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We extend Parareal, a parallel-in-time method that alternates between a serial sweep and 
a parallel sweep, to simulate the fluid flow around bio-inspired, dynamic structures over a 
period of time. Our main contributions include demonstrating the applicability of Parareal 
to the simulation of biofluids and developing novel solvers for the serial sweeps of Parareal. 
We propose to construct non-intrusive solvers by extrapolating a parametrized family of 
existing solvers. Compared to the existing solvers, they either allow the use of larger time 
steps, have a higher order of accuracy in time, or both. They are also straightforward to 
implement and parallelize. Numerical results show that when the number of biological 
structures is small or the number of computer cores employed is sufficiently large, the 
proposed variant of Parareal can achieve a significantly higher parallel speedup than the 
more commonly used spatial parallelization.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this paper is to develop a parallel-in-time method for simulating the fluid flow around bio-inspired, dynamic 
structures. As for many other problems in scientific computing, we observe that the parallel speedup “saturates” as the 
number of computer cores increases if spatial parallelization alone is used. We aim to take better advantage of the available 
computing resources by parallelizing the simulation in the time domain.

The first parallel-in-time method was proposed in [1] almost sixty years ago. In the past two decades, parallel-in-time 
methods have become increasingly more popular, as evidenced by a surge in the number of publications on them.1 Several 
review papers on parallel-in-time methods are available [2–5]. In [4], the author divided parallel-in-time methods into 
four categories: the shooting type methods, the domain decomposition and waveform relaxation methods, the space-time 
multigrid methods, and the direct time parallel solvers. In their very recent review article [5], the authors summarized the 
applications of parallel-in-time methods as well as their speedup and efficiency reported in the literature. It should be noted 
that spatial parallelization and temporal parallelization are not mutually exclusive and they can both be utilized in solving 
a large-scale problem to achieve the highest speedup (see [6], for example).

Our approach is based on the Parareal algorithm [7], which has been shown in [8] to be a variant of both the multiple 
shooting method and the time-multigrid method developed earlier. It is an iterative method for solving a system of Ordinary 
Differential Equations (ODEs) or Partial Differential Equations (PDEs) that “sweeps” the time domain multiple times. It 
alternates between a “serial sweep” and a “parallel sweep” and employs a coarse solver and a fine solver for the two 
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processes, respectively. Compared to the fine solver, the coarse solver either employs numerical methods of lower orders 
of accuracy, uses coarser temporal and/or spatial discretization, or both. The convergence and stability of Parareal have 
been analyzed in [7,9–13]. In [14], the author studied the scheduling of tasks in Parareal and proposed ways to improve 
its speedup. A number of variants of Parareal have been developed over the years, including the Krylov-subspace-enhanced 
Parareal [15], the hybrid Parareal-Spectral Deferred Correction (SDC) method [16], the Parallel Full Approximation Scheme 
in Space and Time (PFASST) method [17], ParaExp (which uses an exponential integrator) [18], and the Multigrid Reduction 
In Time (MGRIT) method [19]. Parareal and its variants have been applied to a wide range of problems including molecular 
dynamics [20,21], American put [22] and options [23], fluid-structure interactions [9,24], Navier-Stokes equations [25–29], 
non-Newtonian flows [30], turbulent flows [31], N-body problems [6], and robotics [32].

In the simulation of a fluid flow around bio-inspired, dynamic structures, the structures are typically represented by a 
number of Lagrangian grid points whose dynamics can be described by a system of nonlinear ODEs. Applying an ODE solver 
to it entails evaluating the flow field at every time step using a solver for fluid-structure interactions, such as the Method of 
Regularized Stokeslets (MRS) [33,34], the immersed boundary method [35,36], the boundary integral equation method [37], 
and the Rotne-Prager-Yamakawa tensor [38,39]. In this work, we focus on swimmers in the regime of zero Reynolds number 
where the fluid dynamics can be described accurately by the incompressible Stokes equations. We therefore use the MRS, 
a Lagrangian method that does not require an Eulerian grid for the fluid domain, to resolve fluid-structure interactions in 
the ODE solver. While it is not uncommon to parallelize the calculation of fluid-structure interactions in the spatial domain 
(see [40–43], for example), to our knowledge, temporal parallelization of the simulation of fluid flows around bio-inspired, 
dynamic structures has not been considered yet.

The speedup of Parareal depends greatly on how the computational cost of the coarse solver compares to that of the fine 
solver and how many Parareal iterations are needed to produce an accurate enough solution. The cheaper the coarse solver 
is and the smaller the required number of Parareal iterations is, the higher the speedup of Parareal becomes. However, we 
encounter the following “bottleneck” when applying the Parareal equipped with an “off-the-shelf” coarse solver: in order to 
approximately maintain the size of the structures during the simulation, a very small time step must be taken by the solver, 
which limits the efficiency of the solver and hence the speedup of Parareal. It is well known that simulations of elastic 
structures interacting with a fluid often have these restrictions on time step. For example, the stiffness of the immersed 
boundary method and the numerical schemes to remedy such restrictions have been analyzed and developed [44–47]. We 
propose to construct novel coarse solvers by extrapolating members of a parametrized family of existing solvers. The new 
solvers either allow for the use of larger time steps, have a higher order of accuracy in time, or both compared to the 
existing ones. By construction, they are also straightforward to implement and parallelize. Using a larger time step makes 
the coarse solver computationally less costly and raising its order of accuracy reduces the required number of Parareal 
iterations, both of which increase the speedup of Parareal.

The rest of the paper is organized as follows. In Section 2, we briefly review the main “ingredients” of the simulation 
of bio-inspired, dynamic structures immersed in a viscous fluid. In Section 3, we briefly review the Parareal algorithm. In 
Section 4, we describe how to construct novel coarse solvers by extrapolating members of a parametrized family of existing 
solvers. We apply the Parareal equipped with the proposed coarse solver to simulate the dynamics of a rod-like swimmer 
and a spherical swimmer and present the numerical results, including the accuracy, speedup, scaling of Parareal as well as 
its comparison with spatial parallelization, in Section 5. A few concluding remarks are given in Section 6.

2. Review: numerical simulation of dynamic, elastic structures immersed in a viscous fluid

We introduce the system of ODEs arising from the simulation of a biofluid and briefly review how to solve it. In partic-
ular, the MRS, which is the method for calculating fluid-structure interactions in this work, is reviewed in Section 2.3.

2.1. Modeling and discretizing the structures

Each structure is represented by a number of Lagrangian grid points connected by a network of springs. The elastic en-
ergy in the springs causes the grid points to “push” the surrounding fluid, which in turn deforms and propels the structures. 
In Fig. 1, we show a rod-like swimmer inspired by biological structures such as bacterial flagella and tails of sperm and a 
spherical swimmer inspired by the membrane of a vesicle. The grid used to discretize each structure is shown as well.

2.2. The system of ODEs

Assume that the structures are discretized by Nσ grid points. For i = 1, 2, · · · , Nσ , let xi(t) and ui(t) denote the 
location and velocity of the ith point at time t , respectively. To track {xi(t)}Nσ

i=1 over the period of time [0, T ], we have to 
solve the following system of Initial Value Problems (IVPs):

For i = 1, 2, · · · , Nσ :
dxi
dt

= ui(t) for t ∈ (0, T ] and xi(0) = xi,0. (1)

Let u(t, x) denote the fluid velocity at a location x and time t . We impose the non-slip condition so that ui(t) = u (t,xi).
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Fig. 1. Discretized rod-like swimmer (left) and spherical swimmer (right). (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Eq. (1) can be solved by an ODE solver, such as forward Euler method, in which a solver for fluid-structure interactions 
needs to be invoked to evaluate {ui(t)}Nσ

i=1 at every step. We partition the time domain [0, T ] uniformly into Nτ subintervals 
of length τ = T /Nτ and let t� = � · τ for � = 0, 1, 2, · · · , Nτ . In addition, for i = 1, 2, · · · , Nσ , let fi(t) denote the force 
exerted by the ith grid point to the surrounding fluid at time t , and let xi,� , fi,� , ui,� denote the approximations to xi(t�), 
fi(t�), ui(t�) respectively, which are calculated in the ODE solver. Here is an outline of the nth step of forward Euler method 
applied to Eq. (1).

1. Calculate the forces 
{
fi,�−1

}Nσ

i=1 that minimize the elastic energy at time t�−1, which depends on the locations {
xi,�−1

}Nσ

i=1 of the grid points, the material properties of the structures, and their preferred shapes.
2. Calculate the fluid velocities 

{
ui,�−1

}Nσ

i=1 at 
{
xi,�−1

}Nσ

i=1 induced by 
{
fi,�−1

}Nσ

i=1.
3. Calculate the location xi,� as xi,�−1 + τ · ui,�−1 for i = 1, 2, · · · , Nσ .

Remark 1. Although the above three steps have to be performed in the order that they appear, each one of them can be 
parallelized since the calculation that needs to be performed for one grid point is independent of that for another. For ex-
ample, once all of 

{
fi,�−1

}Nσ

i=1 are known, 
{
ui,�−1

}Nσ

i=1 can be calculated in parallel. We refer to this fashion of parallelization 
as spatial parallelization and will compare the speedups of spatial parallelization and temporal parallelization in Section 5.

2.3. Modeling fluid-structure interactions

The fluid surrounding micro-swimmers such as bacterial flagella is in the regime of zero Reynolds number and can be 
accurately described by the incompressible Stokes equations:

0 = −∇p + μ�u+ fs (2a)

0 = ∇ · u, (2b)

where μ is the viscosity of the fluid, u = u(x) ∈ R3, p = p(x) ∈ R denote the velocity, pressure at a point x ∈ R3 respec-
tively, and fs ∈ R3 is a forcing term. When there is a single point force f ∈ R3 at y, fs = fδ(r) where δ is the Dirac Delta 
distribution centered at 0 and r denotes the distance ‖x − y‖ between x and y. The analytic solution to Eqs. (2a)-(2b), 
referred to as a Stokeslet, can be found as an expression in terms of f, x and y. However, this solution is singular at y, 
where the point force is located, and thus does not allow for evaluating the velocities at the points on the structures.

In our simulation, we use the Method of Regularized Stokeslets (MRS) [33,34] to solve Eqs. (2a)-(2b) instead, which 
replaces the Dirac Delta distribution δ in the forcing term fs in Eq. (2a) by a radially symmetric, smooth approximation to 
it referred to as a blob function. A commonly used family of blob functions is

φε(r) = 15ε4

8π(r2 + ε2)7/2
(3)

where ε > 0 is approximately the width of the blob. As ε approaches zero, φε converges to δ in the distribution sense. With 
this modification, the analytic solution to Eqs. (2a)-(2b) is given by

u(x) = 1
(
H1(r)f+ H2(r) (f · (x− y)) (x− y)

)
, (4)
μ

3
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where H1 and H2 are radially symmetric, smooth functions whose precise forms depend on the choice of φε . Eq. (4) is 
referred to as a regularized Stokeslet and is defined at any x ∈R3, whether x is on the structures or not.

Recall that in the nth step of forward Euler method outlined in Section 2.1, we need to calculate the velocities {ui,�−1}Nσ
i=1

of Nσ grid points located at {xi,�−1}Nσ
i=1, which are induced by the forces {fi,�−1}Nσ

i=1 that they exert to the fluid. Since all 
the quantities above correspond to the same time point, we drop the subscript � −1 from now on to simplify the notations. 
Therefore, in Eq. (2a), we let

fs =
Nσ∑
i=1

fiφε(ri) (5)

where ri = ‖x − xi‖ is the distance between x and xi . Since Eqs. (2a)-(2b) are linear, when fs is given by Eq. (5), their 
analytic solution is simply the sum of the regularized Stokeslets corresponding to the individual forces, that is,

u(x) =
Nσ∑
i=1

1

μ

(
H1(ri)fi + H2(ri) (fi · (x− xi)) (x− xi)

)
(6)

for any x ∈ R3. Eqs. (4) and (6) are only valid when the fluid domain is R3. For a fluid bounded by an infinite, planar, and 
stationary wall, the regularized solution to Eqs. (2a)-(2b) has been derived in [48] using the method of images.

Eq. (6) implies that the computational cost of evaluating {ui}Nσ
i=1 is O  

(
N2

σ

)
. Consequently, if an explicit ODE solver is 

applied to march forward in time and the MRS is applied to calculate fluid velocity, the computational cost of solving 
Eq. (1) is O  

(
N2

σ · Nτ

)
.

Remark 2. Since the blob function φε , roughly speaking, has the effect of “spreading” a point force over a sphere centered at 
the point with radius ε , the MRS can model structures with a non-zero thickness even when their numerical representations 
have no thickness. For example, a slender rod can be modeled by placing regularized point forces along its centerline. The 
value of ε can be chosen so that results of the MRS best match the theory [34] or experimental data [49]. Since different 
values of ε may be used in different applications, we consider a range of ε in the numerical experiments (see Section 5).

3. Review: the Parareal algorithm

The Parareal algorithm was introduced in [7] and has become a popular method for parallelizing the numerical solution 
of ODEs and PDEs in the time domain. For simplicity, consider the following IVP:

dx

dt
= u(t, x) for t ∈ (0, T ] and x(0) = x0. (7)

Assume that there are Nc computer cores at our disposal. We partition the time domain [0, T ] uniformly into Nc subintervals 
of length �T = T /Nc and let Tn = n�T for n = 0, 1, 2, · · · , Nc. If {x (Tn−1)}Nc

n=1 were readily available, Eq. (7) could be 
split into the following Nc independent IVPs:

For n = 1, 2, · · · , Nc : dx

dt
= u(t, x) for t ∈ (Tn−1, Tn] and x (Tn−1) = xn−1, (8)

which could then be assigned to the Nc cores and solved in parallel. In practice, it is unlikely that {x (Tn−1)}Nc
n=1 are available. 

Parareal is an iterative method that, loosely speaking, alternates between a parallel sweep for solving the IVPs in Eq. (8)
concurrently where {x (Tn−1)}Nc

n=1 have been estimated in the previous serial sweep, and a serial sweep for correcting the 
solutions obtained in the previous parallel sweep sequentially. The two processes employ a fine solver and a coarse solver 
respectively, the latter of which is less time-consuming albeit less accurate. For example, we can use forward Euler method 
as the coarse solver and a Runge-Kutta method with the same or a smaller time step as the fine solver. More details of 
Parareal are provided below.

Let G(tEnd, tStart, XStart) and F (tEnd, tStart, XStart) denote the approximations to x (tEnd) obtained by the coarse and fine 
solvers respectively subject to the initial condition x (tStart) = XStart, where 0 ≤ tStart < tEnd ≤ T . Parareal computes a se-
quence of approximations X0

n , X1
n , X

2
n , X3

n , · · · to F (Tn,0, x0) for n = 1, 2, · · · , Nc. It starts by computing the initial guess 
X0
n to x (Tn) as

X0
n =G(Tn, Tn−1, X

0
n−1) (9)

for n = 1, 2, · · · , Nc, where X0
0 = x0 is given by Eq. (7). Since X0

n depends on X0
n−1, these initial guesses have to be 

calculated sequentially. The kth iteration of Parareal for k = 1, 2, 3, · · · consists of the following two steps:
4
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1. For n = k, k + 1, k + 2, · · · , Nc, compute the approximate solution

Xk
n
′ = F

(
Tn, Tn−1, X

k−1
n−1

)
. (10)

2. Let Xk
n = Xk−1

n for n = 1, 2, · · · , k − 1 and Xk
k = Xk

k
′
. For n = k + 1, k + 2, · · · , Nc, compute G 

(
Tn, Tn−1, Xk

n−1

)
and 

obtain the kth iterate by correcting Xk
n
′
as follows:

Xk
n = Xk

n
′ +G

(
Tn, Tn−1, X

k
n−1

)
−G

(
Tn, Tn−1, X

k−1
n−1

)
︸ ︷︷ ︸

correction term

. (11)

Note that G 
(
Tn, Tn−1, X

k−1
n−1

)
in Eq. (11) has been computed before the kth iteration and is thus readily available. In addition, 

by mathematical induction, one can show that Xk
n = F (Tn,0, x0) for n = 1, 2, · · · , k. Since it is already as accurate as it can 

get when F is fixed, we only compute Eq. (11) for n ≥ k + 1.

The approximate solutions 
{
Xk
n
′}Nc

n=k
can be calculated in parallel since they are independent of one another, whereas 

the actual iterates 
{
Xk
n

}Nc

n=k+1 have to be calculated in serial as G 
(
Tn, Tn−1, Xk

n−1

)
and hence Xk

n do depend on Xk
n−1. Let γG

and γF denote the time that it takes to calculate G (Tn, Tn−1, X) and F (Tn, Tn−1, X), respectively. Let Nit be the number of 
Parareal iterations performed. Then the total runtime of Parareal is given by

ϒpr =
Nit∑
k=0

(Nc − k) · γG + Nit · γF + ϒoh = 1

2
(Nit + 1) (2Nc − Nit) · γG + Nit · γF + ϒoh, (12)

where ϒoh is the overhead associated with parallel computing. The runtime required to compute F (T , 0, x0) without paral-
lelization is

ϒF = Nc · γF . (13)

We define the parallel speedup of Parareal to be

ϒF
ϒpr

= 1
1
2 (Nit + 1) (2− Nit/Nc) · γG/γF + Nit/Nc + ϒoh/ (Nc · γF )

, (14)

an upper bound of which is given by

2

(Nit + 1) (2− Nit/Nc)
· γF
γG

. (15)

This bound implies that when the number of cores Nc and fine solver F are fixed, we can improve the speedup of Parareal 
by reducing γG and/or Nit . In the next section, we propose one strategy for reducing γG and another for improving the 
accuracy of G, the latter of which will in turn reduce Nit .

Remark 3. In the original Parareal described above, there is no parallel computing during a serial sweep, and a parallel 
sweep does not start until the previous serial sweep is finished. Therefore, at any point during a serial sweep, all but one 
core are idle. A pipelined Parareal was proposed in [16] that put the idle cores to work as well: a core starts to calculate 
Xk+1
n

′
by Eq. (10) immediately after it has finished evaluating Xk

n by Eq. (9) or (11) instead of waiting for all of 
{
Xk
n

}Nc

n=k+1
to be computed. The serial and parallel sweeps are therefore “interwoven” rather than two separate, alternating processes. 
In Section 4, we propose a completely different way of utilizing multiple cores during serial sweep. The comparison of the 
two is one of the future directions of this work.

4. Novel coarse solvers constructed via extrapolation

One major challenge in the numerical simulation of a biofluid is that in order to approximately maintain the sizes of 
biological structures, such as the length of the rod and the surface area of the vesicle shown in Fig. 1, a small time step must 
be taken when solving Eq. (1). This constraint limits how coarse the coarse solver for the serial sweep can be, which in turn 
limits the parallel speedup that can be achieved by Parareal. Building on a family of existing solvers, we develop new coarse 
solvers that are straightforward to implement and parallelize. Compared to the existing solvers, they either permit the use of 
larger time steps (Section 4.2), have a higher order of accuracy in time (Section 4.3), or both (Section 4.4). Although we focus 
on particle tracking in the simulation of a biofluid, the proposed approaches for constructing new solvers are applicable in 
a wide range of problems. An outline of Parareal equipped with a proposed coarse solver is given in Section 4.5.
5
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4.1. Notations and assumptions

Assume that the fine solver, F , for Eq. (1) is fixed. Let G�,τ denote any member of a parameterized family of coarse 
solvers for Eq. (1), where � = {θi}Nθ

i=1 is a set of Nθ physical parameters and τ is the time step. The solvers in this family 
only differ in the values of τ and {θi}Nθ

i=1. In the simulation of a biofluid, � may include fluid viscosity, parameters that 
characterize the material of the biological structures, and the regularization parameter ε used in the MRS which is a proxy 
for the thickness of the structures (see Section 2.3).

Let �0 = {
θ0
i

}Nθ

i=1 denote the set of correct parameter values determined by the application. On one hand, for the simula-
tion to be realistic, we should choose � = �0. On the other hand, if we disregard the physical meaning of these parameters 
and simply view them as parameters of a solver, we observe that a different choice of � may relax the constraint on τ and 

hence reduces the runtime of the solver. We assume that �0 is always used in F . For i = 1, 2, · · · , Nθ , let 
{
θ
j
i

}Nθi

j=1
be a 

set of Nθi values of θi that satisfy the following:

1. θ1
i < θ2

i < · · · < θ
Nθi
i ,

2. either θ0
i < θ1

i or θ
Nθi
i < θ0

i , that is, θ
0
i is outside of the interval 

[
θ1
i , θ

Nθi
i

]
, and

3. using θ j
i instead of θ0

i allows the solver to take larger time steps.

Eq. (1) is a system of 3Nσ ODEs since Nσ grid points are used to discretize the structures in three dimensions. For 
simplicity, in Sections 4.2 to 4.4, we describe our methods for a scalar ODE defined on the time domain [0, T ] instead. 
Let S(�) denote the exact solution to the ODE for a given set of parameter values. Thus, S

(
�0

)
is the true solution that 

we seek. As in Section 3, let tStart and tEnd be two time points satisfying 0 ≤ tStart < tEnd ≤ T . Let F (tEnd, tStart, XStart) and 
G�,τ (tEnd, tStart, XStart) denote the approximate solutions to this ODE at t = tEnd calculated by F and G�,τ respectively, 
subject to the initial condition that the solution at t = tStart is XStart.

4.2. Extrapolation with respect to physical parameters

We could reduce the runtime of the coarse solver G�,τ by choosing a value for θi that is different from its correct value 
θ0
i and allows the use of a larger time step τ . However, since θi is a physical parameter, varying it naïvely can cause the 
simulation to be non-physical; that is, we would be solving a wrong problem faster. We propose a coarse solver that is built 
on a sequence of G�,τ using values of θi other than θ0

i .
To illustrate the main idea, we first consider the case where only one physical parameter is allowed to vary in G�,τ , 

that is, Nθ = 1, � = θ1, G�,τ = Gθ1,τ , and S(�) = S (θ1). By the approximation properties of Lagrangian polynomial (see 
Theorem 5.2.3 on p. 108 of [50], for example), if S is a sufficiently smooth function of θ1, then

S
(
θ0
1

)
−

Nθ1∑
j=1

w j
1 · S

(
θ
j
1

)
= S(Nθ1 )(ξ)

Nθ1 !
(
θ0
1 − θ1

1

)(
θ0
1 − θ2

1

)
· · ·

(
θ0
1 − θ

Nθ1
1

)
(16)

where ξ ∈
[
θ0
i , θ

Nθi
i

]
, S(Nθ1 ) is the Nθ1 th derivative of S , and 

{
w j

1

}Nθ1

j=1
are the weights in the Lagrangian polynomial of 

degree Nθ1 − 1, that is,

w j
1 =

Nθ1∏
l=1
l 	= j

θ0
1 − θ l

1

θ
j
1 − θ l

1

. (17)

In other words, by choosing Nθ1 and θ
Nθ1
1 properly, we can create the solution to the right problem, S

(
θ0
1

)
, using the 

solutions to a sequence of perturbed problems, 
{
S

(
θ
j
1

)}Nθ1

j=1
. Intrigued by (16), we propose the following new solver:

G=
Nθ1∑
j=1

w j
1 ·G

θ
j
1 ,τ

(18)

It computes the solution

G (tEnd, tStart, XStart) =
Nθ1∑

w j
1 ·G

θ
j
1 ,τ

(tEnd, tStart, XStart) . (19)

j=1

6
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Although the sequence of “auxiliary” solvers{
G

θ
j
1 ,τ

}Nθ1

j=1
(20)

that constitute G use values of θ1 different from θ0
1 , when Nθ1 and θ

Nθ1
1 are properly chosen, the solution (19) can still be 

a good estimate to the exact solution S
(
θ0
1

)
.

To apply G, we need to apply the Nθ1 auxiliary solvers in (20). If the number of cores, Nc, is greater than or equal to 

Nθ1 , then they can be applied in parallel on different cores. Since using 
{
θ
j
1

}Nθ1

j=1
relaxes the constraint on time step, we can 

choose a time step τ in G that is permitted by 
{
θ
j
1

}Nθ1

j=1
but not allowed by the correct parameter value θ0

1 . Consequently, 

by choosing τ properly, applying the Nθ1 auxiliary solvers in parallel on Nθ1 cores can be faster than applying any single 
solver in the same family as Gθ1,τ that uses θ0

1 .
To further relax the constraint on time step, we can generalize the idea described above and allow more than one 

physical parameter to deviate from its correct value. For example, consider the case of three parameters, that is, � =
{θ1, θ2, θ3}. Similar to (18), we propose the following solver:

G=
Nθ1∑
j1=1

w j1
1 ·

⎛
⎝ Nθ2∑

j2=1

w j2
2 ·

⎛
⎝ Nθ3∑

j3=1

w j3
3 ·G

θ
j1
1 ,θ

j2
2 ,θ

j3
3 ,τ

⎞
⎠

⎞
⎠ (21)

where

w j
i =

Nθi∏
l=1
l 	= j

θ0
i − θ l

i

θ
j
i − θ l

i

. (22)

It computes the solution

G (tEnd, tStart, XStart) =
Nθ1∑
j1=1

w j1
1 ·

⎛
⎝ Nθ2∑

j2=1

w j2
2 ·

⎛
⎝ Nθ3∑

j3=1

w j3
3 ·G

θ
j1
1 ,θ

j2
2 ,θ

j3
3 ,τ

(tEnd, tStart, XStart)

⎞
⎠

⎞
⎠ , (23)

which can be a good estimate to the exact solution S
(
θ0
1 , θ0

2 , θ0
3

)
if Nθ1 , Nθ2 , Nθ3 and θ

Nθ1
1 , θ

Nθ2
2 , θ

Nθ3
3 are properly chosen. 

In addition, the proposed solver (21) is a linear combination of the sequence of Nθ1 · Nθ2 · Nθ3 auxiliary solvers{
G

θ
j1
1 ,θ

j2
2 ,θ

j3
3 ,τ

}Nθ1 ,Nθ2 ,Nθ3

j1, j2, j3=1
, (24)

which can again be applied in parallel if Nc ≥ Nθ1 · Nθ2 · Nθ3 . Extrapolating with respect to more than one parameters allows 
us to relax the time step τ even further and thus, the solver (21) can run faster than the solver (18) if sufficiently many 
cores are available.

To simply the notation, from now on, we rewrite (21) as

G=
Nθ1 ·Nθ2 ·Nθ3∑

j=1

w j ·G� j,τ (25)

where w j = w j1
1 · w j2

2 · w j3
3 and � j =

{
θ
j1
1 , θ

j2
2 , θ

j3
3

}
for some combination of j1, j2, and j3.

In summary, we have developed a new solver inspired by the observation that certain physical parameters of a problem, 
if simply viewed as parameters of its solvers, can be tuned to allow the solvers to take larger times steps. It is straightfor-
ward to implement and non-intrusive: applying it entails applying an existing solver multiple times with varying values of 
said parameters. We can choose the parameter values in such a way that larger time steps can be used and the solution 
is still in good agreement with the solution obtained using the correct parameter values. The proposed solver is also triv-
ial to parallelize: the runs of the existing solver using different parameter values are completely independent and can be 
performed in parallel.

4.3. Extrapolation with respect to time step

In Section 4.2, we have constructed a new coarse solver that is less restrictive about the size of time step by extrapolating 
a family of existing coarse solvers parametrized by a few physical parameters. Here, we construct another new coarse solver 
7
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Table 1
Values of the weights {vq}mq=0 in Eq. (27) for m = 0, 1, 2 and fixed �, r, α.

m
{
vq

}m
q=0

0 v0 = 1
1 v0 = rα/

(
rα − 1

)
and v1 = −1/

(
rα − 1

)
2 v0 = rα+1/

(
rα+1 − 1

) · rα/
(
rα − 1

)
, v1 = −rα+1/

(
rα+1 − 1

) · 1/ (
rα − 1

)
, and v2 = −1/

(
rα+1 − 1

)

by extrapolating a family of existing coarse solvers parametrized by the time step instead. Compared to the existing solvers, 
the new solver has a higher order of accuracy in time. In this section, the values of the physical parameters in � are fixed.

Let m be a non-negative integer, α be the order of accuracy of G�,τ in time, and 0 < r < 1. For fixed m, �, and r, let 
Rm : (0, T ] −→ R be the following function:

Rm(τ ) =
⎧⎨
⎩
G�,τ (tEnd, tStart, XStart) , ifm = 0
rα+m−1 · Rm−1(τ ) − Rm−1(r · τ )

rα+m−1 − 1
, ifm ≥ 1

. (26)

We note that Rm(τ ) is the Richardson extrapolation of Rm−1(τ ). While Eq. (26) gives a recursive definition of Rm(τ ), using 
mathematical induction, we can show that its closed form is a linear combination of 

{
G�,rq ·τ (tEnd, tStart, XStart)

}m
q=0. Since 

this is a well-known fact about recursive Richardson extrapolation (see [51], for example), we simply state it in Lemma 1
without giving a proof.

Lemma 1. Let Rm(τ ) be as defined in Eq. (26). Then

Rm(τ ) =
m∑

q=0

vq ·G�,rq·τ (tEnd, tStart, XStart) , (27)

where 
{
vq

}m
q=0 are scalars that satisfy 

∑m
q=0 vq = 1.

For m = 0, 1, and 2, we list the values of 
{
vq

}m
q=0 in Table 1.

If G�,τ (tEnd, tStart, XStart) is αth-order accurate in time, by properties of the recursive Richardson extrapolation, Rm(τ ) is 
(α +m)th-order accurate in time. Therefore, we propose the following solver:

G=
m∑

q=0

vq ·G�,rq·τ , (28)

where the weights 
{
vq

}m
q=0 in Eq. (28) are the same as in Lemma 1. It produces the solution Rm(τ ). If there are at least 

m + 1 cores available, the sequence of auxiliary solvers

{
G�,rq·τ

}m
q=0 (29)

that constitute the proposed solver (28) can be applied in parallel. As a result, its runtime is about the same as that of the 
slowest solver among (29), that is, G�,rm ·τ since 0 < r < 1. Like the solver proposed in Section 4.2, the solver (28) is also 
straightforward to implement, non-intrusive, and easy to parallelize.

Richardson extrapolation has been incorporated into parallel-in-time methods in various fashions in previous work (see 
[26,52–54], for example). In [52], it is applied to improve the accuracy per computational cost of the Multigrid Reduction 
in Time (MGRIT) method [19]. In [26] where Parareal is combined with the spectral element method to solve the Navier-
Stokes equations, Richardson extrapolation is used to improve the accuracy of both the fine and coarse solvers. It appears 
that solvers using different time steps were run in serial in [26], whereas we are proposing to run them in parallel in the 
current work. In [54], a Parareal-Richardson algorithm is developed as a variant of the Parareal algorithm, where Richardson 
extrapolation is used to improve the formula (11) for serial correction. To the best of our knowledge, the current study 
marks the first time that Richardson extrapolation is proposed to improve the accuracy in time of the simulation of a 
biofluid, where the method of regularized Stokeslets is used to calculate fluid-structure interactions. In addition, as we 
will elaborate in Section 4.4, since the Lagrangian extrapolation with respect to physical parameters proposed in Section 4.2
allows for the use of larger time steps, by combining it and the Richardson extrapolation with respect to time step proposed 
here, we can construct a new solver that is more accurate and yet does not require more runtime. As far as we know, 
building such a solver on existing solvers in a non-intrusive manner is novel.
8
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4.4. Extrapolation with respect to both physical parameters and time step

By using a combination of the extrapolation techniques proposed in Sections 4.2 and 4.3, we can also construct the new 
coarse solver

G=
Nθ1 ·Nθ2 ·Nθ3∑

j=1

w j ·
⎛
⎝ m∑

q=0

vq ·G� j,rq ·τ

⎞
⎠ (30)

if the Lagrangian extrapolation is with respect to the three physical parameters θ1, θ2, and θ3, as in Eqs. (21) and (25). The 
weights 

{
w j

}Nθ1 ·Nθ2 ·Nθ3
j=1 and 

{
vq

}m
q=0 are the same as the ones in Eq. (25) and Lemma 1, respectively; that is, we replace 

the solver G� j ,τ in Eq. (25) with 
∑m

q=0 vq ·G� j ,rq ·τ whose accuracy in time is m orders higher.
If there are at least Nθ1 · Nθ2 · Nθ3 · (m + 1) cores available, then the sequence of auxiliary solvers{
G� j ,rq ·τ

}Nθ1 ·Nθ2 ·Nθ3 ,m
j=1,q=0 (31)

that constitute the proposed solver (30) can be applied in parallel. The runtime of (30) is therefore about the same as that 
of the slowest solver among the ones in (31): G� j ,rm·τ for any j, since 0 < r < 1. On one hand, the time step rm · τ is 
smaller than τ ; and on the other hand, the parameter values in � j allow for the use of a larger time step τ that is not 
permitted by the correct parameter values in �0. As a result, by choosing Nθ1 , Nθ2 , Nθ3 , θ

Nθ1
1 , θ

Nθ2
2 , θ

Nθ3
3 in the Lagrangian 

extrapolation and m, r in the Richardson extrapolation properly, the proposed solver (30) can be not only more accurate 
but also faster than any solver in the same family as G�,τ that uses �0. Increasing accuracy while decreasing runtime may 
seem counter-intuitive at first. We emphasize that this is made possible by the parallel implementation of the auxiliary 
solvers in (31).

The new solver that we propose here shares the following advantages with the solvers proposed in Sections 4.2 and 4.3: 
it is straightforward to implement, non-intrusive, and easy to parallelize.

4.5. An outline of Parareal equipped with a proposed coarse solver

We outline the Parareal algorithm equipped with the proposed coarse solver (30) for solving Eq. (1) in Algorithm 1. Both 
Xk
n and Xk

n
′
are 3 × Nσ matrices whose ith column corresponds to the ith grid point on the structures, and Xk

n denote the 
kth iterate of Parareal at time Tn . When the coarse solver proposed in Section 4.2 or 4.3 is employed instead, the algorithm 
reads very similarly. We note that parallel computing is used in both the serial sweep and parallel sweep. More specifically, 
for each time slice [Tn−1, Tn] in the serial sweep, the sequence of auxiliary coarse solvers (31) will be run in parallel (steps 
4 and 15), and then the solutions that they calculate will be combined to form the solution that (30) produces (steps 5 and 
16).

Remark 4. In Algorithm 1, we assume that the same grid is used to discretize the structures in the fine solver F and coarse 
solver G�,τ . When a coarser grid is used in G�,τ instead, such as in some of the numerical experiments in Section 5, we 
must be able to map a solution on one grid to a solution on the other grid. For example, in step 4 of Algorithm 1, we need 
to calculate

G� j ,rq ·τ
(
Tn, Tn−1,Iσc

σ

(
X0
n−1

))
(32)

instead, where Iσc
σ (·) is a function that maps a given solution on the fine grid to a solution on the coarse grid. Similarly, 

step 6 of Algorithm 1 should be modified to read

X0
n ← Iσ

σc

(
G

(
Tn, Tn−1,Iσc

σ

(
X0
n−1

)))
, (33)

where Iσ
σc

(·) is a function that interpolates a given solution on the coarse grid to produce a solution on the fine grid.

5. Numerical results

We present numerical results of Algorithm 1, the Parareal algorithm that employs one of the coarse solvers proposed in 
Section 4, applied to two model micro-swimmers. In Section 5.1, we apply this algorithm to simulate the swimming motion 
of slender, elastic rods, which can translate, bend, and twist in the fluid and represent biological structures such as tails 
of sperm and bacterial flagella. In Section 5.2, we apply Algorithm 1 to simulate the dynamics of an elastic sphere that 
resembles a vesicle placed in a shear flow.

All the computational results are obtained using the Parallel Computing Toolbox of MATLAB® version R2018b on Intel®
Xeon® CPU E5-2699 v3.
9



W. Liu and M.W. Rostami Journal of Computational Physics 464 (2022) 111366
Algorithm 1 Parareal equipped with the coarse solver (30) for Eq. (1)
Input: X0

0 ∈ R3×Nσ which contains the initial values of Eq. (1)
Number of cores Nc

Positive integers Nθ1 , Nθ2 , Nθ3 and parameter values 
{
θ
j
1

}Nθ0

j=0
, 
{
θ
j
2

}Nθ2

j=0
, 
{
θ
j
3

}Nθ3

j=1
Time step τ ∈ (0, T ]
Non-negative integer m and scalar r ∈ (0, 1)
(Nc , Nθ1 , Nθ2 , Nθ3 , and m satisfy Nθ1 · Nθ2 · Nθ3 · (m + 1) ≤ Nc)

Output:
{
Xk
n

}Nc

n=1 where Xk
n ∈ R3×Nσ contains the estimated solution to Eq. (1) at time Tn = n · T /Nc

1: Calculate the weights {w j
}Nθ1 ·Nθ2 ·Nθ3
j=1 based on Eqs. (21), (22), and (25)

2: Calculate the weights {vq}mq=0 based on Eq. (26) or Table 1

3: for n = 1, 2 · · · , Nc do % initial serial sweep

4: Calculate {G� j ,rq ·τ
(
Tn, Tn−1,X0

n−1

)}Nθ1 ·Nθ2 ·Nθ3 ,m
j=1,q=0 in parallel

5: G (Tn, Tn−1,X0
n−1

) ← ∑Nθ1 ·Nθ2 ·Nθ3
j=1 w j ·

(∑m
q=0 vq ·G� j ,rq ·τ

(
Tn, Tn−1,X0

n−1

))
6: X0

n ←G (Tn, Tn−1,X0
n−1

)
7: end for
8: for k = 1, 2, 3, · · · do % the main for-loop

9: Calculate 
{
Xk
n
′ = F

(
Tn, Tn−1,X

k−1
n−1

)}Nc

n=k
in parallel % parallel sweep

10: if k > 1 then
11: Xk

n ← Xk−1
n for n = 1, 2, · · · , k − 1

12: end if
13: Xk

k ← Xk
k
′

14: for n = k + 1, k + 2, · · · , Nc do % serial sweep

15: Calculate {G� j ,rq ·τ
(
Tn, Tn−1,Xk

n−1

)}Nθ1 ·Nθ2 ·Nθ3 ,m

j=1,q=0 in parallel
16: G (Tn, Tn−1,Xk

n−1

) ← ∑Nθ1 ·Nθ2 ·Nθ3
j=1 w j ·

(∑m
q=0 vq ·G� j ,rq ·τ

(
Tn, Tn−1,Xk

n−1

))
17: Xk

n ← Xk
n
′ +

(
G

(
Tn, Tn−1,Xk

n−1

) −G
(
Tn, Tn−1,X

k−1
n−1

))
18: end for
19: end for

Throughout this section, to examine the accuracy of Algorithm 1, we define the true relative error and relative increment 
of the kth iteration of Algorithm 1 to be

ηk = max
i=1, 2, ··· , Nσ

∥∥∥xki − xFi

∥∥∥
2∥∥∥xFi ∥∥∥

2

and η̃k = max
i=1, 2, ··· , Nσ

∥∥∥xki − xk−1
i

∥∥∥
2∥∥xki ∥∥2

for k = 1, 2, · · · (34)

respectively, where Nσ is the number of grid points on the structures, xki and xFi denote the final positions of the ith 
grid point calculated by Algorithm 1 and the fine solver F respectively for i = 1, 2, · · · , Nσ . The relative error measures 
how close the solutions produced by Algorithm 1 and F are. However, in practice, it cannot be calculated since xFi is not 
available. The relative increment measures how close consecutive iterates of Algorithm 1 are. It can be calculated easily and 
utilized in the stopping criterion of Algorithm 1.

To examine the parallel speedup of Algorithm 1, we define the measured speedup of Algorithm 1 to be the ratio in Eq. 
(14). We also define the theoretical speedup of Algorithm 1 to be the same ratio in the ideal case where parallel computing 
does not incur any overhead, that is, ϒoh = 0 in Eq. (14). Comparing the two speedups allows us to examine the effect of 
the overhead of parallel computing on the performance of Algorithm 1. If not specified, “speedup” refers to the measured 
speedup that takes into account the overhead of parallel computing.

To compare temporal parallelization and spatial parallelization, we also define the (measured) speedup of the spatially 
parallelized F (see Remark 1 in Section 2.3) as

ϒF
ϒsp

, (35)

where ϒsp is the total runtime of the spatially parallelized F .

5.1. A rod-like swimmer

In this section, each swimmer is represented by its centerline and modeled as the version of Kirchhoff rod considered 
in [40,55–59]. The parameter values that specify the physical properties of the rods are given in Table 2. We choose them 
within the ranges considered in [59], which were in turn determined based on properties of the tails of human sperm (see 
the references in [59]). The preferred shape of the rods is a planar, time-dependent sinusoidal wave. More precisely, the 
preferred strain twist vector along each rod is given by
10
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Table 2
Parameter values that specify the properties of the 
rods and fluid.
Rod length, L (μm) 60
Amplitude, A (μm) 1
Frequency, f (Hz) 40π
Wavelength, λ (μm) 30
Bending modulus, a1 = a2 (g · μm3 · s−2) 1
Twist modulus, a3 (g · μm3 · s−2) 1
Shear modulus, b1 = b2 (g · μm · s−2) 0.6
Stretch modulus, b3 (g · μm · s−2) 0.6
Distance to wall, d (μm) 10
Fluid viscosity, μ (g · μm−1 · s−1) 10−6

Fig. 2. Streamlines of the flow around a single swimming rod at time t = 1. They are plotted using only the x- and y-direction fluid velocities on the slice 
plane z = 10.

(�1,�2,�3) =
(
0,−k2A sin(ks + f t),0

)
, (36)

where s is the arclength, A is the amplitude, f is the frequency, and k = 2π/λ for the wavelength λ. The values of A, f , 
and λ are given in Table 2. At any point in time, the forces and torques exerted to the fluid by the grid points on the rods 
are determined by the difference between the preferred and current shapes of the rods as well as their bending, twist, and 
shear moduli given in Table 2. The rods swim in the semi-infinite fluid domain {(x, y, z) ∈ R3

∣∣z ≥ 0} bounded by an infinite, 
planar, and stationary wall located at z = 0, on which the flow vanishes. In addition, at time t = 0, the rods are initialized 
to be straight, parallel to, and a distance d away from the wall. In Fig. 2, we show the streamlines drawn based on the 
instantaneous fluid velocity around a single swimming rod.

In the fine solver F , the grid spacing of the uniform grid used to discretize the centerline of each rod is σ f = 0.2 μm 
(or equivalently, Nσ = 301 grid points are used to discretize the rod), and the ODE solver is the explicit two-stage Runge-
Kutta method (RK2) with step size τ f . In each auxiliary coarse solver G�,τ that constitutes the coarse solvers proposed 
in Section 4, the grid spacing is σc ≥ σ f , and the ODE solver is forward Euler method with step size τ . Recall that the 
proposed solver (28) or (30) is a linear combination of auxiliary coarse solvers using various time steps; and when they can 
be applied in parallel, the runtime of (28) or (30) is about the same as the runtime of the slowest auxiliary solver, which 
uses the smallest time step rm · τ . We therefore refer to rm · τ as the time step used by (28) or (30) and denote it by τc . 
The time steps τ f and τc are chosen to ensure that the length of the rods does not fluctuate more than 1% throughout 
the simulation. In both F and G�,τ , the Method of Regularized Stokeslets (MRS) is applied to calculate fluid velocities. 
More specifically, the formulae in [58] are used, which were derived using the method of images and account for the point 
torques in addition to the point forces exerted by the grid points in the semi-infinite fluid domain.

The set of physical parameters, �, may include one or more of the following: the regularization parameter ε used in 
the MRS, the bending and twist moduli a, and the fluid viscosity μ. (We assume that the same value is always used for 
the two bending moduli a1, a2 and the twist modulus a3.) The correct values of ε , a, and μ are denoted by ε0, a0, and 
μ0, respectively. As shown in Table 2, a0 = 1 and μ0 = 10−6. Although each rod is represented by its centerline only, the 
thickness of the rod can be implicitly incorporated into the simulation by choosing ε properly (see Remark 2 in Section 2). 
To examine the performance of Algorithm 1 as the thickness of the rod varies, we consider multiple values of ε0. In the fine 
solver F , ε0, a0, and μ0 are always used. Recall that in the proposed coarse solver (21) or (30), to relax the constraint on 
time step, we use a sequence of values that are different from the correct one for each physical parameter in �. Let 

{
ε j

}Nε

j=1, {
a j

}Na , and 
{
μ j

}Nμ denote the values used for ε , a, and μ, respectively. We denote the number of auxiliary solvers that 
j=1 j=1

11
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Fig. 3. The relative error of the first iteration of Algorithm 1 and τc/τ f when the coarse solver is ∑4
j=1Gε j ,τc

. Four values of ε1 are considered: ε1/σ f =
5.1, 5.2, 5.4, 5.6. Given ε1, ε j = ε1 + ( j − 1) · 0.05σ f for j = 2, 3, 4.

Fig. 4. Decay of the relative error for two versions of Algorithm 1 that use coarse solvers G1 and G2 specified in Table 3. τc = 18τ f .

constitute the coarse solver G by NG and always choose it to be no more than Nc (the number of cores) so that they can 
be run in parallel.

Unless otherwise specified, the time domain is [0, T ] where T = 1, Nc = 40, and there is only one swimmer in the fluid 
domain.

5.1.1. The effectiveness of Lagrangian extrapolation and Richardson extrapolation
In this section, we fix ε0 = 5σ f , σc = σ f , and τ f = 10−6. Since ε0 is roughly the cross-sectional radius of the rod and 

the length of the rod L is 60 (see Table 2), the ratio of the two is about 0.017 in this case.
We first consider coarse solvers constructed using only Lagrangian extrapolation with respect to a single physical param-

eter. We examine η1, the relative error of the first iteration of Algorithm 1 (see Eq. (34)), when the coarse solver used in 
Algorithm 1 is 

∑4
j=1Gε j ,τc

, that is, � = {ε} and Nε = 4 in Lagrangian extrapolation. We consider four values of ε1: 5.1σ f , 
5.2σ f , 5.4σ f , and 5.6σ f . For each ε1, we choose ε j = ε1 + ( j − 1) · 0.05σ f for j = 2, 3, 4. In Fig. 3, we display η1 along 
with τc/τ f for each case, where τc is close to the largest time step permitted by ε1. We observe that the constraint on τc
can be relaxed by increasing ε . When ε1 increases from 5.1σ f to 5.6σ f , we can almost double the size of τc and hence 
reduce the runtime of the coarse solver by 50%. In the meantime, increasing ε1 and τc increases both the extrapolation 
error and the discretization error in time, causing η1 to grow from about 10−8 to about 10−4.

Next, we continue to consider coarse solvers constructed using only Lagrangian extrapolation but allow extrapolation 
with respect to more than one physical parameter. In Fig. 4, we show the decay of the relative error as iteration count 
increases for two versions of Algorithm 1 that use two different coarse solvers G1 and G2. Lagrangian extrapolation with 
respect to only ε is used to construct G1, whereas Lagrangian extrapolation with respect to the bending/twist modulus a
and fluid viscosity μ in addition to ε is used to construct G2. More details can be found in Table 3. As seen in Fig. 4, the 
relative error of Algorithm 1 decays much more rapidly if G2 is used. Since both solvers use the time step τc = 18τ f , they 
are computationally as expensive as one another. As seen in Fig. 3, when Lagrangian extrapolation is performed with respect 
to ε only, we need to choose ε1 to be as large as 5.6σ f in order to relax the time step to 18τ f . The coarse solver G2 can 
take the same time step even though ε1 is only 5.15σ f (see Table 3). That is, to relax the time step to the same extent, 
extrapolating with respect to more than one physical parameters allows us to choose their values to be closer to the correct 
ones and hence reduces extrapolation error.

We now consider coarse solvers constructed using both Lagrangian extrapolation and Richardson extrapolation. In Fig. 5, 
we plot the relative error η1 of two versions of Algorithm 1 that use two different coarse solvers G3 and G4. G3 is 
constructed using only Lagrangian extrapolation with respect to ε , whereas G4 is constructed using both Lagrangian ex-
12
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Table 3
Coarse solvers for the case ε0 = 5σ f considered in section 5.1.1.

Coarse solver Specifications NG

G1 τc = 18τ f , σc = σ f 4
m = 0 (no Richardson extrapolation), � = {ε}, Nε = 4
ε j/σ f = 5.60, 5.65, 5.70, 5.75 for j = 1, 2, 3, 4

G2 τc = 18τ f , σc = σ f 36
m = 0 (no Richardson extrapolation), � = {ε,a,μ}, Nε = 4, Na = 3, Nμ = 3
ε j/σ f = 5.150, 5.225, 5.300, 5.375 for j = 1, 2, 3, 4
a j/a0 = 0.75, 0.80, 0.85 for j = 1, 2, 3
μ j/μ0 = 1.300, 1.375, 1.450 for j = 1, 2, 3

G3 τc = 10τ f , σc = σ f 2, 3, 4, 5, 6
m = 0 (no Richardson extrapolation), � = {ε}, Nε = 2, 3, 4, 5, 6
ε1 = 5.1σ f and ε j = ε1 + ( j − 1) · 0.05σ f for j = 2, · · · , Nε

G4 τc = 10τ f , σc = σ f 4, 6, 8, 10, 12
m = 1, r = 0.83, � = {ε}, Nε = 2, 3, 4, 5, 6
ε1 = 5.1σ f and ε j = ε1 + ( j − 1) · 0.05σ f for j = 2, · · · , Nε

Fig. 5. The relative error of the first iteration for three versions of Algorithm 1 that use coarse solvers Gε0,τc , G3, and G4. Details of G3 and G4 can be 
found in Table 3. τc = 10τ f .

trapolation with respect to ε and Richardson extrapolation with respect to time step. We choose m = 1 in Richardson 
extrapolation, which increases the order of accuracy in time by one. Since the fine solver uses RK2 and the auxiliary coarse 
solvers use forward Euler method, G4 has the same order of accuracy in time as the fine solver. We vary Nε in both G3

and G4 from 2 to 6. (NG = Nε and 2Nε for G3 and G4 respectively.) The time step used by both solvers is τc = 10τ f . 
More details of G3 and G4 can be found in Table 3. For reference, η1 of the version of Algorithm 1 that simply employs 
Gε0,τc as the coarse solver is also included in Fig. 5. (Since no extrapolation is used to construct this solver, η1 does not 
change with Nε ). We observe that as Nε increases, extrapolation error becomes so small that Algorithm 1 equipped with 
G3 is as accurate as Algorithm 1 equipped with Gε0,τc . For smaller values of Nε , G4 is as accurate as G3, that is, Richardson 
extrapolation almost has no effect on the accuracy of Parareal. The reason is that in this regime, the discretization error in 
time is negligible compared to the error introduced by Lagrangian extrapolation. For larger values of Nε , as extrapolation 
error becomes smaller, the advantage of Richardson extrapolation becomes evident. For example, it reduces η1 from about 
10−8 to about 10−10 when Nε = 5.

5.1.2. The accuracy and parallel speedup of Algorithm 1
In this section, we present the numerical results of Algorithm 1 applied to simulate swimming rods of different thickness. 

Recall that ε in the MRS is a proxy for the thickness. We consider ε0/σ f = 2, 3, 5, 7. Accordingly, the ratios of the cross-
sectional radius of the rod to its length are about 0.007, 0.010, 0.017, and 0.023, respectively.

For the case ε0 = 5σ f , we again choose σc = σ f and τ f = 10−6 as in section 5.1.1. In Fig. 6a, we show the decay of 
the relative error as iteration count increases for four versions of Algorithm 1, where the 0th iteration corresponds to the 
initial serial sweep (steps 3 to 7 of Algorithm 1). The four versions employ four different coarse solvers G1, G2, G3, and 
G4, the details of which can be found in Table 4. G1 and G2 are constructed using Lagrangian extrapolation only, G3 is 
constructed using both Lagrangian extrapolation and Richardson extrapolation, and G4 is simply Gε0,τc (no extrapolation 
is used). Consequently, G3 is second-order accurate in time, whereas the other three solvers are only first-order accurate 
in time. As shown in Fig. 6a, when G1 is used as the coarse solver, the error of Algorithm 1 decreases the slowest. This 
is because G1 introduces the largest extrapolation error and discretization error in time. As seen in Table 4, the values of {
ε j

}Nε

j=1, 
{
a j

}Na

j=1, and 
{
μ j

}Nμ

j=1 used to construct G1 deviate the farthest away from their correct values ε0, a0, and μ0. 
These values also allow G1 to take the largest time step. After one iteration, the version of Algorithm 1 using G3 as the 
13
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Fig. 6. The accuracy and parallel speedup of four versions of Algorithm 1 in the case ε0 = 5σ f . The four versions use four different coarse solvers G1, G2, 
G3, and G4, which are specified in Table 4. The number of cores used is 40. (a) Decay of the relative error as iteration count increases. (b) Increase of the 
parallel speedup as the desired error increases. (c) Measured and theoretical speedup after one and two iterations.

Table 4
Coarse solvers for the case ε0 = 5σ f considered in section 5.1.2.

Coarse solver Specifications NG

G1 τc = 20τ f , σc = σ f 36
m = 0 (no Richardson extrapolation), � = {ε,a,μ}, Nε = 4, Na = 3, Nμ = 3
ε j/σ f = 5.20, 5.25, 5.30, 5.35 for j = 1, 2, 3, 4
a j/a0 = 0.70, 0.75, 0.80 for j = 1, 2, 3
μ j/μ0 = 1.30, 1.45, 1.60 for j = 1, 2, 3

G2 τc = 15τ f , σc = σ f 36
m = 0 (no Richardson extrapolation), � = {ε,a,μ}, Nε = 4, Na = 3, Nμ = 3
ε j/σ f = 5.15, 5.20, 5.25, 5.30 for j = 1, 2, 3, 4
a j/a0 = 0.85, 0.90, 0.95 for j = 1, 2, 3
μ j/μ0 = 1.10, 1.15, 1.20 for j = 1, 2, 3

G3 τc = 10τ f , σc = σ f 30
m = 1, r = 0.83, � = {ε,a}, Nε = 5, Na = 3
ε j/σ f = 5.02, 5.04, 5.06, 5.08, 5.10 for j = 1, 2, 3, 4, 5
a j/a0 = 0.94, 0.96, 0.98 for j = 1, 2, 3

G4 τc = 10τ f , σc = σ f 1
m = 0 (no Richardson extrapolation), � = ∅ (no Lagrangian extrapolation)

coarse solver is the most accurate since G3 introduces the smallest extrapolation error among G1, G2, G3 and has the 
highest order of accuracy in time among all four solvers. Since G4 does not introduce any extrapolation error, the version of 
Algorithm 1 using G4 eventually calculates the most accurate solution although it initially converges more slowly than the 
version of Algorithm 1 using G3.

Next, we examine the parallel speedup of the four versions of Algorithm 1. As Eq. (14) indicates, the speedup of Parareal 
depends on the number of iterations, Nit , that it entails, which in turn depends on the desired accuracy of its solution. For 
each version of Algorithm 1, we display its measured speedup as a function of the desired relative error in Fig. 6b. (We 
assume that at least one iteration of Algorithm 1 has to be run.) The speedup decreases as the desired error decreases, 
which is what we expect; and its graph looks like a series of steps because Nit is an integer. For example, in the case of 
G1, as the desired error drops below 10−6, the speedup goes down by a step because Nit has to increase from 1 to 2 (see 
14
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Fig. 7. The accuracy and parallel speedup of three versions of Algorithm 1 in the case ε0 = 7σ f . The three versions use three different coarse solvers G1, 
G2, and G3, which are specified in Table 5. The number of cores used is 40. (a) Decay of the relative error as iteration count increases. (b) Increase of the 
parallel speedup as the desired error increases. (c) Measured and theoretical speedup after one and two iterations.

Fig. 6a). In the case of G3, the speedup remains unchanged as the desired error decreases from 10−2 to 10−10 since it 
only takes Algorithm 1 one iteration to reach the error 10−10 (see Fig. 6a). In addition, the coarse solver that leads to the 
highest speedup changes with the desired accuracy: it is G1 in the regime 

[
10−6,10−2

]
, G2 in the regime 

[
10−7,10−6

]
, 

and G3 if we want the error to be smaller than 10−8. G1 is superior when the requirement on accuracy is less stringent 
because it is constructed to take larger time steps at the expense of larger extrapolation error and discretization error in 
time compared to G2 and G3 (see Table 4). We also observe from Figs. 6a and 6b that as long as the desired error is no 
less than 10−10, using one of the proposed coarse solvers G1, G2, and G3 instead of the generic coarse solver G4 increases, 
rather substantially in some cases, the speedup of Parareal.

We also examine the effect of the overhead incurred by our specific parallel computing environment on the speedup of 
Algorithm 1. In Fig. 6c, we show the theoretical speedup and measured speedup when Nit = 1 or 2 for the three versions 
of Algorithm 1 equipped with the coarse solvers G1, G2, and G3. Recall that the theoretical speedup is evaluated under the 
assumption that the overhead, ϒoh, in Eq. (14) is zero. As seen in Fig. 6c the measured speedup is less than 10% lower than 
the theoretical speedup when the coarse solver used is G1 or G2, and the two speedups are almost identical when G3 is 
used. The overhead is the least prominent in the case of G3 mainly for the following reason. As seen in Table 4, compared 
to G1 and G2, G3 uses a considerably smaller time step, which, for fixed Nc and Nit , causes the time devoted to serial 
sweeps (the first term on the right-hand side of Eq. (12)) to be much higher. Since the three versions use the same F , the 
time that they devote to parallel sweeps (the second term on the right-hand side of Eq. (12)) is the same when Nc and Nit
are fixed. Consequently, when G3 is used, the sum of these two times is the most dominant, rendering the overhead the 
least noticeable.

We conduct a similar set of experiments for the case ε0 = 7σ f and display the results in Fig. 7. As in the case ε0 = 5σ f , 
we choose σc = σ f and τ f = 10−6. Three versions of Algorithm 1 that use three different coarse solvers, specified in Table 5, 
are considered. Comparing Figs. 6 and 7, we note that to obtain a solution of the same accuracy, Algorithm 1 can achieve 
a considerably higher speedup when ε0 = 7σ f . This is mainly because a larger ε0 allows for the use of larger time steps. 
As shown in Tables 4 and 5, τc/τ f = 70, 50, 35 for the three coarse solvers in the case ε0 = 7σ f , whereas they are only 
20, 15, 10 in the case ε0 = 5σ f .

Finally, we consider the cases ε0 = 2σ f and ε0 = 3σ f . They correspond to very slender rods. For example, when ε0 =
3σ f , the radius of the circular cross section of the rod is only 1% of the length of the rod. These cases turn out to be rather 
challenging for two reasons. Firstly, the fine solver may need to take a smaller time step. In previous cases where ε0 = 5σ f

or 7σ f , we choose τ f = 10−6. While we continue to use τ f = 10−6 in the case ε0 = 3σ f , τ f = 10−7 has to be used in the 
15
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Table 5
Coarse solvers for the case ε0 = 7σ f considered in section 5.1.2.

Coarse solver Specifications NG

G1 τc = 70τ f , σc = σ f 36
m = 0 (no Richardson extrapolation), � = {ε,a,μ}, Nε = 4, Na = 3, Nμ = 3
ε j/σ f = 7.20, 7.25, 7.30, 7.35 for j = 1, 2, 3, 4
a j/a0 = 0.70, 0.75, 0.80 for j = 1, 2, 3
μ j/μ0 = 1.30, 1.45, 1.60 for j = 1, 2, 3

G2 τc = 50τ f , σc = σ f 36
m = 0 (no Richardson extrapolation), � = {ε,a,μ}, Nε = 4, Na = 3, Nμ = 3
ε j/σ f = 7.10, 7.15, 7.20, 7.25 for j = 1, 2, 3, 4
a j/a0 = 0.85, 0.90, 0.95 for j = 1, 2, 3
μ j/μ0 = 1.10, 1.15, 1.20 for j = 1, 2, 3

G3 τc = 35τ f , σc = σ f 30
m = 1, r = 0.875, � = {ε,a}, Nε = 5, Na = 3
ε j/σ f = 7.02, 7.04, 7.06, 7.08, 7.10 for j = 1, 2, 3, 4, 5
a j/a0 = 0.94, 0.96, 0.98 for j = 1, 2, 3

Table 6
Coarse solvers for the cases ε0 = 2σ f and ε0 = 3σ f considered in section 5.1.2. (τ f =
10−7 and 10−6 in the two cases, respectively.)

ε0/σ f Specifications NG

2 τc = 70τ f , σc = 6σ f 2
m = 0 (no Richardson extrapolation), � = {ε}, Nε = 2
ε j/σ f = 4.0, 4.1 for j = 1, 2

3 τc = 7τ f , σc = 6σ f 2
m = 0 (no Richardson extrapolation), � = {ε}, Nε = 2
ε j/σ f = 4.0, 4.1 for j = 1, 2

case ε0 = 2σ f . Secondly, we find that Lagrangian extrapolation alone is unable to relax the time step of the coarse solver 
enough for Algorithm 1 to achieve a decent speedup. We propose to use a coarser grid in the coarse solver in conjunction 
with Lagrangian extrapolation. More precisely, we choose σc = 6σ f , that is, we use 51 grid points instead of the 301 grid 
points used in the fine solver to discretize each rod. The specifics of the coarse solvers that Algorithm 1 uses for the cases 
ε0 = 2σ f and ε0 = 3σ f can be found in Table 6. The advantages of using a coarser grid are twofold. Firstly, it reduces the 
computational cost of evaluating the velocities of the grid points since this cost is proportional to the number of grid points 
squared (see Eq. (6) and the paragraph that follows). Secondly, it allows the use of considerably larger values of physical 
parameters in Lagrangian extrapolation, which in turn allow the use of larger time steps. For example, as seen in Table 6, 
the values of 

{
ε j

}Nε

j=1 are about twice as large as ε0 in the case ε0 = 2σ f . We also note that Nε is only 2 and Richardson 
extrapolation is not applied. This is another consequence of using a coarser grid in the coarse solver: the discretization error 
in space is so dominant that using a higher-order Lagrangian extrapolation or increasing the accuracy in time offers little 
improvement to the overall accuracy. In addition, as we now use a fine grid in the fine solver and a coarse grid in the coarse 
solver, we need to map the solution on one grid to a solution on the other grid (see Remark 4 in Section 4.5). We use cubic 
splines in terms of the arclength of the rod for both. The convergence and speedup of Algorithm 1 are illustrated in Fig. 8
for the cases ε0 = 2σ f and ε0 = 3σ f . The speedup is higher in the case ε0 = 2σ f because τc/τ f is significantly larger, as 
shown in Table 6.

5.1.3. Strong and weak scaling
In this section, we examine the strong and weak scaling of Algorithm 1 in the case ε0 = 3σ f . As in Section 5.1.2, we 

choose τ f = 10−6 and the coarse solver described in Table 6. In Sections 5.1.1 and 5.1.2, T = 1 and Nc = 40 are fixed. Here, 
they will be varied as appropriate.

To investigate strong scaling, we fix T = 1 and calculate the speedup of Algorithm 1 when Nc = 5, 10, 20, 40. As 
NG = 2 for the coarse solver of choice (see Table 6), NG < Nc in all four cases and thus, the auxiliary coarse solvers can 
always be run in parallel as desired. Decay of the relative error of Algorithm 1 as iteration count increases from 1 to 3 for 
each Nc is displayed in Fig. 9a. The four error curves are close to one another, indicating that the accuracy of Algorithm 1 is 
insensitive to Nc. In Fig. 9b, we display proportions of the runtime spent on serial sweeps and parallel sweeps when Nit = 1
for each Nc. Since Nit = 1, two serial sweeps and one parallel sweep are performed. We observe that as Nc increases, the 
runtime becomes less dominated by the time spent on the parallel sweep. This can be explained as follows. We first note 
that Eq. (12) can be rewritten as

ϒpr ≈ (Nit + 1) · Nc · γG + Nit · γF + ϒoh (37)
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Fig. 8. The accuracy and parallel speedup of Algorithm 1 in the cases ε0 = 2σ f and ε0 = 3σ f . The coarse solvers are specified in Table 6. The number of 
cores used is 40. Decay of the relative error (a) and measured speedup (b) as iteration count increases.

Fig. 9. The strong scaling and weak scaling of Algorithm 1 in the case ε0 = 3σ f . The coarse solver is the one specified in Table 6. In (a), (b), and (c), T = 1
is fixed. In (d), T = 0.125, 0.250, 0.500, 1.000 when Nc = 5, 10, 20, 40. (a) Decay of the relative error of Algorithm 1 as iteration count increases. 
(b) Proportions of the time spent on the parallel sweep and the time spent on serial sweeps when Nit = 1. (c) The measured speedup (solid line) and 
theoretical speedup (dashed line) when Nit = 1, 2, 3. (d) Runtime of Algorithm 1 and runtime of the parallel sweep when Nit = 1.

given Nit � 2Nc. When T is fixed, γG and γF , which respectively denote the times entailed by the coarse solver and the 
fine solver to sweep each time slice, decrease like 1/Nc as Nc increases. Thus, if Nit is fixed as well, as Nc increases, the 
time spent on serial sweeps (the first term on the right-hand side of Eq. (37)) stays about the same, whereas the time 
spent on parallel sweeps (the second term on the right-hand side of Eq. (37)) decreases like 1/Nc. Since the total runtime 
decreases and the time spent on serial sweeps stays the same, the proportion of the runtime spent on serial sweeps 
increases with Nc, as shown in Fig. 9b. The measured speedup and theoretical speedup as Nc increases are illustrated in 
Fig. 9c for Nit = 1, 2, 3. As Nc increases from 5 to 40, the increase in the measured speedup is about fivefold for each 
choice of Nit . We also observe that as Nc increases while Nit is fixed or as Nit decreases while Nc is fixed, the effect of the 
overhead of parallel computing on speedup becomes more pronounced. This can again be explained using Eq. (37). As we 
increase Nc while fixing Nit , the sum of the first two times in Eq. (37) decreases, making the overhead (the third term on 
the right-hand side of Eq. (37)) more prominent. If we decrease Nit while fixing Nc, a similar argument can be made.
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Fig. 10. Comparison of the measured speedups of the spatially parallelized fine solver and Algorithm 1 in the case where the number of rods is five and 
ε0 = 3σ f . The coarse solver is the one specified in Table 6. The stopping criterion of Algorithm 1 is ̃ηk < 10−5. T = 1 is fixed.

To examine weak scaling, we fix Nit = 1 and choose T = 0.125, 0.250, 0.500, 1.000 when Nc = 5, 10, 20, 40, respec-
tively. (As Nc increases, we also increase the temporal instead of the spatial scale of the problem because Algorithm 1 is a 
parallel-in-time method.) The runtime of Algorithm 1 in the four cases are shown in Fig. 9d. Since T /Nc remains fixed, γG
and γF stay the same as well. Since Nit = 1 is also fixed, as Nc increases, the time spent on the parallel sweep should be 
approximately the same, as shown in Fig. 9d. By Eq. (37), the total runtime of Algorithm 1 is about 2γG · Nc + γF where 
γG and γF are constants. Thus, its graph is approximately a straight line. This is again verified by Fig. 9d, where a line with 
slope 2γG is plotted next to the graph of total runtime for reference.

5.1.4. Comparison of spatial and temporal parallelization
In Sections 5.1.1 to 5.1.3, we have applied Algorithm 1 to simulate the swimming motion of a single rod. We observe 

that in this case, due to the small number of grid points (Nσ = 301), the overhead of parallel computing is too high for the 
spatially parallelized fine solver F to achieve a speedup greater than 1 regardless of how many cores are used.2 Therefore, 
Algorithm 1 is superior when the number of rods is one.

Here, we consider five interacting rod-like swimmers instead to further compare spatial parallelization and temporal 
parallelization. Accordingly, the total number of grid points in F is Nσ = 1505. We compare the measured speedups of the 
spatially parallelized F and Algorithm 1 while increasing Nc in the case ε0 = 3σ f . The coarse solver used in Algorithm 1 is 
again the one specified in Table 6 and T = 1 is fixed. For all values of Nc, the stopping criterion of Algorithm 1 is η̃k < 10−5, 
where η̃k is the relative increment defined in Eq. (34). As seen in Fig. 10, when Nc = 6, the speedups of the two algorithms 
are similar and both greater than 1. As Nc increases, the advantage of Algorithm 1 becomes more evident. In particular, its 
speedup increases with Nc, whereas the speedup of the spatially parallelized F decreases as Nc increases and goes below 
1 for Nc greater than 12, indicating that the spatially parallelized F actually becomes slower than the serial F .

This example shows that for a fixed problem, as the number of cores employed increases, even though spatial paral-
lelization may outperform temporal parallelization at first, the speedup of temporal parallelization can continue to grow 
after the speedup of spatial parallelization has stagnated.

5.2. A spherical swimmer

Models of capsules and vesicles with an elastic membrane immersed in viscous flow have been used to study the 
biomembrane mechanics of red blood cell, artificial capsules in drug delivery, and liquid droplets [60]. We apply Algorithm 1
to simulate the dynamics of an elastic spherical surface in a simple shear flow in an unbounded domain. The surface can 
be modeled by a network of springs subject to Hooke’s Law if it only undergoes small deformations. We assume that the 
springs are in their relaxed states at time t = 0. As time goes on, the interplay between the shear flow and spring forces 
causes the surface to deform: while the shear flow would “stretch” the springs, the displacements would in turn generate 
spring forces to “pull back” the springs.

The spherical surface is x2 + y2 + z2 = 1 and placed in the shear flow u∞(x, y, z) = (0.1z, 0, 0)T . We triangulate it using 
Nσ = 642 grid points that form 1280 almost uniform triangles. The length of the longest edge of them, denoted by lmax, is 
about 0.165. Each edge is modeled as a Hookean spring whose stiffness is characterized by a positive constant κ . The force 
exerted to each grid point is the sum of the spring forces exerted by all the edges incident with that point; and the grid 

2 We emphasize that this is observed in the specific parallel computing environment we use. In [40] where the computing environment is very different 
from ours, for example, it was reported that the speedup of spatial parallelization is greater than 1 when there is also only one rod and the number of grid 
points is even smaller than 301.
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Fig. 11. The projections of the surface onto the xz plane at t = 0 (a) and t = 100 (b). Three grid points are tracked to show rotation.

point exerts the opposite force to the surrounding fluid. Similar force models have been considered in [61–63] to simulate 
the motion of spherical surfaces in a viscous shear flow. The fluid velocity at any point x is given by u∞(x) + us(x), where 
us(x) is induced by the spring forces and calculated using Eq. (6).

The fine solver F and coarse solver G use the same grid specified above. As in Section 5.1, the ODE solver used in G
is forward Euler method with step size τc . The ODE solver used in F is RK2 or RK4 with step size τ f . The time steps are 
chosen such that throughout the simulation, the surface area does not fluctuate more than 0.01%.

The set of physical parameters, �, may include one or more of the following: the regularization parameter ε used in 
the MRS, the spring constant κ , and the fluid viscosity μ. The correct values of ε , κ , and μ are denoted by ε0, κ0, and 
μ0, respectively and always used in F . We fix μ0 = 0.001 g · μm−1 · s−1 and consider a few values of κ0 and ε0. Although 
the surface has no thickness, the biological structures that it represents do. Like for the rod-like swimmers considered in 
Section 5.1, their thickness is modeled by ε in the MRS. Let 

{
ε j

}Nε

j=1, 
{
κ j

}Nκ

j=1, and 
{
μ j

}Nμ

j=1 denote the values used for ε , 
κ , and μ in Lagrangian extrapolation, respectively. As in Section 5.1, NG ≤ Nc so that the auxiliary solvers that constitute G
can always be run in parallel.

The time domain is [0, 100], and the number of cores used is Nc = 40.
We perform two sets of experiments that are similar to the ones in Section 5.1.2. In the first set, ε0 = 0.3lmax, κ0 =

0.1 g/s2, and the ODE solver used in F is RK2 with τ f = 0.001. In Figs. 11a and 11b, we show the projections of the 
surface onto the xz plane at time t = 0 and t = 100, respectively. The surface is rather stiff in this case, as evidenced by the 
lack of deformation in Fig. 11b. The movement of the three grid points highlighted in Figs. 11a and 11b also indicates that 
the sphere undergoes rotation. We examine the performance of four versions of Algorithm 1 that employ the four different 
coarse solvers specified in Table 7. Note that G4 is simply G�0,τc (no extrapolation). For each version of Algorithm 1, the 
decay of the relative error as iteration count increases is displayed in Fig. 12a, and the increase of speedup as the tolerance 
of error relaxes is shown in Fig. 12b. As observed in Section 5.1.2 for the rod-like swimmer, the best coarse solver to 
use depends on the desired accuracy; and for the range of error considered in Fig. 12b, one of G1, G2, and G3, which 
is constructed using Lagrangian extrapolation alone or both Lagrangian extrapolation and Richardson extrapolation, always 
leads to higher speedup than G4.

In the second set of experiments, ε0 = 0.5lmax, κ0 = 0.05 g/s2, and the ODE solver used in F is RK4 with τ f = 0.002. 
We examine the performance of three versions of Algorithm 1 that employ the three different coarse solvers specified 
in Table 8. The coarse solvers are constructed using Lagrangian extrapolation alone or both Lagrangian extrapolation and 
Richardson extrapolation. The accuracy and speedup of each version are illustrated in Fig. 13. Comparing Figs. 12 and 13, 
we notice that the speedup in this case is considerably higher than the speedup in the previous case. This is mainly because 
τc/τ f is larger than before (see Tables 7 and 8) and a computationally more expensive ODE solver, RK4, is used in the fine 
solver as well.

Comparing Figs. 12c, 13c with Figs. 6c, 7c, we also observe that the effect of overhead on speedup is more prominent in 
the case of a spherical swimmer. This is mainly because the runtime of Algorithm 1 applied to the two examples above is 
only about 10% of the runtime of Algorithm 1 applied to the case ε0/σ f = 5 or 7 in Section 5.1.2.

6. Conclusion

In the simulation of a fluid flow around dynamic biological structures, the speedup of spatial parallelization can saturate 
as the number of computer cores employed increases. The main contributions of this paper include demonstrating the 
applicability of Parareal, a popular parallel-in-time method, to such a simulation and building novel, non-intrusive coarse 
solvers on existing ones to improve the speedup of Parareal. Our numerical results show that the proposed variant of 
Parareal is a highly competitive alternative to spatial parallelization at expediting the simulation of a biofluid. We also 
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Table 7
Coarse solvers for the case ε0 = 0.3lmax considered in section 5.2. (τ f = 0.001.)

Coarse solver Specifications NG

G1 τc = 20τ f 36
m = 0 (no Richardson extrapolation), � = {ε,κ,μ}, Nε = 4, Nk = 3, Nμ = 3
ε j/ε0 = 1.6, 1.9, 2.2, 2.5 for j = 1, 2, 3, 4
κ j/κ0 = 0.6, 0.7, 0.8 for j = 1, 2, 3
μ j/μ0 = 2.0, 2.5, 3.0 for j = 1, 2, 3

G2 τc = 10τ f 36
m = 0 (no Richardson extrapolation), � = {ε,κ,μ}, Nε = 4, Nk = 3, Nμ = 3
ε j/ε0 = 1.350, 1.525, 1.700, 1.875 for j = 1, 2, 3, 4
κ j/κ0 = 0.7, 0.8, 0.9 for j = 1, 2, 3
μ j/μ0 = 1.40, 1.65, 1.90 for j = 1, 2, 3

G3 τc = 5τ f 8
m = 1, r = 0.83, � = {ε}, Nε = 4
ε j/ε0 = 1.3, 1.45, 1.6, 1.75 for j = 1, 2, 3, 4

G4 τc = 3τ f 1
m = 0 (no Richardson extrapolation), � = ∅ (no Lagrangian extrapolation)

Fig. 12. The accuracy and parallel speedup of four versions of Algorithm 1 in the case ε0 = 0.3lmax. The four versions use four different coarse solvers G1, 
G2, G3, and G4, which are specified in Table 7. The number of cores used is 40. The ODE solver used in the fine solver is RK2. (a) Decay of the relative 
error as iteration count increases. (b) Increase of the parallel speedup as the desired error increases. (c) Measured and theoretical speedup after one to four 
iterations.

observe that for different regimes of the regularization parameter used in the Method of Regularized Stokeslets (MRS), the 
solver for fluid-structure interactions in this work, different strategies for constructing the coarse solver may need to be 
adopted in order for Parareal to achieve the highest speedup.

To be more precise, we propose to construct the coarse solver for Parareal via extrapolation: either the Lagrangian ex-
trapolation with respect to a set of physical parameters, or the Richardson extrapolation with respect to the time step used 
by the ODE solver, or a combination of the two. The physical parameters can include the regularization parameter in the 
MRS, fluid viscosity, and parameters that characterize the material properties of the biological structures. Lagrangian extrap-
olation can relax the restriction on time step commonly encountered in the simulation of a fluid around elastic structures, 
and Richardson extrapolation increases the order of accuracy of the ODE solver. The resulting solver is a linear combination 
of a sequence of existing solvers that use various parameter values and/or time steps; and applying it simply entails ap-
20
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Table 8
Coarse solvers for the case ε0 = 0.5lmax considered in section 5.2. (τ f = 0.002.)

Coarse solver Specifications NG

G1 τc = 35τ f 36
m = 0 (no Richardson extrapolation), � = {ε,κ,μ}, Nε = 4, Nκ = 3, Nμ = 3
ε j/ε0 = 1.50, 1.75, 2.00, 2.25 for j = 1, 2, 3, 4
κ j/κ0 = 0.6, 0.7, 0.8 for j = 1, 2, 3
μ j/μ0 = 1.6, 1.9, 2.2 for j = 1, 2, 3

G2 τc = 22τ f 36
m = 1, r = 0.88, � = {ε,κ,μ}, Nε = 3, Nκ = 2, Nμ = 3
ε j/ε0 = 1.350, 1.525, 1.700 for j = 1, 2, 3
κ j/κ0 = 0.70, 0.85 for j = 1, 2
μ j/μ0 = 1.350, 1.525, 1.700 for j = 1, 2, 3

G3 τc = 14τ f 24
m = 1, r = 0.93, � = {ε,κ}, Nε = 4, Nκ = 3
ε j/ε0 = 1.2, 1.3, 1.4, 1.5 for j = 1, 2, 3, 4
κ j/κ0 = 0.80, 0.85, 0.90 for j = 1, 2, 3

Fig. 13. The accuracy and parallel speedup of three versions of Algorithm 1 in the case ε0 = 0.5lmax. The three versions use three different coarse solvers 
G1, G2, and G3, which are specified in Table 8. The number of cores used is 40. The ODE solver used in the fine solver is RK4. (a) Decay of the relative 
error as iteration count increases. (b) Increase of the parallel speedup as the desired error increases. (c) Measured and theoretical speedup after one to four 
iterations.

plying the sequence of solvers, which is non-intrusive and straightforward to parallelize. If we choose the parameter values 
and time steps appropriately, the new solver can achieve higher accuracy without requiring additional runtime. We note 
that neither extrapolation technique is limited to the MRS or to the simulation of biofluids and they are both applicable to 
a wide range of problems.

We plan to explore the following three directions in future work. In the original Parareal, only one core is utilized in 
the serial stage. In this paper, we propose to utilize multiple cores in the serial stage to parallelize the new coarse solvers. 
The pipelined Parareal [16] also utilizes multiple cores in the serial stage (see Remark 3 in Section 3). A comparison of 
the two will be quite interesting. In this work, we simply use a Runge-Kutta (RK) method as the fine solver. In the hybrid 
Parareal Spectral Deferred Corrections (SDC) method [16], instead of a high-order RK method, the fine solver is one first-
order SDC “sweep” [64], which is considerably more efficient. The numerical experiments in [16] demonstrate that this 
replacement does not significantly affect the convergence of Parareal. Replacing the RK method by a first-order SDC sweep 
in the fine solver may further improve the speedup of the variant of Parareal proposed here. After the biological structures 
21
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immersed in the fluid have been discretized by a Lagrangian grid, evaluating the velocities at all Nσ grid points using 
Eq. (6) is an Nσ -body problem whose asymptotic computational complexity is O (N2

σ ). When the number of structures is 
large, this can be prohibitively expensive. In previous work [43,65], we have extended the Kernel-Independent Fast Multipole 
Method (KIFMM) [66,67], a fast summation method, to expedite the evaluation of velocities in the MRS, which reduces this 
complexity to O (Nσ ). Another future direction is to consider spatially large-scale problems in which there are hundreds or 
more structures and solve them by coupling KIFMM and Parareal.
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