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Abstract Two decades of research has shown that the global river network emits significant amounts

of greenhouse gas. Despite much progress, there is still large uncertainty in the temporal dynamics of gas
exchange and thus carbon emissions to the atmosphere. Much of this uncertainty stems from a lack of existing
tools for studying the spatiotemporal dynamics of gas exchange velocity ke (the rate of this diffusive
transport). We propose that the NASA/CNES/UKSA/CSA Surface Water and Ocean Topography (SWOT)
satellite can provide new insights to fluvial gas exchange modeling upon launch and subsequent data collection
in 2022. Here, we exploit the distinct geomorphology of SWOT-observable rivers (>50 m wide) to develop

a physical model of gas exchange that is remotely sensible and explains 50% of log-transformed variation
across 166 field measurements of kepo. We then couple this model with established inversion techniques to
develop BIKER, the “Bayesian Inference of the k¢ Exchange Rate” algorithm. We validate BIKER on 47
SWOT-simulated rivers without an in-situ calibration, yielding an algorithm that predicts the ke timeseries
solely from SWOT observations with a by-river median Kling-Gupta Efficiency of 0.21. BIKER is better at
inferring the temporal variation of gas exchange (median correlation coefficient of 0.91), than reproducing the
absolute rates of exchange (median normalized RMSE of 51%). Finally, BIKER is robust to measurement errors
implicit in the SWOT data. We suggest that BIKER will be useful in mapping global-scale fluvial gas exchange
and improving [CO,] emissions estimates when coupled with river [CO,] models.

1. Introduction

Rivers play a critical role in the budgeting and accounting of the global carbon cycle under climate change.
Following Cole et al. (2007), the global river network is recognized to emit substantial amounts of carbon to the
atmosphere via evasion (gas exchange driven by diffusion and near-surface turbulence at the air/water interface),
in addition to their long understood role in transporting carbon to the oceans via downstream advection. Current
estimates of total carbon dioxide evasion ([FCO]) to the atmosphere from the global river network vary from
1800 to 2000 Tg C/yr (Liu et al., 2022; Raymond et al., 2013), with 650 Tg-C/yr and 167 Tg-C/yr coming from
mid-to-large rivers (Lauerwald et al., 2015) and mountain streams (Horgby et al., 2019), respectively. Despite
rivers' small percentage of the global land surface (0.67%—Liu et al., 2022), this carbon flux is on par with the
total oceanic [CO;] uptake rate (2600 Tg-C/yr—Gruber et al., 2019; Horgby et al., 2019) and the global forest
carbon uptake rate (2400 Tg-C/yr—Pan et al., 2011).

River [CO,] evasion is increasingly better constrained and is clearly a critical component of the global carbon
cycle. Equation 1 represents this riverine flux given A[CO,] = ([COZ - [COgm]) and the gas exchange veloc-
ity k. Consult Appendix A for notation used throughout this study.

water ]

[FCO,] = kA[CO,] )]

There is a robust existing literature exploring spatiotemporal patterns in A[CO;] (e.g., Aho et al., 2021; Aho &
Raymond, 2019; Crawford et al., 2017; Liu & Raymond, 2018; Peter et al., 2014; Ran et al., 2017; Raymond
et al., 2000; Rocher-Ros et al., 2019). This work has lead to recent river-reach explicit modeling of A [CO,]using
global hydrography datasets at up to monthly temporal resolutions (Brinkerhoff et al., 2021; Horgby et al., 2019;
Liu et al., 2022; Saccardi & Winnick, 2021), but an equivalently sophisticated representation of kco, is still
lacking.
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The structure of Equation 1 necessitates that calculations of [FCO,] are highly sensitive to estimates of k.
However, k can only be estimated via a known gas flux, eddy-covariance measurements, or tracer additions to
the stream (Hall & Ulseth, 2020). In trying to constrain the global fluvial [FCO;] flux across millions of rivers,
this calculation is impossible and necessitates the use of predictive models for & that are based on easily obtained
river hydraulic properties. In that vein, over 20 empirical models exist to predict k from river hydraulics, generally
using some combination of mean velocity U, shear velocity U,, width W, depth H, and slope .S as predictors
(Hall & Ulseth, 2020; Wang et al., 2021). These models usually predict ke, or k normalized by a Schmidt
number (Sc) of 600 to remove the effect of water temperature and gas type from predictive models, as warmer
waters and lower Sc numbers each increase gas exchange rates (Hall & Ulseth, 2020). Specifically, ke reflects
the kco, at 20 degrees Celsius. Through this normalization, these models focus solely on physical explanations
for variation in k (Hall & Ulseth, 2020).

Applying these k models across watersheds, regions, or continents is called “upscaling.” This upscaling allows for
quantifying the difficult-to-estimate k term in Equation 1 for any arbitrary number of rivers, but also changes the
base parameters that ultimately control the final estimate of [FCO,]. That is, by making & a function of hydraulics,
[Fcozupscaled]
suggests that global [FCO;] estimates are not only at the mercy of the accuracy and spatiotemporal resolution of

is now a direct function of river hydraulics. This functional relationship is described in Equation 2. It
A [CO;], but also the accuracy and resolution of our river hydraulics estimates.
[FCOs,piea| = £ (kco,, A[CO2]) = f( U,H,S,W, A[coz]) )

Global upscaling has been performed using various techniques. Raymond et al. (2013), Lauerwald et al. (2015),
and Horgby et al. (2019) all relied on kco, values indirectly estimated using mean annual streamflow models and
hydraulic scaling equations to predict the hydraulic terms used to in turn predict kco,, while Borges et al. (2015)
used a combination of the above method and a constant kco, in space and time to upscale over Africa. More
recently, Liu et al. (2022) performed a first upscaling assessment of monthly temporal dynamics in global river
[FCO,], though they relied on monthly modeled streamflow and used the same model for kg as previous studies
(Raymond et al., 2013). In all of these foundational studies, the temporal dynamics of kco, (and thus dynamics
in [FCO,]) were ignored because of hydraulic data limitations. It has been shown at the field-scale that temporal
dynamics of gas exchange can vary widely from site to site (Wallin et al., 2011), but it has remained impractical
to obtain temporally explicit kco, at continental-to-global scales.

Wang et al. (2021) recently attempted to address this global k problem by simulating the gas exchange velocity of
dissolved oxygen (ko,) in 35 rivers of many sizes (widths ranging from 0.23 to 349 m) using a stream metabolism
inverse model (Appling et al., 2018) and in situ dissolved oxygen datasets to infer what ko, must have been to
produce their “observations.” They then compared this simulated data set against direct estimates of k, finding
similar performance and parameter values for process-based models of gas evasion. However, they were still
limited by a lack of direct hydraulic measurements and had to rely on hydraulic scaling equations to estimate
river depth and velocity. Even though approaches like Wang et al. (2021)'s are incredibly useful for expanding
our mechanistic understanding of gas exchange, they are less useful for global upscaling purposes as they rely on
high fidelity in situ dissolved oxygen data for every river (Hall & Ulseth, 2020).

We have established that literature has a reasonably good understanding of A[CO,] and a relatively poorer under-
standing of ke (and therefore kco,) across large areas and in time. In theory, the discrepancy between the quality
of our A[COzww] and kco, estimates could be alleviated if direct hydraulics measurements (and in turn kco,
via Equation 2) were available at the global scale at a sufficient temporal resolution. Spatially and temporally
dynamic hydraulic measurements in turn would also address the uncertainty regarding continental-to-global scale
temporal dynamics of gas exchange noted earlier.

Conveniently, these hydraulic data will soon be available via the upcoming NASA/CNES/UKSA/CSA Surface
Water and Ocean Topography (SWOT) satellite mission. SWOT is expected to launch in late 2022 and provide
the world's first direct measurements of global water surface extent and elevation (and therefore water surface
slope) at novel temporal resolutions. SWOT is a wide swath radar interferometer and will sample rivers every
1-7 days per 21 days repeat cycle, measuring rivers wider than 100 m with a goal of expanding to rivers at least
50 m wide (Biancamaria et al., 2016). Via its direct hydraulic measurements, SWOT is expected to usher in a sea
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Figure 1. Conceptual overview of the Bayesian Inference of the kqo) Evasion Rate algorithm. 1: Surface Water and Ocean
Topography will directly measure water surface width and elevation (and thus slope) at a series of cross-sections within
mass-conserved river reaches. 2: These hydraulics measurements are used to calculate turbulent dissipation in the river
channel (Section 3). 3: Turbulent dissipation is used to infer k¢ via a process-based model (Section 2).

change in global-scale hydrology, and could similarly influence fluvial biogeochemsitry if techniques are devel-
oped to ingest SWOT data and infer £. In this context, we borrow tools from fluvial geomorphology and existing
SWOT algorithms to begin addressing the current knowledge gap in the spatiotemporal dynamics of gas exchange
velocity. More specifically, we seek to answer the following two questions:

1. What is the performance of a physically-based hydraulic model for kgqo unique to SWOT-observed rivers?
2. How well can we exploit such a model to infer kqo (and its uncertainty) solely from SWOT observations?

To answer the first question, we use hydraulic geometry-the fundamental geomorphic relationships between
streamflow and channel shape (Gleason, 2015; Leopold & Maddock, 1953) to develop a process-based model
for large-river keoo (here defined as wider than 50 m to align with SWOT). We then take these findings and
explore the second question by implementing this hydraulic model, which defines ko, Within an algorithm
named BIKER (“Bayesian Inference of the keoo Evasion Rate”) to infer kggo solely from SWOT measurements.
The goal of BIKER is to require no in situ inputs of any kind (although in situ data could be ingested and would
improve results) such that it is globally implementable on any SWOT-observable river. We validate BIKER on
47 SWOT-simulated rivers (as SWOT has not yet launched) and explore BIKER's robustness to the expected
measurement errors implicit in the satellite's observations. Finally, we also couple BIKER's kg estimates with
A[CO;] to predict gas fluxes and compare these against established literature methods that rely on hydraulic
scaling equations.

This paper is split into two distinct parts: gas-exchange theory/model development (Section 2) and BIKER
algorithm development/validation (Section 3). Section 3 is fundamentally dependent on the results presented in
Section 2, therefore Section 2 presents both theory and results. Both sections detail the data used. We conclude
with a discussion (Section 4) that encompasses both gas exchange theory and remote sensing. Figure 1 concep-
tually maps out the algorithm's approach to inferring keoo from SWOT data, while Figure S1 in Supporting Infor-
mation S1 details the entire study's workflow.
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2. Predicting k), From Large-River Hydraulic Geometry
2.1. Data

We develop our hydraulic model for kg using multiple datasets of field-estimated keo9 and measured stream
hydraulics collected from the literature. In total, we obtain 763 estimates of ke, With 701 of these estimates
previously gathered by Raymond et al. (2012) and Ulseth et al. (2019). The remaining estimates come from
Churchill et al. (1964) and Owens et al. (1964). See Table S1 in Supporting Information S1 for a complete list of
the studies that collected these data. All kg estimates come from tracer studies and thus define k¢ at the reach
scale.

The 763 estimates cover different times of year and hydrological events. They include both individual estimates
and repeat estimates in over 500 river reaches across the United States, Wales, Switzerland, and Austria. They
span a wide variety of environments from temperate higher-order rivers to small mountain streams and represent
a full range of river flows (width ranges from 0.26 m to 1,742 m, discharge ranges from 8e—4 to 489 m?/s, and
keoo ranges from 0.1 to 4,118 m/dy). While there are still geographic and hydrologic biases in this data set, it is to
our knowledge the largest such data set of field-estimated, reach-scale kqyo Where hydraulic data is concurrently
available.

In addition to hydraulics measured alongside ke and reported above, we expand our data set of stream hydraulics
using a previously published compilation of in situ hydraulic measurements (Brinkerhoff et al., 2019). That data
set contains over 530,000 unique measurements of river channel velocity, width, and discharge from across the
continental United States, originally made to calibrate United States Geological Survey (USGS) streamgauge
rating curves and made public by the USGS. This data set is used to calculate how frequently SWOT observable
rivers meet our large-river hydraulic assumptions (Section 2.3).

2.2. Process-Based Hydraulic Modeling of River k&

k scales with near-surface turbulence in turbulent streamflows (Hall & Ulseth, 2020), and extensive field and
laboratory experiments have converged on the “small-eddy model” for k as derived by Lamont and Scott (1970)
and empirically anticipated by Calderbank and Moo-Young (1961). This model scales k via the smallest-scale
turbulent eddies and has been repeatedly empirically validated in freshwater systems (e.g., Katul et al., 2018;
Lorke & Peeters, 2006; Moog & Jirka, 1999b; Tokoro et al., 2008; Vachon et al., 2010; Wang et al., 2021; Zappa
etal., 2003, 2007). The small-eddy model is provided as Equation 3, where e is the dissipation rate of near-surface
turbulence, v is the kinematic viscosity, and Sc is the Schmidt number.

k o« Sc™ 2 (pey'/* (3)

Some laboratory and field observations additionally suggest that open channel flows with small bed roughness do
not exhibit homogeneous surface dissipation across the entire reach's air-water interface (Moog & Jirka, 1999a;
Talke et al., 2013). Given this observation, Moog and Jirka (1999a) proposed an extension to the small-eddy
model, additionally scaling keo using a shear Reynold's number Re. formulation (Equation 4, referred to as the
“Reynolds extension”” model). The Reynolds extension model is hypothetically useful in low-turbulence scenar-
ios where a relative lack of large-scale eddies effectively “filter out” the number of small-scale eddies that actu-
ally reach the interface and initiate gas exchange (Talke et al., 2013). While scaling k via a shear Reynold's formu-
lation is sometimes done to parameterize wave-breaking gas exchange models in the open ocean (e.g., Brumer
et al., 2017; Zhao & Toba, 2001; Zhao et al., 2003), it is infrequently done in rivers. In the context of BIKER, we
chose to test this model because large, SWOT-observable rivers are generally the smoothest, least-turbulent flows
along the stream-to-ocean continuum where small eddies might not reach the surface. Further, to our knowledge,
the Reynolds extension model has never been empirically tested in predicting river k, aside from confirming that
large-scale eddies differentially move turbulence to the surface in a large river (Talke et al., 2013).

k o Sc™'2(ve) 4 (Re,)** @

Equations 3 and 4 both rely on e, which is difficult to measure. When working at large scales, a commonly
used ¢ model assumes that all turbulence is generated at the bed and transported to the air-water interface via
the log-law-of-the-wall (Equation 5). Another approach specific to fluvial settings models k via “form-drag
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dissipation” (Equation 6) which is equivalently the total stream power per
unit mass water. This normalized stream power captures the bulk frictional
resistance (and thus energy dissipation) via channel banks, meanders, bars,
etc. that is unique to rivers (Moog & Jirka, 1999b). Authors have since shown
that Equation 6 can reasonably predict k in rivers and streams (Raymond
et al., 2012; Ulseth et al., 2019; Wang et al., 2021).
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Figure 2. Empirical testing of our large-river k¢, model on 166

1
Predicted kgoo[m/d] 2.3. Deriving a Large-River k¢,, Model

|
10 100

Given the theoretical context provided in Section 2.2, we now turn to

measurements made in hydraulically-wide rivers. Dashed gray line denotes the ~ SWOT-observable rivers specifically. Rivers and streams change predicta-
1:1 line. For the model, points reflect posterior means while lines reflect the bly along their longitudinal profile from source to sea, and we can exploit

95% credible intervals.

the hydraulic geometry of large rivers at the end of this continuum to esti-

mate k in SWOT rivers. In general, as river size increases, channels become

more rectangular, their shapes elongate (becoming wider quicker than
they become deeper) and their hydraulic radii begin to approximate their mean flow depth, that is, R, ¥ H
(Leopold & Maddock, 1953), a common assumption in hydraulic and geomorphic modeling of large rivers. For
example, SWOT-observable river flows have an average % ratio of 0.98 and standard deviation of only 0.02
(n =22,452; see Text S1 in Supporting Information S1 for how we built this data set). We refer to these rivers as
“hydraulically-wide.”

We therefore assume that all SWOT-observable rivers are hydraulically-wide to derive a model for gas exchange.
The overall goal is to reduce the equations down to their fundamental parameters, identifying which terms are
SWOT observable and limiting the number of terms not directly measurable via SWOT. We first impose ¢ = ¢p
and Ry = H on the Reynolds extension model (Equation 4) and then log-transform to maintain homogeneous
variance across the orders of magnitude of ke to arrive at Equation 7 (with statistical coefficient ;). Equation 7
thus defines gas exchange velocity solely as a function of slope, mean flow depth, and mean flow velocity and is
theoretically valid only in a hydraulically-wide channel.

7 1 — 9
log(ka) = i + clog(eS) + 7log (T ) + rrlog(H) %

We also test the performance of three other models for predicting & in hydraulically-wide channels via the other
three unique combinations of Equations 3 and 4 and Equations 5 and 6. While the complete model derivations
and results for all four models are provided in Text S2 and Figure S2 in Supporting Information S1, the final and
best-performing model (Equation 7) is presented and used below.

2.4. Model Validation

With Equation 7 derived, we now test its strength of fit in hydraulically-wide river flows. We validate on the
data set of in situ estimates of kg, after filtering for those made in hydraulically-wide channels, which was
defined as flows whose hydraulic radius was within 1% of their mean flow depth. All told, there are 166 esti-
mates of hydraulically-wide kepo. Equation 7 is assessed via a Bayesian linear regression model, where the
theoretically-derived coefficients from Equation 7 are used as reasonably informative priors for the regression
coefficients. The intercept and model uncertainty both use uninformed priors. See Text S3 in Supporting Infor-
mation S1 for the model specification. We assess the goodness-of-fit using the posterior mean coefficient of
determination (r?) following Gelman et al. (2019).

Equation 7 explains 50% of variation in observed (log-transformed) keqo in hydraulically-wide rivers and accu-
rately captures the scaling dynamics of observed keo as well (Figure 2). The posterior mean in natural log
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Table 1 space for f#; is 3.89 (Table 1). While the individual residuals can be quite

Comparison of Three Regression Models for k,, Model for Hydraulically-
Wide Rivers. “Theoretical” Refers to the Model Coefficients Derived by
Imposing a Hydraulically Wide Channel on the “Reynolds-Extension”
Model for Gas Exchange (Section 2.3)

Equation 7 results “Theoretical” “Empirical”  “Bayesian”
a % ~ 0.44 0.42 0.43

@ i ~ 025 0.32 0.31

a 19—6 ~ 0.56 0.5 052

B (natural log space) 3.85 3.85 3.89

r? 0.5 0.5 0.5

Note. “Empirical” refers to the result of fitting the coefficients by least-squares
regression. “Bayesian” refers to the posterior means of the coefficients,
conditional on priors informed by the “Theoretical” coefficients (Text S3 in
Supporting Information S1, Figure 2).

large (indicating that additional processes and/or field estimation error are
presumably controlling the 50% unexplained variation in log-transformed
keoo), the general scaling of keo with river hydraulics is strongly captured.
We also tested two non-Bayes implementations of Equation 7 using (a)
the theoretically-derived coefficients and (b) a fully empirical line fitting
approach (Table 1). Interestingly, the data exerted little-to-no influence on
the theoretically-derived priors, and both the empirical and posterior coef-
ficients were virtually identical to those obtained theoretically (Table 1),
indicating that Equation 7 is a good theoretical model for gas exchange in
hydraulically wide flows.

Compared to other combinations of Equations 3—6 (Figure S2 in Supporting
Information S1), there is also a better fit using Equation 7 thanks to the addi-
tion of the Reynold's number scaling for low-turbulent flows (as expected).
The success of the final model in hydraulically-wide channels (provided as
Equation 8 using the posterior means) provides us with a physical-model for
gas evasion built with SWOT in mind. The river hydraulics terms in Equa-
tion 8 (U, H, and S) can either be directly measured or reasonably inferred
from SWOT measurements, effectively opening the door for remotely sens-
ing the gas exchange velocity.

log(keo) = 3.89 + (0.43)log(gS) + (03 Dlog (T ) + (0.52)log(H) ®)

3. BIKER Algorithm Development and Validation

3.1. Data

To validate BIKER, we cannot use actual SWOT measurements as SWOT has yet to launch. In the hydrology
literature, it has become standard practice to benchmark SWOT-related algorithms on “SWOT-like” data (Durand
et al., 2016; Frasson et al., 2021). We use 47 SWOT-simulated rivers for validation, where these simulated
rivers are simply reach-averaged hydraulic model outputs where the water surface heights, slopes, and widths are

labeled as RS observations and are used as the sole inputs to BIKER (Figure S1 in Supporting Information S1).

These datasets are created using standard hydraulic models forced with known inflows and measured bathymetry

to model the hydraulic response of the rivers, and then those terms visible to SWOT are extracted to produce

hydraulically realistic synthetic observations. These data were published by Frasson et al. (2021) and Durand
et al. (2016). See Figure S3 in Supporting Information S1 for a map of these river's locations along the global
SWOT river network (Altenau et al., 2021).

There is considerable geographic bias in our validation rivers, with rivers only present in North America, Western
Europe, and Bangladesh. Further, no Arctic rivers are included. We acknowledge that this bias limits our ability to
validate BIKER across many environments ahead of SWOT's launch. However, it is a sufficient validation set for
a first proof-of-concept study consistent with the hydrology literature for SWOT. Further, the data requirements
to create these test cases are strict and the processing time is enormous. Also note that SWOT water surface slope
measurements will have a lower detection limit of 1.7 cm/km (Biancamaria et al., 2016), and therefore any slope
measurement in our data less than this threshold was reassigned this minimum value.

We validate BIKER under two different “error scenarios” (Section 3.2.2). While SWOT will provide river surface
measurements of novel quality and resolution, as with all remote sensing products there are expected errors that
will be implicit in these measurements. Here, we validate BIKER under a “no-measurement-error” scenario
that reflects an unrealistic measurement as if SWOT has perfect accuracy and precision: we use the hydraulic
model of 47 rivers directly as a first test of algorithm validity. 16 of these rivers are then additionally validated
under a “measurement-error’” scenario that more closely mimics expected SWOT by adding realistic radar errors
and sampling along the satellite's future ground track. SWOT river error modeling was developed by Durand
et al. (2020) and then applied to these 16 rivers by Frasson et al. (2021). This error modeling is non-trivial
and computationally expensive, and so Frasson et al. (2021) were limited to only 16 test cases with SWOT
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measurement errors. Likewise, we stick to these 16 rivers for the same reason. These rivers are detailed in Figure
S3 in Supporting Information S1. Given that it is only 16 synthetic rivers, caution should be used in over gener-
alizing our results beyond our proof of concept.

For [CO;] evasion and carbon emissions calculations, we use 26 bi-weekly dissolved [CO,] samples collected by
Beaulieu et al. (2012) at one location in the Ohio River (Figure S3 in Supporting Information S1) for one calen-
dar year from 2008 to 2009 (Figure S4 in Supporting Information S1). Note that this [CO;] data is for the Ohio
River only but was applied to all rivers to provide a physically realistic signal for [CO;] fluxes with meaningful
seasonality and dynamics. Therefore, the raw carbon emissions estimates presented in this paper are meaning-
less in the context of actually measured carbon emissions from these rivers but are better than specifying [CO;]
concentrations devoid of context. These data are necessary as we are interested in the effect of BIKER kg errors
on eventual fluxes and comparing these fluxes with published methods. Therefore, applying these “unit” [CO;]
values allows for such a comparison by providing a realistic timeseries.

3.2. Section 3 Methods
3.2.1. BIKER

To develop BIKER, we follow the work of Hagemann et al. (2017), Brinkerhoff et al. (2020), and Durand
et al. (2014) to infer ke, H, and U from SWOT observations. These Bayesian approaches to inverse modeling
via SWOT data start from Bayes rule (Equation 9), where © is some set of non-remotely sensible parameters we
want to solve for (including keqp), x is the observed data, f(x|®) is the sampling model where data are conditional
on the parameters, and p(®) is the joint prior distribution of the parameters. Therefore, we are interested in solv-
ing for p(®|x), or the “posterior” distribution. Note that p(x) is usually computationally intractable to integrate
exactly, but Bayesian inference requires only the proportionality to be specified: p(®|x) « f(x|®)p(®). Sampling
algorithms are then used to approximate the actual posterior distribution, as is done in BIKER.

f(x|©)p(©)

pO®Ix) = o)

&)
The heart of BIKER is its reformulation of the key model (Equation 8) as a Bayesian sampling model that
is conditional on the non-remotely-sensed parameters (i.e., f(x|®)). This approach is similar to the “McFLI”
(Mass-Conserved Flow Law Inversion) logic used in some SWOT remote sensing of discharge algorithms
(Gleason et al., 2017). To start, we write ke as a function of SWOT-observables W and S. This algebra is carried
out using Equation 8 and Manning's equation for mean flow velocity U = %Ri”S‘/z). Following Section 2.3,

we continue to assume that the channel is hydraulically-wide (R, = H = %). To leverage additional SWOT data,
we use the “Durand transform” originally published by Durand et al. (2014): the wetted channel area A is further
split into the SWOT-unobservable portion A, and SWOT-observable portion d A where dA;; = ) WyéH.,,
for cross-section i and timestep # within a mass-conserved river reach. Wy <W,

All of the above algebra simplifies to Equation 10. Conveniently, ke as estimated by tracer additions to a stream
is inherently a reach-scale quantity (in a mass-conserved reach). Therefore, Equations 7, 8, and 10 all yield a
reach-scale kg (i-€., keoo, = keooVi), thus lowering the number of parameters BIKER must infer and making the
problem much better constrained.

log(keo, ) = 3.89 + (0.4320)log(g) + (0.5862)log(Si,) + (0.3084)10g< ! )

n;

(10)

Ao, + dA;,
+(0.7282)log [ ———=

it
Next, Equation 10 is re-written as a Bayesian sampling model f(x|®), in which the joint data distribution x (i.e.,

SWOT observations) is sampled from the joint parameter distribution (®). We first rearrange Equation 10 to
isolate x from ® (Equation 11). Then, Equations 12a—12c re-expresses Equation 11 as a normal distribution with
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standard deviation oy,,. The uncertainty expressed by oy, arises from uncertainties in (a) parameters in Equa-
tion 8, (b) Manning's equation, and (c) the hydraulically wide channel assumption.

3.89 + (0.4320)log(g) + (0.5862)log(S,) — (0.7282)log (W;,) =

log (keoo, ) + (0.3084)log(n;) — (0.7282)log( Ao, + dA;/) an
x = [3.89 + (0.4320)log(g) + (0.5862)log(:S:.,) — (0.7282)log(W;.,)| (122)
© = [log(ke, ) + (0.3084)log(n;) — (0.7282)log( Ao, + dAi)] (12b)

x ~N(0.02,,) (12¢)

Equations 9 and 12a—12c necessitate that we specify prior distributions for the parameters Ao, keoo,» and n;.
Prior distributions formalize the a priori estimates and uncertainties for the non-remotely-sensed terms. More
intuitively, BIKER priors represent our “prior river knowledge” of what Ay, keoo,» and n; probably are for some
river since they cannot be directly remotely sensed. This method of hyperparameter assignment is analogous
to the “empirical Bayes approach” to Bayesian inference (Hoff, 2009). Our goal in prior specification was to
rely on absolutely no in situ information such that we could run this method on any river on Earth solely using
SWOT observations. In theory, more informed priors via various a priori information about a specific river will
improve BIKER performance, but here we chose to test the fully generalized algorithm. Therefore, the valida-
tion presented here is a “worst-case scenario,” wherein BIKER performance should improve with better prior
information on the river. In that context, we used a variation of the prior specification method developed by
Brinkerhoff et al. (2020), who developed “geomorphic river types” with distinct prior sets for Ao, and n;. These
priors are assigned to a river solely using SWOT data W and S, therefore meeting our needs for complete global
implementability. Prior assignment for kego, was developed similarly (all prior specifications are elaborated on in
Text S4 in Supporting Information S1).

With the sampling model described (f(x|®) = Equations 12a—12c) and priors n(®) specified (Text S4 in Support-
ing Information S1), a joint posterior distribution conditional on the SWOT observations (p(®|x) « f(x|®)p(®))
is therefore also specified. To approximate this distribution, we use a Markov Chain Monte Carlo (MCMC)
algorithm implemented using the Stan probabilistic programming language. Specifically, Stan uses a Hamilto-
nian Monte Carlo sampler which reduces computation time relative to other sampling algorithms (Hagemann
etal., 2017).

3.2.2. BIKER Validation

BIKER provides a timeseries of keo: for each SWOT observation, it yields a unique kgoo. There are, to our knowl-
edge, no datasets of kg over time approaching the temporal density of our simulated SWOT rivers. We therefore
apply Equation 8 as validated in Figure 2 to specify keoo given the true hydraulics of each case and compare
BIKER's inversion to that value: given observed hydraulics, “observed” keo) comes from Equation 8. Remember
that SWOT cannot observe below the water surface and therefore cannot measure U or H (hence the need for
Equation 10), and that all SWOT observations contain errors in both space and time (hence Equations 12a—12c).
We acknowledge that there is error in Equation 8 as shown in Figure 2, but this error can be explicitly parame-
terized in our Bayesian system (elaborated on in Text S5 in Supporting Information S1). Therefore, the BIKER
validation presented here is an exercise to see how well the imperfect and partial SWOT observations can infer
keoo given the hydraulic assumptions in Equation 10 and uncertainty in the data itself. Note also that we have
already validated Equation 7 in Figure 2 and Table 1.

We validate BIKER as a timeseries of ke for each river using the BIKER posterior means. Our error metrics
consider the timeseries nature of the problem and are formally defined in Table S2 in Supporting Information S1.
They consist of the correlation coefficient » to quantify accuracy of BIKER's temporal dynamics, the root mean
square error normalized by the observed mean (NRMSE) and normalized mean absolute residual error (NMAE)
to assess bias, and the Kling-Gupta Efficiency (KGE). KGE is frequently used to assess streamflow prediction
and simultaneously assesses accuracy in both bias and dynamics. While a value greater than —0.41 means the
model outperforms a uniform prediction of the mean (Knoben et al., 2019), generally KGE scores are interpreted
as being meaningful in ungauged settings if >0.
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3.2.3. Carbon Emissions Validation

It is one thing to accurately model the temporal dynamics of ke as above, but researchers are often most inter-
ested in the actual carbon emitted from river to atmosphere. Per Equation 2, emissions upscaling is done using

river hydraulic models to estimate kco, and in turn [FC02 ] However, streamflow data and/or model outputs

upscaled
are more readily modeled at the global scale than river channel geometry, and so upscaling models usually predict
U and H as functions of streamflow (Q) using hydraulic geometry scaling relationships. This workflow effec-
tively reduces Equation 2 to Equation 13. It is worth stressing that these literature upscaling workflows rely on in

situ streamflow records and/or high-quality streamflow models.
[FCOs,iea] = f (kco,, AICO:]) = £(Q, A[CO:]) 13)

Conversely, BIKER represents a new way of approaching Equation 13 compared to existing literature models:
BIKER has no reliance on a streamflow model nor hydraulic geometry scaling relationships and only requires
that a river is SWOT-observable. We are therefore interested in how the final carbon emissions that result from
BIKER compare against literature methods that use Equation 13. We have the data to test four different models for
fluxes: “BIKER,” “Raymond 2013,” “Raymond 2012,” and “Brinkerhoff 2019.” These latter three approaches all
use the same philosophy for kep: making hydraulic and geomorphic assumptions to associate ke¢oo With observed
hydraulics before using the [CO,] data as a realistic timeseries to yield fluxes per Equation 13. In all three
approaches, these observed hydraulics are streamflow, while BIKER uses only SWOT observations. Therefore,
the advantage of BIKER is in its ease of application, as SWOT will observe all global rivers wider than 50 m
while streamflow observations are extremely geographically limited. But, BIKER is only attractive if it can
produce fluxes with similar errors to published methods. Text S6 and Table S3 in Supporting Information S1 fully
describe these three literature models.

To benchmark BIKER against these literature methods, we pair the 26 biweekly [CO,] and water temperature
samples from Beaulieu et al. (2012) (Section 3.1, Figure S4 in Supporting Information S1) with every 14th set of
daily SWOT observations (as the [CO,] data is bi-weekly). We then calculate [FCO,] using Equation 1, an atmos-
pheric [COZm] of 400 watm, and a Sc estimated following Raymond et al. (2012). The & in Equation 1 is obtained
using BIKER or the three literature models (Table S3 and Text S6 in Supporting Information S1). Finally, we
estimate a pseudo yearly total carbon emission rate (via [CO,] evasion) by applying each river's mean [FCO,] over
the river's surface area and summing all rates across rivers, remembering that we are applying “unit” [CO,] data
to all rivers.

3.3. Section 3 Results
3.3.1. BIKER

In general, the temporal dynamics of ke are reproduced quite well by BIKER (Figure 3). In the best performing
rivers, both bias and temporal dynamics are strongly captured (Figures 3e and 3f). Notably, there is sometimes
positive bias in the estimates (e.g., the Connecticut and Iowa rivers, Figures 3¢ and 3d). Some rivers yield the
correct temporal dynamics, but the magnitude of these values is stretched relative to the observed (e.g., Ohio
River and Seine River, Figures 3a and 3b). In these two examples, temporal trends are still reasonably inferred
even though the magnitude of the estimates is quite wrong. The size of posterior uncertainty in kg does not
appear to be associated with overall algorithm performance, with both certain and uncertain results spread across
the rivers, regardless of their KGE (Figure 3, Figure S5 in Supporting Information S1).

Overall, river performance across error metrics (Table S2 in Supporting Information S1) is reasonable given
the strict validation setup we have employed (Figure 4). Median river KGE is 0.21 and median river r is 0.91
(Figure 4). Further, 31/47 rivers outperform a uniform prediction of the mean (KGE = —0.41). The correlation
coefficient r out-performs the other metrics which assess bias (Figure 4). This result indicates strong inference
of each river's temporal keoo dynamics given that absolutely no in situ information is being used to predict kego.
NRMSE has a median score of 0.51 (Figure 4), highlighting many rivers which have notable positive biases
(Figure 3 also confirms this result visually). Median NMAE is 47% (Figure 4). Taken in aggregate, Figures 3
and 4 indicate that BIKER is quite good at capturing temporal dynamics in keoo, however there is often positive
bias in its estimates.
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Figure 3. Representative (6 out of 47) river timeseries plots of ke. Orange is observed, while green is Bayesian Inference
of the kgoo Evasion Rate (BIKER) posterior means and uses Surface Water and Ocean Topography measurements as its sole
input. The green ribbon indicates the 95% credible intervals for the BIKER posteriors. Rivers are sampled from the three
tertiles of Kling-Gupta Efficiency scores. (a—b) Are poorest performing rivers, (c—d) are in the middle, and (e—f) are the best
performing rivers. Y axis is normalized by maximum observed values to compare visually. Consult Figure S5 in Supporting
Information S1 for all 47 timeseries plots (assuming no measurement error) and Figure S6 in Supporting Information S1 for
the 16 rivers with measurement errors.

BIKER is robust to the measurement errors that will be implicit in SWOT's observations of river width and slope
(Figure 5). BIKER performs nearly identically across all four error metrics, particularity with respect to the
metrics that singularly assess bias or correlation errors (Figures 5b—5d). The three very poor KGE rivers actually
improve under the error scenario (Figure 5a), though this is likely an artifact of BIKER already not working in
these rivers. Given these results, we deem that SWOT measurement error does not exert a significant influence
on BIKER performance and so the results presented for the rest of the manuscript assume no measurement error
in order to use all 47 rivers.

Finally, errors/biases associated with the prior ke are correctly propagated through the posterior in an approx-
imately 1:1 manner (which is expected), except for a subset of rivers in which posterior error actually increases
relative to the prior (Figure 6a). We explore why this phenomenon happens below.

Recall that BIKER relies on a timeseries of SWOT data, and that these timeseries may not be representative of the
full spectrum of kgn values that are actually experienced in the river, therefore potentially biasing both the prior
estimation methods (Text S4 in Supporting Information S1) and the actual Bayesian inference. Put another way,
we suggest that if a SWOT timeseries does not sufficiently capture a river's temporal dynamics, it will introduce
additional error to the inference results. To test this hypothesis, we subset our validation data set by progressively
higher coefficients of variation (CV) (>10%, >20%, and >30%). Posterior bias drops once the temporal variabil-
ity of the SWOT data is sufficiently high (Figures 6b), with BIKER posterior error the smallest, and much less
than prior error, in Figure 6d. This result is elaborated on in Section 4.2.
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Figure 4. Performance metrics across all 47 rivers, ploted as empirical cumulative density functions (¢CDFs). Each subpanel
is labeled by its performance metric (defined in Table S2 in Supporting Information S1). Dashed lines denote median scores.

3.3.2. Carbon Emissions

Finally, we carry these kg0 estimates all the way to annual carbon emissions rates and compare BIKER against
three established in situ techniques in the literature. It is important to remember that only BIKER is completely
globally implementable, while the other three models necessarily rely on having a streamflow record or
high-quality routed streamflow readily available. Therefore, the in situ methods reflect their “best-case scenar-
ios” while BIKER reflects its worst case scenario, where priors are set entirely from SWOT observations and
are generally the least informative they will ever be. This validation setup means that BIKER's annual carbon
emission estimate can only improve from what is presented here. We also stress again that the raw emissions rates

here are meaningless as they are calculated from an identical [COZ timeseries applied to every river. We are

water ]
principally interested in relative differences between techniques employed.

Figure 7 compares the annual carbon emissions rate (via [Fcoz]) from the rivers using BIKER posterior means
and the three stream gauge-based HG models. BIKER outperforms the gauge-based approaches, nearly correctly
inferring the annual carbon emissions rate (7.87 Tg-C/yr for BIKER vs. 6.9 Tg-C/yr observed). The three HG
models overestimate this emissions rate: 11.11, 9.32, and 12.22 Tg-C/yr for “Raymond 2013,” “Raymond 2012,”
and “Brinkerhoff 2019 respectively. “Raymond 2012” falls within the BIKER credible intervals and is reason-
ably close to the observed value, while “Raymond 2013” overestimates the emission rate. “Brinkerhoff 2019”'s
lower confidence interval is comparable to BIKER's higher credible interval. BIKER's relatively stronger perfor-
mance than the in situ models is elaborated on in Section 4.3. Finally, BIKER's uncertainty is on par with the in
situ technique (“Brinkerhoff 2019”), despite being obtained solely from SWOT data. Taken in aggregate, BIKER
provides a strong upscaling estimate of the annual carbon emission rate for the rivers and is either similar or better
than established in situ techniques (Figure 7).
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Figure 5. Comparison of Bayesian Inference of the kg9 Evasion Rate performance when considering measurement error

in the Surface Water and Ocean Topography observations for 16 rivers. Each subpanel is labeled by its performance metric
(Table S2 in Supporting Information S1). Rivers that fall within the purple zone get worse when accounting for measurement
error, while rivers in the green get better. Note that some axes are flipped in order to visualize the “best performances” in the
upper-right-corner of each sub-plot. Black line denotes linear regression to aid in visualization.

4. Discussion

In this paper, we propose that the soon-to-launch SWOT satellite will provide enough hydraulic measurements to
analyze the temporal dynamics of ke, and therefore allow for a global-scale analysis of spatiotemporal trends in
large-river keoo once SWOT launches. In preparation for SWOT's launch, we developed (a) a wide-river-specific
hydraulic model for kg that explains 50% of variation in koo and (b) the BIKER algorithm to infer kg using no
on-the-ground information. Validating on 47 SWOT-simulated rivers, we show strong recovery of rivers' tempo-
ral keoo dynamics and a hypothetical total annual carbon emission rate across all 47 rivers (Section 3.3).

4.1. Gas Exchange in Hydraulically Wide Rivers

Field studies of gas exchange in wide rivers have suggested that ke behaves differently in these rivers than in
steeper and smaller rivers (Alin et al., 2011; Beaulieu et al., 2012; Raymond & Cole, 2001; Ulseth et al., 2019;
Wang et al., 2021). While much work has focused on the small-stream side of the stream-to-river continuum,
comparatively less work has been done in large rivers. Here, we focus on the larger, “smooth-channel” end of
the continuum, using a model for gas exchange that scales kg0 by both ep and a shear Reynold's number. Scaling
keoo via a shear Reynold's number is often done to parameterize breaking-wave gas exchange models in the open
ocean (Brumer et al., 2017; Zhao & Toba, 2001; Zhao et al., 2003), though these models are specific to high wind
speeds in open ocean. To our knowledge, Moog and Jirka (1999a)'s specific setup, which imposes a space-and-
time varying, fractional area surface turbulence theory on the small-eddy model, has not been empirically vali-
dated in rivers until now (Figure 2 for hydraulically wide channels). Using our full data set of kg, We also
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Figure 6. Empirical cumulative density functions for prior and posterior ke normalized mean absolute residual error. See
Table S2 in Supporting Information S1 for metric definitions. (a) All rivers. (b) Only rivers with a coefficient of variation
(CV) of observed kgo > 0.10. (c) Only rivers with CV > 0.20. (d) Only rivers with CV > 0.30. Overall we see that rivers with
greater temporal variation in ke behave better for Bayesian Inference of the k¢ Evasion Rate, that is, Bayesian inference
reduces bias from prior to posterior.

observe that this model breaks down when including non-hydraulically-wide rivers (as the theory would suggest).
Future tests should also explore other shear Reynold's scaling relations for gas exchange in rivers.

Crucially, we are not accounting for wind-driven gas exchange, which is suggested to play an important role
in wide rivers because river surface area is sufficiently large that sheltering no longer limits the influence of
wind-derived turbulence (Beaulieu et al., 2012; Raymond & Cole, 2001; Wang et al., 2021). None of the exist-
ing hydraulics-driven fluvial ke models account for wind-driven gas exchange either. Additionally, under
higher-wind scenarios the turbulent regime will switch from hydraulically-driven to wind-driven turbulence
(Zappa et al., 2007) and the assumptions under-pinning BIKER will likely break down. BIKER's outputs can
therefore be interpreted as the “keoo under low-wind conditions” when surface turbulence is dominated by hydrau-
lics rather than wind. That said, BIKER's flexible implementation is a good start toward eventually coupling
hydraulics-driven gas exchange with wind-driven gas exchange under moderate-to-high wind scenarios.

4.2. Toward Remote Sensing of Global Spatiotemporal Dynamics of &, in Large Rivers

To date, the studies exploring the spatiotemporal dynamics of riverine gas exchange have arguably been held back
by a lack of data. A few studies have investigated these dynamics, but they have been limited to individual rivers
and/or limited field seasons (Hall et al., 2012; Sand-Jensen & Staehr, 2012). For example, Wallin et al. (2011)
performed a preliminary analysis in northern Sweden relating cross-section specific temporal variability in gas
exchange with channel slope, but they were limited to a mean of only 8 measurements per river in a single water-
shed. While these studies are a good start, they are insufficient for further developing process-level understand-
ings of gas exchange at the global-scale.
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Therefore, inferring kg0 from SWOT data is an attractive option to address
this problem of limited data. For reference, 95% of the SWOT-visible rivers
globally (202,811) will have sufficient SWOT observations along the river to
run BIKER at least once every 21 days, with most of the temperate and Arctic
rivers having 3+ observations per 21-day cycle (Altenau et al., 2021). While

BIKER will not directly measure kg, it does robustly infer temporal trends
in keoo and reasonably infers the absolute magnitude of ke (Figures 3-6).

BIKER This many data will provide a novel data set of ke on a scale never before

I Brinkerhoff
2019
— Raymond
2012 large rivers. This limitation means SWOT cannot see the vast majority of the

2Rg1y :;n g global river network (which are too narrow for SWOT), though it is likely to

possible.

However, SWOT's relatively coarse spatial resolution limits BIKER's use to

I:I "Observed" observe much of its air/water interface at which gas exchange occurs (rivers
wide enough for SWOT to observe). To confirm this hypothesis, we obtained
the global estimates for SWOT-observable surface area and length (at mean
annual streamflow—Altenau et al., 2021) and compared them to the most
recent estimates of global river surface area and length (Liu et al., 2022, Table
S4 in Supporting Information S1). We found that 42% of the global riverine

surface area is SWOT-observable, while only 0.32% of the network length

is SWOT-observable. While small streams in aggregate exert a significant

influence on GHG emissions from river networks (Liu et al., 2022; Raymond

Figure 7. Yearly carbon emissions rate via [CO,] evasion across all rivers. et al., 2013), BIKER will still be capable of inferring ke for much of the

Completely remotely-sensed methods are colored in red (with 95% credible
intervals), in situ methods in purple (with 95% confidence intervals when
available), and the observed in orange. Consult Section 3.2.3 for details on the

“observed” flux.

global freshwater air/water interface.

With that said, there is a substantial range of BIKER performance across
rivers (Figures 3 and 4; Figures S4 and S5 in Supporting Information S1).
These differences in performance are likely due to the representativeness of
the priors, which makes sense as Section 2.3 and Section 3.2.1 have effec-
tively reduced ke to a function of hydraulics that are nearly all directly measurable by SWOT. Any resulting bias
in BIKER's predictions is likely attributable to either bias in the priors used for the non-remotely sensed terms
(Equation 12b) or in the keoo model itself (Equation 8, including the aforementioned wind errors). For SWOT
discharge algorithms, authors have repeatedly shown that the “quality” of prior river knowledge plays a large
role in the success of discharge inversions (Andreadis et al., 2020; Brinkerhoff et al., 2020; Frasson et al., 2021;
Tuozzolo et al., 2019) and our results here further corroborate this finding.

Furthermore, there is likely a minimum sufficient variability in SWOT observations that is necessary to strongly
infer a keoo timeseries (Figure 6). “Hydraulic visibility,” that is, the ability of a remote sensor to identify a hydro-
logical response in the river (Garambois et al., 2017) is applicable here. If we apply hydraulic visibility to a
sensor's ability to identify temporal variations in kgg, our results suggest a “minimally sufficient” hydraulic vari-
ability in SWOT measurements is needed to improve upon the prior (in Figure 6b, suggested to be approximately
>20% CV for this sample of rivers). This finding will be important once SWOT launches and BIKER is imple-
mented at the global-scale. Although it is presently impossible to know whether SWOT will achieve “sufficient
hydraulic visibility” over its lifetime, recent similar work using the Landsat archive suggests that most rivers' full
flow regime will be observed by the SWOT satellite: Allen et al. (2020) found that the Landsat record observed
97% of streamflow percentiles in 90% of United States streamgauges. Landsat has an average temporal resolution
of 16 days, which is approximately similar to the repeat cycle for SWOT. Further, SWOT will penetrate clouds
and provide even more data on cloudy days (unlike Landsat's optical sensor). With that said, the nominal lifespan
of SWOT is only 3 years, within which certain streamflow magnitudes may not be experienced and reduce the
chance that “sufficient hydraulic visibility” is achieved.

Finally, because of its reliance on Manning's equation and hydraulic geometry (Section 3.2.1.), BIKER cannot
invert overbank flow events, similar to many SWOT discharge algorithms. This concept is an important distinc-
tion that must be accounted for when BIKER is run on actual SWOT data, though future work should also look to
couple floodplain flow laws with BIKER to capture gas exchange in seasonally-inundated floodplains.
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4.3. Coupling BIKER With Upscaling Workflows

BIKER will likely be useful for informing annual upscaled carbon emissions estimates from river networks when
coupled with [CO,] data (Figure 7). This encouraging result has two main implications for future work.

First, it implies that BIKER will be useful when coupled with large-scale [COZWM] models, provided these models
are accurate. The models would give time and space varying gas exchange. Liu et al. (2022) and Saccardi and
Winnick (2021) each propose models that robustly predict reach-scale dissolved [CO,] concentrations using two
different approaches-machine learning for Liu et al. (2022) and process-based reactive transport modeling for
Saccardi and Winnick (2021)—but both models yield [CO,] estimates that would be spatially and temporally
consistent with BIKER's output. Our promising results suggest that BIKER could provide additional (and directly
inferred) measurements of kco, to these models, thereby better informing model results through direct obser-
vations. This modeling would likely be accomplished via data assimilation which has proven useful in using
remotely-sensed discharge to improve streamflow routing models (Feng et al., 2021; Ishitsuka et al., 2020), and
of which the Saccardi and Winnick (2021) [CO,] model takes a similar form.

Second, our experiments allow us to directly compare the influence of geomorphic assumptions on total carbon
emission rates from river networks (Figure 7), as all other calculations and parameters were held constant across
our four tested models (Text S6 in Supporting Information S1). Therefore, we highlight a potentially large source
of uncertainty in current river [CO,] upscaling estimates: the geomorphic models employed to scale river channel
hydraulics with streamflow (Figure 7). In this case, the only difference between the three literature models and
the observed estimate is the specific HG model employed to predict river depth and velocity (Text S6, Table S3
in Supporting Information S1), and yet the eventual carbon emissions estimates are quite different (Figure 7).
Further, recall that the BIKER results in Figure 7 reflect a worst-case scenario (relatively uniformed priors),
while the three in-situ methods represent best case scenarios (perfect streamflow records). We suggest future
work should perform a formal sensitivity analysis for these HG parameters.

5. Conclusions

This proof-of-concept study verifies that BIKER can provide meaningful information on the spatiotemporal
dynamics of gas exchange solely from SWOT data and functionally opens the door for a global-scale analysis of
riverine gas exchange upon SWOT's launch (and data collection). Although BIKER results are often biased in
magnitude, they strongly capture the temporal dynamics of gas exchange velocity and will provide an unprece-
dented amount of new information on global riverine gas exchange that should be essential for better constraining
existing river [CO,] models.

Appendix A

This Appendix contains two tables detailing the notation used throughout the study (Tables Al and A2).
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Table A1
Variable Description and Notation for This Study
Notation Description Calculation (if necessary) Units
A Channel cross-sectional area - [ LZ]
Ao Non-SWOT-observable cross-sectional area - [ LZ]
A, Active zone fraction Moog and Jirka (1999a, 1999b) A, x Re!/*Moog and dimensionless
Jirka (1999a, 1999b)
[CO;] Carbon dioxide concentration - [ M ]
3
[(jo2 ] Water-side [CO,] concentration - [ M ]
water F
[Cozmr] Atmospheric-side [CO, ] concentration - [ M ]
13
dA Change in cross-sectional area Y WiéH., [ LZ]
Wy W,
D, Molecular diffusion coefficient - [ w2 ]
T
€ Dissipation rate of near-surface turbulence - [ E ]
MxT
€s Log-law-of-the-wall model for e ol [ E ]
H MxT
€p Form-drag model for e e SU [ E ]
M =T
[FCO,] [CO,] evasion flux from river to atmosphere - M
T27
[Fcozup\culcd] Upscaling estimate of the global [CO,] evasion flux - [ M
from river to atmosphere or
4 Gravitational acceleration 9.8 [ L ]
T2
H Mean flow depth % [L]
H, Water surface elevation [L]
i Cross-section discretization within a mass-conserved - -
river reach
k- Gas exchange velocity for gas z - [ L ]
T
keoo Gas exchange velocity normalized to Sc = 600 600\ "5 [ L ]
(%) * T
n Manning's roughness coefficient R 512 [ il ]
7 &
0 Density of water - [ M
3
o River discharge WHU L
T
Ry Hydraulic radius - a [L]
2H+W
Re, Shear Reynold's number U.H dimensionless
S River slope - dimensionless
Sec Schmidt number D'_’ _
t Timestep discretization within river reach - -
U Cross-sectional average velocity Q [ L ]
4 T
U. Shear velocity V2SR, [4
T
u Viscosity - [P Tl
v Kinematic viscosity f [L_Z ]
T
w Flow width = [L]
Note. Unit quantities are as follows: M for mass, L for length, T for time, P for pressure, and E for energy.
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Table A2

Bayesian Parameter and Hyperparameter Notation for This Study

Notation Description

x Joint data distribution for BIKER

(C] Joint parameter distribution for BIKER

0, Mean hyperparameter for BIKER prior distributions

0, Standard deviation hyperparameter for BIKER prior distributions
Q, Upper bound hyperparameter for BIKER prior distributions

0, Lower bound hyperparameter for BIKER prior distributions

Okgoo “Uncertainty” hyperparameter for BIKER likelihood distribution
ay Coefficient parameter distributions for k¢, scaling relations, where n = independent variable number
B Intercept parameter distribution for kg, scaling relations

oLm Uncertainty parameter distribution for kg, scaling relations

Data Availability Statement

Datasets required for this research are available from Ulseth et al. (2019) (https://doi.org/10.1038/s41561-019-
0324-8), Brinkerhoff et al. (2019) (https://doi.org/10.1029/2019GL084529), Frasson et al. (2021) (https://zenodo.
org/record/3817817), Churchill et al. (1964) (https://pubs.usgs.gov/pp/0737/report.pdf), Owens et al. (1964)
(https://pubs.usgs.gov/pp/0737/report.pdf), Beaulieu et al. (2012) (https://doi.org/10.1029/2011JG001794),
and Durand et al. (2016) (https://doi.org/10.1002/2015WR018434). All code to generate results and figures
is archived at https://zenodo.org/record/6914119. The BIKER algorithm remains in active development and is
available at https://github.com/craigbrinkerhoff/BIKER. The specific version of BIKER used in this study is
archived at https://zenodo.org/record/6914064.
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