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ABSTRACT

Function is defined as the ensemble of tasks that enable the
product to complete the designed purpose. Functional tools,
such as functional modeling, offer decision guidance in the early
phase of product design where explicit design decisions are yet
to be made. Function-based design data is often sparse and
grounded in individual interpretation. As such, function-based
design tools can benefit from automatic function classification to
increase data fidelity and provide function representation models
that enable function-based intelligent design agents. Function-
based design data is commonly stored in manually generated
design repositories. These design repositories are a collection
of expert knowledge and interpretations of function in product
design bounded by function-flow and component taxonomies.
In this work, we represent a structured taxonomy-based design
repository as assembly-flow graphs, then leverage a graph neu-
ral network (GNN) model to perform automatic function classi-
fication. We support automated function classification by learn-
ing from repository data to establish the ground truth of com-
ponent function assignment. Experimental results show that our
GNN model achieves a micro-average F1-score of 0.832 for tier 1
(broad), 0.756 for tier 2, and 0.783 for tier 3 (specific) functions.
Given the imbalance of data features, the results are encourag-
ing. Our efforts in this paper can be a starting point for more so-
phisticated applications in knowledge-based CAD systems, and
Design-for-X consideration in function-based design.

1 INTRODUCTION

Function-based design is a foundational tenet in product de-
sign [1]. Function is defined as the application of the product
purpose toward solving a design problem [2, 3]. Components
within the product complete sub-functions necessary to materi-
alize the overarching product function. In product design, func-
tional modeling is used to support and guide designers during
early conceptual design phases [4, 5]. Here, a designer deter-
mines the sub-functions needed to complete the primary prod-
uct function and purpose [1]. These sub-functions are connected
through flows that capture their interactions. In practice, these
flows represent material, energy, and signal transfer [6].

Currently, function-based design suffers from subjectivity
caused by the designer’s interpretation of function and flow as
it applies to a design. Efforts have been made to standardize
function and flow into taxonomies to limit subjectivity, while
increasing shared domain understanding [6]. The standardiza-
tion of function-based design principles has led to meaningful
curation of taxonomy-based design repositories [7, 8, 9]. While
these design repositories have been widely accepted into liter-
ature, there remain challenges in function interpretation defined
by designer expertise in function-based design. The human inter-
pretation and assignment of function have generated repositories
that are often unorganized, sparse, and unbalanced.

Low data quality and scarcity of design repositories have
led to an under-utilization of deep learning methods in the data-
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driven product design field [10,11], as they require large amounts
of data [12, 13]. Prior work addressed the issue of scarce
structured design knowledge datasets by automatically extract-
ing function knowledge from a corpus of mechanical engineer-
ing text to construct a design knowledge base [14]. For modali-
ties of data other than text, researchers relied on synthetic design
data [15], small amounts of curated knowledge [16], or scraped
public online design repositories and manually labeled design
knowledge [17, 18]. Yet, it remains challenging to apply data-
driven methods in the field of mechanical design [19, 20]. How-
ever, recent progress in graph representation learning and graph
neural networks (GNNs), show promise in knowledge discovery
in sparse datasets [21,22]. Rapid advancements in deep learning
for sparse data sets present an opportunity to apply such meth-
ods on design repository data to forward the state-of-the-art in
data-driven design, specifically in the context of function-based
design shared understanding, standardization, and computer rep-
resentation.

In this paper, we use GNNs and data from a design reposi-
tory to classify component function based on assembly and flow
relationships. We represent data from a hierarchical taxonomy-
based design repository through graphs. The focus of these
graphs is to capture function-flow-assembly relationships within
products housed in the design repository. We then introduce a
hierarchical GNN framework that capitalizes on the three-tier
hierarchical nature of the repository data. Using the hierarchi-
cal GNN, we classify component function in three tiers ranging
from broad primary functions to detailed tertiary functions as
introduced in previous literature [6]. We exhaustively evaluate
our GNN framework using four types of GNN layers and com-
pare its results against other feed-forward networks to determine
the fidelity of our proposed GNN architecture. We also compare
our hierarchical GNN architecture against independently trained
GNNs for each component function tier. The performance of our
GNN framework is presented and subsequently explored through
confusion matrices and feature importance analysis.

1.1 Specific Contributions

The research presented here contributes to the area of
function-based data-driven product design by leveraging recent
developments in graph representation learning to enable a more
descriptive shared understanding between human and computer
about the function of parts in an assembly. Our interest in
function classification stems from recent work that applies data-
driven approaches to various engineering design tasks [10], such
as searching a design space [23], model-based systems engineer-
ing [24], or selecting appropriate manufacturing methods [17].
Such work points towards intelligent design agents enabled by
knowledge-based design systems, which have been explored by
the design research community over many years [25, 10].

1https://github.com/VincenzoFerrero/OSDR-GNN

In the context of our work, functional modeling supports
the use of automated reasoning systems, as well as facilitat-
ing communication and understanding between designers and
co-creative agents, both of which could benefit from a better-
shared understanding of the problem when working on a creative
task [26, 27, 15]. We see function as an important theoretical el-
ement to allow an intelligent design agent to better understand
the designer’s intent when co-creating with the designer. Pre-
dicting low-level functions of a design is an initial step towards
this vision. The work we present here contributes the following:

1. A novel approach to automatically predict the function of a
part in an assembly using graph neural networks.

2. A relational assembly graph model to represent design
repository data.

3. Experimental results of part function classification from a
graph representation of the assembly.

In this body of work, we use the Oregon State Design Repository
(OSDR) as our structured taxonomy-based data source [28, 29].
We provide a publicly available subset of the OSDR dataset used
in our work, the assembly graphs representing the OSDR data,
and the GNN implementation for the research community to
leverage in future work 1.

2 BACKGROUND
In this section, we introduce fundamental concepts and re-

search supporting the extraction of functional knowledge using
GNNs. Here, we introduce literature in function-based product
design in the context of design support and deep learning. Next,
design repositories are discussed as a source of semantic prod-
uct data that can be used in modern deep learning techniques.
Finally, literature and background are established for graph rep-
resentation and GNNs.

2.1 Function-based Product Design

Function-based design has been used as a bridge to bring
Design-for-X (DfX) objectives, such as Design for the Environ-
ment, from post-design analysis to the earlier design phases of
product development. To this end, function-based design has
been used with life-cycle assessment data to provide function-
based sustainable design knowledge to designers [30, 31, 32]. In
human-centered product design, function has been related to hu-
man error and interaction points to determine which functions
need special consideration for ergonomics [33,34]. These recent
developments in function-based design for meeting DfX objec-
tives suggest a need to predict, learn from, and model function
in components as a means to bring further curated data to early
design phases.

Previous efforts have been made to use machine learning
for improving function-based design methodologies. In other re-
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search, association rules and weighted confidence has been used
to determine the function of a component within product con-
figurations [35, 36, 37]. Decision trees have proved useful in re-
ducing the feasible design space of functional assignment when
considering product assembly [38]. Furthermore, deep learning
approaches have been used to disambiguate customer reviews
based on function, form, and behavior [39].

2.2 Taxonomy-based Design Repositories and
Knowledge Discovery

Taxonomy-based design repositories store product design
data relevant to design engineers [40, 28]. This type of design
repository is generated through expert taxonomy descriptions of
classical product life cycle inventory (LCI) data. For example,
given common product data such as a bill of materials, special-
ized taxonomy data can be appended to LCI data. The OSDR
is a taxonomy-based repository that houses product LCI data
along with assigned specialized taxonomy descriptions [7, 29].
In the OSDR case, specialized taxonomy data includes product
assembly child-parent notation, functional-flow basis assignment
to components, and a standardized component naming schema.

Adoption of design repositories in research and industry
has been slow due to resource commitment, human curation,
intuition-based knowledge extraction, and lack of well-structured
product data. Efforts have been made to improve design reposi-
tory generation by limiting subjectivity through taxonomy stan-
dardization [41, 42, 43, 6, 44]. Furthermore, recent approaches
have been introduced to streamline data addition to design repos-
itories [45]. Despite the described challenges, design repositories
have been shown to be useful in data-driven design approaches,
particularly in machine learning and knowledge extraction tasks.

Design repositories are useful in knowledge discovery tasks
and have been effectively employed within machine learning ap-
proaches [46, 47, 48, 49]. Specifically related to function-based
design, design repositories were used in automated extraction
of function knowledge from text [14]. In our work, we as-
sert that recent advancements in graph representation learning
have allowed for the ability to generate predictive models from
sparse, incomplete, subjective, and otherwise unbalanced repos-
itory data.

2.3 Graphs in Product Design

Graphs are powerful data structures that represent interac-
tions (i.e., edges) among constituents (i.e., nodes) of a system.
They can also capture the direction of interactions, properties of
interactions (i.e., edge attributes), and properties of the system
constituents (i.e., node attributes). In product design, knowledge
graphs [50, 51] which are a specific type of graph that represent
structural relations between entities of a domain, are widely used.
Classically they are most often used in natural language pro-
cessing tasks [52, 53, 54]. Current efforts in knowledge graphs

have facilitated robust graph representation of domain-specific
semantic relationships of product design [55]. TechNet was de-
veloped in 2019 by mining semantic relationships of elemental
concepts found in US patent data. B-link was introduced in 2017
by mining engineering domain knowledge from engineering-
focused academic literature [56]. Knowledge graphs have sup-
ported product design by providing language and design relation-
ships. Specifically, engineering design knowledge graphs have
been used in concept generation and evaluation [57]. However,
there is a need to expand on knowledge graphs with standardized
product design resources, such as design repositories.

Recently, a knowledge graph framework has been in-
troduced to create rich node and edge features based upon
taxonomy-based product design models [58]. Here, graphs gen-
erated with product design taxonomies capture meaningful rela-
tionships between product materials, manufacturing method, tol-
erance, function, and other product features. Specifically, prod-
uct design knowledge graphs have been useful for case-based
reasoning and concept similarity search. In this work, we expand
on taxonomy-based graphs with the representation of repository
data in a graph structure, with a focus on function, flow, and as-
sembly representations. The generated graphs are then used in
prediction tasks using GNNs.

2.4 Graph Neural Networks

Standard deep learning architectures such as convolutional
neural networks (CNN) and recurrent neural networks (RNN)
operate on regular-structured inputs such as grids (e.g., images,
volumetric data) and sequences (e.g., signals, text). Neverthe-
less, many real-world applications deal with irregular data struc-
tures. For instance, molecular structures, interaction among sub-
atomic particles, or robotic configurations cannot be reduced to a
sequence or grid representation. Such data can be represented
as graphs, which allow for jointly modeling constituents of a
system, their properties, and interactions among them. GNNs
[59, 60, 61, 62, 63, 64, 65] can directly take in data structured as
graphs and use the graph connectivity as well as node and edge
features to learn a representation vector for every node in the
graph. Because GNNs utilize the strong inductive bias of con-
nectivity information, they are more data-efficient compared to
other deep architectures. GNNs have been successfully applied
to point clouds and meshes [66, 67], robot designs [68], physical
simulations [69, 70], particle physics [71], material design [72],
power estimation [73], and molecule classification [65].

Let G = (V,E) denote a graph with vertices (node) V , edges
E, node attributes Xv for v ∈ V and edge attributes euv for
(u,v) ∈ E. Given a set of graphs {G1, ...,GN} and their node
labels

{
y1

v1
, ...,y1

vm , ...,y
N
v1
, ...,yN

vk

}
, the task of supervised node

classification is to learn a representation vector (i.e., embedding)
hv for every node v ∈ G that helps predict its label. GNNs use
a neighborhood aggregation approach, where representation of
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node v is iteratively updated by aggregating representations of
neighboring nodes and edges. After k iterations of aggregation,
the representation captures the structural information within its
k-hop network neighborhood [74]. Formally, the k-th layer of a
GNN is defines as:

h(k)v = f (k)
θ

(
h(k−1)

v ,g(k)
φ

({
h(k−1)

v ,h(k−1)
u ,euv : u ∈ N(v)

})
(1)

where h(k)v is the representation of node v at the k-th layer, euv is
the edge feature between nodes u and v, and N(v) denote neigh-
bors of v. fθ (.) denotes a parametric combination function and
gφ (.) denotes an aggregation function. We initialize h(0)v = Xv.

Different instantiations of fθ (.) and gφ (.) functions result in
different variants of GNNs. In this paper, we compare the perfor-
mance of four well-known variants of GNNs including Graph-
SAGE [61], graph convolution network (GCN) [62], graph at-
tention network (GAT) [63], and graph isomorphism network
(GIN) [64]. For an overview of GNNs see [21, 22].

3 METHODS
In this section, we describe the methodology for function

classification using a GNN on repository data that is represented
by graphs. First, the data selection and processing is presented.
Then, we describe graph schema and graph construction. Finally,
a GNN and related parameters are introduced to predict the hier-
archical functions.

3.1 Data Selection and Processing

3.1.1 Data Selection The OSDR is a function-based rela-
tional framework built upon consumer product component (ar-
tifact) information [29, 28, 9]. The repository schema includes
system-level bill of materials, system type, component function
and flow, material, and assembly relationships. The data within
the OSDR utilizes published standard taxonomies for compo-
nent, function, and flow naming. These standard taxonomies are
referred to as basis terms [43, 6]. The basis taxonomies feature a
hierarchy system that allows for broad-to-specific identification
of component name, function, and flow per component artifact
in the OSDR. An example of the basis term hierarchy for each
taxonomy is shown in Table 1.

The OSDR encapsulates the data of 184 consumer products
and 7,275 related artifacts. Artifacts are generally components
but can also represent sub-assemblies and systems. Artifacts are
related through parent-child familial hierarchy (hypernym and
hyponym relations). Functional relationship and product-level
functional models are captured through component-level func-
tion, input flow, and output flow. In this regard, the OSDR houses
19,627 component-related function data points with 19,667 cor-
responding flow data points.

TABLE 1: SAMPLE HIERARCHY FOR COMPONENT, FUNCTION, AND
FLOW BASIS TERMS

Primary (Tier 1) Secondary (Tier 2) Tertiary
(Tier 3)

Component

Supporter Stabilizer Insert
Support

Positioner Washer
Handle

Securer Bracket

Function

Branch Separate Divide
Extract
Remove

Distribute

Flow

Signal Status Tactile
Taste
Visual

Control Analog
Discrete

3.1.2 Processing For our methodology, the data from the
OSDR needed to be filtered and processed prior to developing
the product graphs. We removed 24 consumer products from
the dataset due to a lack of completion in function, flow, or as-
sembly definition. From the 160 products, data points are rep-
resented by a single component defined by material, component
basis, parent component, functional basis hierarchy, input flow,
output flow, input component, and output component. Each data
point is a unique representation of the components defined by
flow attributes. Concisely, there are many data points per com-
ponent depending on the number of functions and related flows
managed by that component. The processing and filtering of the
data within the OSDR resulted in 15,636 data points represented
by 137 component basis terms, 51 function basis terms, 36 flow
basis terms, and 16 material categories. An example component
data point with corresponding function and flow data is shown in
Table 5 found in appendix A.

3.2 Assembly-Flow Graph

The processed OSDR data is represented through relational
graphs. Relational graphs are a specific type of graphs with
the following properties: (1) They are directed graphs, mean-
ing edges between nodes have directions, (2) they are also at-
tributed, meaning that they contain node and edge attributes, and
(3) they are multi-graphs, as more than one edge is allowed be-
tween any two nodes. The relational graphs are generated per
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system to represent the assembly and flow relations within the
system. These assembly-flow graphs are defined by nodes and
connecting edges. Figure 1 shows the graph schema. The nodes

FIGURE 1: SIMPLIFIED RELATIONAL ASSEMBLY GRAPH EXAMPLE
OF COMPONENTS FROM TABLE 5

are representative of each artifact data point and carry the fol-
lowing features: system name, system type, component basis
term, material, and functional basis hierarchy. The nodes are
connected through two edge types denoted as flow edges and as-
sembly edges.

Flow edges are directional and defined by the artifact flow
basis representation regardless of flow basis hierarchy. Flow
edges are only represented once per input-output relationship.
Assembly edges are non-directional physical connections be-
tween artifacts in the classical product assembly sense. Both
assembly and flow edges are used to capture the totality of
physical-functional interaction between artifacts.

3.3 Dataset

We generated 160 assembly graphs representative of the 160
non-filtered products from the OSDR. NetworkX [75], a Python
library for graph processing, is used to materialize the relational
graphs [76]. Per graph, there is an average of 98 nodes and 791
edges. When singling out flow edge type, there is an average of
537 flow edges per graph. For assembly edges, there is an aver-
age of 262 edges per node. We pre-process the data as follows.
For initial node attributes, we concatenate one-hot encoding of
component basis, system name, system type, and material fea-
tures resulting in a 316-dimensional multi-hot initial node fea-
ture. For edge attributes, we concatenate one-hot encoding of
input flow, output flow, and an indicator of whether the edge rep-
resents an assembly connection. This results in a 75-dimensional
initial edge feature. The dataset contains 9, 22, and 23 category

labels for tiers 1, 2, and 3 functions, respectively. It is also note-
worthy that label distribution in all three tiers is highly skewed.
The label frequencies are shown in Figure 4 found in appendix
B.

3.4 Learning Architecture

Inspired by recent advances in graph representation learn-
ing, our approach learns dedicated node representations for each
functional tier prediction task. As shown in Figure 2, our method
consists of three GNN encoders that take in graphs connectivity
information along with initial node and edge features, and pro-
duce dedicated node embeddings for each tier. Each GNN is then
followed by a dedicated MLP that acts as a specialized classifier
for that tier. Furthermore, we utilize the hierarchical nature of
function tiers to augment the predictions and use hierarchically-
structured local classifiers with a local classifier per tier.

Assume a training set D = [G1,G2, ...,GN ] of N graphs
where each graph is represented as G = (A,X,E) where A ∈
{0,1}n×n denotes the adjacency matrix (one-hop connectiv-
ity information), X ∈ Rn×dx is the initial node features, and
E ∈ Rn×n×de is the initial edge features. We define three
GNNs gθk(.) : Rn×n×Rn×dx ×Rn×n×de 7−→ Rn×dh ,k = {1,2,3}
parametrized by {θk}3

k=1 corresponding to tiers 1 to 3 functions,
respectively. This results in three sets of dedicated node embed-
dings Ht1 ,Ht2 ,Ht3 ∈Rn×dh . GNNs are essentially learning to ex-
tract strong representations for down-stream classifiers. We use
three MLPs fψk(.) : Rn×(dh+|Yk−1|) 7−→ Rn×|Yk|,k = {1,2,3} pa-
rameterized by {ψk}3

k=1 where k-th MLP is the dedicated classi-
fier for predicting tier k function classes. The k-th MLP receives
the learned node representations from its dedicated GNN gθk(.)
(i.e., Htk ) and predictions of the predecessor MLP in hierarchy
fψk−1(.) to predict the function classes for k-th tier. Because the
first MLP does not have any predecessors (i.e., first tier in hi-
erarchy), we simply pass a vector of zeros to emulate the input
predictions.

During the training phase, we utilize teacher forcing [77] to
enhance the training process. Teacher forcing is a procedure in
which during training, the model receives the ground truth output
(rather than predicted output) as input at the next step. In other
words, rather than feeding the k-th MLP with the actual predic-
tions of (k− 1)-th MLP, we feed it with ground truth labels of
(k−1)-th tier labels. During inference, however, we do not have
access to the ground truth labels. Therefore, we feed the sub-
sequent MLP with the probability distribution of the predicted
labels. We use Softmax function over the MLP predictions to
transfer the raw predictions into proper probability distributions.
Furthermore, we use frequency-based weighting to address the
data imbalance during training. We compute the loss such that
less frequent classes contribute more to the total loss compared
to frequent classes. This practice prevents the model from paying
more attention to frequent classes and ignoring the rare ones. We
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Tier 1 Predictions Tier 2 Predictions

Node Embeddings

Node Embeddings

Node Embeddings

Tier 3 
Predictions

Input Graph

FIGURE 2: THE PROPOSED HIERARCHICAL GRAPH NEURAL NETWORK FRAMEWORK

jointly optimize the model parameters with respect to the aggre-
gated and weighted cross-entropy losses of all three functional
tier predictions using mini-batch stochastic gradient descent. The
process of training for one mini-batch is shown in Algorithm 1.

Algorithm 1: Training the proposed model with
teacher forcing for one mini-batch. Htk ,Y tk

p ,Y tk
g de-

note learned node representation, predicted labels, and
ground truth labels for tier k function hierarchy.

Input: Cross-entropy loss L , GNNs gθk(.), MLPs
fψk(.), sampled batch of N graphs {G j}N

j=1,
concatenation operator ‖

L← /0
for G in a batch {G j}N

j=1 do
// Compute dedicated node embeddings

Ht1 ← gθ1 (G)
Ht2 ← gθ2 (G)
Ht3 ← gθ3 (G)
// Compute tier predictions

Y t1
p ← Softmax

(
fψ1 ([H

t1 ‖ 0])
)

Y t2
p ← Softmax

(
fψ2

([
Ht2 ‖ Y t1

g
]))

Y t3
p ← Softmax

(
fψ3

([
Ht3 ‖ Y t2

g
]))

// Compute joint loss across all tiers

L← L+L
(
Y t1

p ,Y t1
g
)
+L

(
Y t2

p ,Y t2
g
)
+L

(
Y t3

p ,Y t3
g
)

end
// Compute gradients and update parameters

{θk,ψk}3
k=1←{θk,ψk}3

k=1− γ∇{θk,ψk}3k=1

1
N

N
∑
j=1

L

4 Results and Method Validation
In this section, we introduce the GNN architecture imple-

mentation and results. We explore results further with confusion
matrices to determine function-specific performance. We then
validate the results of the SAGE graph neural network algorithm
against three other state-of-the-art GNNs. The GNN types are
GCN, GAT, and GIN [62, 63, 64]. In closing, we highlight fea-
ture importance to determine the most consequential ontological
data features toward classifying component function, and look
to investigate how our proposed hierarchical GNN architecture
compares to a group of independent GNNs.

4.1 Experimental Protocol

Given the small size of the dataset, we split it into 60%, 10%,
and 30% train, validation, and test sets, respectively, using a ran-
dom distribution, and report the mean and standard deviation of
the metrics after running the experiments 100 times. In each run,
we split the dataset, train a model on the train set, tune the hyper-
parameters on the validation set, and report the results on the
test set. This allows us to investigate the model’s performance
without bias towards train/test splits. Also, given the imbalanced
nature of the labels in all three functional tiers, we use precision
(P), recall (R), and F1-score metrics to report the results. These
metrics are defined as follows:

P =
TP

TP+FP
, R =

TP
TP+FN

, F1 = 2× P×R
P+R

(2)

where TP, FP, and FN denote the number of true positive, false
positive, and false negative predictions. Moreover, we report
the metrics with three types of averaging: micro, macro, and
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weighted averaging. Micro-averaging computes F1-score by
considering the total number of TP, FP, and FN, whereas macro-
averaging computes F1-score for each label and averages it with-
out considering the frequency for each label. On the other hand,
weighted-averaging computes F1-score for each label and returns
the weighted average based on the frequency of each label in the
dataset.

We initialize the network parameters using Xavier initializa-
tion [78] and train the model using Adam optimizer [79] with an
initial learning rate of 1e-3. We use a cosine scheduler [80] to
schedule the learning rate, and also use early-stopping with pa-
tience of 50. We also apply Leakey rectified linear unit (ReLU)
non-linearity [81] with negative slope of 0.2, and dropout [82]
with probability of 0.1 after each GNN layer. We choose the
number of GNN layers and hidden dimension size from the
range of [1, 2, 3] and [64, 128, 256], respectively. Finally, we
choose the GNN layer type from GraphSAGE [61], GCN [62],
GAT [63], and GIN [64] layers. We implemented the experi-
ments using PyTorch [83] and used Pytorch Geometric [84] to
implement the GNNs. The experiments are run on a single RTX
6000 GPU where on average one epoch of training takes about 1
second and 1.5GBs of GPU memory.

4.2 Results

To investigate the performance of the GNNs on the dataset
and compare it with other feed-forward networks, we trained
an MLP, a logistic regression (linear) model, and four types of
GNNs including GraphSAGE [61], GCN [62], GAT [63], and
GIN [64]. To train the GNNs, we used the connectivity informa-
tion along with initial node and edge features, whereas for the
MLP and linear models, we only used initial features. The re-
sults are shown in Table 2. We observe a classification weighted
precision of 0.846 for tier 1 functions, 0.777 for tier 2 functions,
and 0.860 for tier 3 functions. When strongly considering the
data imbalance (micro-average), we observe a precision of 0.832
for tier 1 functions, 0.757 for tier 2 functions, and 0.787 for tier
3 functions. If we ignore data imbalance (macro-average), there
is a precision of 0.882 for tier 1 functions, 0.803 for tier 2 func-
tions, and 0.831 for tier 3 functions. Moreover, results suggest
that: (1) GNNs significantly outperform MLP and Linear models
in all tiers across all metrics. As an example, the best performing
GNN in tier 1 function prediction outperforms the MLP model
with an absolute F1-score of 0.295, i.e., a relative improvement
of 55.24%. This implies that connectivity information plays an
important role in the predictions. (2) Among GNNs, a GNN with
GraphSAGE layers slightly performs better in tier 1 function pre-
dictions, whereas for tier 2 and 3 predictions, GNNs with GIN
and GCN layers perform better, respectively. This shows the im-
portance of treating the GNN layers as hyper-parameters which
can yield better performance.

4.2.1 Function-Specific Performance We also investi-
gate the performance of models on individual labels using con-
fusion matrices. Figures 3 shows the confusion matrix for each
function tier. These matrices show the accuracy of a function be-
ing correctly classified, and, when incorrectly classified, which
functions are selected instead of the true function. The color
axis determines the occurrence ratio of the function classifica-
tion. Ideally, high classification occurrence should be observed
in matching indices (i.e., denser diagonal), indicating correct
classification. As an example, we can observe that the model
sometimes confuses “decrement” class with “increment” and
“transmit” classes in tier 3 function predictions.

4.3 Feature Importance

To investigate the contribution of the node and edge features
to algorithm performance, we systemically drop features and ob-
serve the changes in F1-scores. Specifically in this analysis, we
drop single-node features, look at eliminating edge types, and
lastly remove all features from nodes and edges. By eliminating
edge types and features, we look to discover if assembly edges
and flow edges are more important toward prediction accuracy.
In the edge importance analysis, we also look at retaining all
edges without any features. We then eliminate all node and edge
features to determine if graph topology impacts function predic-
tions. Table 3 shows the feature importance analysis per func-
tion tier. The results suggest component basis has the highest
impact on the performance among node features, whereas flow
is the most influential edge feature. We also observe that initial
node/edge features contribute more to the performance compared
to topological information.

4.4 Hierarchical Vs. Independent GNNs

We investigate the contribution of introducing hierarchy on
performance by comparing our hierarchical GNN framework
with independently trained GNNs (i.e., no input from previous
predictions). The results in Table 4 suggest that introducing hier-
archical training significantly improves the performance on tier 3
in which we observe an absolute 0.1 increase in micro F1-score.
We also see a high enhancement in tier 2 predictions. Because
tier 1 GNNs do not have any predecessors in hierarchy, they pro-
duce almost identical results in both cases.

4.5 Assumptions and Limitation

The OSDR is a multi-decade long project that has been man-
ually influenced by many organizations and design engineers.
Knowing this, we reiterate that the data from the repository is
unbalanced, sparse, and often non-congruent. We observe noted
cascading label imbalance and absence from higher-order hierar-
chy taxonomy to lower-order taxonomy terms. Tier 3 classes in
function, flow, and component per component are often missing
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TABLE 2: MEAN AND STANDARD DEVIATION OF PRECISION, RECALL, AND F1-SCORE ON TEST SET AFTER 100 RUNS

METHOD MICRO MACRO WEIGHTED

PRECISION RECALL F1 PRECISION RECALL F1 PRECISION RECALL F1

T
I E

R
1

LINEAR 0.462 ± 0.02 0.462 ± 0.02 0.462 ± 0.02 0.599 ± 0.03 0.371 ± 0.01 0.390 ± 0.02 0.561 ± 0.02 0.462 ± 0.02 0.448 ± 0.02

MLP 0.544 ± 0.02 0.544 ± 0.02 0.544 ± 0.02 0.706 ± 0.03 0.439 ± 0.02 0.479 ± 0.02 0.642 ± 0.02 0.544 ± 0.02 0.534 ± 0.02

SAGE [61] 0.832 ± 0.03 0.832 ± 0.03 0.832 ± 0.03 0.882 ± 0.03 0.712± 0.04 0.773± 0.04 0.846± 0.03 0.832 ± 0.03 0.829± 0.03

GCN [62] 0.795 ± 0.04 0.795 ± 0.04 0.795 ± 0.04 0.858 ± 0.02 0.662 ± 0.04 0.725 ± 0.04 0.817 ± 0.03 0.795 ± 0.04 0.791 ± 0.04

GAT [63] 0.794 ± 0.04 0.794 ± 0.04 0.794 ± 0.04 0.861 ± 0.03 0.668 ± 0.05 0.730 ± 0.05 0.818 ± 0.04 0.794 ± 0.04 0.791 ± 0.04

GIN [64] 0.818 ± 0.04 0.818 ± 0.04 0.818 ± 0.04 0.877 ± 0.03 0.704 ± 0.04 0.766 ± 0.04 0.836 ± 0.03 0.818 ± 0.04 0.816 ± 0.04

T
IE

R
2

LINEAR 0.368 ± 0.01 0.368 ± 0.01 0.368 ± 0.01 0.522 ± 0.03 0.246 ± 0.01 0.268 ± 0.01 0.515 ± 0.02 0.368 ± 0.01 0.366 ± 0.02

MLP 0.442 ± 0.02 0.442 ± 0.02 0.442 ± 0.02 0.587 ± 0.03 0.314 ± 0.02 0.346 ± 0.02 0.576 ± 0.03 0.442 ± 0.02 0.444 ± 0.02

SAGE [61] 0.756 ± 0.04 0.756 ± 0.04 0.756 ± 0.04 0.803 ± 0.04 0.618 ± 0.05 0.670 ± 0.05 0.774 ± 0.04 0.756 ± 0.04 0.750 ± 0.04

GCN [62] 0.714 ± 0.05 0.714 ± 0.05 0.714 ± 0.05 0.768 ± 0.04 0.562 ± 0.05 0.613 ± 0.05 0.740 ± 0.04 0.714 ± 0.05 0.705 ± 0.05

GAT [63] 0.718 ± 0.06 0.718 ± 0.06 0.718 ± 0.06 0.785 ± 0.05 0.574 ± 0.07 0.627 ± 0.07 0.746 ± 0.05 0.718 ± 0.06 0.710 ± 0.06

GIN [64] 0.757 ± 0.04 0.757 ± 0.04 0.757 ± 0.04 0.802 ± 0.04 0.620 ± 0.05 0.672 ± 0.05 0.777 ± 0.04 0.757 ± 0.04 0.752 ± 0.04

T
IE

R
3

LINEAR 0.778 ± 0.07 0.778 ± 0.07 0.778 ± 0.07 0.776 ± 0.10 0.695 ± 0.10 0.699 ± 0.10 0.842 ± 0.05 0.778 ± 0.07 0.773 ± 0.08

MLP 0.779 ± 0.07 0.779 ± 0.07 0.779 ± 0.07 0.799 ± 0.10 0.699 ± 0.10 0.714 ± 0.10 0.839 ± 0.06 0.779 ± 0.07 0.775 ± 0.07

SAGE [61] 0.783 ± 0.08 0.783 ± 0.08 0.783 ± 0.08 0.804 ± 0.10 0.711 ± 0.09 0.721 ± 0.09 0.844 ± 0.06 0.783 ± 0.08 0.777 ± 0.08

GCN [62] 0.787 ± 0.09 0.787 ± 0.09 0.787 ± 0.09 0.831 ± 0.09 0.742 ± 0.10 0.749 ± 0.10 0.860 ± 0.07 0.787± 0.09 0.786± 0.09

GAT [63] 0.779 ± 0.09 0.779 ± 0.09 0.779 ± 0.09 0.817 ± 0.09 0.719 ± 0.12 0.728 ± 0.11 0.844 ± 0.07 0.779 ± 0.09 0.775 ± 0.09

GIN [64] 0.758 ± 0.10 0.758 ± 0.10 0.758 ± 0.10 0.818 ± 0.10 0.724 ± 0.11 0.730 ± 0.11 0.842 ± 0.07 0.758 ± 0.10 0.756 ± 0.10

TABLE 3: FEATURE IMPORTANCE FOR FUNCTION PREDICTION

FEATURES TIER 1 F1-SCORE TIER 2 F1-SCORE TIER 3 F1-SCORE

NODE EDGE MICRO MACRO WEIGHTED MICRO MACRO WEIGHTED MICRO MACRO WEIGHTED

COM. BASIS ALL 0.825 ± 0.03 0.770± 0.03 0.822± 0.03 0.749± 0.04 0.670± 0.05 0.743 ± 0.04 0.710 ± 0.10 0.636± 0.11 0.700± 0.10

SYS. NAME ALL 0.639 ± 0.05 0.586 ± 0.05 0.632± 0.05 0.555± 0.06 0.495± 0.07 0.548 ± 0.06 0.549± 0.12 0.546 ± 0.12 0.550± 0.12

SYS. TYPE ALL 0.400 ± 0.08 0.339± 0.07 0.436± 0.09 0.278± 0.06 0.239± 0.06 0.309± 0.07 0.323± 0.12 0.323± 0.09 0.321± 0.12

MATERIAL ALL 0.616± 0.05 0.570± 0.05 0.608± 0.05 0.521± 0.05 0.469± 0.06 0.516 ± 0.05 0.443± 0.14 0.438± 0.10 0.416± 0.14

NONE ALL 0.585 ± 0.08 0.552± 0.09 0.588 ± 0.07 0.497 ± 0.08 0.452± 0.09 0.501± 0.08 0.513± 0.13 0.438 ± 0.11 0.504± 0.12

ALL FLOW 0.877 ± 0.04 0.827 ± 0.04 0.876 ± 0.04 0.824 ± 0.05 0.753 ± 0.05 0.822 ± 0.05 0.919 ± 0.09 0.844 ± 0.14 0.918 ± 0.10

ALL ASSEM. 0.535± 0.02 0.470 ± 0.02 0.527± 0.02 0.414± 0.03 0.314± 0.03 0.416 ± 0.03 0.689± 0.08 0.619± 0.11 0.696 ± 0.08

ALL NONE 0.692± 0.06 0.614± 0.06 0.683 ± 0.06 0.613 ± 0.07 0.510± 0.07 0.604± 0.07 0.740± 0.08 0.657 ± 0.09 0.736± 0.08

ALL ALL 0.832 ± 0.03 0.773± 0.04 0.829± 0.03 0.756 ± 0.04 0.670 ± 0.05 0.750 ± 0.04 0.783 ± 0.08 0.721 ± 0.09 0.777 ± 0.08

NONE NONE 0.147 ± 0.04 0.129± 0.03 0.137± 0.04 0.068± 0.04 0.045± 0.03 0.070 ± 0.04 0.163 ± 0.09 0.128± 0.07 0.194± 0.10
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(a) (b) (c)

FIGURE 3: CONFUSION MATRICES OF (A) TIER 1, (B) TIER 2, AND (C) TIER 3 FUNCTION PREDICTIONS. THE ROWS REPRESENT THE GROUND
TRUTH WHEREAS THE COLUMNS REPRESENT THE PREDICTIONS

TABLE 4: PERFORMANCE OF HIERARCHICAL AND INDEPENDENT
GNNS

TIER METHOD F1-SCORE

MICRO MACRO WEIGHTED

1
HIERARCHICAL 0.832 ± 0.03 0.773 ± 0.04 0.829 ± 0.03

INDEPENDENT 0.834 ± 0.03 0.771 ± 0.04 0.827 ± 0.03

2
HIERARCHICAL 0.756 ± 0.04 0.670 ± 0.05 0.750 ± 0.04

INDEPENDENT 0.713 ± 0.05 0.644 ± 0.04 0.719 ± 0.05

3
HIERARCHICAL 0.783 ± 0.08 0.721 ± 0.09 0.777 ± 0.08

INDEPENDENT 0.684 ± 0.09 0.656 ± 0.06 0.683 ± 0.07

assignment. Although the data is incomplete and imbalanced,
we maintain that the compilation of the OSDR is representative
of the culmination of knowledge from many design engineers
with varying expertise. As such, the OSDR can be thought of as
a sampling of function-based domain knowledge ranging from
novice to expert design engineers.

In using a hierarchical GNN model, we inherit the assump-
tions that were used to create and facilitate the propagation of
such taxonomies. Function, flow, and component taxonomies
are directional, but parent-child assembly relationships are not.
As such, in our graph representations, flow edges are directional,
whereas assembly edges are not. The GNN model takes into ac-
count direction information and models non-directional assem-
bly edges as bi-directional. We recognize that the OSDR taxon-
omy approach is one of many adopted function, flow, and com-
ponent standardizations. These taxonomies are applied to a wide
breadth of consumer products. We choose to adopt the OSDR
taxonomies as a starting point, but we realize that this definition

of function might be generalizable to all design problems and
domains.

5 DISCUSSION

As shown in section 4.2, we observe that the overall perfor-
mance of the GNN with GraphSAGE layers is strong, particu-
larly in tier 1 function prediction. Tier 2 and 3 function predic-
tions are competitive against other GNN types, only coming sec-
ond to GNN with GIN (tier 2) and GNN with GCN (tier 3) layers.
These results exceeded the general expectation of all GNN types,
given the unbalanced product design data. Given a repository of
just 160 products spanning various industries (automotive, con-
sumer goods, furniture), it is encouraging that at the proposed
GNN architecture was able to ascertain part level functional clas-
sification with a micro-average F1-score of 0.790. We anticipated
that function would be more product family-specific and would
cause model confusion between industry domains.

In Figure 4 shown in appendix B, tier 2 and 3 suffer from
greater data imbalance in comparison to tier 1. In context, the
concatenation of a high number of classification labels and data
imbalance found in tier 2 and 3 functions resulted in some mean-
ingful false negatives and false positives during testing. As
shown in Figure 3, the confusion matrices suggest cascading
false negatives and false positives as our model moves from tier 1
through tier 3 function predictions. We theorize this is caused by
data imbalance, specifically in that there is a very low frequency
of tier 3 function data in the dataset.

In the tier 3 predictions, we observe that the model often
confuses function labels that are related. For example, “decre-
ment” is often confused with “increment” and “transmit”. In
the same regard, “translate” is often confused with “transmit”.
The model appears to ascertain the contextual function correctly
but has trouble discerning the details that individualize some tier
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3 functions. In this example, the GNN model finds that these
unlabeled components generally are “moving” flow. However,
the model can not classify if the component is “incriminating”,
“decrementing”, or translating a material flow or “transmitting”
a signal or energy flow. Confusion in low-frequency function
classes can be also be attributed to conflicting knowledge caused
by sparing edges, especially considering confusion between ma-
terial flows and the other flows.

In Table 2, there is an adversarial effect between flow edges
and assembly edges. When only considering flow edges the
GNN model performed better than with both edge types. Con-
versely, when just considering assembly edges, performance
sharply declines. Upon discovering this effect, we theorized that
energy and signal flows are not always in correlation with phys-
ical assembly or “closeness” of components that are inputting
or outputting these types of flows. There is significant over-
lap between the two edge types, but the none overlapping flows
and assembly edges are causing the adversarial effect. When
we highlight only solid or material flows with assembly flows,
we find that there is a significant increase in F1-score (0.754,
0.670, 0.907 micro-average) that begins to recapture the perfor-
mance of the only flow GNN model output (0.887, 0.824, 0.919
micro-average). The inclusion of only material flow and assem-
bly edges is more precise in tier 3 function classification than the
all flow and assembly edges model (0.832, 0.756, 0.783 micro-
average). Moving forward, this finding is advantageous in future
work considering geometric and CAD embeddings. Whereas in
CAD data, it might be challenging to capture energy and signal
flows, it might be more promising to capture solid flows. As
such, solid flows are likely the most analogous bridge between
assembly and function.

6 CONCLUSION

In this work we used graph neural networks to classify the
function of parts in an assembly given design knowledge about
the part, such as the semantic name, the material, the assembly
connections, and the energy flowing into and out of the part.
We extract the data from 160 products in the OSDR and rep-
resented them within 160 graphs and a total of 15,636 nodes,
with each node containing design knowledge about the part in a
multi-dimensional feature vector. With this data, we are able to
train a GNN to predict the function of a part with micro preci-
sion of 0.832 for tier 1 (broad), 0.756 for tier 2, and 0.783 for tier
3 (specific) functions. Our results suggest that the hierarchical
structure of products and relevant design knowledge describing
sub-components can be learned effectively with graph neural net-
works, which could support the development of a larger function
dataset. Our method could be further developed by learning from
the geometric data of the part, a prominent design feature that is
missing from the current work in lieu of the semantic name of

the part.
There are several research directions to expand on this work.

By inferring the function of a design at any point in the de-
sign process, an intelligent design agent could better support the
designer throughout various tasks. For example, function data
could support the designer during the conceptual design stage in
assessing the feasibility of a design [24], searching for function-
ally similar parts [20], or by enabling automated function mod-
eling [36, 37, 85]. In the detail design stages it could aid in ver-
ifying the satisfaction of higher-level design requirements [26].
Furthermore, this work can further the development of function-
based sustainability methods and other function-related environ-
mental considerations during the early design phases [30,31,86].

In future work, we look to enable knowledge-based CAD
systems through automated function inference by bridging a gap
in understanding between the designer and an intelligent design
agent. We envision design tools extending beyond documenta-
tion, simulation, and optimization towards intelligent reasoning
tasks that help designers make informed design decisions.
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A Appendix A: Data Example from the Oregon State Design Repository

TABLE 5: SIMPLE VEGETABLE PEELER EXAMPLE PRODUCT DATA POST-PROCESSING AND IN BASIS TERMS

System ID Component Child of Material Input Flow - From Output Flow - To Function Tier 1/2/3

Vegetable Peeler 1 Unclassified - - - - -

- 2 Blade 1 Steel Solid - Int* Solid - Int Branch/Separate/-

- 2 Blade 1 Steel Solid - Ext** Solid - Int Channel/Import/-

- 2 Blade 1 Steel Solid - Int Solid - Ext Channel/Export/-

- 2 Blade 1 Steel Solid - Int Solid - Ext Channel/Export/-

- 2 Blade 1 Steel Mechanical - 3 Mechanical - Ext Channel/Export/-

- 2 Blade 1 Steel Solid - Int Solid - Int Channel/Guide/-

- 2 Blade 1 Steel Status - Int Status - Ext Signal/Indicate/-

- 2 Blade 1 Steel Solid - 1 Solid - int Support/Secure/-

- 3 Handle 1 Plastic Control - Ext Control - Int Channel/Import/-

- 3 Handle 1 Plastic Human - Ext Human - Int Channel/Import/-

- 3 Handle 1 Plastic Human Energy - Ext Human Energy - Int Channel/Import/-

- 3 Handle 1 Plastic Human - Int Human - Ext Channel/Import/-

- 3 Handle 1 Plastic Human Energy - Int Mechanical - 2 Convert/-/-

- 3 Handle 1 Plastic Solid - 2 Solid - Int Support/Secure/-

* Int (Internal) is nonspecific flows from inside the system
** Ext (External) is nonspecific flows from outside the system
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B Appendix B: Distribution of Class Frequencies
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FIGURE 4: DISTRIBUTION OF CLASS FREQUENCIES IN (A) TIER 1 (B) TIER 2 (C) TIER 3 (D) FUNCTION CATEGORIES.
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