
and model P(S|L) autoregressively.
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o B
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Figure 3: Examples of rules and the parse tree for building one possible derivation. The left side of
a rule is the source sequence of tokens or syntactic categories (marked with a $ sign). The right side
specifies the target syntactic category and then the target derivation or a semantic function (together with
arguments) producing it. $PROGRAM denotes a concrete regex without holes and $SKETCH denotes
sketches containing holes. Lexical rule 4 denotes mapping any token of an integer to its value.

Our encoder is a single-layer bidirectional
LSTM, where the tokens /; in the natural language
description are encoded into a sequence of hid-
den states h;. Our decoder is a single-layer uni-
directional LSTM, initialized with the encoder fi-
nal state h,,. At each timestep ¢, we concatenate
the decoder hidden state ﬂt with a context vector
¢ computed based on bilinear attention, and the
probability distribution of the output token s; is
given as:

a4 = softmax(ﬁ;quﬁt) = Z ai,tﬁi
p(s¢| L, s<1) = softmax(W, [ﬁt; ),

where ; is the embedded word vector of z;. The
final probability for a generating S conditioned on
Lis given as p(S|L) = [[}; p(s¢|L, s<t).

3.2 Grammar-Based Parser

We also explore a grammar-based semantic parser
built using SEMPRE (Berant et al., 2013). This ap-
proach is less data hungry than deep neural net-
works and promises better generalizability, as it is
regulated by a grammar and has fewer parameters,
which makes it less likely to fit annotation artifacts
of crowdsourced datasets.

Given a natural language description, our se-
mantic parser uses a grammar to construct possi-
ble sketches. The grammar consists of two sets of
rules, lexical rules and compositional rules. For-
mally, a grammar rule is of the following form:
aq...a,, — ¢[f]. Such a rule maps the sequence of
tokens or syntactic categories «;...qu, into target
derivation 3 with syntactic category c.

As shown in Figure 3, each lexical rule maps
a word or a phrase in the description to a base
concept in the DSL, including character classes,
string constants, and operators. Compositional
rules generally capture the higher-level DSL con-
structs, specifying how to combine one or more
base concepts to build more complex ones. Our
semantic parser constructs possible derivations of
sketches by recursively applying these rules, first
generating derivations for spans matching the lex-
ical rules and then combining these with compo-
sitional rules. Finally, we take the the derivations
over the entire natural language description with a
designated $ROOT category as the final set of out-
put sketches.

We design our grammar’ according to our
sketch DSL. For all the datasets in evaluation,
we use a unified grammar that consists of ap-
proximately 70 lexical rules and 60 compositional
rules. The size of grammar is reflective of the
size of DSL, since either a terminal of a single
DSL construct needs several rules to specify it
(e.g., both digit or number can present <num>,
and Concat (X, Y) can be described in multiple
ways like X before Y or Y follows X). Despite the
fact that the grammar is hand-crafted, it is suffi-
cient to cover the fairly narrow domain of regex
descriptions.

Our parser allows skipping arbitrary tokens
(Figure 3), resulting in a large number of deriva-
tions. We define a log-linear model to place a
distribution over derivations Z € D(L) given de-

3

3A readable version of grammar is available at
https://github.com/xiyel7/SketchRegex/
blob/master/readable_grammar.pdf.
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where 6 is the vector of parameters to be learned,
and ¢(L, Z) is a feature vector extracted from the
derivation and description. The features used in
our semantic parser are standard features in the
SEMPRE framework and mainly characterize the
relation between description and applied composi-
tion, including indicators when rule r is fired over
a span containing token [, indicators of whether a
particular rule r is fired, and indicators of rule bi-
grams in the tree.

3.3 Training

For both the neural and grammar-based parsers,
we can train the model parameters in two ways.

MLE Maximum likelihood estimation maxi-
mizes the probability of mapping the description
to a corresponding gold sketch S*:

arg max Z logpe(S™ | L).
)

Gold sketches are not defined a priori; however,
we describe ways to heuristically derive them in
Section 5.2.

MML For a given natural language descrip-
tion and regex pair, multiple syntactically dif-
ferent sketches can yield semantically equivalent
regexes. We can therefore maximize the marginal
likelihood of generating a sketch that leads us to
the semantically correct regex, instead of a gener-
ating a particular gold sketch. Namely, we learn
the parameters by maximizing:

arg max Z 10gz 1[synth(S) = r*]pe(S | L)
[4
(r*,L) S

where r* is the ground truth regex and synth de-
notes running the synthesizer. Computing the
sum over all sketches is intractable, so we sam-
ple sketches from beam search to approximate the
gradients (Guu et al., 2017).

4 Program Synthesizer

In this section, we describe the program synthe-
sizer which takes as input a sketch and a set of
examples and returns a regex that is consistent
with the given examples. Specifically, our synthe-
sizer explores the space of programs defined by
the sketch while additionally being guided by the
examples.

Enumerative Synthesis from Sketches We use
an enumeration-based program synthesizer that is
a generalized version of the regex synthesizer pro-
posed by Lee et al. (2016). Given a program
sketch and a set of positive/negative examples, the
synthesizer searches the space of programs that
can be instantiated by the given sketch and returns
a concrete regex that accepts all positive examples
and rejects all negative examples.

Specifically, the synthesizer instantiates each
hole with our DSL constructs or the components
for the hole. If a hole is instantiated with a DSL
terminal such as <num> or <let>, the hole will
just be replaced by the terminal. If a hole is in-
stantiated using a DSL operator, the hole will first
be replaced by this operator, we introduce new
holes for its arguments, and we require the compo-
nents for at least one of the holes to be the original
holes’ components. See Figure 1 for an example
of regexes that could be instantiated from the given
sketch.

Whenever the synthesizer produces a complete
instantiation of the sketch (i.e., a concrete regex
with no holes), it returns this regex if it is also
consistent with the examples (accepts all positive
and rejects all negative examples). Otherwise, the
synthesizer moves on to the next program in the
sketch language. The synthesizer terminates when
it either finds a regex consistent with the examples
or it has exhausted every possible instantiation of
the sketch up to depth d.

Our synthesizer differs from that of Lee et al.
(2016) in two main ways. First, their regex lan-
guage is extremely restricted, only allowing the
characters 0 and 1 (a binary alphabet). Second,
their technique enumerates DSL programs from
scratch, whereas our synthesizer performs enu-
meration based on an initial sketch. This signifi-
cantly reduces the search space and therefore al-
lows us to synthesize complex regexes much more
quickly.

Enumeration Order Our synthesizer maintains
a worklist of partial programs to complete, and
enumerates complete programs in increasing or-
der of depth. Specifically, at each step, we pop the
next partial program with the highest overlap with
our sketch, expand the hole given possible com-
pletions, and add the resulting partial programs
back to the worklist. When a partial program is
completed (i.e., no holes), it is checked against the
provided examples. The program will be returned



Dataset ‘ KB13 ‘ TURK ‘ SO

size 824 10,000 | 62

#. unique words 207 557 301

Avg. NL length 8.1 115 | 254

Avg. regex size 5.1 4.9 13.2

Avg. regex depth 2.5 2.3 4.0
Table 1: Statistics of our datasets. Compared

to KB13 and TURK, STACKOVERFLOW contains
more sophisticated descriptions and regexes.

to the user if it is consistent with all the examples,
otherwise the worklist algorithm continues.

Note that in this search algorithm, constrained
holes are not just hard constraints on the search
but are also used to score partial programs, favor-
ing programs using more constructs derived from
the natural language. This scoring helps the model
prioritize programs that are more congruent with
the natural language, lead to more accurate syn-
thesis.

5 Datasets

We evaluate our framework on two datasets from
prior work, KB13 and TURK, and a new dataset,
STACKOVERFLOW. Statistics about these datasets
are given in Table 1, and we describe them in more
detail below. Since our framework requires string
examples which are absent in the existing datasets,
we introduce a systematic way to generate posi-
tive/negative examples from ground truth regexes.

KB13 KB13 (Kushman and Barzilay, 2013)
was created with crowdsourcing in two steps.
First, workers from Amazon Mechanical Turk
wrote the original English language descriptions
to describe a subset of the lines in a file. Then a set
of programmers from oDesk are required to write
the corresponding regex for each of these language
descriptions. In total, 834 pairs of description and
regex are generated.

Turk Locascio et al. (2016) collected the larger-
scale TURK dataset to investigate the performance
of deep neural models on regex generation. Since
it is challenging and expensive to hire crowd
workers with domain knowledge, the authors em-
ploy a generate-and-paraphrase procedure instead.
Specifically, 10,000 instances are randomly sam-
pled from a predefined manually crafted grammar
that synchronously generates both regexes and
synthetic English language descriptions. The syn-

KB13

lines where there are two consecutive capital letters
TURK

lines where words include a digit, upper-case letter,
plus any letter

STACKOVERFLOW

I'm looking for a regular expression that will match
text given the following requirements: contains only
10 digits (only numbers); starts with “9”

Figure 4: Examples of natural language descrip-
tion from each of the three datasets. TURK tends
to be very formulaic, while STACKOVERFLOW is
longer and much more complex.

thetic descriptions are then paraphrased by work-
ers from Mechanical Turk.

The generate-and-paraphrase procedure is an
efficient way to obtain description-regex pairs,
but it also leads to several issues that we find in
the dataset. The paraphrase procedure inherently
limits the originality in natural language, leading
to artificial descriptions. In addition, since the
regexes are stochastically generated without be-
ing validated, many of them are syntactically cor-
rect but semantically meaningless. For instance,
the regex \b (<vow>) & (<num>) \b for the de-
scription lines with words containing a vowel and
a number is a valid regex but does not match
any string values. These null regexes account for
around 15% of the data. Moreover, other regexes
have formulaic descriptions since their semantics
are randomly made up (more examples can be
found in Section 6).

5.1 StackOverflow

To explore regex generation in real-word settings,
we collect a new dataset consisting of posts on
Stack Overflow. We search posts tagged as regex
on Stack Overflow and then filter the collected
posts with two rules: (1) the post should include
both an English language description as well as
positive/negative examples; (2) the post should not
contain abstract concepts (e.g., “months”, “US
phone numbers™) or visual formatting (e.g., “AB-
XX-XX”) in description. We collected 62 posts*
that contain both description and regex using our
rules. In addition, we slightly preprocess the de-
scription by fixing typos and marking string con-

*These posts are filtered from roughly 1000 top posts. De-
spite the fact that more data is available on the website, we

only view the top posts because the process requires signifi-
cant human involvement.



stants, as what’s done in prior datasets (LLocascio
et al., 2016).

Although STACKOVERFLOW only includes 62
examples, the number of unique words in the
dataset is higher than that in KB13 (Table 1).
Moreover, its average description length and regex
size are substantially higher than those of previ-
ous datasets, which indicates the complexity of
regexes used in real-world settings and the sophis-
tication of language used to describe them.

5.2 Dataset Preprocessing

Generating Positive/Negative Examples The
STACKOVERFLOW dataset organically has posi-
tive/negative examples, but, for the other datasets,
we need to generate examples to augment the ex-
isting datasets. We use the automaton library
(Mgller, 2017) for this purpose. For positive ex-
amples, we first convert the ground truth regex
into an automaton and generate strings by sam-
pling values consistent with paths leading to ac-
cepting states in the automaton. For negative ex-
amples, we take the negation of the ground truth
regex, convert it into an automaton, and follow
the same procedure as generating the positive ex-
amples. To ensure a diverse set of examples, we
limit the number of times that we visit each tran-
sition so that the example generator avoids taking
the same transitions repeatedly. For each of these
datasets, we generate 10 positive and 10 negative
examples. This is comparable to what was used
in past work (Zhong et al., 2018a) and it is gener-
ally hard to automatically generate a smaller set of
“corner cases” that humans would write.

Generating Heuristic Sketches Our approach
does not require any notion of a gold sketch
and can operate from weak supervision only.
However, we can nevertheless derive pseudogold
sketches using a heuristic and train with MLE to
produce these in order to examine the effects of in-
jecting human prior knowledge into learning. We
generate pseudogold sketches from ground truth
regexes as follows. For any regex whose Abstract
Syntax Tree (AST) has depth more than 1, we re-
place the operator at the root with a constrained
hole and the components for this hole are argu-
ments of the original operator. For example, the
gold sketch for regex concat(<num>,<let>)
is O{<num>, <let>}. For regexes with depth 1,
we just wrap the ground truth regex within a con-
strained hole; e.g., the gold sketch for the regex

<num> is O{<num>}. We apply this method to
TURK and KB13.

For the smaller STACKOVERFLOW dataset,
we explored a more heavily supervised approach
where we manually labeled gold sketches based on
information from the gold sketch that we judged to
be unambiguous about the ground truth regex. For
example, the description “The input box should
accept only if either (1) first 2 letters alpha + 6 nu-
meric or (2) 8 numeric” is labeled with the sketch
Or (J{Repeat (<let>, 2), Repeat (<num>, 6) },
O{Repeat (<num>), 8))}, which clearly re-
flects both the user’s intent and the compositional
structure.

6 Experiments

Setup We implement all neural models in PY-
TORCH (Paszke et al., 2019). While training with
MLE, we use the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 1e-3 and a batch
size of 25. We train our models until the loss
on the development set converges. When training
with MML, we set the learning rate to be 1e-4 and
use beam search with beam size 10 to approximate
the gradients.

We build our grammar-based parsers on top of
the SEMPRE framework (Berant et al., 2013). We
use the same grammar for all three datasets. On
datasets from prior work, we train our learning-
based models with the training set. On STACK-
OVERFLOW, we use 5-fold cross-validation as de-
scribed in Section 5 because of the limited data
size. Our grammar-based parser is always trained
for 5 epochs with a batch size of 50 and use a beam
size of 200 when trained with MML.

During the testing phase, we produce a k-best
list of sketches for a given NL description and run
the synthesizer on each sketch in parallel. For
a single sketch, the synthesizer either finds an
example-consistent regex or running out of a spec-
ified time budget (timeout). We pick the output
of the highest-ranked sketch yielding an example-
consistent regex as the answer. For KB13 and
TURK, we set the beam size k to be 20 and set the
timeout of synthesizer to be 2s. For the more chal-
lenging STACKOVERFLOW dataset, we synthesize
top 25 sketches and set the timeout to be 30s. In
the experiments, the average time to synthesize
a single sketch for a single benchmark in TURK,
KB13, and STACKOVERFLOW is 0.4s, 0.8s, and
10.8s, respectively, and we synthesize the k-best



KB13 TURK
Acc Consistent Acc Consistent

Prior Work:

DEEPREGEX (Locascio et al.) 65.6% — 58.2% —

SEMREGEX 78.2% — 62.3% —
Translation-Based Approaches:

DEEPREGEXMLE 66.5% — 60.3% —

DEEPREGEX MLE 66.5% — 60.3% —

DEEPREGEXMML 68.2% — 62.4% —

DEEPREGEXMLE 4 FILTER 77.7% 89.0% 82.8% 92.0%

DEEPREGEXMML 4 FiLTER 80.1% 91.7% 84.3% 92.8%
Sketch-Driven (No Training):

EMPTY SKETCH 15.5% 18.4% 21.0% 34.4%

GRAMMARSKETCH (MAX COVERAGE) | 68.0% 76.7% 60.2% 78.8%
Sketch-Driven (No Sketch Supervision):

DEEPSKETCHMLE 76.2% 88.8% 74.6% 92.8%

DEEPSKETCHMML 82.5% 94.2% 84.3% 95.8%
Sketch-Driven (Pseudogold Sketches):

GRAMMARSKETCH 72.8% 85.4% 69.4% 87.4%

DEEPSKETCHMLE PSEUDOGOLD 84.0% 95.3% 85.4% 98.4%

DEEPSKETCHMML pSEUDOGOLD 86.4% 96.3% 86.2% 98.9%

Table 2: Results on datasets from prior work. We evaluate on both accuracy (Acc) and the fraction
of regexes produced consistent (Consistent) with the positive/negative examples. Our sketch-driven ap-
proaches outperform prior approaches even when those are modified to use examples. Our approach can
leverage heuristic pseudogold sketches, but does not require them. Our DEEPSKETCH models achieve
the best results, but even our grammar-based method (GRAMMARSKETCH) outperforms past systems

that do not use examples.

lists in parallel using 10 threads.

6.1 Evaluation: KB13 and TURK

Baselines: Prior Work + Translation-based Ap-
proaches We compare our approach against sev-
eral baselines. DEEPREGEX directly translates
language descriptions with a seq-to-seq model
without looking at the examples using the MLE
objective. Note that we compare against both
reported numbers from Locascio et al. (2016)
as well as our own implementation of this
(DEEPREGEXMLE), which outperforms the origi-
nal by 0.9% and 2.0% on KB13 and TURK, re-
spectively; we use this version in all other reported
experiments.

SEMREGEX (Zhong et al., 2018a)> uses the
same model as DEEPREGEX but is trained to
maximize semantic correctness of the gold regex,

>Upon consultation with the authors of SEMREGEX
(Zhong et al., 2018a), we were not able to reproduce the re-
sults of their model. Therefore, we only include the printed
numbers of semantic accuracy on the prior datasets.

rather than having to produce an exact match. We
implement a similar technique using maximum
marginal likelihood training to optimize for se-
mantic correctness (DEEPREGEXMML),

Note that none of these methods assumes ac-
cess to examples to check correctness at fest
time. To compare these methods to our set-
ting, we extend them in order to exploit exam-
ples: we produce the model’s k-best list of so-
lutions, then take the highest element in the k-
best list consistent with the examples as the an-
swer. We apply this method to both types of
training to yield DEEPREGEXME4+FILTER and
DEEPREGEXMML 4 FILTER.

Sketch-Driven We evaluate three broad types of
our sketch-driven models.

Our No Training approaches only use untrained
sketch procedures. As an example-only baseline,
we include the results using an EMPTY SKETCH
(a single hole), relying entirely on the synthe-
sizer. We also use a variant of GRAMMARS-



KETCH method where we heuristically prefer
sketch derivations that cover as many words in the
input sentence as possible (GRAMMARSKETCH
(MAX COVERAGE)).

In the No Sketch Supervision setting, we as-
sume no access to labeled sketch data. However,
it is challenging to train a neural sketch parser
from randomly initialized parameters purely with
the MML objective. We therefore warm start the
neural models using GRAMMARSKETCH (MAX
COVERAGE): we rank the sketches by their cov-
erage of the input sentence, and take the highest-
coverage sketch which synthesizes to the correct
ground truth regex (if one can be found) as a
gold sketch for warm-starting. We can train with
the MLE objective for a few epochs and then
continue with MML training (DEEPREGEXMML),
As a comparison, we can also evaluate the
model trained only with MLE with these sketches
(DEEPREGEXMLE),

Models in the Pseudogold Sketches setting fol-
low the approach described in the previous para-
graph, but uses the pseudogold sketches described
in Section 5.2 instead of bootstrapping with the
grammar-based approach.

Results Table 2 summarizes our experimental
results on these two datasets. Note that reported
accuracy is semantic accuracy, which measures
the functional equivalence of the regex compared
to the ground truth. First, we find a significant
performance boost by filtering the output of our
DEEPREGEX variants using examples (11.2% on
KB13 and 21.5% on TURK when applying this to
DEEPREGEXMLE) indicating the utility of exam-
ples in verifying the produced regexes.

However, our sketch-driven approach out-
perform these previous approaches even when
they are extended to benefit from examples.
We achieve new state-of-the-art results on both
datasets, with slightly stronger performance when
pseudogold sketches are used. The results are
particularly striking in terms of consistency (frac-
tion of regexes produced consistent with the ex-
amples). Because we allow uncertainty in the
sketches and use examples to guide the construc-
tion of regexes, our framework achieves 50% or
more relative reduction in the rate of inconsistent
regexes compared to DEEPREGEX+FILTER base-
line (91.7% and 92.8% on the two datasets), which
may fail if no consistent sketch is in the k-best list.

We also find that our GRAMMARSKETCH

approach, trained with pseudogold sketches,
achieves nearly 70% accuracy on both datasets,
which is better than DEEPREGEX. This indi-
cates the generalizability of this approach. The
performance of GRAMMARSKETCH lags that of
DEEPREGEX+FILTER and DEEPSKETCH mod-
els, which can be attributed to the fact that GRAM-
MARSKETCH is more constrained by its grammar
and is less capable of exploiting large amounts of
data compared to neural approaches.

Finally, we turn to the source of the supervi-
sion. The untrained GRAMMARSKETCH(MAX
COVERAGE) achieves over 60% accuracy on both
datasets; recall that this provides the set of gold
sketches as initial supervision in our warm-started
model. Our sketch-driven approach trained with
MML (DEePSKETCHMML) achieves 82.5% on
KB13 and 84.3% on TURK, which is compara-
ble with the performance obtained using pseudo-
gold sketches, demonstrating that human labeling
or curation of sketches is not required for this tech-
nique to work well.

6.2 Evaluation: Stack Overflow

Additional Baselines It is impractical to train a
deep neural model from scratch on this dataset,
so we modify our approach slightly to compare
against such models. First, we train a model
on TURK and fine-tune it on STACKOVERFLOW
(Transferred Model). Second, we explore a mod-
ified version of the dataset where we rewrite the
descriptions in STACKOVERFLOW to make them
conform to the style of TURK (Curated Language),
as users might do if they were knowledgeable
about the capabilities of the regex synthesis sys-
tem they are using. For example, we manually
paraphrase the original description “write regular
expression in C# to validate that the input does not
contain double spaces” to “line that does not con-
tain ‘space’ two or more times”, and apply DEEP-
REGEX+FILTER method on the curated descrip-
tions (without fine-tuning on them). Note that this
simplifies the inputs for these baselines consider-
ably by removing variation in the language.

We also construct a grammar-based regex parser
from our GRAMMARSKETCH model by removing
the grammar rules related to assembling sketches
from regexes. We use our filtering technique as
well and call this the GRAMMARREGEX+FILTER
baseline.



Top-N Acc

Approach top-1 top-5 top-25
DEEPREGEX+FILTER

Transferred Model 0% 0% 0%

+Curated Language 0% 0% 6.6%
GRAMMARREGEX+FILTER  32% 9.7% 11.3%
EMPTY SKETCH 4.8% — —
DEEPSKETCH

Transferred Model 32% 32% 4.8%
GRAMMARSKETCH

MAaX COVERAGE 16.1% 34.4% 45.2%
MLE, MANUAL SKETCHES 34.4% 48.4% 53.2%
MML, NO SKETCH SUP 31.1% 54.1% 56.5%

Table 3: Results on the STACKOVERFLOW
dataset. The DEEPREGEX method totally fails
even when the examples are generously rewritten
to conform to the model’s “expected” style. Our
GRAMMARSKETCH model can do significantly
better, with or without manually-labeled sketches.

Results Since STACKOVERFLOW is a challeng-
ing dataset, we report the top-N accuracy, where
the model is considered correct if any of the top-
N sketches synthesizes to a correct answer. Ta-
ble 3 shows the results on this dataset. The trans-
ferred DEEPREGEX model completely fails on
these real-world tasks. Rewriting and curating the
language, we are able to get some examples cor-
rect among the top 25 derivations, but only on
very simple cases. GRAMMARREGEX+FILTER is
similarly unable to do well: this approach is too
inflexible given the complexity of regexes in this
dataset. Our transferred DEEPSKETCH approach
isalso still limited here, as the text is too dissimilar
from TURK.

Our GRAMMARSKETCH approach, trained
without explicit sketch supervision, achieves a
top-1 accuracy of 31.1%. Surprisingly, this is
comparable to the performance of GRAMMARS-
KETCH trained using manually-written sketches,
and even outperforms this model in terms of top-
5 and top-25 accuracy. This substantially outper-
forms all of the baseline approaches. We attribute
this success to the problem decomposition: be-
cause the sketches produced can be simpler than
the full regex, our model is much more robust to
the complex setting of this dataset. By examin-
ing the problems that are solved, we find our ap-
proach is able to solve several complicated cases
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Figure 5: Accuracy on TURK for different train-
ing set sizes. Our DEEPSKETCH and GRAM-
MARSKETCH approaches outperform the DEEP-
REGEX+FILTER baseline when training data is
limited.

with long descriptions and sophisticated regexes
(e.g., the example in Figure 1).

6.3 Detailed Analysis

Data Efficiency In Figure 5, we explic-
itly evaluate the data efficiency of our tech-
niques, comparing the performance of DEEP-
REGEX+FILTER, = GRAMMARSKETCH, and
DEEPSKETCH on TURK. When the data size
is extremely limited (no more than 500), our
GRAMMARSKETCH approach is much better
than the DEEPREGEX+FILTER baseline. Our
DEEPSKETCH approach is more flexible and
achieves stronger performance for larger training
data sizes, consistently outperforming the DEEP-
REGEX+FILTER baseline as the training data
size increases. More importantly, the difference
is particularly obvious when the size of training
data is relatively small, in which case correct
regexes are less likely to exist in the DEEPREGEX
generated k-best lists due to lack of supervision.
By contrast, it is easier to learn the mapping
from the language to effective sketches, which are
simpler than gold regexes.

Overall, these results indicate that DEEP-
REGEX, as a technique, is only effective when
large training sets are available, even for a rela-
tively simple set of natural language expressions.

Impact of Number of Examples We show how
the number of positive/negative examples impacts
the performance on TURK in Table 4. Our sketch-
driven techniques rely on examples to search for
the desired regexes in the synthesizer step, and
therefore are inferior to DEEPREGEX+FILTER
when only limited number of examples are pro-



4 6 8 10

DEEPREGEX+FILTER 79.5 81.0 823 82.8
GRAMMARSKETCH 594 644 67.6 69.5
DEEPSKETCH 71.8 786 827 854

Table 4: Performance on TURK varying the num-
ber of positive/negative examples. Because our
synthesizer depends on sufficient examples to con-
strain the semantics, our sketch-based approaches
require a certain number of examples to work well.

1 3 5 10 20

DEEPREGEX+FILTER 60.3 73.2 76.8 80.3 82.8
GRAMMARSKETCH 583 650 67.1 689 695
DEEPSKETCH 694 79.7 823 843 854

Table 5: Performance on TURK under different
beam sizes.

vided. However, as more examples are included,
our sketch-driven approaches are more effective in
taking advantage of the multi-modality than sim-
ply filtering the outputs (DEEPREGEX+FILTER).
Note that in the STACKOVERFLOW setting, we
evaluate on sets of examples provided by actual
users, and find that users typically provide enough
examples for our model to be in an effective
regime.

Impact of Beam Size We study the effect of
varying beam size on the performance on TURK
in Table 5. DEEPSKETCH outperforms DEEP-
REGEX+FILTER by a substantial gap with smaller
beam sizes, as we naturally allow uncertainty us-
ing the holes in sketches. Note that using larger
beam sizes is important for DEEPSKETCH because
we feed the entire k-best list to the synthesizer in-
stead of the top sketch only.

6.4 Examples of Success And Failure Pairs

TURK We now analyze the output of the DEEP-
REGEX+FILTER and DEEPSKETCH. Figure 6
provides some success pairs that DEEPSKETCH
solves while DEEPREGEX+FILTER does not. Ex-
amples of success pairs suggest that our approach
can deal with under-specified descriptions. For in-
stance, in pair (a) from Figure 6, the language is
ungrammatical (3 more instead of 3 or more) and
also ambiguous: should the target string consist
of only capital letters, or could it have capital let-
ters as well as something else? Our approach is
able to recover the faithful semantics using sketch
and examples, whereas DEEPREGEX fails to find

TURK

Success:

(a) nl:  lines with 3 more capital letters

gt (<cap>) {3,1}) (.*)

(b) nl:  none of the lines should have a vowel , a capital letter
, or the string “dog”

gt: ~((<vow>) | (dog) | (<cap>))

Failure:

(c) nl:  lines with “dog” or without “truck” , at least 7 times
gt ((dog) | (~(truck))){7,}

error: (dog) | (~(truck))

(d) nl: lines ending with lower-case letter or not the string
“dog”

gt (.*) (([<low>]) | (~(dog)))
error: (([<low>]) | (~(dog)))*
STACKOVERFLOW

Success:

(e) nl:  valid characters are alphanumeric and “.”(period).
The patterns are “%d4%” and “%t7%"”. So “%” is
not valid by itself, but has to be part of these specific
patterns.

gt ((<let>|<num>| (.) | (5d4%) | (3t7%)) {1, }

(f) nl:  The input box should accept only if either (1) first 2
letters alpha + 6 numeric or (2) 8 numeric

gt: (<let>{2}<num>{6}) | (<num>{8})

Failure:

(g) nl:  I'm trying to devise a regular expression which will
accept decimal number up to 4 digits

gt: (<num>{1,}) (.) (<num>{1,4})
error: (<num>{1,1}) ((.) (<num>{1,4}))?
(h) nl:  the first letter of each string is in upper case

gt: <cap> (<let>)* (( )<cap>(<let>)x*)
€rITor: ((( )<cap>) | (<let>)){1,}

Figure 6: Examples of success and failure pairs
from TURK and STACKOVERFLOW. On pairs (a)
and (b), our DEEPSKETCH is robust to the issues
existing in natural language descriptions. On pairs
(c) and (d), our approach fails due to the unre-
alistic semantics of the desired regexes. GRAM-
MARSKETCH succeeds in solving some complex
pairs in STACKOVERFLOW, including (e) and (f).
However, (g) and (h) fail because of insufficient
examples or overly concise descriptions.

the correct regex. In pair (b), the description is
fully clear but DEEPREGEX still fails because the
phrase none of rarely appears in the training data.
Our approach can solve this pair since it is less
sensitive to the description.

We also give some examples of failure cases
for our model. These are particularly common
in cases of unnatural semantics. For instance,
the regex in pair (c) accepts any string except
the string truck (because ~ (t ruck) matches any
string but truck). The semantics are hard to pin
down with examples, but the correct regex is also
artificial and unlikely to appear in real word ap-
plications. Our DEEPSKETCH fails on this pair
since the synthesizer fails to catch the at least 7
times constraint when strings that have less than



7 characters can also be accepted (since without
truck can match the empty string). DEEPREGEX is
able to produce the ground-truth regex in this case,
but this is only because the formulaic description
is easy enough to translate directly into a regex.

STACKOVERFLOW We show some solved and
unsolved examples using GRAMMARSKETCH
from the STACKOVERFLOW dataset. Our ap-
proach can successfully deal with multiple-
sentence inputs like pairs (e) and (f). They
both contain multiple sentences with each one de-
scribing certain a component or constraint, which
seems to be a common pattern of describing real
world regexes. Our approach is effective for this
structure because the parser can extract fragments
from each sentence and hand them to the synthe-
sizer for completion.

Some failure cases are due to lack of corner-
case examples. E.g., the description from pair (g)
doesn’t explicitly specify whether the decimal part
is required and there are no corner-case negative
examples that provide this clue. Our synthesizer
mistakenly treats the decimal part as an option,
failing to match the ground truth. In addition, pair
(h) is an example in which the natural language
description is too concise for the grammar parser
to generate a useful sketch.

7 Related Work

Other NL and program synthesis There has
been recent interest in synthesizing programs from
natural language. One line of work uses either
grammar-based or neural semantic parsing to syn-
thesize programs. Particularly, several techniques
have been proposed to translate natural language
to SQL queries (Yaghmazadeh et al., 2017; Lyer
et al., 2017; Suhr et al., 2018), “if-this-then-that”
recipes (Quirk et al., 2015), bash commands (Lin
et al., 2018), Java expressions (Gvero and Kun-
cak, 2015) and more. Our work is different from
prior work in that it utilizes input-output examples
in addition to natural language. While several past
approaches use both natural language and exam-
ples (Kulal et al., 2019; Polosukhin and Skidanov,
2018; Zhong et al., 2020), they only use the exam-
ples to verify the generated programs, whereas our
approach heavily engages examples when search-
ing for the instantiation of sketches to make the
synthesizer more efficient.

Another line of work has focused on explor-
ing which deep learning techniques are most ef-

fective for directly predicting programs from nat-
ural language. Recent work has built encoder-
decoder models to generated logical forms or pro-
grams represented by sequences (Dong and Lap-
ata, 2016), and ASTs (Rabinovich et al., 2017; Yin
and Neubig, 2017; Iyer et al., 2019; Shin et al.,
2019). However, some of the most challenging
code settings such as the Hearthstone dataset (Ling
et al., 2016) only evaluates the produced strings by
exact match accuracy or BLEU score, rather than
executing the programs on real data as we do.

There is also recent work using neural mod-
els to generate logical forms employing a coarse-
to-fine approach (Zettlemoyer and Collins, 2009;
Kwiatkowski et al., 2013; Artzi et al., 2015; Dong
and Lapata, 2018; Wang et al., 2019), which first
generates an abstract logical form and then con-
cretizes it using neural modules, whereas we com-
plete the sketch via a synthesizer.

Program synthesis from examples Recent
work has studied program synthesis from exam-
ples in other domains (Gulwani, 2011; Alur et al.,
2013; Wang et al., 2016; Feng et al., 2018). Simi-
lar to prior work (Balog et al., 2017; Kalyan et al.,
2018; Odena and Sutton, 2020), we implement an
enumeration-based synthesizer to search for the
target program, but they use probability distribu-
tion of functions or production rules predicted by
neural networks to guide the search, while our
work relies on sketches.

Our method is closely related to sketch-based
approaches (Solar-Lezama, 2008; Nye et al.,
2019) in that our synthesizer starts with a sketch.
However, we produce sketches automatically from
the natural language description whereas tra-
ditional sketch-based synthesis (Solar-Lezama,
2008) relies on a user-provided sketch, and our
sketches are hierarchical and constrained com-
pared to other neural sketch-based approaches
(Nye et al., 2019).

8 Conclusion

We have proposed a sketch-driven regular expres-
sion synthesis framework that utilizes both natural
language and examples, and we have instantiated
this framework with both a neural and a grammar-
based parser. Experimental results reveal the ar-
tificialness of existing public datasets and demon-
strate the advantages of our approach over existing
research, especially in real world settings.
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