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Methylmercury (MeHg) is a toxin that poses health risks to humans and wildlife, primarily through consumption
of seafood (Sunderland and Mason, 2007). Most MeHg bioaccumulation by marine fish likely occurs in the upper
200 m of the ocean, which is mostly oxygenated (Mason et al., 2012). However, mechanisms of Hg methylation
in oxic seawater remain unknown, since the hgcAB gene cluster, which encodes proteins for MeHg production,
had been found exclusively in anaerobic microbes (Gilmour et al., 2013; Parks et al., 2013). Recent work,
however, has shown that hgc genes are widespread in oxic seawater, including in the microaerophilic nitrifier,
Nitrospina (Tada et al., 2020; Tada et al., 2021; Gionfriddo et al., 2016; Bowman et al., 2020). Here, we show that
potential MeHg production rates in Western Tropical North Atlantic Ocean surface waters, within and near the
Amazon River plume, were correlated positively and strongly to nitrification rates and Nitrospina-specific 16S
gene expression. Potential Hg methylation and nitrification rates were highest at the most saline and least turbid
stations, indicating that sediment particles and nutrient-rich, riverine discharges were not the primary factors
promoting either process. These novel results in oxic seawater provide further evidence that Hg methylation is

Mercury methylation rate

Amazon River plume
Nitrospina

linked to abundant, nitrifying microbes and may help explain marine MeHg distributions.

1. Introduction

Methylmercury is ubiquitous in the ocean, most of which is
oxygenated from surface to bottom, but microbial production of MeHg is
thought to be sensitive to oxygen (Lin et al., 2021; Mason et al., 2012).
The presence and distribution of MeHg in oxic seawater conflicts with a
long-standing paradigm that MeHg is produced only by anaerobic mi-
crobes, particularly those that reduce sulfur and iron (Gilmour et al.,
2011; Monperrus et al., 2007; Gilmour et al., 2013). The only known
microbes in culture that methylate Hg are anaerobic (Gilmour et al.,
2011; Mason et al., 2012; Parks et al., 2013). Methylmercury production
has been measured in the upper, oxic water column of the ocean (Whalin
et al., 2007; Lehnherr et al., 2011; Munson et al., 2018), where it is
hypothesized to occur within anoxic microzones associated with parti-
cles (Ortiz et al., 2015). Based on these measurements, and independent
flux calculations based on concentration measurements (Hammersch-
midt and Bowman, 2012), in situ production can account for >90% of
MeHg in oxic surface water of the open ocean, where most seafood is
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harvested. However, a mechanism for MeHg production in oxic seawater
remains elusive.

A variation of the Hg methylation gene (hgc) was recently described
in the microaerophilic, nitrite-oxidizing bacteria Nitrospina in Antarctic
sea ice (Gionfriddo et al., 2016); Nitrospina performs the second step of
nitrification (oxidation of nitrite to nitrate, which follows oxidation of
ammonium to nitrite; Santoro et al., 2010). Nitrospina expression of hgc
is also widespread in the surface ocean (Villar et al., 2020), but its Hg
methylating capabilities have not been confirmed, as no hgc-containing
Nitrospina currently exist in culture (Tada et al., 2021). It is also unclear
whether the hgcA-like genes in Nitrospina encode for a functional
Hg-methylation protein as, since Nitrospina-specific hgcA-like genes are
distinct from hgcA in known and predicted methylators (Gionfriddo
et al., 2020).

Known Hg methylating microbes, belonging to sulfate reducing, iron
reducing, and methanogenic clades (Podar et al., 2015; Christiansen
et al., 2019), require anoxic conditions, but only two putative Hg
methylators, Nitrospina and Nitrospira, can respire in oxic waters
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(Gionfriddo et al., 2022). Nitrospira, a class of nitrite oxidizing bacteria,
contains hgcAB genes but has only been recovered in freshwater meta-
genomes, not marine environments (Gionfriddo et al., 2020). Previous
studies have investigated links between Hg methylation and other
anaerobic reactions, such as sulfate and iron reduction in anoxic regions
of the ocean, but no clear link has been shown between nitrification and
Hg methylation.

We sampled water from the Western Tropical North Atlantic Ocean
at six stations associated with the Amazon River plume (Fig. 1) between
18 June and 6 July 2019, during a cruise exploring the impact of the
plume on planktonic productivity and communities. Stations were
selected to span a gradient of planktonic productivity and surface-water
salinity. Water was collected with a CTD-rosette equipped with 10-L
Niskin bottles for determination of potential Hg methylation and nitri-
fication rates, dissolved inorganic nitrogen (N) and urea concentrations,
and abundance of associated genes from both surface waters (~5 m) and
deep chlorophyll maxima (between 27 and 100 m depth among stations;
Table 1).

2. Methods
2.1. Sample collection

Water was sampled from the Western Tropical North Atlantic Ocean
at six stations associated with the Amazon River plume (Fig. 1) between
18 June and 6 July 2019 aboard the R/V Endeavor. Stations were
selected to span a gradient of planktonic productivity and surface water
salinity from international waters and territorial waters of Barbados,
Suriname, and French Guiana. Temperature, dissolved oxygen, salinity,
photosynthetically active radiation (PAR), turbidity (beam attenuation),
and chlorophyll fluorescence were profiled with a SBE 911 CTD at each
station. The CTD downcast was used to identify features (e.g., deep
chlorophyll maxima) in the depth profile and inform the choice of spe-
cific water sampling depths for the upward cast (Fig. 2). Water from
selected depths was collected with 10-L Niskin bottles for measurement
of gross potential Hg methylation and nitrification rates, as well as
dissolved inorganic N and urea concentrations, from both surface water
(upper 5 m) and deep chlorophyll maxima (ranging between 27 and 100
m among stations; Table 2). Experimental incubations for Hg and N
transformations commenced within two hours of sampling. Water for
ambient nutrient concentrations (NHf, NO3, NO3, urea, and ortho-
PO3 ") was filtered immediately upon CTD retrieval using a 60-mL sy-
ringe through a sample-rinsed, 0.22-pm Nylon syringe filter (Table 3).
Filtrate was frozen promptly at —20 °C until analysis.
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2.2. Nitrification rate measurements

At each station, 1 L of seawater from each sampling depth was
amended with 8 pL of 10 mM 98% 15NH4C1 (final concentration 0.08
uM), mixed, and distributed into three 125-mL polypropylene bottles
(Nalgene). Another 125-mL bottle was filled with unamended seawater
as a control. Prior to incubation, initial subsamples were filtered (0.22
pm Nylon syringe filter) from amended and unamended samples into
one 15-mL polypropylene tube and two 20-mL plastic scintillation vials.
Incubation bottles (unamended control plus three amended) were then
placed into an on-deck, flow-through incubator for ~24 h at ambient
light and temperature. Samples collected from chlorophyll maxima were
covered with neutral density screen to approximate in situ PAR intensity.
After 24 h, subsamples were collected and filtered as described above for
initial samples. All filtered water samples were frozen until analysis at
Wright State University.

Total NHJ concentrations were analyzed with a Lachat Quikchem
8500 FIA nutrient analyzer in samples (12.5 mL) collected in 15 mL
polypropylene tubes. >NO3 produced via nitrification was reduced to
15NO3 via Cd reductions (Newell et al., 2011; Jeffrey et al., 2012;
Hampel et al., 2018) performed by transferring 25 mL of sample water
from each of the two 20-mL scintillation vials into one 50-mL centrifuge
tube. 100 mg of MgO, 6.6 g of NaCl, and 1 g of acidified Cd was added to
each centrifuge tube. Samples were then incubated with constant, gentle
agitation for ~17 h, followed by centrifugation at 1000 rpm for 15 min.
The supernatant (~7.5 mL) was transferred into 12 mL Exetainers
(Labco) and sealed without air headspace or bubbles. I5NO3 was sub-
sequently reduced to 1°N,0 by injecting each sample with 0.25 mL of 2
M NaN3:20% CH3COOH solution and incubating for 1 h at 30 °C prior to
pH neutralization with 0.15 mL of 10 M NaOH (Mcllvin and Altabet,
2005).

Samples were stored in the dark until analysis of 1°N,O with a
ThermoFinnigan GasBench + PreCon trace gas concentration system
connected to a ThermoScientific Delta V Plus isotope-ratio mass spec-
trometer (Bremen, Germany) at the University of California-Davis Stable
Isotope Laboratory. Nitrification rates were calculated and corrected for
NaN3 reduction efficiency based on concurrent standard reduction and
the labeled fraction of the NHZ4 pool (Hampel et al., 2020).

2.3. Hg methylation rate measurements

Four 2-L replicates of seawater were collected at each station and
depth for analysis of potential Hg methylation rates. Water was amen-
ded to 10 pM Hg (final concentration; 96.41% 200Hg(NOg)z), which is
about 10x greater than ambient total Hg concentrations in the North
Atlantic mixed layer (Bowman et al.,, 2015). After Hg isotope

Fig. 1. (A) Stations in the North Atlantic Ocean where surface
and deep chlorophyll maximum water samples were collected.
Red box shows domain of (B). Monthly composite map of
surface chlorophyll derived from MODIS Aqua and VIIRS sen-
sors for June 2019. The high chlorophyll concentration shows
the influence of the Amazon River outflow spreading north-
ward. Surface waters (~5 m) ranged in salinity from 16.1 to
33.4 (Table 1). Chlorophyll satellite data obtained from Glob-
Colour (http://globcolour.info) used in this study was devel-
oped, validated, and distributed by ACRI-ST, France. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Amazon River plume stations, sampling date, sampling depths (m), salinity, temperature (°C), photosynthetically active radiation (PAR; W m~2), beam attenuation

(Beam; m™ 1), and oxygen (pM); surface and deep chlorophyll maximum).

Station Date Depth Salinity Temperature PAR Beam Oxygen
7 6/18/19 3.6 16.1 29.0 713 81 247.1
100 36.1 28.2 17 88 189.9
11 6/21/19 3.7 33.4 27.9 392 86 196.0
25 34.4 27.9 59 86 188.8
18 6/27/19 5.4 29.9 27.9 1145 86 203.3
50 36.1 26.9 25 87 199.0
22 6/30/19 5.9 31.9 27.9 647 86 199.9
74 37.2 25.8 17 87 204.6
26 7/2/19 5.7 33.2 27.9 368 86 197.4
58 35.8 27.3 10 86 184.4
30 7/5/19 5.3 33.4 28.1 1317 85 197.5
83 36.2 27.6 17 85 185.2

amendment, water samples were incubated in the on-deck, flow-through
incubator. Water samples from deep chlorophyll maxima were covered
with neutral density screen to simulate in situ light intensity based on
PAR measurements (Table 1), and surface water was incubated without
a light filter. All samples were incubated at ambient sea-surface tem-
perature (Table 1) for ~24 h. After incubation, water was amended with
CH3°Hg (for isotope dilution analysis, described below) within 30 min
of being removed from the incubator and promptly acidified with H,SO4
(1% by volume) to stop biological Hg transformations. Acidified water
was analyzed for MeHg isotopes at Wright State University within three
months of collection.

For analysis, acidity of water samples was titrated with 12 M KOH,
buffered with 4 M acetate buffer and 0.3 mM ascorbic acid to a pH of 4.9,
and derivatized with sodium tetraethylborate (Bowman and Ham-
merschmidt, 2011; Munson et al., 2014). Samples were then purged
with Ny, and methylethylmercury (MeHg derivative) was concentrated
on Tenax. Mercury isotope composition of purged MeHg was quantified
with isotope-dilution gas chromatography inductively coupled plasma
mass spectrometry (GC-ICPMS; Perkin Elmer Elan 9000; Hintelmann
et al., 1995; Hintelmann et al., 2000). Potential Hg methylation rates
were calculated from the amount of added 2°°Hg?* that was transformed
to CH%OOHg during incubation (Hintelmann and Evans, 1997). The
detection limit for Hg methylation is dependent on ambient MeHg
concentration, estimated from CH3"?Hg isotope dilution to average 0.14
+ 0.01 pM (n = 48), which is comparable to other measurements in the
North Atlantic Ocean (Bowman et al., 2015).

2.4. Phytoplankton diagnostic pigments

Samples were collected for estimating phytoplankton pigment con-
centrations from the upper 100 m of the water column. Three liters of
water were collected from four different depths from the surface to the
deep chlorophyll maximum, according to the CTD downcast profile, and
filtered (GF/F). The filters were frozen in liquid nitrogen until analysis
following the HPLC method of Van Heukelem and Thomas (2001).

2.5. Nucleic acid extraction and amplification

RNA samples were collected at the surface and chlorophyll maxima
at the six sites. A known volume (2-5 L) of seawater was pushed through
a 0.22 pM Sterivex filter pack (Millipore). Nucleic acids were stabilized
by filling the Sterivex filter with RNAlater (ThermoFisher) and stored at
—80 °C until extraction.

RNA was extracted from Sterivex filters using a Rneasy Dneasy
PowerWater Sterivex Kit (Qiagen) according to manufacturer in-
structions. Nucleic acid concentrations were measured, and RNA extract
quality was assessed, using 260/280 and 260/230 ratios, with a Nano-
Drop Microvolume Spectrophotometer (ThermoFisher). RNA extrac-
tions were synthesized to cDNA using the ProtoScript First Strand cDNA
Synthesis Kit (BioLabs), including a DNAse treatment to limit gDNA

contamination. Remaining RNA extractions were stored at —80 °C for
future use. cDNA was stored at —80 °C until amplification, and test
amplification with PCR was used to visually confirm amplicon length via
gel electrophoresis.

A gPCR amplification assay was completed using a Mastercycler ep
Realplex2 Real-Time PCR system (Eppendorf). Nitrospina-specific 16S
sequences were amplified using primers NitSSU_130 F (5 -GGGTGAG-
TAACAC GTGAATAA-3') and NitSSU_282 R (5’-TCAG
GCCGGCTAAMCA-3’; Mincer et al., 2007). The uncultured Nitro-
spinaceae sequence EBO80L20_F04 was used as a qPCR standard. The
sequence underwent seven serial dilutions (10’4—10*10 ng pol) to
create the standard curve (R? > 0.99, efficiency >85%). All samples
were amplified in triplicate using the following chemical volumes: 10 pL
Luna Universal qPCR Master Mix (New England BioLabs), 1 pL NitS-
SU_130F and NitSSU_282R, and 1 pL of standard or sample (1000-2000
ng cDNA). The total volume (20 pL) was amplified using thermal cycling
parameters in Mincer et al. (2007). The qPCR reactions were completed
on a single plate to avoid differences in efficiency between runs. Known
Nitrospina have one copy of the 16S gene (Ngugi et al., 2016), but
relative expression may vary from cell to cell, particularly if 16S is not
constitutively expressed.

Nitrospina 16S gene copies were calculated as (ng * number mol ™) /
(bp * ng g~ * g mol™! of bp) and are reported in gene copies mL ' of
sample water (modified from Hampel et al., 2020). The calculated
Nitrospina specific 16S gene copy numbers represent relative, not ab-
solute, values, since copy numbers were normalized to the RNA con-
centration (ng mL~! filtered) extracted from each Sterivex due to
inconsistent amplification efficiency with cDNA synthesis (Newell et al.,
2016).

3. Results and discussion

Potential rates of Hg methylation ranged from 0.41 to 1.29 pmol L~}
day ! among all samples and did not differ between the upper 5 m (0.55
+0.15 pmol L™} day™!) and the chlorophyll maxima (0.69 =+ 0.19 pmol
Lt day_l; paired t-test, p = 0.10). These rates are comparable to those
measured using similar techniques in the Arctic Ocean and coastal
Mediterranean Sea (0.03-0.61 pmol L! day’l; Monperrus et al., 2007;
Lehnherr et al., 2011). Additionally, given that the added Hg substrate
was 10 times higher than ambient concentrations in this study, we es-
timate that in situ rates would be about 10 times lower than the potential
rates estimated here, suggesting in situ, gross Hg methylation rates of
0.04 to 0.13 pmol L™ day~!. Globally, net MeHg production in the
ocean is estimated at 1-10 Mmol year ™! or 0.005 to 0.05 pmol L ™! day !
for net methylation rates (Hammerschmidt and Bowman, 2012; Mason
et al., 2012), which include demethylation rates. Ambient MeHg con-
centrations were estimated from CH3°?Hg isotope dilution measure-
ments (mean = 0.14 + 0.01 pM; n = 48) and fall within the range of
previous MeHg measurements (0.03-0.20 pM) in the equatorial Atlantic
Ocean (Mason and Sullivan, 1999). Our estimated in situ rates imply
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Fig. 2. Salinity, beam attenuation, and dissolved oxygen for each station. Black line indicates sampling point from the chlorophyll maximum.

turnover rates of 0.3-0.9 day ! for MeHg in the upper water column of much as 1800 km from the Amazon River mouth are up to an order of

the Amazon River plume region, which are 5- to 15-fold higher than the magnitude greater than rates from other studies in the oligotrophic
highest turnover rates estimated for the Mediterranean Sea (Monperrus Atlantic Ocean (0 to 12 nmol L™! day*1 ; Clark et al., 2008; Newell et al.,
et al., 2007). 2013) and are more comparable to the range of rates measured at coastal

Nitrification rates in this study (0 to 292 nmol L1 day 1) at sites as shelf sites, particularly those influenced by large rivers (Bristow et al.,
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Nutrient concentrations (uM) for each station and depth (mean =+ standard error of three replicate injections from a single sample, except for n = 1 for ortho-PO3 "~ at

station 18). ND = not detected (detection limit for urea = 0.27 pM).

Station Depth (m) NHZ ortho-PO3~ NO3z NO; ~ Urea
7 3.6 0.520 + 0.005 0.167 + 0.007 0.064 + 0.002 0.094 + 0.008 0.220 + 0.028
100 0.930 + 0.023 0.324 + 0.004 0.196 + 0.005 0.287 + 0.004 0.433 + 0.041
11 3.7 0.856 + 0.016 0.312 + 0.003 0.143 + 0.005 0.058 + 0.002 ND
27 0.887 + 0.009 0.333 + 0.004 0.215 + 0.008 0.152 + 0.004 ND
18 5.4 0.682 + 0.001 0.064 0.129 + 0.004 0.052 + 0.002 ND
50 0.836 + 0.006 0.030 0.156 + 0.017 0.187 + 0.002 ND
22 5.9 0.745 + 0.013 0.284 + 0.007 0.134 + 0.014 0.061 + 0.003 ND
75 0.853 + 0.009 0.357 + 0.002 0.163 + 0.011 0.051 + 0.001 0.352 + 0.022
26 5.7 0.781 + 0.005 0.279 + 0.008 0.155 + 0.003 0.102 + 0.008 ND
58 1.227 + 0.024 0.335 + 0.014 0.265 + 0.011 0.691 + 0.005 ND
30 5.3 0.757 + 0.011 0.313 + 0.003 0.152 + 0.003 0.066 + 0.002 ND
83 2.271 + 0.010 0.219 + 0.009 0.180 + 0.003 0.334 + 0.009 ND
Table 3 15
Potential Hg methylation and nitrification rates (mean =+ standard error; n = 3, y = 0.003x + 0.432
except n = 1 for Hg methylation at station 11 surface and nitrification at station _ R2=0.78
30 surface). ND = not detected. 'g* p=0.03
Station  Date Depth  Hg Methylation rate Nitrification rate ?
(pmol L day’l) (nmol L day’l) :OI 1.0 A
7 6/18/19 3.6 0.52 + 0.14 9.8 + 10 g_
100 0.43 + 0.07 63 + 9 c a7
11 6/21/19 3.7 0.45 20 + 17 _8 X
25 041 £ 0.04 67 £ 20 g o1
18 6/27/19 5.4 049 £+ 0.06 ND £05 X xX18
50 064 + 011 ND 2 8‘ » A9
22 6/30/19 5.9 0.41 + 0.02 16 + 17 o
74 048 + 0.11 31 + 10 I ©26
26 7/2/19 5.7 0.69 + 0.26 110 + 87 +30
58 0.89 + 0.31 117 + 60 0.0 , ,
30 7/5/19 5.3 0.74 + 0.29 81 :
83 1.29 + 0.49 292 + 100 0 100 200 300

2015; Heiss and Fulweiler, 2016). Nitrification rates from the California
Current ranged from 9 to 210 nmol Lt day’1 (Santoro et al., 2010),
similar to those from the North Atlantic equatorial current in our study.
Potential nitrification rates reported here are similar in magnitude to
those from an Atlantic Ocean site near the coast of Georgia (USA; 382 +
35 nmol L* day_l; Tolar et al., 2017), the Northern Gulf of Mexico
coastal shelf near the Mississippi River plume (9 to 494 nmol L™! day%;
Bristow et al., 2015), and a coastal shelf region impacted by the
Narragansett River in the northwestern Atlantic Ocean (up to 99 nmol
L7 day~!; Heiss and Fulweiler, 2016). The consistently large range of
nitrification rates across these studies suggests that coastal ocean nitri-
fication (and nitrite oxidizers) may play a key role in global marine Hg
methylation if nitrifiers are ubiquitously related to Hg methylation.

Potential Hg methylation and nitrification rates in seawater were
correlated positively (Spearman's rho = 0.92; p = 0.03; Fig. 3), sug-
gesting that nitrifying microbes may be an important source of MeHg in
surface waters of the study area. Potential rates of Hg methylation and
nitrification were highest at the most saline and least turbid stations
(Stations 26 and 30; Fig. 1; Table 1; Table 3), implying that sediment
particles (hotspots for anoxic microzones; Chakraborty et al., 2021) and
nutrient-rich, riverine discharges were not the primary factors promot-
ing either process. Station 30 is near a turbidity front where waters from
the Amazon River have mixed extensively with offshore waters in the
Atlantic Ocean (Fig. 1B). The water at station 30 has the highest surface
PAR, beam attenuation, and NHj (Table 2). Accordingly, correlated
rates of Hg methylation and nitrification observed in this study may be
representative of ocean surface water globally.

Recent work linked Hg methylation genes and the nitrite oxidizer,
Nitrospina, to potential MeHg production in the ocean (Villar et al.,
2020; Bowman et al., 2020; Tada et al., 2020; Tada et al., 2021). The
Nitrospina-16S gene (Hou et al., 2018) was expressed at our sampling

Nitrification nmol L' day-"

Fig. 3. Relationship between potential Hg methylation and nitrification rates in
the Western Tropical North Atlantic Ocean (p = 0.03). Surface samples have no
fill, while chlorophyll maximum samples are black or gray. Surface samples
have a least squares regression of y = 0.0026x + 0.4492 [R? = 0.74), and
chlorophyll maximum samples have a least squares regression of y = 0.0029 x
+ 0.4144 (R? = 0.77). Similar slopes of surface and chlorophyll maximum
samples suggest that the relationships are similar throughout the water column.

stations (Fig. 4). There was a strong, positive correlation between
expression of Nitrospina-16S normalized gene copies and potential Hg
methylation rates ®R? = 0.70, p = 0.001), as well as Nitrospina-16S and
potential nitrification rates R? = 0.80, p = 0.0004). However, the
relationship with Hg methylation rates deteriorates if results from sta-
tion 30 are excluded. Across all stations, there was no difference in
Nitrospina-16S expression between surface and chlorophyll maximum
depths (p > 0.05). Other microbial groups commonly found at depths
where Nitrospina are abundant include Marine Group A, SAR324, Fla-
vobacteria, and other ‘deep’ SAR11 clades (Fuhram et al., 2015; Cram
et al., 2015). However, these groups are mostly chemoautotrophic
and/or phototrophic bacteria and not known to be involved in nitrifi-
cation MeHg cycling, so there is no obvious alternative pathway or
mechanism for Hg methylation in these groups. However, without ac-
cess to metagenomic data to characterize the entire microbial commu-
nity, the possibility of other microbes being involved in these processes
cannot be ruled out.

Our observation that potential nitrification and Hg methylation po-
tential rates were strongly related (Spearman's rho = 0.92, p = 0.03;
Fig. 3) suggests that Nitrospina may be involved in both methylating Hg
and oxidizing nitrite in the oxic surface ocean near the Amazon River
plume and in oxic waters underlying the plume. Our findings support
previous molecular work (Villar et al., 2020; Tada et al., 2020; Tada
et al., 2021) suggesting that Hg methylation may be associated with



L.D. Starr et al.

Marine Chemistry 247 (2022) 104174

1.0E+06
83 m
B Surface
O Chlorophyll Maximum Ex

1.0E+05
5
[S
[%2]
.0
g 1.0E+04 + 27 m
8 100 m 75m 58 m
% 50 m *
€ 1.0E+03 T *
S
c
()
©
£ 1.0E+02
&
£
=2

1.0E+01

1.0E+00

7 11 18 22 26 30

nitrification in the oxic surface ocean.

Since methylation rate is likely substrate limited, and Hg concen-
tration in our incubations was elevated by an order of magnitude above
ambient, we estimate an actual in situ production rate of 36-90 Mmol of
MeHg year™!. Based on the relationship in Fig. 3 and an estimated range
of surface-water nitrification rates (0 to 97 nmol L1 day’l) in the
Atlantic, Pacific, and Indian Oceans (Ward and Zafiriout, 1988; Newell
etal., 2011; Grundle et al., 2013), we predict a gross potential production
of 360-900 Mmol of MeHg year ! in the open ocean. This flux is about
2- to 5-fold greater than annual Hg loadings to the surface ocean from
external sources (e.g., ~20 Mmol year! via river discharges and at-
mospheric deposition) and net estimated MeHg production in the ocean
(1-10 Mmol year’l) based on mass balances (Hammerschmidt and
Bowman, 2012; Mason et al., 2012). The positive y-intercept of the
relationship between MeHg production and nitrification (Fig. 3) sug-
gests MeHg production from additional processes, such as sulfate- and
iron-reduction in particle-associated microenvironments, or abiotic
processes. The 2- to 5-fold difference between in situ MeHg production
estimates based on our measurements and net MeHg production from
mass balance is likely due in part to similarly high demethylation rates
in the open ocean (Munson et al., 2018; Lehnherr et al., 2011), which is
consistent with the high turnover rates implied by our data.

Both potential nitrification and Hg methylation rates were positively
correlated across all stations and depths (Spearman's rho = 0.58 to 0.87)
with several pigment concentrations (normalized to total chlorophyll a)
associated with Prochlorococcus and eukaryotic picophytoplankton
(Jeffrey et al., 2012). These pigments include divinyl chlorophyll b,
chlorophyll b, and but-fucoxanthin, but these correlations were largely
driven by data from the chlorophyll maxima of Stations 26 and 30
(Fig. S1). These stations were located in the northern and western rea-
ches of the Amazon River plume, >1300-1700 km from the mouth of the
river (Fig. 1). Here, the plume is diluted by mixing with seawater and is
more transparent, alleviating light limitation. High rates of primary
production and nitrogen fixation have been measured previously in this
area of the Amazon River plume (Carpenter et al., 1999; Subramaniam
etal., 2008; Montoya et al., 2019). Normalized concentrations of divinyl
chlorophyll b and total chlorophyll b, diagnostic of pico-eukaryotes,
were elevated at the chlorophyll maxima at these stations (Table S1;
Fig. S1). Since correlations between pigments and nitrification or Hg

Fig. 4. Relative expression of Nitrospina-16S for all stations at surface and
chlorophyll maxima on a log scale with standard error (n = 3). Gene copy
numbers were normalized to the RNA extracted from each sample. Surface
depth ranged from 3.6 to 5.9 m below the sea surface. Highest normalized
copies were found in chlorophyll maximum samples from station 30,
where highest Hg methylation and nitrification rates were found.
*Denotes difference (p < 0.05) between surface and deep chlorophyll
maximum samples at a given station.

methylation rates were driven by only two data points from Stations 26
and 30 (Fig. S1), and since phytoplankton can outcompete nitrifiers for
dissolved inorganic N, we interpret these relationships with pigments to
likely be coincidental and do not appear to provide an alternative
explanation for the relationship between nitrification and Hg methyl-
ation (Table 3; Lomas and Lipschultz, 2006).

Several studies have suggested that particles include suboxic mi-
crohabitats, where hotspots of both nitrite oxidation and Hg methylation
might occur in close proximity within an otherwise oxic water column
(Date et al., 2019; Chakraborty et al., 2021; Medeiros et al., 2015; Zhang
et al., 2019). However, nitrification and Hg methylation rates were not
correlated with turbidity, implying that loading of terrigenous particu-
lates and organic matter from the Amazon River were not driving either
pathway. While some Nitrospina are microaerophilic, and all previously
known pathways of Hg methylation are anaerobic, the lack of correla-
tion with beam attenuation as a proxy for turbidity (Spearman's rho =
—0.02, p = 0.95) is consistent with an aerobic pathway. Previous studies
have also found filtered seawater (0.45 pm) can have methylation rates
1.4x higher than unfiltered samples (Munson et al., 2018).

Coupling of microbial Hg methylation and nitrification provides a
possible mechanistic explanation for MeHg production in oxic waters, as
well as MeHg distributions and bioaccumulation in marine systems. In
addition to providing novel, process-based data, these results can also be
viewed in the context of a changing marine MeHg cycle as a result of
anthropogenic environmental stressors. Increased reactive N loading to
the ocean is already causing coastal eutrophication and leading to
increasing hypoxic zones worldwide (Falkowski et al., 2011; Pena et al.,
2010). Human activities have also tripled Hg inputs to the surface ocean
since industrialization (Lamborg et al., 2014). The combination of
increasing substrates for nitrification and Hg methylation, development
of hypoxic zones, and overall conditions favorable for Hg methylation
may lead to greater MeHg bioaccumulation in seafood and, thus, human
health risks.
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