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An Adaptive Phase-Amplitude Reduction Framework without \bfscrO (\bfitepsilon ) Constraints
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Abstract. Phase reduction is a well-established technique used to analyze the timing of oscillations in response
to weak external inputs. In the preceding decades, a wide variety of results have been obtained
for weakly perturbed oscillators that place restrictive limits on the magnitude of the inputs or on
the magnitude of the time derivatives of the inputs. By contrast, no general reduction techniques
currently exist to analyze oscillatory dynamics in response to arbitrary, large magnitude inputs, and
comparatively very little is understood about these strongly perturbed limit cycle oscillators. In this
work, the theory of isostable reduction is leveraged to develop an adaptive phase-amplitude transfor-
mation that does not place any restrictions on the allowable input. Additionally, provided some of
the Floquet multipliers of the underlying periodic orbits are near zero, the proposed method yields a
reduction in dimension comparable to that of other phase-amplitude reduction frameworks. Numeri-
cal illustrations show that the proposed method accurately reflects synchronization and entrainment
of coupled oscillators in regimes where a variety of other phase-amplitude reductions fail.

Key words. phase reduction, phase-amplitude reduction, isostable coordinates, limit cycle, Floquet theory,
coupled oscillators
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1. Introduction. Phase reduction [5], [11], [14] is a commonly used strategy to study
oscillatory dynamical systems of the form

(1)
dx

dt
= F (x) + U(t)

in terms of a 1-dimensional phase reduced equation

(2)
d\theta 

dt
= \omega + Z(\theta ) \cdot U(t).

In the full dynamical model (1) above, x \in \BbbR N is the state, F gives the nominal dynamics,
and U(t) is an external input; in the phase reduced equation (2), \theta \in \BbbS 1 is a phase which
characterizes the timing of an oscillation, \omega is the natural frequency, Z(\theta ) is a phase response
curve, and the dot denotes the dot product. Phase reduction is particularly effective when
all Floquet exponents of the underlying periodic orbit are large in magnitude so that the
periodic orbit behaves like an inertial manifold [6]. However, if any Floquet exponents are
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ADAPTIVE PHASE-AMPLITUDE REDUCTION 205

\scrO (1), then some \scrO (\epsilon ) constraints must be placed on U(t) (where 0 < \epsilon \ll 1). For instance,
phase reduction and phase-amplitude reduction [43], [34], [4], [37], [19], [44] require the inputs
to remain \scrO (\epsilon ) in magnitude so that the state remains close to a nominal limit cycle. High
order reduction strategies have been proposed that allow for larger magnitude inputs [46], [30],
[18], [42] but these strategies still break down as the state moves far from the nominal limit
cycle. Other strategies allow for arbitrarily large magnitude inputs, but place \scrO (\epsilon ) limits on
the rate at which the inputs can vary [15], [25], [29], [32].

While phase reduction and related methods have been applied fruitfully to weakly per-
turbed oscillators [48], [5], [28] there are currently no reduction frameworks that allow for the
study of strongly perturbed oscillators with general perturbations. In this work, an adaptive
phase-amplitude coordinate framework is proposed that can be implemented without impos-
ing any \scrO (\epsilon ) constraints on the input. The critical feature of this reduction strategy is that
it explicitly considers the relationships between phase and amplitude coordinates of nearby
parameter sets. A high-accuracy reduction results from continuously updating the underlying
model parameters in order to limit the magnitude of the amplitude coordinates during the
application of exogenous inputs. Additionally, provided enough of the Floquet exponents of
the periodic orbit are large in magnitude, this framework results in a significant reduction in
dimensionality. In supporting numerical examples, this framework far exceeds the accuracy
of a wide variety of other reduction techniques when large magnitude inputs are considered.

The organization of this paper is as follows: Section 2 provides necessary background on
existing phase and phase-amplitude reduced equations. These methods are used for com-
parison to the adaptive phase-amplitude reduction that is the focus of this work. Section 3
provides a derivation of the adaptive phase-amplitude reduced equations, with Appendix A
giving a detailed error analysis of the truncated terms. Section 4 provides illustrative exam-
ples highlighting the utility of the proposed adaptive phase-amplitude reduction when large
magnitude input is considered. In these examples, the proposed strategy faithfully reproduces
entrainment and synchronization observed in simulations of the full models in situations where
other strategies fail. Section 5 gives concluding remarks.

2. A brief review of related phase reduction frameworks. Phase transformations and
phase reduction techniques are often applied to ordinary differential equations of the general
form (1) with oscillatory dynamics. Consider a model of the general form (1) with a stable
T -periodic limit cycle x\gamma that emerges when U(t) = 0. In many applications, it is useful to
analyze the oscillatory solutions of (1) in terms of the timing of the oscillations. From this
perspective, taking U(t) = 0 one can assign a phase \theta \in [0, 2\pi ) to all locations on the periodic
orbit scaled so that d\theta /dt = 2\pi /T \equiv \omega . The definition of phase can be extended to the
nonlinear basin of attraction of the limit cycle using isochrons [8], [48]. To do so, letting \theta 1
be the phase corresponding to a(0) \in x\gamma , the \theta 1 level set (i.e., isochron) can be defined as the
set of all b(0) in the basin of attraction of the limit cycle such that

(3) lim
t\rightarrow \infty 

| | a(t) - b(t)| | = 0,

where | | \cdot | | denotes any vector norm. Using the definition (3), one can show that under the
flow of (1), d\theta /dt = \omega when U(t) = 0. The phase as defined by (3) takes x \mapsto \rightarrow \theta , encoding
for the infinite time convergence to the periodic orbit. Given the reduction in dimensionality,D
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206 DAN WILSON

it is often useful to work in a phase reduced coordinate framework. The following provides a
brief overview of existing phase and phase-amplitude reduction frameworks that will be used
as a comparison for the adaptive phase-amplitude reduction developed in this work. For a
more thorough review of these and other phase reduction techniques, the interested reader is
referred to both [28] and [24].

Standard phase reduction. Phase reduction [5], [11], [14] is a widely applied technique
that can be used to represent the behavior of a general dynamical system (1) near an N -
dimensional limit cycle with the 1-dimensional representation of the form (2). The idea of
phase reduction was investigated in detail by Winfree [48] more than half a century ago
and has since become an indispensable tool for the analysis of limit cycle oscillators. A
standard phase reduction can be implemented by considering the isochrons as defined by (3)
and computing the phase response curve, i.e., the gradient of the isochrons evaluated on the
periodic orbit. This standard implementation of a phase reduction, as given by (2), yields a
particularly elegant characterization of the dynamical behavior, provided the state remains
close to the underlying limit cycle. To ensure that (2) remains valid, it is required that U(t)
remain sufficiently small in magnitude relative to the decay rates of all neglected amplitude
coordinates.

Phase-amplitude reduction methods and isostable coordinates. Many authors have ex-
plored various phase-amplitude reduction strategies [47], [34], [4], [37], [19], [44], [23]. Ampli-
tude coordinates can be used in conjunction with the phase coordinates to characterize the
dynamics that govern the decay in directions transverse to a periodic orbit. This additional
information can be used to better characterize the observed behavior of a perturbed oscillator
[41]. It can also be used to develop control strategies that actively limit the magnitude of
the amplitude coordinates so that the state remains close to the periodic orbit. Such control
strategies allow for larger magnitude inputs to be applied than those that result from using
the standard phase reduction [23].

In many applications, it can be useful to characterize the amplitude dynamics using Flo-
quet theory [12]. To do so, define \Delta x = x  - x\gamma (\theta ) to be the difference between a state x
with corresponding phase \theta and another state x\gamma (\theta ) on the periodic orbit of (1). To a linear
approximation, \Delta x evolves according to

(4) \Delta \.x = J\Delta x,

where J is the (time-varying) Jacobian evaluated at x\gamma (\theta ), and the dot indicates the time
derivative. Letting \Phi be the fundamental matrix yielding the relationship \Delta x(T ) = \Phi \Delta x(0),
supposing that \Phi is diagonalizable, the solutions near the periodic orbit can be represented
according to [43]

(5) x - x\gamma (\theta ) =

N - 1\sum 
j=1

\psi jg
j(\theta ) +\scrO (\psi 2

1) + \cdot \cdot \cdot +\scrO (\psi 2
N - 1),

where gj(\theta ) are Floquet eigenfunctions associated with the periodic orbit x\gamma (\theta ), and \psi j are
isostable coordinates. These isostable coordinates can be defined as level sets of particularD
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ADAPTIVE PHASE-AMPLITUDE REDUCTION 207

eigenfunctions of the Koopman operator [21], [17]. For the most slowly decaying isostable
coordinates, an alternative definition can be given that considers the infinite-time decay of
initial conditions to the limit cycle [43], [34]. To linear order, the dynamics of the phase-
isostable reduction can be written as

\.\theta = \omega + Z(\theta ) \cdot U(t),

\.\psi j = \kappa j\psi j + Ij(\theta ) \cdot U(t),

j = 1, . . . , N  - 1,(6)

where \kappa j is a Floquet exponent associated with the jth isostable coordinate and Ij(\theta ) gives
the gradient of \psi j evaluated on the periodic orbit. Note that each \psi j , \kappa j , and Ij(\theta ) can take
complex values in the reduction (6). Typically, U(t) is assumed to be an order \epsilon term so
that (6) can be referred to as a ``first order"" accurate phase-amplitude reduction where all
of the phase and isostable coordinate dynamics are accurate to \scrO (\epsilon ). Additionally, if some
of the Floquet exponents have real components that are large in magnitude so that they die
out rapidly, the associated isostable coordinates will remain close to zero and can be ignored.
This leaves \beta < N  - 1 isostable coordinates to consider in the reduction (6).

Second and higher order accurate phase-amplitude reduction methods. While (2) and
(6) only use information about the gradients of the phase and amplitude coordinates evaluated
on the periodic orbit (i.e., computations of the gradients that are valid to zeroth order in
the amplitude coordinates), computation of these gradients at higher order accuracy can
illuminate model behaviors that are not replicated by the standard phase reduced dynamics
[46], [30], [18], [4]. A second order accurate version of the phase-isostable reduced equations
was developed in [43] and [40]:

\.\theta = \omega +

\Biggl( 
Z(\theta ) +

\beta \sum 
k=1

\psi kB
k(\theta )

\Biggr) 
\cdot U(t),

\.\psi j = \kappa j\psi j +

\Biggl( 
Ij(\theta ) +

\beta \sum 
k=1

\psi kC
k
j (\theta )

\Biggr) 
\cdot U(t),

j = 1, . . . , \beta .(7)

The functions Bk(\theta ) and Ckj (\theta ) in the above equation provide higher order corrections to the
gradient of the phase and isostable dynamics. Provided U(t) is an \scrO (\epsilon ) term, (7) is valid to
second order accuracy in \epsilon . Recent work [42] developed techniques to compute reduced order
equations to arbitrarily high order accuracy.

Extended phase reduction. The notion of an extended phase reduction proposed in [15]
(cf. [25]) allows for arbitrary magnitude inputs as long as they vary sufficiently slowly. This
strategy splits the input U(t) into two components: U(t) = q(\epsilon t) + \sigma r(t). Here, q(\epsilon t) is a
slowly varying component of arbitrary magnitude and \sigma r(t) is an additional weak component
with 0 < \sigma \ll 1. The imposed structure of U(t) allows the amplitude coordinates to be
ignored in the reduction, yielding an extended phase reduced equation of the form [15]

(8) \.\theta = \omega (q(\epsilon t)) +D(\theta , q(\epsilon t)) \cdot \.q(\epsilon t) + \sigma Z(\theta , q(\epsilon t)) \cdot r(t),D
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208 DAN WILSON

where D(\theta , q(\epsilon t)) characterizes the response to the slowly varying parameter and Z(\theta , \xi ) is the
phase response curve of the periodic orbit that results when a constant U(t) = \xi is applied.
Equation (8) is valid, provided the magnitudes of the Floquet exponents of the periodic orbit
are small relative to both \.q(\epsilon t) and \sigma r(t). The extended phase reduction (8) allows for large
magnitude inputs to be used, provided these inputs vary slowly enough---a constraint that
precludes the use of (8) in many applications.

Related reduced order coordinate frameworks for nonlinear dynamical systems. Recent
years have seen a sustained interest in the development of tools and techniques that can be used
to characterize dynamical behavior far from an underlying attractor. Koopman analysis has
gained traction for such problems and can be used to represent a general nonlinear dynamical
system using a linear, but infinite-dimensional, operator [3], [22]. The fundamental challenge
of implementing Koopman-based approaches is in the identification of a finite basis with which
to represent the potentially infinite-dimensional Koopman operator. As mentioned earlier, the
isostable coordinate framework leverages Koopman-based ideas by working in a finite basis of
the slowest decaying Koopman eigenmodes [21], [17]. Other strategies such as dynamic mode
decomposition (DMD) [33], [16], extended DMD [38], and delayed embedding approaches [1],
[2] are well suited for identifying reduced order Koopman-based models, especially in data-
driven applications.

Alternatively, the parameterization method [10] can be applied to identify invariant man-
ifolds of a dynamical system. This general strategy has been used as a foundation to compute
sets of phase-amplitude coordinates (such as isochrons and isostables) in the basin of attraction
of a limit cycle [4], [9]. Recently, numerical techniques based on the parameterization method
have been developed to efficiently compute full sets of isochron and isostable coordinates as
well as their gradients for dynamical systems of arbitrary dimension [27].

3. Derivation of an adaptive phase-amplitude reduction strategy. A derivation of the
proposed adaptive phase-amplitude reduction is presented here. In the previous section, each
of the phase and phase-amplitude reduction strategies fails when the state x is driven too
far from the underlying periodic orbit x\gamma (\theta ). The extended phase reduction (8) discussed in
the previous section takes steps to remedy this by considering a family of periodic orbits that
emerge as a given parameter is changed. However, it does not explicitly consider the associated
amplitude dynamics. Consequently, limits must be placed on the rate of change of the mag-
nitude of the allowable inputs. The crucial feature of the proposed adaptive phase-amplitude
reduction strategy is that it actively updates the system parameters (and consequently the
nominal periodic orbit) with the explicit goal of keeping the state close to the nominal periodic
orbit.

To begin, consider a general ordinary differential equation of the form

(9) \.x = F (x, p0) + U(t),

where x, F , and U were defined as part of (1), and p0 \in \BbbR M is a constant, nominal collection
of system parameters. Note here that (9) is in the same form as (1) with the explicit inclusion
of a nominal parameter set. A shadow system,

(10) \.x = F (x, p) + U(t),D
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ADAPTIVE PHASE-AMPLITUDE REDUCTION 209

is introduced, where p \in \BbbR M is a set of adaptive parameters. The ultimate goal is to identify
a reduced order of system of equations that accurately reflect the behavior of (9) with the
help of the shadow system (10). It will be assumed for all allowable p that (10) has a stable
limit cycle. All states in the basin of attraction of this p-limit cycle will be parameterized in
terms of isochrons using the definition (3). This periodic orbit will be denoted by x\gamma (\theta , p),
indicating explicit dependence on both the phase (i.e., isochron) and the chosen parameter set.
Adopting the same terminology as used in [15], consider a generalized phase \theta (x, p) \in [0, 2\pi )
defined as the isochron corresponding to both the state, x, and the p-limit cycle. Of course,
the isochrons of each periodic orbit defined according to (3) are unique up to a constant
shift. This fact will be considered more carefully momentarily. Likewise, a set of generalized
isostable coordinates \psi 1(x, p), . . . , \psi \beta (x, p) corresponding to both the state, x, and the p-limit
cycle will be considered.

To implement the proposed adaptive phase-amplitude reduction framework, consider a
rewritten version of (9):

(11) \.x = F (x, p) + Ue(t, p, x),

with the extended input

(12) Ue(t, p, x) \equiv U(t) + F (x, p0) - F (x, p).

Intuitively, the term F (x, p) represents dynamics of the model when using parameter set p,
and Ue captures both the externally applied input and the mismatch caused when considering
the parameter set p as compared to the parameter set p0 of the underlying model (9). In the
following adaptive phase-amplitude reduction formulation, p will be viewed as a free variable.
Changing to phase and isostable coordinates via the chain rule yields

d

dt
\theta (x, p) =

\partial \theta 

\partial x
\cdot dx
dt

+
\partial \theta 

\partial p
\cdot dp
dt
,

d

dt
\psi j(x, p) =

\partial \psi j
\partial x

\cdot dx
dt

+
\partial \psi j
\partial p

\cdot dp
dt
,

j = 1, . . . , \beta ,

dp

dt
= Gp(p, \theta , \psi 1, . . . , \psi \beta ),(13)

where the function Gp dictates how p is updated. The above reduction truncates the rapidly
decaying isostable coordinates \psi \beta +1, . . . , \psi N - 1. Conditions describing when this truncation is
possible are discussed in section 3.1. Other necessary assumptions, including those related to
differentiability, will also be discussed in section 3.1.

Recall that the isochrons corresponding to each x\gamma (\theta , p) are unique up to a constant shift;

in order for the terms of the form \partial \theta 
\partial p and

\partial \psi j

\partial p (13) to be well-defined, these constant shifts
must be unambiguously determined for the continuous family of periodic orbits. In addressing
a similar problem, the authors of [36] disambiguate the phase shift between limit cycles by
defining a Poincar\'e section transverse to a set of limit cycles and mandating that the phase
at the intersection of this Poincar\'e section and each limit cycle be identical. An identicalD
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210 DAN WILSON

construction can be employed here in the definition of \theta (x, p). Likewise, one can also require
a distinct feature associated with the family of limit cycles to have identical phase between
limit cycles, for instance, by setting the maximum transmembrane voltage during an action
potential to correspond to an identical phase on each limit cycle. While there are multiple
options, some choice must be made to unambiguously define \theta (x, p).

Equation (13) provides the basis for the proposed adaptive reduction framework in which
changes to either the system state x or the adaptive parameter set p can influence both the
phase and isostable coordinates. Most phase reduction techniques, including those highlighted
in section 2, rely on an asymptotic expansion of the phase in a basis of amplitude coordinates
about a periodic attractor. As such, they fail when the amplitude coordinates (e.g., isostable
coordinates) become too large. Intuitively, the adaptive parameter set p provides an additional
degree of freedom that can be used to keep the amplitude coordinates small when large
magnitude inputs are applied. The following sections formalize this intuition and provide
strategies for computing each of the terms of (13).

3.1. Necessary assumptions and restrictions on the proposed adaptive reduction frame-
work. Explicit assumptions and restrictions for implementation of the adaptive reduction are
given below. These assumptions ultimately allow for simplification of the terms of (13) and
subsequent implementation of the proposed adaptive reduction framework. The resulting
reduction explicitly considers \beta slowly decaying isostable coordinates and truncates the re-
maining rapidly decaying isostable coordinates.
Assumption A. In the allowable range of p, the periodic orbit x\gamma (\theta , p) exists and is continu-

ously differentiable with respect to both \theta and p.
Assumption B. In the allowable range of p, the generalized phase and isostable coordinates

(\theta (x, p) and \psi j(x, p), resp.) are continuously differentiable with respect to x
and p for all j.

Assumption C. The function Gp that governs the adaptive parameter is designed so that for
all time, | \psi j | is an \scrO (

\surd 
\epsilon ) term for j \leq \beta , where 0 < \epsilon \ll 1.

Assumption D. For the truncated isostable coordinates, minp,j>\beta (| Re(\kappa j(p))| ) = \scrO (1/\epsilon ),
where 0 < \epsilon \ll 1.

Assumption E. The norms of Ue(t, p, x) and Gp(p, \theta , \psi 1, . . . , \psi \beta ) are bounded for all time and
allowable p so that | | Ue(t, p, x)| | 1 \leq MU and | | Gp(p, \theta , \psi 1, . . . , \psi \beta )| | 1 \leq Mp,
where | | \cdot | | 1 denotes the 1-norm.

Assumptions A and B ensure that the dynamical system under consideration is sufficiently
smooth so that the necessary partial derivatives from (13) exist. These assumptions gener-
ally exclude piecewise smooth dynamical systems such as those considered in [26] and [40].
Additionally, Assumptions A and B generally exclude critical points of bifurcations from the
allowable parameter set; it is emphasized that oscillations that emerge as a result of a bifurca-
tion can still be readily considered, provided the critical point is excluded from the allowable
parameter set. Assumptions C, D, and E ensure that the resulting reduced order model re-
mains accurate to leading order \epsilon even for very large inputs. Recall that as part of Assumption
D, \kappa j(p), as defined below (6), is the Floquet exponent of the jth isostable coordinate. A brief
discussion about design heuristics for Gp is given in section 3.3. A detailed error analysis of
the resulting reduced order equations is presented in Appendix A.D
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As explained in Appendix A, as a consequence of Assumptions D and E, each | \psi j | is an
order \epsilon term for j = \beta + 1, . . . , N  - 1. Assumption C mandates that each | \psi j | is an order

\surd 
\epsilon 

term for j = 1, . . . , \beta . This coupled with a first order expansion in the Floquet eigenfunctions
described by (5) yields

(14) x - x\gamma (\theta , p) =

\beta \sum 
k=1

\psi kg
k(\theta , p) +\scrO (\psi 2

1) + \cdot \cdot \cdot +\scrO (\psi 2
N - 1) = \scrO (

\surd 
\epsilon ),

where gk(\theta , p) is a Floquet eigenfunction associated with the periodic orbit x\gamma (\theta , p). In other
words, Assumptions C, D, and E imply that x - x\gamma (\theta , p) is an \scrO (

\surd 
\epsilon ) term. Note that in (14)

above, the individual terms are specified as functions of time. Additionally, initial conditions
x0 and p0, with associated phase \theta 0, must be chosen so that x0  - x\gamma (\theta 0, p0) = \scrO (

\surd 
\epsilon ).

3.2. Computation of the necessary terms of the adaptive reduction. Below, it is il-
lustrated how each of the partial derivatives of (13) can be written in a basis of phase and

isostable coordinates. First considering the terms, \partial \theta \partial x \cdot 
dx
dt and

\partial \psi j

\partial x \cdot dxdt , in [40] and [45] it was
shown that models of the form (11) can be represented using phase and isostable coordinates
according to

\.\theta =
\partial \theta 

\partial x
\cdot dx
dt

= \omega (p) +

\Biggl( 
Z(\theta , p) +

\beta \sum 
k=1

\psi kB
k(\theta , p)

\Biggr) 
\cdot Ue(t, p, x),

\.\psi j =
\partial \psi j
\partial x

\cdot dx
dt

= \kappa j(p)\psi j +

\Biggl( 
Ij(\theta , p) +

\beta \sum 
k=1

\psi kC
k
j (\theta , p)

\Biggr) 
\cdot Ue(t, p, x),

j = 1, . . . , \beta .(15)

Equation (15) is valid to first order accuracy in the nontruncated isostable coordinates; the
truncated isostable coordinates decay rapidly, so they can be neglected. Consequently, if
Ue(t, p, x) is an \scrO (\epsilon ) term, then (15) is valid to second order accuracy in \epsilon . Once again, (15)
is identical to (7) except that the terms of the reduced order equations depend explicitly on

p. Note here that \.\theta and \.\psi j from (15) are identical to d\theta 
dt and

d\psi j

dt , respectively, when p is held
constant. The terms on right-hand sides of (15) can be computed for a chosen value of p using
methods described in [40].

For the remaining terms from (13) of the form \partial \theta 
\partial p and

\partial \psi j

\partial p , consider an arbitrary initial
condition x0 for which \theta (x0, p) = \theta 0 (i.e., x0 is an arbitrary state on the \theta 0 isochron associated
with the p-limit cycle). Also, let \psi j(x0, p) = \psi j,0 for all j = 1, . . . , \beta . Considering (14), which
follows from the assumptions given in section 3.1, attention will be restricted to states for
which x0 - x\gamma (\theta 0, p) = \scrO (

\surd 
\epsilon ). Taking an asymptotic expansion centered at the periodic orbit,

for any state x in the neighborhood x0, the phase and each isostable coordinate are given by

\theta (x, p) = \theta 0 + (x - x\gamma ) \cdot Z(\theta 0, p) +
1

2
(x - x\gamma )TH\theta (\theta 0, p)(x - x\gamma ) +\scrO (\epsilon 3/2),(16)

\psi j(x, p) = \psi j,0 + (x - x\gamma ) \cdot Ij(\theta 0, p) +
1

2
(x - x\gamma )TH\psi j

(\theta 0, p)(x - x\gamma ) +\scrO (\epsilon 3/2)(17)
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for j = 1, . . . , \beta , where H\theta (\theta 0, p) (resp., H\psi j
(\theta 0, p)) is the Hessian matrix of second partial

derivatives of \theta (resp., \psi j) evaluated at \theta 0 and p on the limit cycle, and x\gamma is evaluated at \theta 0
and p. Note that (16) and (17) are valid for general choices of x and are not constrained by
the dynamics from (11). Taking the partial of (16) with respect to pi yields

\partial \theta 

\partial pi
=  - \partial x

\gamma 

\partial pi
\cdot Z(\theta 0, p) +

\partial Z

\partial pi
\cdot (x - x\gamma )

 - 1

2

\biggl( 
\partial x\gamma 

\partial pi

T

H\theta (\theta 0, p)(x - x\gamma ) - (x - x\gamma )T
H\theta 

\partial pi
(x - x\gamma ) + (x - x\gamma )TH\theta (\theta 0, p)

\partial x\gamma 

\partial pi

\biggr) 
,(18)

where T denotes the vector transpose and all partial derivatives are evaluated at \theta 0 and p.
Above, the partial derivative \partial x\gamma /\partial pi| \theta 0,p \equiv lima\rightarrow 0(x

\gamma (\theta 0, p + eia)  - x\gamma (\theta 0, p))/a, where ei
is the ith component of the standard unit basis. Provided the underlying dynamical system
(10) is sufficiently smooth, this partial derivative can generally be approximated numerically.
The interested reader is referred to [36], which provides a more detailed analysis of the ``shape
response"" of a periodic orbit resulting from a sustained perturbation.

Noting that the Hessian is symmetric, neglecting order \epsilon terms and simplifying yields

(19)
\partial \theta 

\partial pi
=  - \partial x

\gamma 

\partial pi
\cdot (Z(\theta 0, p) +H\theta (\theta 0, p)(x - x\gamma )) +

\partial Z

\partial pi
\cdot (x - x\gamma ) +\scrO (\epsilon ).

Finally, substituting (14) into (19), one finds

\partial \theta 

\partial pi
=  - \partial x

\gamma 

\partial pi
\cdot 

\Biggl( 
Z(\theta 0, p) +

\beta \sum 
k=1

\psi kH\theta (\theta 0, p)g
k(\theta 0, p)

\Biggr) 
+

\beta \sum 
k=1

\psi k
\partial Z

\partial pi
\cdot gk(\theta 0, p) +\scrO (\epsilon )

=  - \partial x
\gamma 

\partial pi
\cdot 

\Biggl( 
Z(\theta 0, p) +

\beta \sum 
k=1

\psi kB
k(\theta 0, p)

\Biggr) 
+

\beta \sum 
k=1

\psi k
\partial Z

\partial pi
\cdot gk(\theta 0, p) +\scrO (\epsilon ),(20)

where the relationship Bk(\theta 0, p) = H\theta (\theta 0, p)g
k(\theta 0, p) used in the second line was illustrated

in [40]. Evaluating (20) for each adaptive parameter and collecting terms appropriately, one
can write

\partial \theta 

\partial p
= D(\theta , p) +

\beta \sum 
k=1

\psi kE
k(\theta , p) +\scrO (\epsilon ),(21)

where D(\theta , p) and Ek(\theta , p) are periodic in \theta . In an analogous manner, starting by taking
partial derivatives of (17) with respect to pi and mirroring the steps that yield equations
(18)--(20), one finds

(22)
\partial \psi j
\partial pi

=  - \partial x
\gamma 

\partial pi
\cdot 

\Biggl( 
Ij(\theta 0, p) +

\beta \sum 
k=1

\psi kC
k
j (\theta 0, p)

\Biggr) 
+

\beta \sum 
k=1

\psi k
\partial Ij
\partial pi

\cdot gk(\theta 0, p) +\scrO (\epsilon ).

Once again, evaluating (22) for each adaptive parameter and collecting terms appropriately,
one can write

\partial \psi j
\partial p

= Qj(\theta , p) +

\beta \sum 
k=1

\psi kR
k
j (\theta , p) +\scrO (\epsilon ),(23)
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where Qj(\theta , p) and R
k
j (\theta , p) are periodic in \theta .

Both (21) and (23) are valid to first order accuracy in the nontruncated isostable co-
ordinates. Substituting (21), (23), and (15) into (13) yields the adaptive phase-amplitude
transformation

\.\theta = \omega (p) +

\Biggl( 
Z(\theta , p) +

\beta \sum 
k=1

\psi kB
k(\theta , p)

\Biggr) 
\cdot Ue(t, p, x)

+

\Biggl( 
D(\theta , p) +

\beta \sum 
k=1

\psi kE
k(\theta , p)

\Biggr) 
\cdot \.p+\scrO (\epsilon ),

\.\psi j = \kappa j(p)\psi j +

\Biggl( 
Ij(\theta , p) +

\beta \sum 
k=1

\psi kC
k
j (\theta , p)

\Biggr) 
\cdot Ue(t, p, x)

+

\Biggl( 
Qj(\theta , p) +

\beta \sum 
k=1

\psi kR
k
j (\theta , p)

\Biggr) 
\cdot \.p+\scrO (\epsilon ),

j = 1, . . . , \beta ,

\.p = Gp(p, \theta , \psi 1, . . . , \psi \beta ),(24)

where p evolves according to the function Gp. Notice that only order \epsilon terms are truncated
from the adaptive reduction (24); the error analysis for the truncated terms is presented in
detail in Appendix A. For a given value of p, (14) provides an estimate of the state to leading
order in the isostable coordinates. Considering the aforementioned order of accuracy of the
isostable coordinates, the relationship

(25) x \approx x\gamma (\theta , p) +

\beta \sum 
j=1

\psi jg
j(\theta , p)

provides an order \epsilon accurate approximation for the state. Note that in (25) above, the indi-
vidual terms are specified as functions of time.

This reduction (24) actively sets the nominal parameters p so that the system state is
always close to the periodic orbit x\gamma (\theta , p). In order to implement this reduction, the exact
choice of Gp that determines \.p is not important as long as it keeps the nontruncated isostable
coordinates small. While the addition of the p dynamics in (24) adds to the overall dimension
of the reduction, there are no \scrO (\epsilon ) restrictions on the input U(t) (for instance, in its magnitude
or the magnitude of the first derivatives).

3.3. General heuristics for designing G\bfp . Here, the design of Gp in order to limit the
magnitude of the nontruncated isostable coordinates (as required by Assumption C given in
section 3.1) is discussed. First, consider a situation where both p \in \BbbR and only one non-
truncated, real-valued isostable coordinate, \psi 1, is required. In this case, consider a function
of the form

(26) Gp(p, \theta , \psi 1) =  - \alpha \psi 1

\bigl( 
Q1(\theta , p) + \psi 1R

1
1(\theta , p)

\bigr) 
,D
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214 DAN WILSON

where \alpha > 0. Substituting (26) into d\psi 1

dt from (24) and simplifying yields

d\psi 1

dt
= \kappa 1(p)\psi 1 +

\bigl( 
Ij(\theta , p) + \psi 1C

1
1 (\theta , p)

\bigr) 
\cdot Ue(t, p, x) - \alpha \psi 1

\bigl( 
Q1(\theta , p) + \psi 1R

1
1(\theta , p)

\bigr) 2
=
\bigl( 
\kappa 1(p) - \alpha (Q1(\theta , p) + \psi 1R

1
1(\theta , p))

2
\bigr) 
\psi 1 +

\bigl( 
Ij(\theta , p) + \psi 1C

1
1 (\theta , p)

\bigr) 
\cdot Ue(t, p, x).(27)

Above, the term  - \alpha (Q1(\theta , p) + \psi 1R
1
1(\theta , p))

2 < 0 and serves to drive the magnitude of the
isostable coordinate to lower values. This general form of Gp is used in the examples from
sections 4.1 and 4.2. A similar formulation of Gp is applied in section 4.3 where it is adapted
to a situation with 3 nontruncated isostable coordinates.

As an alternative formulation, once again consider an application where p \in \BbbR and only
one nontruncated, real-valued isostable coordinate, \psi 1, is required. Supposing | Q1(\theta , p) +
\psi 1R

1
1(\theta , p)| is sufficiently bounded away from zero for all \theta , p, and \psi 1, one can take

(28) Gp(p, \theta , \psi 1) =  - 
\bigl( 
I1(\theta , p) + \psi 1C

1
1 (\theta , p)

\bigr) 
\cdot Ue(t, p, x)

Q1(\theta , p) + \psi 1R1
1(\theta , p)

.

Substituting (28) into d\psi 1

dt from (24) and simplifying yields

(29)
d\psi 1

dt
= \kappa 1(p)\psi 1.

Since (29) has a globally stable equilibrium at \psi 1 = 0, the \psi 1 dynamics can be ignored from
the adaptive reduction formulation. Such an approach was implemented in [39] to investigate
optimal control inputs for influencing oscillation timing. The formulation of Gp according
to (28) is generally preferable to (26) since it allows the isostable coordinate dynamics to be
ignored. However, this formulation explicitly requires | Q1(\theta , p)+\psi 1R

1
1(\theta , p)| to be sufficiently

bounded away from zero, which is not guaranteed.
Equations (26) and (28) are meant to provide intuition about the design of Gp but are

not straightforwardly generalizable to applications where more than one adaptive parameter
is used or where more than one nontruncated isostable coordinate is required. The general
design of the parameter update rule Gp(p, \theta , \psi 1, . . . , \psi \beta ) could be posed as a nonlinear control
problem and will be the subject of future investigations.

3.4. Choosing the adaptive parameter set. The ability to design an adequate Gp (as
discussed in section 3.3) is directly related to the choice of the adaptive parameter set p
used in the adaptive reduction framework. Ultimately, the implementation of the adaptive
reduction requires x - x\gamma (\theta , p) to be an order

\surd 
\epsilon term. As such p must be chosen so the set

of x\gamma (\theta , p) is sufficient to accomplish this task.
As a general heuristic for the choice of p, it often works to choose the adaptive parameter

set such that it mirrors the effect of an external input U(t). For instance, in the example
from section 4.2 that considers the reduction of a capacitance-based neuron, the external
inputs are capable of influencing the model through direct transmembrane current injections.
Subsequently, the adaptive parameter is taken to be a constant transmembrane current that
mirrors the influence of these external inputs. This general strategy is also applied in the
examples from sections 4.1 and 4.3.D
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As a final note, in each of the examples considered in the work, the inputs are of the form
U(t) = \eta u(t), where \eta \in \BbbR N is fixed and u(t) \in \BbbR . In other words, the inputs considered are
of low rank relative to the dimension of the full order dynamical system. Consequently, only
a single adaptive parameter (that mirrors the influence of these rank-1 inputs) is required to
implement the adaptive reduction strategy in these examples. In general, higher rank inputs
will require more than one adaptive parameter.

4. Illustrative examples. Here, the adaptive phase-amplitude reduction approach from
(24) is applied to a variety of numerical models. Results are compared to the reduction
techniques described in section 2. In each application, the proposed reduction strategy sig-
nificantly outperforms the previously developed reduction techniques when large magnitude
inputs are considered.

4.1. Nonradial isochron clock. As a first example, the nonradial isochron clock is con-
sidered:

\.X = \mu X(r20  - (X2 + Y 2)) - Y (1 + \zeta ((X2 + Y 2) - r20)) + u(t),

\.Y = \mu Y (r20  - (X2 + Y 2)) +X(1 + \zeta ((X2 + Y 2) - r20)).(30)

Above, X and Y are Cartesian coordinates. For all parameter sets, the limit cycle is a circle
with radius r0 centered at the origin, \mu = 0.08 sets the convergence rate, and \zeta = 0.12
influences the rate of rotation. Here, (30) has been modified from the radial isochron clock
equations from [48] so that the rate of rotation depends on the radius. The parameter r0 will
be the adaptive parameter used in the adaptive phase-amplitude reduction, and the nominal
value will be set to 1 in simulations of (30). In this example, the period of each resulting
limit cycle is equal to 2\pi and is invariant with respect to the choice of r0. For the nominal
parameter set, panel A of Figure 1 shows the periodic orbit as a black line with corresponding
isochrons calculated according to (3). These isochrons are highly nonlinear. Consequently,
the standard phase reduction will only be effective for relatively small inputs so that the state
remains near the limit cycle.

The adaptive phase-amplitude reduced equations (24) account for the nonlinearity in (30)
by continuously choosing r0 to shift the nominal periodic orbit so that the isostable coordinates
remain small. The color map in panel B shows how the periodic orbit changes as r0 is
modified, and panel C gives the component of the phase response curve for perturbations to
the parameter X as r0 changes. In this example, \theta (x, p) = 0 corresponds to the moment
that both Y = 0 and X > 0 on each of the limit cycles parameterized by the choice of
r0. Relevant terms of the adaptive phase-amplitude reduction are shown in panels D--F.
The isostable response curve for this system does not change with r0 and is shown as a
function of \theta in panel D. Due to the radial symmetry of (30), D(\theta , r0) and Q1(\theta , r0) from (24)
(i.e., the functions that describe how the isostable and phase coordinates change as r0 varies)
do not depend on \theta ; the dependence on r0 of these functions is shown in Panels E and F,
respectively. As r0 decreases towards 0, the dynamics of (30) approach the critical point of a
Hopf bifurcation. As mentioned earlier, critical points of bifurcations cannot be considered in
the adaptive parameter set. Correspondingly, the magnitudes of D(r0) and Q1(r0) begin to
approach infinity as r0 approaches 0.D
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216 DAN WILSON

Figure 1. Isochrons of the nonradial isochron clock are shown in Panel A when taking r0 = 1. The black
line shows the nominal limit cycle that emerges when r0 = 1. The radius of the limit cycle changes as r0 varies
according to the color map shown in panel B. The adaptive phase-amplitude reduction actively sets r0 to keep
the isostable coordinate (i.e., the distance from the periodic orbit) small. Panel C shows the X component of
the phase response curve as r0 varies. The X component of the isostable response curve does not depend on
r0 and is shown in panel D. Panels E and F show D(r0) and Q1(r0) from (24). In general these functions
also depend on \theta , but due to radial symmetry of (30) they only depend on the adaptive parameter r0 in this
example.

The adaptive parameter for this model is r0 with a nominal value of r0 = 1; consequently
the extended input from (11) is

(31) Ue(t, r0, X, Y ) =

\biggl[ 
u(t) + (\mu X + Y \zeta ) - (\mu Xr20 + Y \zeta r20)

(\mu Y  - X\zeta ) - (\mu Y r20  - X\zeta r20)

\biggr] 
.

The adaptive phase-amplitude reduction has only one adaptive parameter, r0, and one isostable
coordinate, \psi 1. Therefore, a relatively simple Gp as suggested by (26) can be chosen: \.r0 =

Gp(r0, \theta , \psi 1) =  - \alpha \psi 1
\partial \psi 1

\partial r0
, where \alpha > 0 and \partial \psi 1/\partial r0 = Q1(\theta , r0) + R1

1(\theta , r0). Intuitively, this
choice of Gp always acts to modify the nominal parameter r0 in order to decrease the isostable
coordinate and updates r0 more aggressively when the isostable coordinates are larger in
magnitude.

The performance of the adaptive phase-amplitude reduced equations is compared to other
reduction techniques discussed in section 2, with results shown in Figure 2. Panel A shows
a sinusoidal input u(t) = 3.8 sin(2\pi t/1.2) applied for 3.6 seconds. The initial condition is
taken to be X = 1 and Y = 0 (i.e., on the periodic orbit). Panel B compares results when
using various reduction techniques. The standard phase reduction is given by (2). Third
and fifteenth order reductions are computed using methods described in [42] by taking the
gradient of the phase and isostable response curves and the reduced model output x(\theta , \psi 1)
to the appropriate order in \psi 1. The extended phase reduction is implemented accordingD
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Figure 2. Panels A and D show small and large magnitude input, respectively, applied to the nonradial
isochron clock (30). The output from each reduced order model considered is shown in color in panels B (small
magnitude input) and E (large magnitude input). The black line shows simulations from the full model output,
although it is mostly indistinguishable from the adaptive phase-amplitude reduced model. Corresponding errors
between the full and reduced model simulations are shown in panels C and F. In panel F, some reduced order
models cannot be used or do not provide viable outputs for reasons described in the text. Unlike all other reduced
models, the accuracy of the proposed adaptive phase-amplitude reduced model is not significantly degraded when
using a large magnitude input.

to (8). For this reduction technique, u(t) itself is considered to be a slowly varying input
yielding the reduced equations \.\theta = \omega (u(t))+D(\theta , u(t)) \.u(t). For the input from panel A, each
reduction strategy performs comparably well, tracking the output of the full model simulations
(30). Panel C shows the error between the full and reduced model simulations according to
error(t) = x(t) - x\ast (t), where x(t) =

\bigl[ 
X(t) Y (t)

\bigr] 
is found from the full model solutions and

x\ast (t) is obtained from the specified reduced order model. Note here that while the fifteenth
order accurate model outperforms the adaptive phase-amplitude reduced model when using
the logarithmic scale, they both perform reasonably well in absolute terms. Analogous results
are shown in panels D--F of Figure 2 using u(t) = 50 sin(2\pi t/1.2). Note that for inputs this
large, the extended reduction framework (8) cannot be implemented, because the reduced
order system does not have a stable periodic orbit for constant inputs with magnitude larger
than | u(t)| \approx 4. Additionally, the magnitude of the input is too large for the third order
accurate reduction and the model output tends towards infinite values. For the other reduction
strategies that are viable when using this large magnitude input, the adaptive phase-amplitude
reduction performs significantly better. Also, the accuracy of the adaptive phase-amplitude
reduction is not significantly degraded when applying the larger magnitude input.

It should be noted that when applied to the nonradial isochron clock (30) the adaptive
phase-amplitude reduction strategy yields a model with more variables (three) than the un-
derlying system (two). The main goal of this illustrative example is to highlight the fact that
this general framework works well even when exceedingly large magnitude inputs are used. InD
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218 DAN WILSON

the examples to follow, the adaptive phase-amplitude reduction will yield a reduced order set
of equations while still providing a faithful reproduction of the unreduced model dynamics.

4.2. Phase locking in synaptically coupled neurons. For this example, phase locking in a
conductance-based model of Nneur synaptically coupled neurons from [31] will be considered:

C \.Vi =  - IL(Vi) - INa(Vi, hi) - IK(Vi, hi) - IT (Vi, ri) + Iib  - gsyn

Nneur\sum 
j=1

Isyn(Vi, wj) + u(t),

\.hi = (h\infty (Vi) - hi)/\tau h(Vi),

\.ri = (r\infty (Vi) - ri)/\tau r(Vi),

\.wi = \alpha (1 - wi)/(1 + exp( - (Vi  - VT )/\sigma T )) - \beta wi(32)

for i = 1, . . . , Nneur. Above, Vi gives the transmembrane voltage of the ith neuron, hi and
ri are gating variables, and wi is a synaptic variable. Leak, sodium, potassium, and low-
threshold calcium currents are IL = gL(Vi  - EL), INa = gNam

3
\infty (Vi)hi(Vi  - ENa), IK =

gK(.75(1 - hi))
4(Vi  - EK), IT = gT p

2
\infty (Vi)ri(Vi  - ET ), respectively. Conductances are taken

to be gL = 0.05, gNa = 3, gK = 5, and gT = 5 mS/cm2, reversal potentials are EL =  - 70,
ENa = 50, EK =  - 90, and ET = 0 mV, and C = 1\mu F/cm2. Parameters Vsyn = 0 mV, \alpha =
3ms - 1, VT =  - 20 mV, \sigma T = 0.8 mV, and \beta = 2ms - 1 set the dynamics of the synaptic variable
with a synaptic coupling current given by Isyn(Vi, wj) = wj(Vi - Vsyn). The parameter gsyn sets
the coupling strength, Iib is a constant baseline current, and u(t) is a common transmembrane
current input felt by each neuron. Using the proposed adaptive reduction framework, each
individual neuron will be reduced from a 4-dimensional model given by (32) to a 3-dimensional
model. In the context of the reduction framework, the external input felt by each neuron is

taken to be U i(t) =
\bigl[ 
(u(t) - gsyn

\sum Nneur
j=1 Isyn(Vi, wj)) 0 0 0

\bigr] T
. For each neuron from (32),

a baseline current Iib \in [2, 20] \mu A/cm2 is treated as an adaptive parameter in the adaptive
phase-amplitude reduction so that

(33) U ie =

\left[    
u(t) - 

\sum N
j=1 gsynIsyn(Vi, wj) + Iib,0  - Iib

0
0
0

\right]    
for the ith neuron, where Iib,0 is the nominal constant baseline current.

For the range of allowable Ib, the principal Floquet exponents are \kappa 1 \in [ - 0.029, - 0.019].
The other Floquet exponents take values \kappa 2 \in [ - .45, - .29] and \kappa 3 \in [ - 2.24, - 2.09]; these
Floquet exponents are much larger in magnitude and will be truncated from the adaptive
reduction (24). The intrinsic period of the resulting limit cycles ranges from 4.3 ms to 16.2 ms
and decreases monotonically as the baseline current increases. In this example, \theta (x, p) = 0
corresponds to the moment that the V reaches its peak value during an action potential on
each of the limit cycles parameterized by the choice of Ib. Compared to the full 4-dimensional
model equations (32), the resulting reduction has 3 variables for each neuron \theta i, \psi i1, and I

i
b,

with i denoting the neuron number. Because there is only one nonconstant parameter and
one isostable coordinate per neuron, a relatively simple choice of Gp as suggested by (26) canD
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Figure 3. Panel A gives examples of the periodic orbits of (32) at various values of Ib, and Panel B gives
level sets of \psi 1 for two different Ib values with the thick lines denoting the periodic orbits. Panels C and D
show D(\theta , Ib) and Q1(\theta , p) that are used in (24) to characterize how changes in Ib influence the phase and
isostable coordinates, respectively.

be used: \.Iib = Gp(I
i
b, \theta 

i, \psi i1) =  - \alpha \psi i1
\partial \psi i

1

\partial Iib
, where \alpha > 0 and \partial \psi i1/\partial I

i
b = Q1(\theta 

i, Iib)+\psi 1R
1
1(\theta 

i, Iib).

Here \alpha = 1000 is chosen, although the exact choice is not important, provided it keeps \psi 1

small. General information for each reduced neuron from (32) is shown in Figure 3.
For the moment, a single neuron will be simulated in the absence of synaptic current

(gsyn = 0), and the proposed adaptive phase-isostable reduction strategy will be compared
against three other reduction strategies using open loop sinusoidal input for u(t). The first is
standard phase reduction [5], [11], which takes the form \.\theta i = \omega (Ib,0)+ZV (\theta 

i, Ib,0)(u(t) - Ib,0),
where Ib,0 = 5\mu A/cm2 is a constant baseline current and ZV is the component of Z(\theta , I) in the
V -direction. The second strategy is the second order accurate phase-amplitude reduction from
(7) that is also implemented with respect to a constant baseline current input Ib,0 = 5\mu A/cm2.
The third strategy is the extended phase reduction proposed in [15] and described by (8). This
reduction assumes that the input is sufficiently slowly varying, which yields a single equation
for the phase dynamics \.\theta = \omega (u(t)) +D(\theta , u(t)) \cdot \.u. Results are shown for both a slowly and
more rapidly varying input in Figure 4. The true phase, \theta true, of the full model simulations
is approximated by taking \theta = 0 to correspond to the moment the transmembrane voltage
reaches a maximum value during each cycle and is linearly interpolated at all points in between.
The proposed adaptive phase-amplitude reduced model accurately characterizes the system
behavior for both inputs unlike the other strategies.

Next, synchronization of Nneur = 2 identical, synaptically coupled neurons with nominal
baseline current Ib,0 = 3.5\mu A/cm2 is considered. For these simulations u(t) = 0 (note here
that U i(t) \not = 0 since the neurons are synaptically coupled). Results from the full modelD
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220 DAN WILSON

Figure 4. For the slowly (resp., rapidly) varying input shown in panel C (resp., D), panel A (resp., B)
shows the error between the phase from a reduced model output and the phase of the full model equations. Here,
the proposed adaptive reduction strategy is considered and the performance is compared to three other reduction
strategies. All initial conditions correspond to \theta = 0 on the limit cycle resulting from taking Ib = 5\mu A/cm2.

Figure 5. Plots of the phase differences for stable (solid lines) and unstable (dashed lines) phase locked
solutions for full simulations of (32) with n = 2 and three different reduction strategies. The proposed adaptive
phase-amplitude reduction accurately reflects bifurcations occurring in the full model for the full range of gsyn
considered while the other two strategies are only accurate for small coupling strengths.
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(32) are compared to the proposed adaptive phase-amplitude reduction (24), second order
accurate phase-amplitude reduction from (7), and standard phase reduction (2) and shown
in Figure 5. To implement the adaptive and second order phase-amplitude reduction, the
variables Vi and wi are approximated using the relationship (25). These states are then used
to compute the synaptic current Isyn(Vi, wj). The same procedure is used for the standard
phase reduction with each isostable coordinate taken to be zero. The adaptive phase-amplitude
strategy accurately reflects the model behavior for large coupling strengths while the other
two methods fail. The extended phase reduced model from [15] yields an unstable model when
using this strategy to compute the synaptic current and cannot be considered. It is noted
that the rise time of the synaptic variable is relatively slow and the coupling is excitatory so
that in the weak coupling limit, the existence of a stable antiphase state is in agreement with
results presented by [35].

4.3. Entrainment for populations of coupled oscillators. Here, a much higher dimen-
sional model will be considered that describes the population oscillation of N = 10 coupled
oscillators [7] which has been used to model populations of suprachiasmatic nucleus cells and
resulting circadian rhythms:

\.ai = h1
Kn

1

Kn
1 + cni

 - h2
ai

K2 + ai
+ hc

KF (t)

Kc +KF (t)
+ SiL(t) + L0,

\.bi = h3ai  - h4
bi

K4 + bi
,

\.ci = h5bi  - h6
ci

K6 + ci
,

\.di = h7ai  - h8
di

K8 + di
,

i = 1, . . . , N.(34)

Here variables ai, bi, and ci represent the concentrations of the mRNA clock gene, associated
protein, and nuclear form of the protein, respectively, for cell i, and di is a neurotransmitter
that determines the mean-field coupling F (t) \equiv (1/N)

\sum N
j=1 di(t). Si = 1+(i - 1)/45 denotes

the sensitivity to light. All other cell parameters are identical and taken to be the same as
those from Figure 1 of [7] except for n = 7, h1 = 1.05, h2 = 0.525, and hc = 0.2. For this
choice of parameters, the nominal period of the population oscillation is 24.7 hours. Two
sigmoidal curves define a T -periodic light-dark cycle L(t) = Lmax/[1 + exp( - 4(ts  - T/4))]  - 
Lmax/[1 + exp( - 4(ts  - 3T/4))], where ts = mod(t, T ) and Lmax is the maximum light inten-
sity. L0 \in [ - 0.010, 0.019] is treated as an adaptive parameter in the adaptive reduction. The
intrinsic period of the resulting limit cycles ranges from 27.3 ms to 19.5 ms and decreases
monotonically with increasing L0.

For all allowable L0, when L(t) = 0, (34) has a stable synchronized orbit that can be stud-
ied in terms of a population oscillation. Phase reduction has been applied for such systems
previously [45], [13], [20], but the resulting models are typically only valid for prohibitively
small inputs. As shown here, the adaptive phase-amplitude reduction performs well compared
to other methods when using particularly large inputs. As explained in [45], because the pop-
ulation oscillation of (34) results from mean-field coupling and because the inputs consideredD
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222 DAN WILSON

are of low rank, repeated isostable coordinates that arise due to symmetries can be ignored to
first order accuracy in the isostable coordinates. As a result, for a given L0 and any N \geq 2,
the population oscillation of (34) can be characterized with a reduced order model of the form
(15) that only requires 3 isostable coordinates and 1 phase coordinate. A reduction of a similar
model was considered in [45], where more details about this preliminary reduction and the
specific choice isostable coordinates can be found. Including the time-varying parameter L0,
the adaptive phase-amplitude reduction (24) requires a total of 5 variables compared to 4N
in the full model. In this example, \theta (x, p) = 0 corresponds to the moment that the a1 reaches
its peak value on each of the limit cycles parameterized by the choice of L0. Additionally,
the equation describing the adaptive variable L0 is \.L0 =  - \alpha 

\sum 3
i=1(\psi i

\partial \psi i

\partial L0
) with \alpha = 0.0001.

This choice of Gp is inspired by the formulation suggested by (26) and is sufficient to keep the
magnitude of the isostable coordinates small in the results to follow. In order to provide a
direct comparison with [45], the Ckj (\theta , p0) terms are ignored in the reduction. Consequently,
the isostable coordinate dynamics are accurate to first order in the basis of the nontruncated
isostable coordinates. Figure 6 shows phase locking results for a population of N = 10 os-
cillators when the period of external light forcing is T = 16 hours. Each initial condition in
simulations of (34) starts from phase \theta = 0 on the periodic orbit (i.e., taking all isostable
coordinates equal to zero). Results are shown in Figure 6 for multiple types of phase reduc-
tions. The standard phase reduction (2) and the second order phase reduction of the form
(7) are implemented using L0 = 0. The extended phase reduction from [15] is implemented
by taking L0 = 0 and viewing L(t) as a slowly varying parameter yielding an equation of the
form \.\theta = \omega (L) +D(\theta , L) \.L (see also (8) from section 2). Once again, the proposed adaptive
phase-amplitude reduction is the only reduction framework that accurately reflects the model
behavior for the inputs considered.

5. Conclusion. While many techniques have been developed for analyzing oscillatory dy-
namical systems in the weakly perturbed limit, existing techniques have struggled to charac-
terize behavior in the strongly perturbed regime. The method proposed in this work provides
a general, adaptive phase-amplitude reduction framework for strongly perturbed oscillatory
dynamical systems. In contrast to other phase and phase-amplitude reduction techniques, this
method works for arbitrary inputs; no \scrO (\epsilon ) constraints are placed on either the magnitude or
rate of change of allowable inputs. In the numerical examples presented here, the proposed
framework accurately reflects the behavior of the underlying models in regimes where other
phase and phase-amplitude reductions fail.

It should be emphasized that many prior phase and phase-amplitude reduction frameworks
(such as those described in section 2) generally yield lower dimensional models than the
proposed adaptive reduction framework; they also generally require less computational effort
to identify the necessary terms of the reduced order equations. As such, the proposed adaptive
reduction framework method will likely find use in situations where these other reduction
frameworks do not accurately replicate the full order model dynamics.

To implement the proposed adaptive reduction strategy, a family of limit cycles is con-
sidered that emerge as an adaptive parameter set is changed. This adaptive parameter set
is continuously adjusted so that the underlying system state stays close to the limit cycle
associated with the current choice of adaptive parameters at all times. This strategy can beD
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Figure 6. Phase locking results with N = 10 oscillators in (34) using various reduction strategies are
illustrated when taking the period of L(t) to be T = 16 hours. The maximum light intensity Lmax = 0.006,
0.015, and 0.020 results in 2:3, 5:7, and 3:4 locking, respectively, once steady state is achieved for the full model
(34). Corresponding results are shown in panels A--C, D--F, and G--I, respectively. Panels B, E, and H show
\=a(t) = (1/N)

\sum N
i=1 ai(t) for the phase locked solutions of the full model and adaptive phase-amplitude reduced

model. None of the other reduced models exhibit phase locking for these choices of parameters, and simulated
values are shown for reference. The output is estimated using (25). For reduction strategies that do not use
isostable coordinates, each \psi j is taken to be zero when estimating the output from (25). Panels A, D, and G
show the real and imaginary components of \rho (t) = \=a(t) exp(i\theta ) for the phase locked solutions plotted against
time. The phase of the full model, \theta true,z, is approximated by taking \theta true = 0 each time a local maximum
of \=a is achieved and interpolating the phase linearly for all times in between. Panels C, F, and I show the
cumulative phase differences between the various phase reduced models and the full model over the course of
each simulation.

viewed as an extension of the approach described in (8) from [15] (cf. [25]) that also con-
siders a similar family of limit cycles. However, because the strategy proposed in [15] does
not consider the amplitude coordinates of each limit cycle, allowable inputs are explicitly re-
quired to vary sufficiently slowly. Indeed, considering the results presented in Figure 4, the
reduction approach from (8) works well when a low frequency input is applied but fails forD
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224 DAN WILSON

a high frequency input. By actively considering the amplitude coordinates and adjusting the
nominal parameter set as appropriate, the proposed adaptive reduction strategy of the form
(24) accurately captures system behavior regardless of the forcing frequency.

This work provides a foundation for the implementation of an adaptive reduction frame-
work, but there are still many questions and limitations remaining. Foremost, per Assump-
tion C from section 3.1, in order to implement the adaptive reduction one must identify a
parameter update rule \.p = Gp(p, \theta , \psi 1, . . . , \psi \beta ) that ensures that the isostable coordinates
remain small at all times. Section 3.3 discusses some general design heuristics that can be
used in situations where there is only one adaptive parameter. However, situations where
more than one adaptive parameter is required are not considered in this paper. The design
of an appropriate Gp could be posed as a nonlinear control problem and will be the sub-
ject future investigations. Furthermore, the proposed method requires a sufficient degree of
smoothness in the underlying system equations as mandated by Assumptions A and B from
section 3.1. These assumptions exclude, for instance, the use of the adaptive reduction frame-
work in systems with discontinuities, as considered in [26]. It is likely that the proposed
adaptive reduction framework could be extended for use in these piecewise smooth systems,
but such applications are not considered here. Finally, it may also be possible to extend
the proposed method to include critical points of bifurcations in the allowable parameter set
(e.g., transitioning from a stable limit cycle to a stable fixed point through a Hopf bifurcation).

Appendix A. Model reduction using adaptive phase-amplitude coordinates. Consider
a general ordinary differential equation

(A1) \.x = F (x, p0) + U(t),

where x \in \BbbR N denotes the state, p0 \in \BbbR M is a constant collection of nominal parameters, F
gives the dynamical behavior, and U(t) represents an external perturbation. To implement
the proposed adaptive phase-amplitude reduction, consider the shadow system from (10). The
adaptive parameters are chosen and an associated function Gp is defined so that Assumptions
A--E from section 3.1 are satisfied. If no isostable coordinates are truncated in the resulting
adaptive phase-amplitude reduction from (24), the equations are

\.\theta = \omega (p) +

\Biggl( 
Z(\theta , p) +

N - 1\sum 
k=1

\psi kB
k(\theta , p)

\Biggr) 
Ue(t, p, x) +

\Biggl( 
D(\theta , p) +

N - 1\sum 
k=1

\psi kE
k(\theta , p)

\Biggr) 
\.p

+\scrO (\psi 2
1) + \cdot \cdot \cdot +\scrO (\psi 2

N - 1),

\.\psi j = \kappa j(p)\psi j +

\Biggl( 
Ij(\theta , p) +

N - 1\sum 
k=1

\psi kC
k
j (\theta , p)

\Biggr) 
Ue(t, p, x) +

\Biggl( 
Qj(\theta , p) +

N - 1\sum 
k=1

\psi kR
k
j (\theta , p)

\Biggr) 
\.p,

+\scrO (\psi 2
1) + \cdot \cdot \cdot +\scrO (\psi 2

N - 1),

j = 1, . . . , N  - 1,

\.p = Gp(p, \theta , \psi 1, . . . , \psi N - 1).
(A2)

Here, the \scrO (\psi 2
1) + \cdot \cdot \cdot +\scrO (\psi 2

N - 1) terms result from truncation of the gradients of the phase
and isostable coordinates after first order accuracy. Recall that Ue is also a function of p0,D
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but this dependence is suppressed in (A2) for clarity of exposition. Supposing some Gp could
be obtained that could keep all of the isostable coordinates small, (A2) would be sufficient
for describing the phase and amplitude dynamics; however, (A2) would have N +M states,
which is more than the original system started with. Here, it will be shown that, provided
some of the Floquet exponents from (A1) are sufficiently large in magnitude, the associated
isostable coordinates can be ignored.

Drawing on Assumption D from section 3.1, the real components of the Floquet exponents,
i.e., Re(\kappa \beta +1(p)), . . . ,Re(\kappa N - 1(p)), are \scrO (1/\epsilon ) terms for all values of p where 0 \leq \epsilon \ll 1. As
such, their associated isostable coordinates rapidly decay in response to perturbations. The
rapidly and slowly decaying isostable coordinates will be considered separately rewriting (A2)
as

\.\theta = \omega (p) +

\left(  Z(\theta , p) + \beta \sum 
k=1

\psi kB
k(\theta , p) +

N - 1\sum 
k=\beta +1

\psi kB
k(\theta , p)

\right)  \cdot Ue(t, p, x)

+

\left(  D(\theta , p) +

\beta \sum 
k=1

\psi kE
k(\theta , p) +

N - 1\sum 
k=\beta +1

\psi kE
k(\theta , p)

\right)  \cdot \.p,

\.\psi j = \kappa j(p)\psi j +

\left(  Ij(\theta , p) + \beta \sum 
k=1

\psi kC
k
j (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
j (\theta , p)

\right)  \cdot Ue(t, p, x)

+

\left(  Qj(\theta , p) + \beta \sum 
k=1

\psi kR
k
j (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
j (\theta , p)

\right)  \cdot \.p,

j = 1, . . . , \beta ,

\.\psi i = \kappa i(p)\psi i +

\left(  Ii(\theta , p) + \beta \sum 
k=1

\psi kC
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
i (\theta , p)

\right)  \cdot Ue(t, p, x)

+

\left(  Qi(\theta , p) + \beta \sum 
k=1

\psi kR
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
i (\theta , p)

\right)  \cdot \.p,

i = \beta + 1, . . . , N  - 1,

\.p = Gp(p, \theta , \psi 1, . . . , \psi \beta ),(A3)

where Gp no longer depends on the rapidly decaying isostable coordinates. Above, the or-
der of accuracy of the neglected terms has been omitted for clarity of exposition, and the
rapidly decaying isostable coordinates have been explicitly separated from the other isostable
coordinates. Suppose that at an initial time t = 0, each \psi j = 0, i.e., the solution is on
the periodic orbit x\gamma (\theta , p). Also recall from Assumption E in section 3.1 that the norms of
Ue(t, p, x) and Gp(p, \theta , \psi 1, . . . , \psi \beta ) are bounded for all time and p so that | | Ue(t, p, x)| | 1 \leq MU

and | | \.p| | 1 \leq Mp, where | | \cdot | | 1 denotes the 1-norm.D
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Noting that each \psi i may be either real- or complex-valued, let | \psi i| 2 = \psi i\psi 
\ast 
i , where \ast 

denotes the complex conjugate. Taking the time derivative of both sides of this relation yields

(A4) 2| \psi i| | \.\psi i| = \psi i \.\psi 
\ast 
i +

\.\psi i\psi 
\ast 
i .

Considering (A4) for any \psi i for which i \geq \beta + 1 (i.e., one of the rapidly decaying terms),
substituting the time derivatives from (A3) one can write

2| \psi i| | \.\psi i| = 2Re(\kappa i(p))| \psi i| 2 + \psi \ast 
i

\left[  \biggl( Ii(\theta , p) + \beta \sum 
k=1

\psi kC
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
i (\theta , p)

\biggr) 
\cdot Ue(t, p, x)

+

\biggl( 
Qi(\theta , p) +

\beta \sum 
k=1

\psi kR
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
i (\theta , p)

\biggr) 
\cdot \.p

\right]  
+ \psi i

\left[  \biggl( Ii(\theta , p) + \beta \sum 
k=1

\psi kC
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
i (\theta , p)

\biggr) 
\cdot Ue(t, p, x)

+

\biggl( 
Qi(\theta , p) +

\beta \sum 
k=1

\psi kR
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
i (\theta , p)

\biggr) 
\cdot \.p

\right]  \ast 

\leq 2Re(\kappa i(p))| \psi i| 2 + 2| \psi i| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( 
Ii(\theta , p) +

\beta \sum 
k=1

\psi kC
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
i (\theta , p)

\biggr) 
\cdot Ue(t, p, x)

+

\biggl( 
Qi(\theta , p) +

\beta \sum 
k=1

\psi kR
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
i (\theta , p)

\biggr) 
\cdot \.p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(A5)

Above, the inequality follows after applying both the submultiplicative property and the
triangle inequality. In all instances for which | \psi i| \not = 0, the relation (A5) becomes

| \.\psi i| \leq Re(\kappa i(p))| \psi i| +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\biggl( 
Ii(\theta , p) +

\beta \sum 
k=1

\psi kC
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kC
k
i (\theta , p)

\biggr) 
\cdot Ue(t, p, x)

+

\biggl( 
Qi(\theta , p) +

\beta \sum 
k=1

\psi kR
k
i (\theta , p) +

N - 1\sum 
k=\beta +1

\psi kR
k
i (\theta , p)

\biggr) 
\cdot \.p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .(A6)
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Continuing to manipulate (A6), recalling that Re(\kappa i(p)) < 0, one can show

| \.\psi i| \leq Re(\kappa i(p))| \psi i| +max
\theta ,p,t

| Ii(\theta , p) \cdot Ue(t, p, x)| + \beta max
\theta ,p,t

k=1,...,\beta 

| Cki (\theta , p) \cdot Ue(t, p, x)| max
k=1,...,\beta 

| \psi k| 

+ (N  - \beta  - 1) max
\theta ,p,t

k=\beta +1,...,N - 1

| Cki (\theta , p) \cdot Ue(t, p, x)| max
k=\beta +1,...,N - 1

| \psi k| 

+max
\theta ,p, \.p

| Qi(\theta , p) \cdot \.p| + \beta max
\theta ,p, \.p

k=1,...,\beta 

| Rki (\theta , p) \cdot \.p| max
k=1,...,\beta 

| \psi k| 

+ (N  - \beta  - 1) max
\theta ,p, \.p

k=\beta +1,...,N - 1

| Rki (\theta , p) \cdot \.p| max
k=\beta +1,...,N - 1

| \psi k| 

\leq max
p

(Re(\kappa i(p)))| \psi i| +MU max
\theta ,p

| | Ii(\theta , p)| | 1 + \beta MU max
\theta ,p

k=1,...,\beta 

| | Cki (\theta , p)| | 1 max
k=1,...,\beta 

| \psi k| 

+ (N  - \beta  - 1)MU max
\theta ,p

k=\beta +1,...,N - 1

| | Cki (\theta , p)| | 1 max
k=\beta +1,...,N - 1

| \psi k| 

+Mpmax
\theta ,p

| | Qi(\theta , p)| | 1 + \beta Mp max
\theta ,p

k=1,...,\beta 

| | Rki (\theta , p)| | 1 max
k=1,...,\beta 

| \psi k| 

+ (N  - \beta  - 1)Mp max
\theta ,p

k=\beta +1,...,N - 1

| | Rki (\theta , p)| | 1 max
k=\beta +1,...,N - 1

| \psi k| .(A7)

Continuing to simplify (A7) and rearranging terms yields

| \.\psi i| \leq max
p

(Re(\kappa i(p)))| \psi i| +MUa1 +MUa2 max
k=\beta +1,...,N - 1

| \psi k| +Mpa3

+Mpa4 max
k=\beta +1,...,N - 1

| \psi k| +\scrO (
\surd 
\epsilon ),(A8)

where a1 \equiv max\theta ,p,i=\beta +1,...,N - 1 | | Ii(\theta , p)| | 1, a2 \equiv (N  - \beta  - 1)max\theta ,p,k=\beta +1,...,N - 1,i=\beta +1,...,N - 1 | | Cki (\theta , p)| | 1,
a3 \equiv max\theta ,p,i=\beta +1,...,N - 1 | | Qi(\theta , p)| | 1, and a4 \equiv (N  - \beta  - 1)max\theta ,p,k=\beta +1,...,N - 1,i=\beta +1,...,N - 1 | | Rki (\theta , p)| | 1.
Above, the \scrO (

\surd 
\epsilon ) terms come from the fact that each \psi 1, . . . , \psi \beta are \scrO (

\surd 
\epsilon ) terms as man-

dated by Assumption C from section 3.1. Note that a1 through a4 are related to the dimension
of the system and the terms of the partial derivatives. Here, the magnitude of the real compo-
nents of each \kappa \beta +1, . . . , \kappa N - 1 must be large enough for a1 through a4 considered \scrO (1) terms
and not \scrO (1/\epsilon ) terms.

Consider the rapidly decaying isostable coordinate with the largest magnitude, i.e.,

(A9) | \psi max| \equiv max
k=\beta +1,...,N - 1

(| \psi k| ).

Also define the corresponding Floquet exponent of \psi max to be \kappa max(p). Focusing on \psi max and
neglecting the \scrO (

\surd 
\epsilon ) terms, one can use (A8) to write

| \.\psi max| \leq max
p

(Re(\kappa max(p)))| \psi max| +MUa1 +MUa2| \psi max| +Mpa3 +Mpa4| \psi max| .(A10)
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Towards a contradiction, suppose that there exists some time t2 > 0 for which

| \psi max(t2)| >
1

 - maxp(Re(\kappa max(p)))

\biggl[ 
MUa1 +MUa2| \psi max(t2)| +Mpa3 +Mpa4| \psi max(t2)| 

\biggr] 
.

(A11)

Recalling that maxp(Re(\kappa max(p))) < 0 and considering (A10), if (A11) is true, then | \.\psi max(t2)| 
< 0. However, \psi max(0) = 0 since the initial state of the full system starts on the periodic
orbit at t = 0; if | \.\psi max(t2)| < 0, then there must be some t1 < t2 for which | \.\psi max(t1)| > 0 and
| \psi max(t1)| = | \psi max(t2)| . This immediately leads to a contradiction and the subsequent upper
bound for | \psi max| :

 - max
p

(Re(\kappa max(p)))| \psi max| \leq MUa1 +MUa2| \psi max| +Mpa3 +Mpa4| \psi max| .(A12)

Recall that maxp(Re(\kappa max(p))) < 0 and is an \scrO (1/\epsilon ) term. As such, minp( - Re(\kappa max(p)))  - 
MUa2  - Mpa4 > 0 so that manipulation of (A12) yields

(A13) | \psi max| \leq 
MUa1 +Mpa3

minp( - Re(\kappa max(p))) - MUa2  - Mpa4
.

Because minp( - Re(\kappa max(p))) is assumed to be \scrO (1/\epsilon ), (A13) implies that | \psi max| must be an
\scrO (\epsilon ) term.

With an explicit bound on the rapidly decaying isostable coordinates, it is possible to
ignore them from (A3). Doing so yields

\.\theta = \omega (p) +

\Biggl( 
Z(\theta , p) +

\beta \sum 
k=1

\psi kB
k(\theta , p)

\Biggr) 
\cdot Ue(t, p, x) +

\Biggl( 
D(\theta , p) +

\beta \sum 
k=1

\psi kE
k(\theta , p)

\Biggr) 
\cdot \.p

+\scrO (\epsilon ) +\scrO (\psi 2
1) + \cdot \cdot \cdot +\scrO (\psi 2

\beta ),

\.\psi j = \kappa j(p)\psi j +

\Biggl( 
Ij(\theta , p) +

\beta \sum 
k=1

\psi kC
k
j (\theta , p)

\Biggr) 
\cdot Ue(t, p, x) +

\Biggl( 
Qj(\theta , p) +

\beta \sum 
k=1

\psi kR
k
j (\theta , p)

\Biggr) 
\cdot \.p

+\scrO (\epsilon ) +\scrO (\psi 2
1) + \cdot \cdot \cdot +\scrO (\psi 2

\beta ),

j = 1, . . . , \beta ,

\.p = Gp(p, \theta , \psi 1, . . . , \psi \beta ),
(A14)

where the \scrO (\epsilon ) terms come from the truncation of the rapidly decaying isostable coordinates.
Finally, as long as a Gp(p, \psi 1, . . . , \psi \beta ) can be designed so that each | \psi 1| , . . . , | \psi \beta | remains an
\scrO (

\surd 
\epsilon ) term for all time t > 0, the reduction (A14) is valid to leading order \epsilon . As emphasized

in the main text, (A14) does not place any \scrO (\epsilon ) constraints on the input U(t, p, x).D
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