
1.  Introduction
Rivers play a critical role in the budgeting and accounting of the global carbon cycle under climate change. 
Following Cole et al. (2007), the global river network is recognized to emit substantial amounts of carbon to the 
atmosphere via evasion (gas exchange driven by diffusion and near-surface turbulence at the air/water interface), 
in addition to their long understood role in transporting carbon to the oceans via downstream advection. Current 
estimates of total carbon dioxide evasion (𝐴𝐴 [FCO2] ) to the atmosphere from the global river network vary from 
1800 to 2000 Tg C/yr (Liu et al., 2022; Raymond et al., 2013), with 650 Tg-C/yr and 167 Tg-C/yr coming from 
mid-to-large rivers (Lauerwald et al., 2015) and mountain streams (Horgby et al., 2019), respectively. Despite 
rivers' small percentage of the global land surface (0.67%—Liu et al., 2022), this carbon flux is on par with the 
total oceanic 𝐴𝐴 [CO2] uptake rate (2600 Tg-C/yr—Gruber et al., 2019; Horgby et al., 2019) and the global forest 
carbon uptake rate (2400 Tg-C/yr—Pan et al., 2011).

River 𝐴𝐴 [CO2] evasion is increasingly better constrained and is clearly a critical component of the global carbon 
cycle. Equation 1 represents this riverine flux given Δ[CO2]  = (𝐴𝐴

[

CO2water

]

−
[

CO2air

]

 ) and the gas exchange veloc-
ity k. Consult Appendix A for notation used throughout this study.

[FCO2] = �Δ[CO2]� (1)

There is a robust existing literature exploring spatiotemporal patterns in Δ[CO2] (e.g., Aho et al., 2021; Aho & 
Raymond, 2019; Crawford et al., 2017; Liu & Raymond, 2018; Peter et al., 2014; Ran et al., 2017; Raymond 
et al., 2000; Rocher-Ros et al., 2019). This work has lead to recent river-reach explicit modeling of 𝐴𝐴 Δ [CO2] using 
global hydrography datasets at up to monthly temporal resolutions (Brinkerhoff et al., 2021; Horgby et al., 2019; 
Liu et  al.,  2022; Saccardi & Winnick,  2021), but an equivalently sophisticated representation of 𝐴𝐴 𝐴𝐴CO2

 is still 
lacking.
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The structure of Equation  1 necessitates that calculations of 𝐴𝐴 [FCO2] are highly sensitive to estimates of k. 
However, k can only be estimated via a known gas flux, eddy-covariance measurements, or tracer additions to 
the stream (Hall & Ulseth, 2020). In trying to constrain the global fluvial 𝐴𝐴 [FCO2] flux across millions of rivers, 
this calculation is impossible and necessitates the use of predictive models for k that are based on easily obtained 
river hydraulic properties. In that vein, over 20 empirical models exist to predict k from river hydraulics, generally 
using some combination of mean velocity 𝐴𝐴 𝑈𝑈  , shear velocity 𝐴𝐴 𝐴𝐴∗ , width 𝐴𝐴 𝐴𝐴  , depth 𝐴𝐴 𝐴𝐴 , and slope 𝐴𝐴 𝐴𝐴 as predictors 
(Hall & Ulseth,  2020; Wang et  al.,  2021). These models usually predict 𝐴𝐴 𝐴𝐴600 , or k normalized by a Schmidt 
number (Sc) of 600 to remove the effect of water temperature and gas type from predictive models, as warmer 
waters and lower Sc numbers each increase gas exchange rates (Hall & Ulseth, 2020). Specifically, 𝐴𝐴 𝐴𝐴600 reflects 
the 𝐴𝐴 𝐴𝐴CO2

 at 20 degrees Celsius. Through this normalization, these models focus solely on physical explanations 
for variation in k (Hall & Ulseth, 2020).

Applying these k models across watersheds, regions, or continents is called “upscaling.” This upscaling allows for 
quantifying the difficult-to-estimate k term in Equation 1 for any arbitrary number of rivers, but also changes the 
base parameters that ultimately control the final estimate of 𝐴𝐴 [FCO2] . That is, by making k a function of hydraulics, 

𝐴𝐴
[

FCO2upscaled

]

 is now a direct function of river hydraulics. This functional relationship is described in Equation 2. It 
suggests that global 𝐴𝐴 [FCO2] estimates are not only at the mercy of the accuracy and spatiotemporal resolution of 

𝐴𝐴 Δ [CO2] , but also the accuracy and resolution of our river hydraulics estimates.

[

FCO2upscaled

]

= �
(

�CO2 ,Δ[CO2]
)

= �
(

�,�,�,� ,Δ[CO2]
)

� (2)

Global upscaling has been performed using various techniques. Raymond et al. (2013), Lauerwald et al. (2015), 
and Horgby et al. (2019) all relied on 𝐴𝐴 𝐴𝐴CO2

 values indirectly estimated using mean annual streamflow models and 
hydraulic scaling equations to predict the hydraulic terms used to in turn predict 𝐴𝐴 𝐴𝐴CO2

 , while Borges et al. (2015) 
used a combination of the above method and a constant 𝐴𝐴 𝐴𝐴CO2

 in space and time to upscale over Africa. More 
recently, Liu et al. (2022) performed a first upscaling assessment of monthly temporal dynamics in global river 

𝐴𝐴 [FCO2] , though they relied on monthly modeled streamflow and used the same model for 𝐴𝐴 𝐴𝐴600 as previous studies 
(Raymond et al., 2013). In all of these foundational studies, the temporal dynamics of 𝐴𝐴 𝐴𝐴CO2

 (and thus dynamics 
in 𝐴𝐴 [FCO2] ) were ignored because of hydraulic data limitations. It has been shown at the field-scale that temporal 
dynamics of gas exchange can vary widely from site to site (Wallin et al., 2011), but it has remained impractical 
to obtain temporally explicit 𝐴𝐴 𝐴𝐴CO2

 at continental-to-global scales.

Wang et al. (2021) recently attempted to address this global k problem by simulating the gas exchange velocity of 
dissolved oxygen (𝐴𝐴 𝐴𝐴O2

 ) in 35 rivers of many sizes (widths ranging from 0.23 to 349 m) using a stream metabolism 
inverse model (Appling et al., 2018) and in situ dissolved oxygen datasets to infer what 𝐴𝐴 𝐴𝐴O2

 must have been to 
produce their “observations.” They then compared this simulated data set against direct estimates of k, finding 
similar performance and parameter values for process-based models of gas evasion. However, they were still 
limited by a lack of direct hydraulic measurements and had to rely on hydraulic scaling equations to estimate 
river depth and velocity. Even though approaches like Wang et al. (2021)'s are incredibly useful for expanding 
our mechanistic understanding of gas exchange, they are less useful for global upscaling purposes as they rely on 
high fidelity in situ dissolved oxygen data for every river (Hall & Ulseth, 2020).

We have established that literature has a reasonably good understanding of Δ[CO2] and a relatively poorer under-
standing of 𝐴𝐴 𝐴𝐴600 (and therefore 𝐴𝐴 𝐴𝐴CO2

 ) across large areas and in time. In theory, the discrepancy between the quality 
of our Δ

[

CO2water

]

 and 𝐴𝐴 𝐴𝐴CO2
 estimates could be alleviated if direct hydraulics measurements (and in turn 𝐴𝐴 𝐴𝐴CO2

 
via Equation 2) were available at the global scale at a sufficient temporal resolution. Spatially and temporally 
dynamic hydraulic measurements in turn would also address the uncertainty regarding continental-to-global scale 
temporal dynamics of gas exchange noted earlier.

Conveniently, these hydraulic data will soon be available via the upcoming NASA/CNES/UKSA/CSA Surface 
Water and Ocean Topography (SWOT) satellite mission. SWOT is expected to launch in late 2022 and provide 
the world's first direct measurements of global water surface extent and elevation (and therefore water surface 
slope) at novel temporal resolutions. SWOT is a wide swath radar interferometer and will sample rivers every 
1–7 days per 21 days repeat cycle, measuring rivers wider than 100 m with a goal of expanding to rivers at least 
50 m wide (Biancamaria et al., 2016). Via its direct hydraulic measurements, SWOT is expected to usher in a sea 

 19449224, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

B
007419 by Y

ale U
niversity, W

iley O
nline Library on [14/11/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Global Biogeochemical Cycles

BRINKERHOFF ET AL.

10.1029/2022GB007419

3 of 19

change in global-scale hydrology, and could similarly influence fluvial biogeochemsitry if techniques are devel-
oped to ingest SWOT data and infer k. In this context, we borrow tools from fluvial geomorphology and existing 
SWOT algorithms to begin addressing the current knowledge gap in the spatiotemporal dynamics of gas exchange 
velocity. More specifically, we seek to answer the following two questions:

1.	 �What is the performance of a physically-based hydraulic model for 𝐴𝐴 𝐴𝐴600 unique to SWOT-observed rivers?
2.	 �How well can we exploit such a model to infer 𝐴𝐴 𝐴𝐴600 (and its uncertainty) solely from SWOT observations?

To answer the first question, we use hydraulic geometry-the fundamental geomorphic relationships between 
streamflow and channel shape (Gleason, 2015; Leopold & Maddock, 1953) to develop a process-based model 
for large-river 𝐴𝐴 𝐴𝐴600 (here defined as wider than 50 m to align with SWOT). We then take these findings and 
explore the second question by implementing this hydraulic model, which defines 𝐴𝐴 𝐴𝐴600 , within an algorithm 
named BIKER (“Bayesian Inference of the 𝐴𝐴 𝐴𝐴600 Evasion Rate”) to infer 𝐴𝐴 𝐴𝐴600 solely from SWOT measurements. 
The goal of BIKER is to require no in situ inputs of any kind (although in situ data could be ingested and would 
improve results) such that it is globally implementable on any SWOT-observable river. We validate BIKER on 
47 SWOT-simulated rivers (as SWOT has not yet launched) and explore BIKER's robustness to the expected 
measurement errors implicit in the satellite's observations. Finally, we also couple BIKER's 𝐴𝐴 𝐴𝐴600 estimates with 
Δ[CO2] to predict gas fluxes and compare these against established literature methods that rely on hydraulic 
scaling equations.

This paper is split into two distinct parts: gas-exchange theory/model development (Section  2) and BIKER 
algorithm development/validation (Section 3). Section 3 is fundamentally dependent on the results presented in 
Section 2, therefore Section 2 presents both theory and results. Both sections detail the data used. We conclude 
with a discussion (Section 4) that encompasses both gas exchange theory and remote sensing. Figure 1 concep-
tually maps out the algorithm's approach to inferring 𝐴𝐴 𝐴𝐴600 from SWOT data, while Figure S1 in Supporting Infor-
mation S1 details the entire study's workflow.

Figure 1.  Conceptual overview of the Bayesian Inference of the 𝐴𝐴 𝐴𝐴600 Evasion Rate algorithm. 1: Surface Water and Ocean 
Topography will directly measure water surface width and elevation (and thus slope) at a series of cross-sections within 
mass-conserved river reaches. 2: These hydraulics measurements are used to calculate turbulent dissipation in the river 
channel (Section 3). 3: Turbulent dissipation is used to infer 𝐴𝐴 𝐴𝐴600 via a process-based model (Section 2).
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2.  Predicting k600 From Large-River Hydraulic Geometry
2.1.  Data

We develop our hydraulic model for 𝐴𝐴 𝐴𝐴600 using multiple datasets of field-estimated 𝐴𝐴 𝐴𝐴600 and measured stream 
hydraulics collected from the literature. In total, we obtain 763 estimates of 𝐴𝐴 𝐴𝐴600 , with 701 of these estimates 
previously gathered by Raymond et  al.  (2012) and Ulseth et  al.  (2019). The remaining estimates come from 
Churchill et al. (1964) and Owens et al. (1964). See Table S1 in Supporting Information S1 for a complete list of 
the studies that collected these data. All 𝐴𝐴 𝐴𝐴600 estimates come from tracer studies and thus define 𝐴𝐴 𝐴𝐴600 at the reach 
scale.

The 763 estimates cover different times of year and hydrological events. They include both individual estimates 
and repeat estimates in over 500 river reaches across the United States, Wales, Switzerland, and Austria. They 
span a wide variety of environments from temperate higher-order rivers to small mountain streams and represent 
a full range of river flows (width ranges from 0.26 m to 1,742 m, discharge ranges from 8e−4  to 489 m 3/s, and 

𝐴𝐴 𝐴𝐴600 ranges from 0.1  to 4,118 m/dy). While there are still geographic and hydrologic biases in this data set, it is to 
our knowledge the largest such data set of field-estimated, reach-scale 𝐴𝐴 𝐴𝐴600 where hydraulic data is concurrently 
available.

In addition to hydraulics measured alongside 𝐴𝐴 𝐴𝐴600 and reported above, we expand our data set of stream hydraulics 
using a previously published compilation of in situ hydraulic measurements (Brinkerhoff et al., 2019). That data 
set contains over 530,000 unique measurements of river channel velocity, width, and discharge from across the 
continental United States, originally made to calibrate United States Geological Survey (USGS) streamgauge 
rating curves and made public by the USGS. This data set is used to calculate how frequently SWOT observable 
rivers meet our large-river hydraulic assumptions (Section 2.3).

2.2.  Process-Based Hydraulic Modeling of River k

k scales with near-surface turbulence in turbulent streamflows (Hall & Ulseth, 2020), and extensive field and 
laboratory experiments have converged on the “small-eddy model” for k as derived by Lamont and Scott (1970) 
and empirically anticipated by Calderbank and Moo-Young (1961). This model scales k via the smallest-scale 
turbulent eddies and has been repeatedly empirically validated in freshwater systems (e.g., Katul et al., 2018; 
Lorke & Peeters, 2006; Moog & Jirka, 1999b; Tokoro et al., 2008; Vachon et al., 2010; Wang et al., 2021; Zappa 
et al., 2003, 2007). The small-eddy model is provided as Equation 3, where 𝐴𝐴 𝐴𝐴 is the dissipation rate of near-surface 
turbulence, 𝐴𝐴 𝐴𝐴 is the kinematic viscosity, and Sc is the Schmidt number.

𝑘𝑘 ∝ Sc
−1∕2

(𝑣𝑣𝑣𝑣)
1∕4� (3)

Some laboratory and field observations additionally suggest that open channel flows with small bed roughness do 
not exhibit homogeneous surface dissipation across the entire reach's air-water interface (Moog & Jirka, 1999a; 
Talke et al., 2013). Given this observation, Moog and Jirka (1999a) proposed an extension to the small-eddy 
model, additionally scaling 𝐴𝐴 𝐴𝐴600 using a shear Reynold's number 𝐴𝐴 𝐴𝐴𝐴𝐴∗ formulation (Equation 4, referred to as the 
“Reynolds extension” model). The Reynolds extension model is hypothetically useful in low-turbulence scenar-
ios where a relative lack of large-scale eddies effectively “filter out” the number of small-scale eddies that actu-
ally reach the interface and initiate gas exchange (Talke et al., 2013). While scaling k via a shear Reynold's formu-
lation is sometimes done to parameterize wave-breaking gas exchange models in the open ocean (e.g., Brumer 
et al., 2017; Zhao & Toba, 2001; Zhao et al., 2003), it is infrequently done in rivers. In the context of BIKER, we 
chose to test this model because large, SWOT-observable rivers are generally the smoothest, least-turbulent flows 
along the stream-to-ocean continuum where small eddies might not reach the surface. Further, to our knowledge, 
the Reynolds extension model has never been empirically tested in predicting river k, aside from confirming that 
large-scale eddies differentially move turbulence to the surface in a large river (Talke et al., 2013).

𝑘𝑘 ∝ 𝑆𝑆𝑆𝑆
−1∕2

(𝑣𝑣𝑣𝑣)
1∕4

(Re∗)
3∕8� (4)

Equations 3 and 4 both rely on 𝐴𝐴 𝐴𝐴 , which is difficult to measure. When working at large scales, a commonly 
used 𝐴𝐴 𝐴𝐴 model assumes that all turbulence is generated at the bed and transported to the air-water interface via 
the log-law-of-the-wall (Equation  5). Another approach specific to fluvial settings models k via “form-drag 
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dissipation” (Equation 6) which is equivalently the total stream power per 
unit mass water. This normalized stream power captures the bulk frictional 
resistance (and thus energy dissipation) via channel banks, meanders, bars, 
etc. that is unique to rivers (Moog & Jirka, 1999b). Authors have since shown 
that Equation  6 can reasonably predict k in rivers and streams (Raymond 
et al., 2012; Ulseth et al., 2019; Wang et al., 2021).

𝜖𝜖 = 𝜖𝜖𝑆𝑆 =
𝑈𝑈

3

∗

𝐻𝐻
� (5)

𝜖𝜖 = 𝜖𝜖𝐷𝐷 = 𝑔𝑔𝑔𝑔𝑈𝑈� (6)

2.3.  Deriving a Large-River k600 Model

Given the theoretical context provided in Section  2.2, we now turn to 
SWOT-observable rivers specifically. Rivers and streams change predicta-
bly along their longitudinal profile from source to sea, and we can exploit 
the hydraulic geometry of large rivers at the end of this continuum to esti-
mate k in SWOT rivers. In general, as river size increases, channels become 
more rectangular, their shapes elongate (becoming wider quicker than 

they become deeper) and their hydraulic radii begin to approximate their mean flow depth, that is, 𝐴𝐴 𝐴𝐴ℎ ≈ 𝐻𝐻 
(Leopold & Maddock, 1953), a common assumption in hydraulic and geomorphic modeling of large rivers. For 
example, SWOT-observable river flows have an average 𝐴𝐴

𝑅𝑅ℎ

𝐻𝐻
 ratio of 0.98 and standard deviation of only 0.02 

(n = 22,452; see Text S1 in Supporting Information S1 for how we built this data set). We refer to these rivers as 
“hydraulically-wide.”

We therefore assume that all SWOT-observable rivers are hydraulically-wide to derive a model for gas exchange. 
The overall goal is to reduce the equations down to their fundamental parameters, identifying which terms are 
SWOT observable and limiting the number of terms not directly measurable via SWOT. We first impose 𝐴𝐴 𝐴𝐴 = 𝜖𝜖𝐷𝐷 
and 𝐴𝐴 𝐴𝐴𝐻𝐻 = 𝐻𝐻 on the Reynolds extension model (Equation 4) and then log-transform to maintain homogeneous 
variance across the orders of magnitude of 𝐴𝐴 𝐴𝐴600 to arrive at Equation 7 (with statistical coefficient 𝐴𝐴 𝐴𝐴1 ). Equation 7 
thus defines gas exchange velocity solely as a function of slope, mean flow depth, and mean flow velocity and is 
theoretically valid only in a hydraulically-wide channel.

log(�600) = �1 +
7
16

log(��) + 1
4
log

(

�
)

+ 9
16

log(�)� (7)

We also test the performance of three other models for predicting k in hydraulically-wide channels via the other 
three unique combinations of Equations 3 and 4 and Equations 5 and 6. While the complete model derivations 
and results for all four models are provided in Text S2 and Figure S2 in Supporting Information S1, the final and 
best-performing model (Equation 7) is presented and used below.

2.4.  Model Validation

With Equation 7 derived, we now test its strength of fit in hydraulically-wide river flows. We validate on the 
data set of in situ estimates of 𝐴𝐴 𝐴𝐴600 , after filtering for those made in hydraulically-wide channels, which was 
defined as flows whose hydraulic radius was within 1% of their mean flow depth. All told, there are 166 esti-
mates of hydraulically-wide 𝐴𝐴 𝐴𝐴600 . Equation  7 is assessed via a Bayesian linear regression model, where the 
theoretically-derived coefficients from Equation 7 are used as reasonably informative priors for the regression 
coefficients. The intercept and model uncertainty both use uninformed priors. See Text S3 in Supporting Infor-
mation S1 for the model specification. We assess the goodness-of-fit using the posterior mean coefficient of 
determination (𝐴𝐴 𝐴𝐴

2 ) following Gelman et al. (2019).

Equation 7 explains 50% of variation in observed (log-transformed) 𝐴𝐴 𝐴𝐴600 in hydraulically-wide rivers and accu-
rately captures the scaling dynamics of observed 𝐴𝐴 𝐴𝐴600 as well (Figure  2). The posterior mean in natural log 

Figure 2.  Empirical testing of our large-river 𝐴𝐴 𝐴𝐴600 model on 166 
measurements made in hydraulically-wide rivers. Dashed gray line denotes the 
1:1 line. For the model, points reflect posterior means while lines reflect the 
95% credible intervals.
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space for 𝐴𝐴 𝐴𝐴1 is 3.89 (Table 1). While the individual residuals can be quite 
large (indicating that additional processes and/or field estimation error are 
presumably controlling the 50% unexplained variation in log-transformed 

𝐴𝐴 𝐴𝐴600 ), the general scaling of 𝐴𝐴 𝐴𝐴600 with river hydraulics is strongly captured. 
We also tested two non-Bayes implementations of Equation  7 using (a) 
the theoretically-derived coefficients and (b) a fully empirical line fitting 
approach (Table 1). Interestingly, the data exerted little-to-no influence on 
the theoretically-derived priors, and both the empirical and posterior coef-
ficients were virtually identical to those obtained theoretically (Table  1), 
indicating that Equation 7 is a good theoretical model for gas exchange in 
hydraulically wide flows.

Compared to other combinations of Equations 3–6 (Figure S2 in Supporting 
Information S1), there is also a better fit using Equation 7 thanks to the addi-
tion of the Reynold's number scaling for low-turbulent flows (as expected). 
The success of the final model in hydraulically-wide channels (provided as 
Equation 8 using the posterior means) provides us with a physical-model for 
gas evasion built with SWOT in mind. The river hydraulics terms in Equa-
tion 8 (𝐴𝐴 𝑈𝑈  , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 ) can either be directly measured or reasonably inferred 
from SWOT measurements, effectively opening the door for remotely sens-
ing the gas exchange velocity.

log(�600) = 3.89 + (0.43)log(��) + (0.31)log
(

�
)

+ (0.52)log(�)� (8)

3.  BIKER Algorithm Development and Validation
3.1.  Data

To validate BIKER, we cannot use actual SWOT measurements as SWOT has yet to launch. In the hydrology 
literature, it has become standard practice to benchmark SWOT-related algorithms on “SWOT-like” data (Durand 
et  al.,  2016; Frasson et  al.,  2021). We use 47 SWOT-simulated rivers for validation, where these simulated 
rivers are simply reach-averaged hydraulic model outputs where the water surface heights, slopes, and widths are 
labeled as RS observations and are used as the sole inputs to BIKER (Figure S1 in Supporting Information S1). 
These datasets are created using standard hydraulic models forced with known inflows and measured bathymetry 
to model the hydraulic response of the rivers, and then those terms visible to SWOT are extracted to produce 
hydraulically realistic synthetic observations. These data were published by Frasson et al.  (2021) and Durand 
et al. (2016). See Figure S3 in Supporting Information S1 for a map of these river's locations along the global 
SWOT river network (Altenau et al., 2021).

There is considerable geographic bias in our validation rivers, with rivers only present in North America, Western 
Europe, and Bangladesh. Further, no Arctic rivers are included. We acknowledge that this bias limits our ability to 
validate BIKER across many environments ahead of SWOT's launch. However, it is a sufficient validation set for 
a first proof-of-concept study consistent with the hydrology literature for SWOT. Further, the data requirements 
to create these test cases are strict and the processing time is enormous. Also note that SWOT water surface slope 
measurements will have a lower detection limit of 1.7 cm/km (Biancamaria et al., 2016), and therefore any slope 
measurement in our data less than this threshold was reassigned this minimum value.

We validate BIKER under two different “error scenarios” (Section 3.2.2). While SWOT will provide river surface 
measurements of novel quality and resolution, as with all remote sensing products there are expected errors that 
will be implicit in these measurements. Here, we validate BIKER under a “no-measurement-error” scenario 
that reflects an unrealistic measurement as if SWOT has perfect accuracy and precision: we use the hydraulic 
model of 47 rivers directly as a first test of algorithm validity. 16 of these rivers are then additionally validated 
under a “measurement-error” scenario that more closely mimics expected SWOT by adding realistic radar errors 
and sampling along the satellite's future ground track. SWOT river error modeling was developed by Durand 
et  al.  (2020) and then applied to these 16 rivers by Frasson et  al.  (2021). This error modeling is non-trivial 
and computationally expensive, and so Frasson et  al.  (2021) were limited to only 16 test cases with SWOT 

Equation 7 results “Theoretical” “Empirical” “Bayesian”

𝐴𝐴 𝐴𝐴1  𝐴𝐴
7

16
≈ 0.44  0.42 0.43

𝐴𝐴 𝐴𝐴2  𝐴𝐴
1

4
≈ 0.25  0.32 0.31

𝐴𝐴 𝐴𝐴3  𝐴𝐴
9

16
≈ 0.56  0.5 0.52

𝐴𝐴 𝐴𝐴1 (natural log space) 3.85 3.85 3.89

𝐴𝐴 𝐴𝐴
2  0.5 0.5 0.5

Note. “Empirical” refers to the result of fitting the coefficients by least-squares 
regression. “Bayesian” refers to the posterior means of the coefficients, 
conditional on priors informed by the “Theoretical” coefficients (Text S3 in 
Supporting Information S1, Figure 2).

Table 1 
Comparison of Three Regression Models for k600 Model for Hydraulically-
Wide Rivers. “Theoretical” Refers to the Model Coefficients Derived by 
Imposing a Hydraulically Wide Channel on the “Reynolds-Extension” 
Model for Gas Exchange (Section 2.3)
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measurement errors. Likewise, we stick to these 16 rivers for the same reason. These rivers are detailed in Figure 
S3 in Supporting Information S1. Given that it is only 16 synthetic rivers, caution should be used in over gener-
alizing our results beyond our proof of concept.

For 𝐴𝐴 [CO2] evasion and carbon emissions calculations, we use 26 bi-weekly dissolved 𝐴𝐴 [CO2] samples collected by 
Beaulieu et al. (2012) at one location in the Ohio River (Figure S3 in Supporting Information S1) for one calen-
dar year from 2008 to 2009 (Figure S4 in Supporting Information S1). Note that this 𝐴𝐴 [CO2] data is for the Ohio 
River only but was applied to all rivers to provide a physically realistic signal for 𝐴𝐴 [CO2] fluxes with meaningful 
seasonality and dynamics. Therefore, the raw carbon emissions estimates presented in this paper are meaning-
less in the context of actually measured carbon emissions from these rivers but are better than specifying 𝐴𝐴 [CO2] 
concentrations devoid of context. These data are necessary as we are interested in the effect of BIKER 𝐴𝐴 𝐴𝐴600 errors 
on eventual fluxes and comparing these fluxes with published methods. Therefore, applying these “unit” 𝐴𝐴 [CO2] 
values allows for such a comparison by providing a realistic timeseries.

3.2.  Section 3 Methods

3.2.1.  BIKER

To develop BIKER, we follow the work of Hagemann et  al.  (2017), Brinkerhoff et  al.  (2020), and Durand 
et al. (2014) to infer 𝐴𝐴 𝐴𝐴600 , H, and 𝐴𝐴 𝑈𝑈  from SWOT observations. These Bayesian approaches to inverse modeling 
via SWOT data start from Bayes rule (Equation 9), where 𝐴𝐴 Θ is some set of non-remotely sensible parameters we 
want to solve for (including 𝐴𝐴 𝐴𝐴600 ), x is the observed data, 𝐴𝐴 𝐴𝐴 (𝑥𝑥|Θ) is the sampling model where data are conditional 
on the parameters, and 𝐴𝐴 𝐴𝐴(Θ) is the joint prior distribution of the parameters. Therefore, we are interested in solv-
ing for 𝐴𝐴 𝐴𝐴(Θ|𝑥𝑥) , or the “posterior” distribution. Note that 𝐴𝐴 𝐴𝐴(𝑥𝑥) is usually computationally intractable to integrate 
exactly, but Bayesian inference requires only the proportionality to be specified: 𝐴𝐴 𝐴𝐴(Θ|𝑥𝑥) ∝ 𝑓𝑓 (𝑥𝑥|Θ)𝑝𝑝(Θ) . Sampling 
algorithms are then used to approximate the actual posterior distribution, as is done in BIKER.

𝑝𝑝(Θ|𝑥𝑥) =
𝑓𝑓 (𝑥𝑥|Θ)𝑝𝑝(Θ)

𝑝𝑝(𝑥𝑥)
� (9)

The heart of BIKER is its reformulation of the 𝐴𝐴 𝐴𝐴600 model (Equation  8) as a Bayesian sampling model that 
is conditional on the non-remotely-sensed parameters (i.e., 𝐴𝐴 𝐴𝐴 (𝑥𝑥|Θ) ). This approach is similar to the “McFLI” 
(Mass-Conserved Flow Law Inversion) logic used in some SWOT remote sensing of discharge algorithms 
(Gleason et al., 2017). To start, we write 𝐴𝐴 𝐴𝐴600 as a function of SWOT-observables 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 . This algebra is carried 
out using Equation 8 and Manning's equation for mean flow velocity (𝐴𝐴 𝑈𝑈 =

1

𝑛𝑛
𝑅𝑅

2∕3

ℎ
𝑆𝑆

1∕2 ). Following Section 2.3, 
we continue to assume that the channel is hydraulically-wide (𝐴𝐴 𝐴𝐴ℎ = 𝐻𝐻 =

𝐴𝐴

𝑊𝑊
 ). To leverage additional SWOT data, 

we use the “Durand transform” originally published by Durand et al. (2014): the wetted channel area A is further 
split into the SWOT-unobservable portion 𝐴𝐴 𝐴𝐴0 and SWOT-observable portion 𝐴𝐴 𝐴𝐴𝐴𝐴 where 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 =

∑

𝑡𝑡′∶𝑊𝑊
𝑡𝑡′
≤𝑊𝑊𝑡𝑡

𝑊𝑊𝑡𝑡′𝛿𝛿𝛿𝛿𝑒𝑒
𝑡𝑡′
 

for cross-section i and timestep t within a mass-conserved river reach.

All of the above algebra simplifies to Equation 10. Conveniently, 𝐴𝐴 𝐴𝐴600 as estimated by tracer additions to a stream 
is inherently a reach-scale quantity (in a mass-conserved reach). Therefore, Equations 7, 8, and 10 all yield a 
reach-scale 𝐴𝐴 𝐴𝐴600 (i.e., 𝐴𝐴 𝐴𝐴600𝑖𝑖

= 𝑘𝑘600∀𝑖𝑖 ), thus lowering the number of parameters BIKER must infer and making the 
problem much better constrained.

log
(

�600�

)

= 3.89 + (0.4320)log(�) + (0.5862)log(��,�) + (0.3084)log
(

1
��

)

�

+ (0.7282)log
(

�0� + ���,�

��,�

)

� (10)

Next, Equation 10 is re-written as a Bayesian sampling model 𝐴𝐴 𝐴𝐴 (𝑥𝑥|Θ) , in which the joint data distribution x (i.e., 
SWOT observations) is sampled from the joint parameter distribution (𝐴𝐴 Θ ). We first rearrange Equation 10 to 
isolate x from 𝐴𝐴 Θ (Equation 11). Then, Equations 12a–12c re-expresses Equation 11 as a normal distribution with 
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standard deviation 𝐴𝐴 𝐴𝐴𝑘𝑘600
 . The uncertainty expressed by 𝐴𝐴 𝐴𝐴𝑘𝑘600

 arises from uncertainties in (a) parameters in Equa-
tion 8, (b) Manning's equation, and (c) the hydraulically wide channel assumption.

3.89 + (0.4320)log(�) + (0.5862)log(��,�) − (0.7282)log (��,�) =

log
(

�600�

)

+ (0.3084)log(��) − (0.7282)log
(

�0� + ���,�
)� (11)

� =
[

3.89 + (0.4320)log(�) + (0.5862)log(��,�) − (0.7282)log(��,�)
]

� (12a)

Θ =
[

log
(

�600�

)

+ (0.3084)log(��) − (0.7282)log
(

�0� + ���,�
)]

� (12b)

� ∼ �
(

Θ, �2
�600

)

� (12c)

Equations  9 and  12a–12c necessitate that we specify prior distributions for the parameters 𝐴𝐴 𝐴𝐴0𝑖𝑖
 , 𝐴𝐴 𝐴𝐴600𝑡𝑡

 , and 𝐴𝐴 𝐴𝐴𝑖𝑖 . 
Prior distributions formalize the a priori estimates and uncertainties for the non-remotely-sensed terms. More 
intuitively, BIKER priors represent our “prior river knowledge” of what 𝐴𝐴 𝐴𝐴0𝑖𝑖

 , 𝐴𝐴 𝐴𝐴600𝑡𝑡
 , and 𝐴𝐴 𝐴𝐴𝑖𝑖 probably are for some 

river since they cannot be directly remotely sensed. This method of hyperparameter assignment is analogous 
to the “empirical Bayes approach” to Bayesian inference (Hoff, 2009). Our goal in prior specification was to 
rely on absolutely no in situ information such that we could run this method on any river on Earth solely using 
SWOT observations. In theory, more informed priors via various a priori information about a specific river will 
improve BIKER performance, but here we chose to test the fully generalized algorithm. Therefore, the valida-
tion presented here is a “worst-case scenario,” wherein BIKER performance should improve with better prior 
information on the river. In that context, we used a variation of the prior specification method developed by 
Brinkerhoff et al. (2020), who developed “geomorphic river types” with distinct prior sets for 𝐴𝐴 𝐴𝐴0𝑖𝑖

 and 𝐴𝐴 𝐴𝐴𝑖𝑖 . These 
priors are assigned to a river solely using SWOT data W and S, therefore meeting our needs for complete global 
implementability. Prior assignment for 𝐴𝐴 𝐴𝐴600𝑡𝑡

 was developed similarly (all prior specifications are elaborated on in 
Text S4 in Supporting Information S1).

With the sampling model described (𝐴𝐴 𝐴𝐴 (𝑥𝑥|Θ)  = Equations 12a–12c) and priors 𝐴𝐴 𝐴𝐴(Θ) specified (Text S4 in Support-
ing Information S1), a joint posterior distribution conditional on the SWOT observations (𝐴𝐴 𝐴𝐴(Θ|𝑥𝑥) ∝ 𝑓𝑓 (𝑥𝑥|Θ)𝑝𝑝(Θ) ) 
is therefore also specified. To approximate this distribution, we use a Markov Chain Monte Carlo (MCMC) 
algorithm implemented using the Stan probabilistic programming language. Specifically, Stan uses a Hamilto-
nian Monte Carlo sampler which reduces computation time relative to other sampling algorithms (Hagemann 
et al., 2017).

3.2.2.  BIKER Validation

BIKER provides a timeseries of 𝐴𝐴 𝐴𝐴600 : for each SWOT observation, it yields a unique 𝐴𝐴 𝐴𝐴600 . There are, to our knowl-
edge, no datasets of 𝐴𝐴 𝐴𝐴600 over time approaching the temporal density of our simulated SWOT rivers. We therefore 
apply Equation 8 as validated in Figure 2 to specify 𝐴𝐴 𝐴𝐴600 given the true hydraulics of each case and compare 
BIKER's inversion to that value: given observed hydraulics, “observed” 𝐴𝐴 𝐴𝐴600 comes from Equation 8. Remember 
that SWOT cannot observe below the water surface and therefore cannot measure 𝐴𝐴 𝑈𝑈  or H (hence the need for 
Equation 10), and that all SWOT observations contain errors in both space and time (hence Equations 12a–12c). 
We acknowledge that there is error in Equation 8 as shown in Figure 2, but this error can be explicitly parame-
terized in our Bayesian system (elaborated on in Text S5 in Supporting Information S1). Therefore, the BIKER 
validation presented here is an exercise to see how well the imperfect and partial SWOT observations can infer 

𝐴𝐴 𝐴𝐴600 given the hydraulic assumptions in Equation 10 and uncertainty in the data itself. Note also that we have 
already validated Equation 7 in Figure 2 and Table 1.

We validate BIKER as a timeseries of 𝐴𝐴 𝐴𝐴600 for each river using the BIKER posterior means. Our error metrics 
consider the timeseries nature of the problem and are formally defined in Table S2 in Supporting Information S1. 
They consist of the correlation coefficient r to quantify accuracy of BIKER's temporal dynamics, the root mean 
square error normalized by the observed mean (NRMSE) and normalized mean absolute residual error (NMAE) 
to assess bias, and the Kling-Gupta Efficiency (KGE). KGE is frequently used to assess streamflow prediction 
and simultaneously assesses accuracy in both bias and dynamics. While a value greater than −0.41 means the 
model outperforms a uniform prediction of the mean (Knoben et al., 2019), generally KGE scores are interpreted 
as being meaningful in ungauged settings if >0.
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3.2.3.  Carbon Emissions Validation

It is one thing to accurately model the temporal dynamics of 𝐴𝐴 𝐴𝐴600 as above, but researchers are often most inter-
ested in the actual carbon emitted from river to atmosphere. Per Equation 2, emissions upscaling is done using 
river hydraulic models to estimate 𝐴𝐴 𝐴𝐴CO2

 and in turn 𝐴𝐴
[

FCO2upscaled

]

 . However, streamflow data and/or model outputs 
are more readily modeled at the global scale than river channel geometry, and so upscaling models usually predict 

𝐴𝐴 𝑈𝑈  and H as functions of streamflow (Q) using hydraulic geometry scaling relationships. This workflow effec-
tively reduces Equation 2 to Equation 13. It is worth stressing that these literature upscaling workflows rely on in 
situ streamflow records and/or high-quality streamflow models.

[

FCO2upscaled

]

= �
(

�CO2 ,Δ[CO2]
)

= � (�,Δ[CO2])� (13)

Conversely, BIKER represents a new way of approaching Equation 13 compared to existing literature models: 
BIKER has no reliance on a streamflow model nor hydraulic geometry scaling relationships and only requires 
that a river is SWOT-observable. We are therefore interested in how the final carbon emissions that result from 
BIKER compare against literature methods that use Equation 13. We have the data to test four different models for 
fluxes: “BIKER,” “Raymond 2013,” “Raymond 2012,” and “Brinkerhoff 2019.” These latter three approaches all 
use the same philosophy for 𝐴𝐴 𝐴𝐴600 : making hydraulic and geomorphic assumptions to associate 𝐴𝐴 𝐴𝐴600 with observed 
hydraulics before using the 𝐴𝐴 [CO2] data as a realistic timeseries to yield fluxes per Equation  13. In all three 
approaches, these observed hydraulics are streamflow, while BIKER uses only SWOT observations. Therefore, 
the advantage of BIKER is in its ease of application, as SWOT will observe all global rivers wider than 50 m 
while streamflow observations are extremely geographically limited. But, BIKER is only attractive if it can 
produce fluxes with similar errors to published methods. Text S6 and Table S3 in Supporting Information S1 fully 
describe these three literature models.

To benchmark BIKER against these literature methods, we pair the 26 biweekly 𝐴𝐴 [CO2] and water temperature 
samples from Beaulieu et al. (2012) (Section 3.1, Figure S4 in Supporting Information S1) with every 14th set of 
daily SWOT observations (as the 𝐴𝐴 [CO2] data is bi-weekly). We then calculate 𝐴𝐴 [FCO2] using Equation 1, an atmos-
pheric 𝐴𝐴

[

CO2air

]

 of 400 𝐴𝐴 𝐴𝐴 atm, and a Sc estimated following Raymond et al. (2012). The k in Equation 1 is obtained 
using BIKER or the three literature models (Table S3 and Text S6 in Supporting Information S1). Finally, we 
estimate a pseudo yearly total carbon emission rate (via 𝐴𝐴 [CO2] evasion) by applying each river's mean 𝐴𝐴 [FCO2] over 
the river's surface area and summing all rates across rivers, remembering that we are applying “unit” 𝐴𝐴 [CO2] data 
to all rivers.

3.3.  Section 3 Results

3.3.1.  BIKER

In general, the temporal dynamics of 𝐴𝐴 𝐴𝐴600 are reproduced quite well by BIKER (Figure 3). In the best performing 
rivers, both bias and temporal dynamics are strongly captured (Figures 3e and 3f). Notably, there is sometimes 
positive bias in the estimates (e.g., the Connecticut and Iowa rivers, Figures 3c and 3d). Some rivers yield the 
correct temporal dynamics, but the magnitude of these values is stretched relative to the observed (e.g., Ohio 
River and Seine River, Figures 3a and 3b). In these two examples, temporal trends are still reasonably inferred 
even though the magnitude of the estimates is quite wrong. The size of posterior uncertainty in 𝐴𝐴 𝐴𝐴600 does not 
appear to be associated with overall algorithm performance, with both certain and uncertain results spread across 
the rivers, regardless of their KGE (Figure 3, Figure S5 in Supporting Information S1).

Overall, river performance across error metrics (Table S2 in Supporting Information S1) is reasonable given 
the strict validation setup we have employed (Figure 4). Median river KGE is 0.21 and median river r is 0.91 
(Figure 4). Further, 31/47 rivers outperform a uniform prediction of the mean (KGE = −0.41). The correlation 
coefficient r out-performs the other metrics which assess bias (Figure 4). This result indicates strong inference 
of each river's temporal 𝐴𝐴 𝐴𝐴600 dynamics given that absolutely no in situ information is being used to predict 𝐴𝐴 𝐴𝐴600 . 
NRMSE has a median score of 0.51 (Figure 4), highlighting many rivers which have notable positive biases 
(Figure 3 also confirms this result visually). Median NMAE is 47% (Figure 4). Taken in aggregate, Figures 3 
and 4 indicate that BIKER is quite good at capturing temporal dynamics in 𝐴𝐴 𝐴𝐴600 , however there is often positive 
bias in its estimates.
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BIKER is robust to the measurement errors that will be implicit in SWOT's observations of river width and slope 
(Figure  5). BIKER performs nearly identically across all four error metrics, particularity with respect to the 
metrics that singularly assess bias or correlation errors (Figures 5b–5d). The three very poor KGE rivers actually 
improve under the error scenario (Figure 5a), though this is likely an artifact of BIKER already not working in 
these rivers. Given these results, we deem that SWOT measurement error does not exert a significant influence 
on BIKER performance and so the results presented for the rest of the manuscript assume no measurement error 
in order to use all 47 rivers.

Finally, errors/biases associated with the prior 𝐴𝐴 𝐴𝐴600 are correctly propagated through the posterior in an approx-
imately 1:1 manner (which is expected), except for a subset of rivers in which posterior error actually increases 
relative to the prior (Figure 6a). We explore why this phenomenon happens below.

Recall that BIKER relies on a timeseries of SWOT data, and that these timeseries may not be representative of the 
full spectrum of 𝐴𝐴 𝐴𝐴600 values that are actually experienced in the river, therefore potentially biasing both the prior 
estimation methods (Text S4 in Supporting Information S1) and the actual Bayesian inference. Put another way, 
we suggest that if a SWOT timeseries does not sufficiently capture a river's temporal dynamics, it will introduce 
additional error to the inference results. To test this hypothesis, we subset our validation data set by progressively 
higher coefficients of variation (CV) (>10%, >20%, and >30%). Posterior bias drops once the temporal variabil-
ity of the SWOT data is sufficiently high (Figures 6b), with BIKER posterior error the smallest, and much less 
than prior error, in Figure 6d. This result is elaborated on in Section 4.2.

Figure 3.  Representative (6 out of 47) river timeseries plots of 𝐴𝐴 𝐴𝐴600 . Orange is observed, while green is Bayesian Inference 
of the 𝐴𝐴 𝐴𝐴600 Evasion Rate (BIKER) posterior means and uses Surface Water and Ocean Topography measurements as its sole 
input. The green ribbon indicates the 95% credible intervals for the BIKER posteriors. Rivers are sampled from the three 
tertiles of Kling-Gupta Efficiency scores. (a–b) Are poorest performing rivers, (c–d) are in the middle, and (e–f) are the best 
performing rivers. Y axis is normalized by maximum observed values to compare visually. Consult Figure S5 in Supporting 
Information S1 for all 47 timeseries plots (assuming no measurement error) and Figure S6 in Supporting Information S1 for 
the 16 rivers with measurement errors.
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3.3.2.  Carbon Emissions

Finally, we carry these 𝐴𝐴 𝐴𝐴600 estimates all the way to annual carbon emissions rates and compare BIKER against 
three established in situ techniques in the literature. It is important to remember that only BIKER is completely 
globally implementable, while the other three models necessarily rely on having a streamflow record or 
high-quality routed streamflow readily available. Therefore, the in situ methods reflect their “best-case scenar-
ios” while BIKER reflects its worst case scenario, where priors are set entirely from SWOT observations and 
are generally the least informative they will ever be. This validation setup means that BIKER's annual carbon 
emission estimate can only improve from what is presented here. We also stress again that the raw emissions rates 
here are meaningless as they are calculated from an identical 𝐴𝐴

[

CO2water

]

 timeseries applied to every river. We are 
principally interested in relative differences between techniques employed.

Figure 7 compares the annual carbon emissions rate (via 𝐴𝐴
[

FCO2

]

 ) from the rivers using BIKER posterior means 
and the three stream gauge-based HG models. BIKER outperforms the gauge-based approaches, nearly correctly 
inferring the annual carbon emissions rate (7.87 Tg-C/yr for BIKER vs. 6.9 Tg-C/yr observed). The three HG 
models overestimate this emissions rate: 11.11, 9.32, and 12.22 Tg-C/yr for “Raymond 2013,” “Raymond 2012,” 
and “Brinkerhoff 2019” respectively. “Raymond 2012” falls within the BIKER credible intervals and is reason-
ably close to the observed value, while “Raymond 2013” overestimates the emission rate. “Brinkerhoff 2019”'s 
lower confidence interval is comparable to BIKER's higher credible interval. BIKER's relatively stronger perfor-
mance than the in situ models is elaborated on in Section 4.3. Finally, BIKER's uncertainty is on par with the in 
situ technique (“Brinkerhoff 2019”), despite being obtained solely from SWOT data. Taken in aggregate, BIKER 
provides a strong upscaling estimate of the annual carbon emission rate for the rivers and is either similar or better 
than established in situ techniques (Figure 7).

Figure 4.  Performance metrics across all 47 rivers, ploted as empirical cumulative density functions (eCDFs). Each subpanel 
is labeled by its performance metric (defined in Table S2 in Supporting Information S1). Dashed lines denote median scores.
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4.  Discussion
In this paper, we propose that the soon-to-launch SWOT satellite will provide enough hydraulic measurements to 
analyze the temporal dynamics of 𝐴𝐴 𝐴𝐴600 , and therefore allow for a global-scale analysis of spatiotemporal trends in 
large-river 𝐴𝐴 𝐴𝐴600 once SWOT launches. In preparation for SWOT's launch, we developed (a) a wide-river-specific 
hydraulic model for 𝐴𝐴 𝐴𝐴600 that explains 50% of variation in 𝐴𝐴 𝐴𝐴600 and (b) the BIKER algorithm to infer 𝐴𝐴 𝐴𝐴600 using no 
on-the-ground information. Validating on 47 SWOT-simulated rivers, we show strong recovery of rivers' tempo-
ral 𝐴𝐴 𝐴𝐴600 dynamics and a hypothetical total annual carbon emission rate across all 47 rivers (Section 3.3).

4.1.  Gas Exchange in Hydraulically Wide Rivers

Field studies of gas exchange in wide rivers have suggested that 𝐴𝐴 𝐴𝐴600 behaves differently in these rivers than in 
steeper and smaller rivers (Alin et al., 2011; Beaulieu et al., 2012; Raymond & Cole, 2001; Ulseth et al., 2019; 
Wang et al., 2021). While much work has focused on the small-stream side of the stream-to-river continuum, 
comparatively less work has been done in large rivers. Here, we focus on the larger, “smooth-channel” end of 
the continuum, using a model for gas exchange that scales 𝐴𝐴 𝐴𝐴600 by both 𝐴𝐴 𝐴𝐴𝐷𝐷 and a shear Reynold's number. Scaling 

𝐴𝐴 𝐴𝐴600 via a shear Reynold's number is often done to parameterize breaking-wave gas exchange models in the open 
ocean (Brumer et al., 2017; Zhao & Toba, 2001; Zhao et al., 2003), though these models are specific to high wind 
speeds in open ocean. To our knowledge, Moog and Jirka (1999a)'s specific setup, which imposes a space-and-
time varying, fractional area surface turbulence theory on the small-eddy model, has not been empirically vali-
dated in rivers until now (Figure 2 for hydraulically wide channels). Using our full data set of 𝐴𝐴 𝐴𝐴600 , we also 

Figure 5.  Comparison of Bayesian Inference of the 𝐴𝐴 𝐴𝐴600 Evasion Rate performance when considering measurement error 
in the Surface Water and Ocean Topography observations for 16 rivers. Each subpanel is labeled by its performance metric 
(Table S2 in Supporting Information S1). Rivers that fall within the purple zone get worse when accounting for measurement 
error, while rivers in the green get better. Note that some axes are flipped in order to visualize the “best performances” in the 
upper-right-corner of each sub-plot. Black line denotes linear regression to aid in visualization.
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observe that this model breaks down when including non-hydraulically-wide rivers (as the theory would suggest). 
Future tests should also explore other shear Reynold's scaling relations for gas exchange in rivers.

Crucially, we are not accounting for wind-driven gas exchange, which is suggested to play an important role 
in wide rivers because river surface area is sufficiently large that sheltering no longer limits the influence of 
wind-derived turbulence (Beaulieu et al., 2012; Raymond & Cole, 2001; Wang et al., 2021). None of the exist-
ing hydraulics-driven fluvial 𝐴𝐴 𝐴𝐴600 models account for wind-driven gas exchange either. Additionally, under 
higher-wind scenarios the turbulent regime will switch from hydraulically-driven to wind-driven turbulence 
(Zappa et al., 2007) and the assumptions under-pinning BIKER will likely break down. BIKER's outputs can 
therefore be interpreted as the “𝐴𝐴 𝐴𝐴600 under low-wind conditions” when surface turbulence is dominated by hydrau-
lics rather than wind. That said, BIKER's flexible implementation is a good start toward eventually coupling 
hydraulics-driven gas exchange with wind-driven gas exchange under moderate-to-high wind scenarios.

4.2.  Toward Remote Sensing of Global Spatiotemporal Dynamics of k600 in Large Rivers

To date, the studies exploring the spatiotemporal dynamics of riverine gas exchange have arguably been held back 
by a lack of data. A few studies have investigated these dynamics, but they have been limited to individual rivers 
and/or limited field seasons (Hall et al., 2012; Sand-Jensen & Staehr, 2012). For example, Wallin et al. (2011) 
performed a preliminary analysis in northern Sweden relating cross-section specific temporal variability in gas 
exchange with channel slope, but they were limited to a mean of only 8 measurements per river in a single water-
shed. While these studies are a good start, they are insufficient for further developing process-level understand-
ings of gas exchange at the global-scale.

Figure 6.  Empirical cumulative density functions for prior and posterior 𝐴𝐴 𝐴𝐴600 normalized mean absolute residual error. See 
Table S2 in Supporting Information S1 for metric definitions. (a) All rivers. (b) Only rivers with a coefficient of variation 
(CV) of observed 𝐴𝐴 𝐴𝐴600  > 0.10. (c) Only rivers with CV > 0.20. (d) Only rivers with CV > 0.30. Overall we see that rivers with 
greater temporal variation in 𝐴𝐴 𝐴𝐴600 behave better for Bayesian Inference of the 𝐴𝐴 𝐴𝐴600 Evasion Rate, that is, Bayesian inference 
reduces bias from prior to posterior.
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Therefore, inferring 𝐴𝐴 𝐴𝐴600 from SWOT data is an attractive option to address 
this problem of limited data. For reference, 95% of the SWOT-visible rivers 
globally (202,811) will have sufficient SWOT observations along the river to 
run BIKER at least once every 21 days, with most of the temperate and Arctic 
rivers having 3+ observations per 21-day cycle (Altenau et al., 2021). While 
BIKER will not directly measure 𝐴𝐴 𝐴𝐴600 , it does robustly infer temporal trends 
in 𝐴𝐴 𝐴𝐴600 and reasonably infers the absolute magnitude of 𝐴𝐴 𝐴𝐴600 (Figures 3–6). 
This many data will provide a novel data set of 𝐴𝐴 𝐴𝐴600 on a scale never before 
possible.

However, SWOT's relatively coarse spatial resolution limits BIKER's use to 
large rivers. This limitation means SWOT cannot see the vast majority of the 
global river network (which are too narrow for SWOT), though it is likely to 
observe much of its air/water interface at which gas exchange occurs (rivers 
wide enough for SWOT to observe). To confirm this hypothesis, we obtained 
the global estimates for SWOT-observable surface area and length (at mean 
annual streamflow—Altenau et  al., 2021) and compared them to the most 
recent estimates of global river surface area and length (Liu et al., 2022, Table 
S4 in Supporting Information S1). We found that 42% of the global riverine 
surface area is SWOT-observable, while only 0.32% of the network length 
is SWOT-observable. While small streams in aggregate exert a significant 
influence on GHG emissions from river networks (Liu et al., 2022; Raymond 
et al., 2013), BIKER will still be capable of inferring 𝐴𝐴 𝐴𝐴600 for much of the 
global freshwater air/water interface.

With that said, there is a substantial range of BIKER performance across 
rivers (Figures 3 and 4; Figures S4 and S5 in Supporting Information S1). 
These differences in performance are likely due to the representativeness of 
the priors, which makes sense as Section 2.3 and Section 3.2.1 have effec-

tively reduced 𝐴𝐴 𝐴𝐴600 to a function of hydraulics that are nearly all directly measurable by SWOT. Any resulting bias 
in BIKER's predictions is likely attributable to either bias in the priors used for the non-remotely sensed terms 
(Equation 12b) or in the 𝐴𝐴 𝐴𝐴600 model itself (Equation 8, including the aforementioned wind errors). For SWOT 
discharge algorithms, authors have repeatedly shown that the “quality” of prior river knowledge plays a large 
role in the success of discharge inversions (Andreadis et al., 2020; Brinkerhoff et al., 2020; Frasson et al., 2021; 
Tuozzolo et al., 2019) and our results here further corroborate this finding.

Furthermore, there is likely a minimum sufficient variability in SWOT observations that is necessary to strongly 
infer a 𝐴𝐴 𝐴𝐴600 timeseries (Figure 6). “Hydraulic visibility,” that is, the ability of a remote sensor to identify a hydro-
logical response in the river (Garambois et al., 2017) is applicable here. If we apply hydraulic visibility to a 
sensor's ability to identify temporal variations in 𝐴𝐴 𝐴𝐴600 , our results suggest a “minimally sufficient” hydraulic vari-
ability in SWOT measurements is needed to improve upon the prior (in Figure 6b, suggested to be approximately 
>20% CV for this sample of rivers). This finding will be important once SWOT launches and BIKER is imple-
mented at the global-scale. Although it is presently impossible to know whether SWOT will achieve “sufficient 
hydraulic visibility” over its lifetime, recent similar work using the Landsat archive suggests that most rivers' full 
flow regime will be observed by the SWOT satellite: Allen et al. (2020) found that the Landsat record observed 
97% of streamflow percentiles in 90% of United States streamgauges. Landsat has an average temporal resolution 
of 16 days, which is approximately similar to the repeat cycle for SWOT. Further, SWOT will penetrate clouds 
and provide even more data on cloudy days (unlike Landsat's optical sensor). With that said, the nominal lifespan 
of SWOT is only 3 years, within which certain streamflow magnitudes may not be experienced and reduce the 
chance that “sufficient hydraulic visibility” is achieved.

Finally, because of its reliance on Manning's equation and hydraulic geometry (Section 3.2.1.), BIKER cannot 
invert overbank flow events, similar to many SWOT discharge algorithms. This concept is an important distinc-
tion that must be accounted for when BIKER is run on actual SWOT data, though future work should also look to 
couple floodplain flow laws with BIKER to capture gas exchange in seasonally-inundated floodplains.

Figure 7.  Yearly carbon emissions rate via 𝐴𝐴 [CO2] evasion across all rivers. 
Completely remotely-sensed methods are colored in red (with 95% credible 
intervals), in situ methods in purple (with 95% confidence intervals when 
available), and the observed in orange. Consult Section 3.2.3 for details on the 
“observed” flux.
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4.3.  Coupling BIKER With Upscaling Workflows

BIKER will likely be useful for informing annual upscaled carbon emissions estimates from river networks when 
coupled with 𝐴𝐴 [CO2] data (Figure 7). This encouraging result has two main implications for future work.

First, it implies that BIKER will be useful when coupled with large-scale 𝐴𝐴
[

CO2water

]

 models, provided these models 
are accurate. The models would give time and space varying gas exchange. Liu et al. (2022) and Saccardi and 
Winnick (2021) each propose models that robustly predict reach-scale dissolved 𝐴𝐴 [CO2] concentrations using two 
different approaches-machine learning for Liu et al. (2022) and process-based reactive transport modeling for 
Saccardi and Winnick (2021)—but both models yield 𝐴𝐴 [CO2] estimates that would be spatially and temporally 
consistent with BIKER's output. Our promising results suggest that BIKER could provide additional (and directly 
inferred) measurements of 𝐴𝐴 𝐴𝐴CO2

 to these models, thereby better informing model results through direct obser-
vations. This modeling would likely be accomplished via data assimilation which has proven useful in using 
remotely-sensed discharge to improve streamflow routing models (Feng et al., 2021; Ishitsuka et al., 2020), and 
of which the Saccardi and Winnick (2021) 𝐴𝐴 [CO2] model takes a similar form.

Second, our experiments allow us to directly compare the influence of geomorphic assumptions on total carbon 
emission rates from river networks (Figure 7), as all other calculations and parameters were held constant across 
our four tested models (Text S6 in Supporting Information S1). Therefore, we highlight a potentially large source 
of uncertainty in current river 𝐴𝐴 [CO2] upscaling estimates: the geomorphic models employed to scale river channel 
hydraulics with streamflow (Figure 7). In this case, the only difference between the three literature models and 
the observed estimate is the specific HG model employed to predict river depth and velocity (Text S6, Table S3 
in Supporting Information S1), and yet the eventual carbon emissions estimates are quite different (Figure 7). 
Further, recall that the BIKER results in Figure 7 reflect a worst-case scenario (relatively uniformed priors), 
while the three in-situ methods represent best case scenarios (perfect streamflow records). We suggest future 
work should perform a formal sensitivity analysis for these HG parameters.

5.  Conclusions
This proof-of-concept study verifies that BIKER can provide meaningful information on the spatiotemporal 
dynamics of gas exchange solely from SWOT data and functionally opens the door for a global-scale analysis of 
riverine gas exchange upon SWOT's launch (and data collection). Although BIKER results are often biased in 
magnitude, they strongly capture the temporal dynamics of gas exchange velocity and will provide an unprece-
dented amount of new information on global riverine gas exchange that should be essential for better constraining 
existing river 𝐴𝐴 [CO2] models.

Appendix A
This Appendix contains two tables detailing the notation used throughout the study (Tables A1 and A2).
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Notation Description Calculation (if necessary) Units

𝐴𝐴 𝐴𝐴  Channel cross-sectional area – 𝐴𝐴
[

𝐿𝐿
2
]

 

𝐴𝐴 𝐴𝐴0  Non-SWOT-observable cross-sectional area – 𝐴𝐴
[

𝐿𝐿
2
]

 

𝐴𝐴 𝐴𝐴𝑝𝑝  Active zone fraction Moog and Jirka (1999a, 1999b) 𝐴𝐴 𝐴𝐴𝑝𝑝 ∝ Re
1∕2

∗ Moog and 
Jirka (1999a, 1999b)

𝐴𝐴 dimensionless 

𝐴𝐴 [CO2]  Carbon dioxide concentration –
𝐴𝐴

[

𝑀𝑀

𝐿𝐿3

]

 

𝐴𝐴
[

CO2water

]

  Water-side 𝐴𝐴 [CO2] concentration –
𝐴𝐴

[

𝑀𝑀

𝐿𝐿3

]

 

𝐴𝐴
[

CO2air

]

  Atmospheric-side 𝐴𝐴 [CO2] concentration –
𝐴𝐴

[

𝑀𝑀

𝐿𝐿3

]

 

𝐴𝐴 𝐴𝐴𝐴𝐴  Change in cross-sectional area 𝐴𝐴
∑

𝑡𝑡′∶𝑊𝑊
𝑡𝑡′
≤𝑊𝑊𝑡𝑡

𝑊𝑊𝑡𝑡′𝛿𝛿𝛿𝛿𝑒𝑒
𝑡𝑡′
  𝐴𝐴

[

𝐿𝐿
2
]

 

𝐴𝐴 𝐴𝐴𝑚𝑚  Molecular diffusion coefficient –
𝐴𝐴

[

𝐿𝐿
2

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴  Dissipation rate of near-surface turbulence –
𝐴𝐴

[

𝐸𝐸

𝑀𝑀∗𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴𝑆𝑆  Log-law-of-the-wall model for 𝐴𝐴 𝐴𝐴
𝐴𝐴

𝑈𝑈
3
∗

𝐻𝐻
  𝐴𝐴

[

𝐸𝐸

𝑀𝑀∗𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴𝐷𝐷  Form-drag model for 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴𝐴𝑈𝑈   𝐴𝐴

[

𝐸𝐸

𝑀𝑀∗𝑇𝑇

]

 

𝐴𝐴 [FCO2] 𝐴𝐴 [CO2] evasion flux from river to atmosphere –
𝐴𝐴

[

𝑀𝑀

𝐿𝐿2𝑇𝑇

]

 

𝐴𝐴
[

FCO2upscaled

]

  Upscaling estimate of the global 𝐴𝐴 [CO2] evasion flux 
from river to atmosphere

–
𝐴𝐴

[

𝑀𝑀

𝐿𝐿2𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴  Gravitational acceleration 9.8
𝐴𝐴

[

𝐿𝐿

𝑇𝑇 2

]

 

𝐴𝐴 𝐴𝐴  Mean flow depth 𝐴𝐴
𝐴𝐴

𝑊𝑊
  𝐴𝐴 [𝐿𝐿] 

𝐴𝐴 𝐴𝐴𝑒𝑒  Water surface elevation 𝐴𝐴 [𝐿𝐿] 

𝐴𝐴 𝐴𝐴  Cross-section discretization within a mass-conserved 
river reach

– –

𝐴𝐴 𝐴𝐴𝑧𝑧  Gas exchange velocity for gas z –
𝐴𝐴

[

𝐿𝐿

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴600  Gas exchange velocity normalized to 𝐴𝐴 Sc = 600
𝐴𝐴

(

600

𝑆𝑆𝑆𝑆

)−0.5

𝑘𝑘  𝐴𝐴

[

𝐿𝐿

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴  Manning's roughness coefficient
𝐴𝐴

𝑅𝑅
2∕3

ℎ
𝑆𝑆
1∕2

𝑈𝑈
  𝐴𝐴

[

𝑇𝑇

𝐿𝐿3

]

 

𝐴𝐴 𝐴𝐴  Density of water –
𝐴𝐴

[

𝑀𝑀

𝐿𝐿1∕3

]

 

𝐴𝐴 𝐴𝐴  River discharge 𝐴𝐴 𝐴𝐴𝐴𝐴𝑈𝑈   𝐴𝐴
𝐿𝐿
3

𝑇𝑇
 

𝐴𝐴 𝐴𝐴ℎ  Hydraulic radius 𝐴𝐴
𝐴𝐴𝐴𝐴

2𝐻𝐻+𝑊𝑊
  𝐴𝐴 [𝐿𝐿] 

𝐴𝐴 𝐴𝐴𝐴𝐴∗  Shear Reynold's number 𝐴𝐴
𝑈𝑈∗𝐻𝐻

𝑣𝑣
  𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝐴𝐴 𝐴𝐴  River slope – 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

𝐴𝐴 𝐴𝐴𝐴𝐴  Schmidt number 𝐴𝐴
𝑣𝑣

𝐷𝐷𝑚𝑚

  –

𝐴𝐴 𝐴𝐴  Timestep discretization within river reach – –

𝐴𝐴 𝑈𝑈   Cross-sectional average velocity 𝐴𝐴
𝑄𝑄

𝐴𝐴
  𝐴𝐴

[

𝐿𝐿

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴∗  Shear velocity 𝐴𝐴

√

𝑔𝑔𝑔𝑔𝑔𝑔ℎ  𝐴𝐴

[

𝐿𝐿

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴  Viscosity – 𝐴𝐴 [𝑃𝑃 ∗ 𝑇𝑇 ] 

𝐴𝐴 𝐴𝐴  Kinematic viscosity 𝐴𝐴
𝜇𝜇

𝜌𝜌
 

𝐴𝐴

[

𝐿𝐿
2

𝑇𝑇

]

 

𝐴𝐴 𝐴𝐴   Flow width – 𝐴𝐴 [𝐿𝐿] 

Note. Unit quantities are as follows: M for mass, L for length, T for time, P for pressure, and E for energy.

Table A1 
Variable Description and Notation for This Study
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Data Availability Statement
Datasets required for this research are available from Ulseth et al. (2019) (https://doi.org/10.1038/s41561-019-
0324-8), Brinkerhoff et al. (2019) (https://doi.org/10.1029/2019GL084529), Frasson et al. (2021) (https://zenodo.
org/record/3817817), Churchill et  al.  (1964) (https://pubs.usgs.gov/pp/0737/report.pdf), Owens et  al.  (1964) 
(https://pubs.usgs.gov/pp/0737/report.pdf), Beaulieu et  al.  (2012) (https://doi.org/10.1029/2011JG001794), 
and Durand et  al.  (2016) (https://doi.org/10.1002/2015WR018434). All code to generate results and figures 
is archived at https://zenodo.org/record/6914119. The BIKER algorithm remains in active development and is 
available at https://github.com/craigbrinkerhoff/BIKER. The specific version of BIKER used in this study is 
archived at https://zenodo.org/record/6914064.
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Notation Description

𝐴𝐴 𝐴𝐴  Joint data distribution for BIKER

𝐴𝐴 Θ  Joint parameter distribution for BIKER

𝐴𝐴 Θ𝜇𝜇  Mean hyperparameter for BIKER prior distributions

𝐴𝐴 Θ𝜎𝜎  Standard deviation hyperparameter for BIKER prior distributions

𝐴𝐴 Θ𝛾𝛾  Upper bound hyperparameter for BIKER prior distributions

𝐴𝐴 Θ𝜆𝜆  Lower bound hyperparameter for BIKER prior distributions

𝐴𝐴 𝐴𝐴𝑘𝑘600
  “Uncertainty” hyperparameter for BIKER likelihood distribution

𝐴𝐴 𝐴𝐴𝑛𝑛  Coefficient parameter distributions for k600 scaling relations, where n = independent variable number

𝐴𝐴 𝐴𝐴1  Intercept parameter distribution for k600 scaling relations

𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿  Uncertainty parameter distribution for k600 scaling relations

Table A2 
Bayesian Parameter and Hyperparameter Notation for This Study
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