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Abstract— A new source model, which consists of an intrinsic1

state part and an extrinsic observation part, is proposed and its2

information-theoretic characterization, namely its rate-distortion3

function, is defined and analyzed. Such a source model is4

motivated by the recent surge of interest in the semantic aspect5

of information: the intrinsic state corresponds to the semantic6

feature of the source, which in general is not observable but7

can only be inferred from the extrinsic observation. There are8

two distortion measures, one between the intrinsic state and its9

reproduction, and the other between the extrinsic observation and10

its reproduction. Under a given code rate, the tradeoff between11

these two distortion measures is characterized by the rate-12

distortion function, which is solved via the indirect rate-distortion13

theory and is termed the semantic rate-distortion function of14

the source. As an application of the general model and its15

analysis, the case of Gaussian extrinsic observation is studied,16

assuming a linear relationship between the intrinsic state and the17

extrinsic observation, under a quadratic distortion structure. The18

semantic rate-distortion function is shown to be the solution of a19

convex programming problem with respect to an error covariance20

matrix, and a reverse water-filling type of solution is provided21

when the model further satisfies a diagonalizability condition.22

Index Terms— Lossy compression, rate distortion theory,23

reverse water-filling, semantic rate distortion function, semantic24

source model, task-oriented communication.25
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Fig. 1. Illustration of a semantic source and its lossy compression.

I. INTRODUCTION 26

ASTANDARD approach to describe an information source 27

is to model a source as a stochastic process {Xi}, and 28

when the stochastic process is memoryless, it suffices to model 29

a source as a random variable1 X with a given probability 30

distribution p(x) [2], [3]. In this paper, we study a new source 31

model, which consists of an intrinsic state process and an 32

extrinsic observation process. In the memoryless case, we can 33

describe such a source model as a pair of random variables 34

(S, X), with a given joint probability distribution p(s, x), 35

defined over an appropriate product alphabet S × X . 36

In order to characterize the information-theoretic aspect of 37

such a source, consider the problem of compressing the source 38

(S, X) so as to reproduce, in a lossy sense, a reproduction 39

(Ŝ, X̂) over a reproduction product alphabet Ŝ×X̂ . Of course, 40

a pair of distortion measures, ds : S × Ŝ �→ R and do : X × 41

X̂ �→ R, are introduced correspondingly. Here, the subscript s 42

stands for “state” and the subscript o stands for “observation”. 43

A key point of the problem is that the compressor only 44

has access to X , the extrinsic observation; — while S, the 45

intrinsic state, remains unrevealed. The situation is illustrated 46

in Figure 1. 47

Our source model, termed a semantic source in the sequel, 48

is motivated by the recent surge of interest in the semantic 49

aspect of information. In a number of applications that may 50

benefit from taking into account the “semantic” feature of 51

information, it is adequate to adopt a goal-oriented perspective; 52

that is, the destination’s interest in obtaining a piece of infor- 53

mation is to accomplish a certain goal. Furthermore, it is cus- 54

tomary to adopt an inference-theoretic problem formulation, 55

1In this paper, random variables can be drawn from general alphabets,
so random vectors are vector-valued random variables.
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which casts the accomplishment of the said goal as solving a56

statistical inference problem. The reproduction of the intrinsic57

state S corresponds to the semantic inference part of the58

source, and the reproduction of the extrinsic observation X59

corresponds to the conventional lossy compression part of the60

source.61

We give two examples of the above consideration:62

• Systems that support MPEG Video Coding for63

Machines (VCM) are becoming popular in applications.64

In VCM, both the video itself and its features are65

reproduced: the video signal is for human vision, and66

the features are for machine vision tasks [4], [5] [6].67

Treating the video as a semantic source, the video signal68

itself corresponds to its extrinsic observation, and the69

underlying features correspond to its intrinsic state, so as70

to embody the semantic aspect of the video. Usually71

the code rate required for reproducing features can be72

drastically lower than that required for reproducing the73

video signal itself. Intuitively, features typically have74

much smaller rate distortion functions and hence can be75

described with many fewer bits, compared with video76

signals. For instance, previous works have shown that77

neural network-based learning techniques can extract a78

very small amount of data from video signals to satisfy79

the need of action recognition, target classification80

and many other tasks [7], [8]. In contrast, traditional81

video coding schemes such as H.264/AVC/MPEG-4 and82

H.265/HEVC/MPEG-H Part 2 target reproducing the83

video signal with high fidelity, but may perform poorly84

for machine vision purposes [9].85

• In coding of speech signals, the semantic aspect is86

embodied as a sequence of text words, which, of course,87

can only be inferred from the speech signal itself. Treat-88

ing the speech as a semantic source, the words correspond89

to its intrinsic state and the speech signal corresponds to90

its extrinsic observation. It is the usual case that both the91

words and the speech signal are desirable, because the92

words carry the meaning of speech, and the speech signal93

waveform may help us infer the stress and emotion of the94

speaker [10], and may further help us accomplish tasks95

like speaker recognition and speaker verification [11].96

Our main contributions include:97

• We propose a theoretical framework based on rate distor-98

tion theory for characterizing semantic information.99

• We define and derive a single-letter expression for the100

semantic rate distortion function.101

• When the extrinsic observation is Gaussian and satisfies102

a linear relationship with the intrinsic state, we reduce103

the calculation of the semantic rate distortion function104

to a convex programming problem, which is tractable105

with standard scientific computing software. Furthermore,106

under a diagonalizability condition, we obtain a weighted107

reverse water-filling solution for the semantic rate distor-108

tion function.109

We give a brief overview of related works in the remain-110

ing part of this section. Then we provide a formal math-111

ematical description of the semantic source model and the112

corresponding semantic rate-distortion problem formulation in 113

Section II, for which we establish the semantic rate-distortion 114

function in general form in Section III. As an application of 115

the general results, in Section IV we turn to a case study 116

of Gaussian extrinsic observation, assuming a linear relation- 117

ship between the intrinsic state and the extrinsic observation, 118

under a quadratic distortion structure. Therein, we formulate 119

a convex programming problem to solve for the semantic 120

rate-distortion function. When the Gaussian observation model 121

further satisfies a diagonalizability condition, we develop a 122

reverse water-filling type of solution in Section V. Finally we 123

conclude this paper in Section VI. 124

A. Related Works 125

The first formulation in Shannon’s information theory is 126

lossless source coding, wherein a sequence of symbols obeying 127

a certain probabilistic law is represented as a bit string (i.e., 128

a codeword) by an encoder, and the decoder reproduces, based 129

upon the codeword, the original sequence of symbols, with 130

success probability exactly one or asymptotically approaching 131

one. Hence, the coding is solely determined by the proba- 132

bilistic model of the source, and there is certainly no role 133

of the semantic aspect of the source. This is also consistent 134

with Shannon’s remark in his landmark paper [2], saying 135

“these semantic aspects of communication are irrelevant to 136

the engineering problem.” 137

In a broad sense, however, the lossy source coding 138

formulation in Shannon’s information theory, namely, the 139

rate-distortion theory [12], has provided a means of studying 140

the semantic aspects of a source. This is because the coding is 141

not solely determined by the probabilistic model of a source, 142

but is also affected by a distortion measure, which may be 143

defined in a rather versatile way so as to capture the “utility” 144

when the source is reproduced at the decoder. 145

Our present work goes one step further, by endowing a 146

source with a state-observation structure and studying the 147

rate distortion function of such a source model. This model 148

captures the fact that the semantic aspects of a source are 149

generally embedded as intrinsic features, and hence should 150

be characterized by studying the reproduction of the intrinsic 151

state, in addition to the reproduction of the extrinsic obser- 152

vation. Our treatment of semantic aspects of sources is also 153

in line with the recent heightened interest in the development 154

of 5G and beyond wireless systems [13], [14] [15], where 155

for many applications the semantic aspects correspond to 156

the accomplishment of certain inference goals. Hence, if we 157

consider an information theoretic characterization of such a 158

“semantic” source, the task of coding is to efficiently encode 159

the extrinsic observation so that the decoder can infer both the 160

intrinsic state and the extrinsic observation, subject to fidelity 161

criteria on both, simultaneously. Our problem formulation and 162

approach are closely related to two variants of the standard rate 163

distortion theory, namely, the indirect rate distortion function 164

and the rate distortion function under multiple distortion mea- 165

sures; see our discussion following Theorem 1 in Section III. 166

The inference-theoretic goal-oriented approach adopted in 167

our problem formulation does not seek a task-independent 168

universal definition of semantic information, which is outside 169
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the scope of the present paper; for some attempts in that regard,170

see, e.g., [16], [17] [18], [19] for a few representative works171

that undertake drastically different approaches.172

As related topics, the information bottleneck [20], [21]173

and the privacy funnel [22], [23] are, in a certain sense,174

dual concepts, and both place constraints in terms of mutual175

information. The underlying idea of the information bot-176

tleneck is, in a broad sense, similar to ours. Specifically,177

there one generates a reproduction based upon the extrinsic178

observation, minimizing the mutual information between the179

extrinsic observation and the reproduction, while maintaining180

a level of mutual information between the intrinsic state and181

the reproduction. But for the information bottleneck problem182

formulation, there is neither an explicit distortion measure, nor183

an operational definition of lossy compression.184

Task-based compression has been approached mainly from185

the perspective of quantizer design [24]. It has been demon-186

strated that steering the design goal according to the task187

leads to performance benefits compared with a conventional188

task-agnostic approach, a conclusion in line with what we189

advocate in our work. The perception-distortion tradeoff [25]190

imposes an additional constraint on the probability distribution191

of the reproduction. None of these related works proposes to192

decompose the information source into intrinsic and extrinsic193

parts as in our work, let alone investigates the joint behavior194

of them. In [26], a similar intrinsic state-extrinsic observation195

model is studied, but the encoder is designed based on the196

marginal distribution of the extrinsic observation only.197

II. SYSTEM MODEL AND PROBLEM FORMULATION198

As already outlined in the introduction, we model a mem-199

oryless semantic source as a pair of random variables (S, X)200

that are correlated with joint probability distribution p(s, x).201

The semantic aspect is embodied in the intrinsic state S, which202

is not observable but can only be inferred from the extrinsic203

observation X . In order to characterize the rate-distortion204

behavior of the semantic source, we consider a sequence205

of independent and identically distributed (i.i.d.) samples of206

(S, X), denoted as (Si, Xi)i∈N, and denote its length-n block207

as (Sn, Xn).208

The i.i.d. source model is an idealistic scenario for our209

information-theoretic study. Real-world data generally exhibit210

sophisticated memory structures. A particularly interesting211

scenario is when the intrinsic state is a Markov chain,212

and the extrinsic observation obeys a hidden Markov model213

(HMM) [27]. Extensions of our approach for semantic source214

models with memory are left for future research.215

The lossy compression of a semantic source has been216

illustrated in Figure 1. The encoder only has access to a length-217

n block of the extrinsic observation sequence Xn, and the218

decoder has two tasks: reproducing the intrinsic state block219

as Ŝn under a state distortion measure ds, and reproducing220

the extrinsic observation block as X̂n under an observation221

distortion measure do. The encoder and the decoder are222

connected via a bit pipe in which the codeword W of nR223

bits is transferred from the encoder to the decoder, where R224

is thus the code rate of the lossy compression system.225

Below we provide a formal description of the lossy com-226

pression problem of a semantic source.227

Let ds : S × Ŝ → R+ and do : X × X̂ → R+ be two given 228

distortion measures, defined over the source product alphabet 229

S × X and the reproduction product alphabet Ŝ × X̂ . The 230

extended block-wise distortion measures are as follows: 231

ds(sn, ŝn) =
1
n

n∑
i=1

ds(si, ŝi), (1) 232

do(xn, x̂n) =
1
n

n∑
i=1

do(xi, x̂i). (2) 233

We claim a tuple (R, Ds, Do) to be achievable, if for any 234

� > 0 and all sufficiently large n, there exist the following 235

functions: 236

• Encoding function f : Xn �→ {1, 2, . . . , 2�n(R+�)�} 237

which generates the codeword W as W = f(Xn); 238

• State decoding function gs : {1, 2, . . . , 2�n(R+�)�} �→ Ŝn, 239

such that 240

E

[
ds(Sn, Ŝn)

]
≤ Ds + �, (3) 241

where Ŝn = gs(f(Xn)); 242

• Observation decoding function go : 243

{1, 2, . . . , 2�n(R+�)�} �→ X̂n, such that 244

E

[
do(Xn, X̂n)

]
≤ Do + �, (4) 245

where X̂n = go(f(Xn)). 246

It is clear that the state decoding function gs and the obser- 247

vation decoding function go together constitute the decoder 248

illustrated in Figure 1. 249

Our goal is to characterize the region of all achievable 250

(R, Ds, Do) tuples. Hence, we define the semantic rate dis- 251

tortion function as follows2: 252

R(Ds, Do) = inf{R : (R, Ds, Do) is achievable}. (5) 253

Clearly, characterizing the semantic rate distortion function 254

R(Ds, Do) is equivalent to characterizing the achievable 255

region of (R, Ds, Do). 256

We will also consider a variant of the distortion constraint; 257

that is, the state distortion and the observation distortion are 258

linearly combined to yield a single overall distortion. Hence, 259

instead of (3) and (4), the decoding functions are required to 260

satisfy the following weighted distortion constraint: 261

E

[
wsds(Sn, Ŝn) + wodo(Xn, X̂n)

]
≤ D̄ + �, (6) 262

where ws and wo are non-negative weighting coefficients. 263

It is also natural to generalize the system model to 264

include several intrinsic state variables each associated with 265

a specified reproduction and a distortion. Such a seman- 266

tic source is described by a tuple of random variables, 267

(S0, S1, . . . , Sk−1, X), with joint probability distribution 268

p(s0, s1, . . . , sk−1, x) over S0 ×S1 × . . .×Sk−1 ×X , where 269

each Sj is an intrinsic state reflecting a certain semantic aspect 270

of the source. The decoder now consists of an observation 271

decoding function and k state decoding functions, among 272

which gs,j maps the codeword W ∈ {1, 2, . . . , 2�n(R+�)�} into 273

a reproduction sequence Ŝn
j to satisfy 274

E

[
ds,j(Sn

j , Ŝn
j )
]
≤ Ds,j + �. (7) 275

2This is the operational definition of a rate distortion function, which has
been widely used (see, for example, [3], [28] [29]).
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The notion of achievability can be defined in a similar fashion276

with respect to the tuple (R, Ds,0, Ds,1, . . ., Ds,k−1, Do), and277

the semantic rate distortion function is consequently defined278

as279

R(Ds,0, Ds,1, · · · , Ds,k−1, Do)280

= inf{R : (R, Ds,0, Ds,1, · · · , Ds,k−1, Do) is achievable}.281

(8)282

Examples of such semantic sources with multiple semantic283

aspects can be found in [5], [9], which consider a hierarchy of284

image or video features, each feature associated with a quality285

metric.286

III. SEMANTIC RATE DISTORTION FUNCTION287

In this section, we establish in the following theorem a288

single-letter characterization of the semantic rate distortion289

function R(Ds, Do) defined in Section II.290

Theorem 1: For a given semantic source (S, X) with291

p(s, x) over S×X , reproduction alphabet Ŝ×X̂ , and distortion292

measures ds and do, the semantic rate distortion function293

R(Ds, Do) is as follows:294

R(Ds, Do) = min
p(ŝ,x̂|x)

I(X ; Ŝ, X̂) (9)295

s.t. E

[
do(X, X̂)

]
≤ Do, (10)296

E

[
d̂s(X, Ŝ)

]
≤ Ds, (11)297

where298

d̂s(x, ŝ) = E [ds(S, ŝ)|x] =
∑
s∈S

p(s|x)ds(s, ŝ), (12)299

and S, X, Ŝ, X̂ constitute a Markov chain S ↔ X ↔ (Ŝ, X̂).300

Proof: See Appendix I. �301

Here we briefly discuss the basic idea of the proof of302

Theorem 1. There are two main ingredients in the problem303

formulation: an indirect rate distortion problem which has304

been studied in [30], [31] [32, Chap. 3, Sec. 5] [33], and305

a rate distortion problem with several distortion constraints306

which has been studied in [34, Sec. VII] [3, Prob. 10.19]307

[35, Prob. 7.14]. A key is to recognize reproducing Ŝ as an308

indirect rate distortion problem, for which the state distortion309

between S and Ŝ can be equivalently converted to a distortion310

between X and Ŝ. Indeed, the converted distortion is nothing311

but the conditional expectation of the original state distortion312

ds(S, ŝ), over p(s|x). This conversion hence circumvents the313

difficulty due to the absence of access to S at the encoder.314

The detailed derivation, which is based on a unified treatment315

in [33], is given in Appendix I.316

We note that the semantic rate distortion function can be317

non-trivial even for the special case where S is a deterministic318

function of X , because from a lossy reproduction of X it319

is generally impossible to reproduce S in a lossless fashion.320

Specifically, suppose that S = g(X). Then d̂s(x, ŝ) can be321

simplified into322

d̂s(x, ŝ) =
∑
s∈S

p(s|x)ds(s, ŝ) = ds(g(x), ŝ). (13)323

Similar to standard rate distortion functions, a corollary of 324

the semantic rate distortion function as given by Theorem 1 325

is the following regarding monotonicity and convexity. 326

Corollary 1: The semantic rate distortion function 327

R(Ds, Do) in Theorem 1 has the following properties: 328

• R(Ds, Do) is monotonically nonincreasing with Ds and 329

Do. 330

• R(Ds, Do) is jointly convex with respect to (Ds, Do). 331

• The contour set {(Ds, Do) : R(Ds, Do) ≤ R} is convex 332

for any R ≥ 0. 333

Proof: The proof of the first two properties is exactly 334

the same as that for standard rate distortion functions; see, 335

e.g., [3]. The third property is then an immediate corollary of 336

the second property. � 337

Corollary 1 implies a trade-off between the two distortions: 338

for a given code rate, the smaller the state distortion, the larger 339

the observation distortion, and vice versa. Concrete numerical 340

examples can be found in Section IV, where Figures 2 and 4 341

plot the achievable regions of (R, Ds, Do) and their pro- 342

jections under different values of R, for two experimental 343

setups, respectively. These plots demonstrate that for fixed R, 344

the achievable (Ds, Do) pairs form a convex region, whose 345

boundary exhibits a trade-off between Ds and Do. Hence a 346

sensible coding scheme of a semantic source should exhibit 347

such behavior. 348

Now consider the weighted distortion constraint (6). 349

We have the following corollary. 350

Corollary 2: For a given semantic source under the 351

weighted distortion constraint (6), the rate distortion function 352

is as follows: 353

R(D̄) = min
{
R(Ds, Do)|wsDs + woDo ≤ D̄

}
. (14) 354

Proof: Given the semantic rate distortion function 355

R(Ds, Do) in Theorem 1, we have that any coding scheme 356

that achieves (R, D̄) should achieve a (R, Ds, Do) tuple for 357

the semantic rate distortion problem under distortion con- 358

straints (3) and (4), for some Ds and Do satisfying wsDs + 359

woDo ≤ D̄, and vice versa. � 360

We end this section with the semantic rate distortion func- 361

tion (8) for semantic sources with several intrinsic states, 362

as given by the following corollary. Its proof is essentially 363

identical to that of Theorem 1. 364

Corollary 3: For a semantic source (S0, S1, . . . , Sk−1, X) 365

with p(s0, s1, . . . , sk−1, x) over S0 × S1 × . . . × Sk−1 × X , 366

reproduction alphabet Ŝ0×Ŝ1× . . .×Ŝk−1×X̂ , and distortion 367

measures {dsj}j=0,1,...,k−1 and do, the semantic rate distortion 368

function R(Ds0 , Ds1 , . . . , Dsk−1 , Do) is as follows: 369

R(Ds0 , Ds1 , . . . , Dsk−1 , Do) 370

= min
p(ŝ0,ŝ1,...,ŝk−1,x̂|x)

I(X ; Ŝ0, Ŝ1, . . . , Ŝk−1, X̂) (15) 371

s.t. E

[
do(X, X̂)

]
≤ Do, (16) 372

E

[
d̂sj (X, Ŝj)

]
≤ Dsj , j = 0, 1, . . . , k − 1, 373

(17) 374
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where375

d̂sj (x, ŝj) = E
[
dsj (Sj , ŝj)|x

]
=
∑

sj∈Sj

p(sj |x)dsj (sj , ŝj),376

(18)377

and {Sj}j=0,1,...,k−1, X, {Ŝj}j=0,1,...,k−1, X̂ constitute a378

Markov chain (S0, S1, . . . , Sk−1) ↔ X ↔ (Ŝ0, Ŝ1, . . . ,379

Ŝk−1, X̂).380

IV. GAUSSIAN OBSERVATION WITH LINEAR381

STATE-OBSERVATION RELATIONSHIP382

Theorem 1 establishes the general form of the semantic383

rate distortion function, which comes with an optimization384

problem, extending its counterpart in a standard rate distortion385

problem. In this section, we specialize the general result to386

a case where the extrinsic observation X is Gaussian and387

the intrinsic state-extrinsic observation pair (S, X) satisfies a388

linear relationship, under quadratic distortion measures.389

The extrinsic observation X obeys a multivariate Gaussian390

distribution N (0,KX),3 where KX is an m×m positive semi-391

definite matrix. The intrinsic state S is given by392

S = HX + Z, (19)393

where H is an l × m matrix, and Z is a random vector394

independent of X , with zero mean and covariance matrix KZ .395

Note that we neither restrict Z to be Gaussian nor require H396

or KZ to be full-rank. According to (19), the intrinsic state397

S is a linear transformation of X , further disturbed by an398

independent component Z . This linear assumption holds for399

jointly Gaussian intrinsic state S and extrinsic observation X ,400

and can usually be extended to non-Gaussian models as well,401

either precisely or approximately, for example, when a linear402

estimator of S conditioned upon X can be obtained by tradi-403

tional statistical methods, or by multilayer perceptron (MLP)404

neural networks alternatively [36]. On the other hand, note405

that the linear assumption no longer holds when one invokes406

nonlinear mappings, and deriving an analytical form of the407

corresponding semantic rate distortion function will generally408

be an extremely difficult task.409

This model covers the special case where (S, X) are jointly410

Gaussian. In fact, if (S, X) are jointly Gaussian with zero411

mean and covariance matrix412 [
KS KSX

KT
SX KX

]
, (20)413

we can represent S according to414

S = KSXK−1
X X + Z, (21)415

where Z ∼ N (0,KS − KSXK−1
X KT

SX); that is, H =416

KSXK−1
X and KZ = KS − KSXK−1

X KT
SX .417

We consider quadratic distortion measures, defined as418

ds(s, ŝ) = 	s − ŝ	2
2 = tr(s − ŝ)(s − ŝ)T , (22)419

do(x, x̂) = 	x − x̂	2
2 = tr(x − x̂)(x − x̂)T . (23)420

Consequently, we have421

E

[
ds(S, Ŝ)

]
= tr(KS−Ŝ), (24)422

E

[
do(X, X̂)

]
= tr(KX−X̂). (25)423

3We use KV to denote the covariance matrix of a random column vector V .

For the considered model (19), we can derive its semantic 424

rate distortion function, given by the following theorem. 425

Theorem 2: The semantic rate distortion function for the 426

semantic source with Gaussian extrinsic observation and linear 427

state-observation relationship (19), under quadratic distortion 428

measures (22) and (23), is given by: 429

RG(Ds, Do) = min
Δ∈Sm

1
2

log
(

det(KX)
det(Δ)

)
(26) 430

s.t. O ≺ Δ � KX , (27) 431

tr(HΔHT ) ≤ Ds − tr(KZ), (28) 432

tr(Δ) ≤ Do. (29) 433

where Sm denotes the set of all m × m positive definite 434

matrices. Note that here we use a subscript G to emphasize 435

that the extrinsic observation is Gaussian. 436

Proof: See Appendix II. � 437

From (28), when Z is sufficiently strong so that tr(KZ) > 438

Ds, the optimization (26) is no longer feasible and hence 439

RG(Ds, Do) = ∞. Otherwise, there is no further restriction on 440

KZ . For example, even if Z = 0, i.e., the relationship between 441

S and X is deterministic as S = HX , the optimization 442

problem in Theorem 2 is still non-trivial. 443

A simplified case arises when H is an orthogonal matrix 444

satisfying HTH = I. In this case, (28) becomes 445

tr(HΔHT )=tr(ΔHTH)=tr(Δ) ≤ Ds−tr(KZ), (30) 446

which can then be combined with (29) leading to a single 447

distortion constraint 448

tr(Δ) ≤ min{Do, Ds − tr(KZ)}. (31) 449

In Theorem 2, the matrix Δ which we optimize corresponds 450

to the mean squared error (MSE) of estimating X based upon 451

X̂ at the decoder. The key to the proof of Theorem 2 is to 452

show that the semantic rate distortion function is achieved by 453

a Gaussian reproduction. This is similar to situations in several 454

Gaussian lossy compression problems, including the stan- 455

dard Gaussian rate distortion problem [12] and the Gaussian 456

quadratic CEO problem [37]. Existing techniques based on 457

the entropy power inequality (EPI), extremal inequalities, and 458

Fisher information inequalities may also be interpreted as 459

the optimality of Gaussian reproduction for the minimum 460

mean squared error (MMSE) estimation under a given MSE 461

constraint. In our analysis, we further need to accommodate 462

with two MSE constraints, corresponding to the intrinsic state 463

and the extrinsic observation, respectively. 464

Compared with the general form of semantic rate distor- 465

tion function in Theorem 1, Theorem 2 involves only one 466

matrix-valued optimization variable Δ, which, as remarked 467

in the previous paragraph, is the MSE of estimating X based 468

upon X̂ alone. In fact, the solution exhibits a Markov structure, 469

i.e., S ↔ X ↔ X̂ ↔ Ŝ. To help understand the optimality 470

of the Markov chain solution, supposing that an alternative 471

solution (X̂ ′, Ŝ′) is given which does not satisfy the Markov 472

structure, consequently one can form an improved reproduc- 473

tion as X̂ = E(X |X̂ ′, Ŝ′), satisfying the Markov structure and 474

achieving the same code rate I(X ; X̂, Ŝ′) = I(X ; X̂ ′, Ŝ′). 475
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Fig. 2. Surface and contour plots of the semantic rate distortion function RG(Ds, Do) for the toy example.

The Markov chain solution further suggests a “two-stage”476

coding interpretation which is in fact extensively adopted in477

practice: the decoder first generates a reproduction for X478

as X̂ , and then uses that reproduction to further generate a479

reproduction for S as Ŝ. Similar to the standard Gaussian rate480

distortion problem, the optimal X̂ can be constructed with the481

aid of a “test channel”, for which X̂ as the channel input is482

Gaussian and the additive Gaussian noise of the test channel483

has a covariance matrix Δ, thereby producing X as the desired484

channel output. To generate Ŝ based upon X̂ , it suffices to485

adopt a linear transform Ŝ = HX̂ . On the other hand, the486

Markov chain solution does not mean that the reproduction487

of S is trivial, because the fidelity criterion on X still needs488

to be adjusted according to Ds. The detailed arguments are489

given in the proof in Appendix II.490

An interesting property of the semantic rate distortion491

function derived in Theorem 2 is that it is in fact an492

upper bound for all semantic sources with the same covari-493

ance structure under the quadratic distortion measure. This494

essentially indicates that a semantic source with Gaussian495

extrinsic observation is the hardest to describe, analogous to496

its counterpart in conventional source coding problems (see,497

e.g., [3, Exercise 10.8]). Formally, we have the following498

corollary.499

Corollary 4: For a semantic source (S, X) with general500

probability density function, whose covariance matrix is501

given by (20), its semantic rate distortion function subject502

to quadratic distortion constraints (22) and (23) satisfies503

R(Ds, Do) ≤ RG(Ds, Do), where RG(Ds, Do) is the seman-504

tic rate distortion function given in Theorem 2, with H =505

KSXK−1
X and KZ = KS − KSXK−1

X KT
SX .506

Proof: See Appendix III. �507

A. Computation of the Semantic Rate Distortion Function508

We remark that the optimization problem in Theorem 2 is509

convex, and hence can be numerically solved by software like510

CVX in an efficient and stable fashion. In this subsection we511

present some illustrative numerical examples.512

Our first example is a small-scale toy model, given by513

KX =

⎡
⎣11 0 0.5

0 3 −2
0.5 −2 2.35

⎤
⎦,514

Fig. 3. A 16 × 64 transformation matrix H shown as a two-dimensional
grid. Elements are shown as cells with different colors corresponding to their
values: blue for −1, red for 1, and gray for 0.

H =
[

0.0701 0.305 0.457
−0.0305 −0.220 0.671

]
, 515

KZ =
[

0.701 −0.305
−0.305 0.220

]
. 516

The resulting semantic rate distortion function is computed 517

as displayed in Figure 2. The dotted region in Figure 2(b) 518

indicates that both constraints (28) and (29) are active. The 519

trade-off between the two distortions are clear: the smaller the 520

state distortion, the larger the observation distortion, and vice 521

versa. 522

Our second example captures a sparse state-observation 523

relationship, as follows. The extrinsic observation is a length- 524

64 vector X = [X1, · · · , X64]T consisting of i.i.d. N (0, 2) 525

random variables. The transformation matrix H is a randomly 526

masked 16× 64 Rademacher matrix; that is, we first generate 527

a Rademacher matrix whose elements are i.i.d. taking values 528

{1,−1} with equal probability 1/2, and then independently 529

reset these elements to zero with probability 0.95. A real- 530

ization of H is shown in Figure 3. The noise vector Z = 531

[Z1, · · · , Z16]T consists of i.i.d. N (0, 1) random variables. 532

We numerically solve the semantic rate distortion function 533

according to Theorem 2, and a typical surface of RG(Ds, Do) 534

is illustrated in Figure 4(a). More details of RG(Ds, Do) can 535

be seen from the contour plot in Figure 4(b), wherein the 536

dotted region indicate that both constraints (28) and (29) 537
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Fig. 4. Surface and contour plots of the semantic rate distortion function RG(Ds, Do) for the example of a sparse state-observation relationship.

Fig. 5. The semantic rate distortion function RG(Ds, Do) as a function of Do or Ds.

are active. From Figure 4(b), it is evident that describing538

the extrinsic observation X tends to be much more costly539

than describing the intrinsic state S: at the same code540

rate, the achieved Ds is generally much lower than the541

achieved Do.542

Another interesting fact regarding RG(Ds, Do) can be543

inferred from the dotted region in the contour plot Figure 4(b),544

and is more clearly revealed by plotting the trends of545

RG(Ds, Do) as a function of Do (for fixed Ds) or Ds546

(for fixed Do), shown in Figures 5(a) and 5(b), respectively.547

We find that, the code rate RG(Ds, Do) as a function of Do548

does not seem to be sensitive to the choice of Ds. This fact549

has an important consequence for designing lossy compression550

schemes for semantic sources: although several different codes551

may have similar performance in terms of reproducing the552

extrinsic observation, they can differ considerably in terms553

of reproducing the intrinsic state. A heuristic explanation is554

as follows: since X is a high-dimensional vector, describ-555

ing it along several different directions may lead to similar556

quadratic distortion performance; but since S corresponds to557

a low-dimensional feature of X , its reproduction only favors558

the direction of describing X that retains the feature of S the559

best.560

B. Generalizations of Theorem 2561

We can derive from Theorem 2 several corollaries cor-562

responding to the variants of the problem formulation in563

Section II.564

First, let us consider replacing the quadratic distortion 565

measures by the positive semi-definite distortion constraints. 566

Following the same arguments in the proof of Theorem 2, 567

we again arrive at the optimality of Gaussian descriptions 568

under positive semi-definite distortion constraints, and hence 569

the following corollary characterizes the semantic rate distor- 570

tion function. 571

Corollary 5: Consider the positive semi-definite distortion 572

measures as 573

ds(s, ŝ) = (s − ŝ)(s − ŝ)T , 574

do(x, x̂) = (x − x̂)(x − x̂)T . 575

The semantic rate distortion function is given by 576

R(Ds,Do) = min
Δ∈Sm

1
2

log
(

det(KX)
det(Δ)

)
(32) 577

s.t. O ≺ Δ � KX , (33) 578

HΔHT � Ds − KZ , (34) 579

Δ � Do. (35) 580

This is a semi-definite programming problem and can be 581

readily solved by software. 582

Now consider the weighted distortion constraint, where 583

the distortion measure is defined as a weighted sum of two 584

individual distortion measures, i.e. 585

d̄ = wsds(s, ŝ) + wodo(x, x̂) 586

= ws	s − ŝ	2
2 + wo	x − x̂	2

2. (36) 587
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Applying Corollary 2, we obtain the semantic rate distortion588

function in the following corollary.589

Corollary 6: For the weighted distortion measure d̄, the590

semantic rate distortion function R(D̄) is given by591

R(D̄) = min
Δ∈Sm

1
2

log
(

det(KX)
det(Δ)

)
(37)592

s.t. O ≺ Δ � KX , (38)593

tr((wsHTH + woIm)Δ) ≤ D̄ − ws tr(KZ).594

(39)595

Finally, consider the case of k intrinsic states. The extrinsic596

observation X is still N (0,KX). For each j ∈ {0, 1, · · · ,597

k − 1}, the j-th intrinsic state is generated according to598

Sj = HjX + Zj ,599

where Hj is an lj × m matrix, and Zj is a random vector600

independent of X , with zero mean and covariance matrix KZj .601

We consider quadratic distortion measures, as602

dsj (sj , ŝj) = 	sj − ŝj	2
2, j = 0, 1, . . . , k − 1, (40)603

do(x, x̂) = 	x − x̂	2
2. (41)604

The semantic rate distortion function is given by the fol-605

lowing corollary.606

Corollary 7: For the semantic source with a Gaussian607

extrinsic observation and k intrinsic states, the semantic rate608

distortion function under distortion measures ds0 , ds1 , · · · ,609

dsk−1 , do is610

R(Ds0 , Ds1 , · · · , Dsk−1 , Do)611

= min
Δ∈Sm

1
2

log
(

det(KX)
det(Δ)

)
612

s.t. O ≺ Δ � KX ,613

tr(HjΔHT
j ) ≤ Dsj − tr(KZj ),614

j ∈ {0, 1, · · · , k − 1},615

tr(Δ) ≤ Do.616

V. WEIGHTED REVERSE WATER-FILLING617

Analogous to the standard Gaussian rate distortion problem618

wherein (after appropriate linear transformation) the solution619

can be interpreted as a reverse water-filling type of rate allo-620

cation, for the semantic rate distortion function in Theorem 2,621

under a diagonalizability condition, the solution can also be622

interpreted as reverse water-filling, but with appropriately623

weighted water levels.624

For the model of Gaussian observation with linear625

state-observation relationship in Section IV, we further assume626

that the following diagonalizability condition is satisfied: there627

exists an unitary matrix Q such that628

• Q†KXQ = diag(σ1, σ2, · · · , σm),629

• Q†HTHQ = diag(α1, α2, · · · , αm)630

simultaneously hold. Here it loses no generality to order631

{αi}m
i=1 so that α1 ≥ α2 ≥ · · · ≥ αm. Denoting the rank632

of HTH as q ≤ m, then αq > 0 and αq+1 = · · · = αm = 0.633

Lemma 1: Under the diagonalizability condition, the result- 634

ing optimal Δ takes the form 635

Δ = Q diag(δ1, δ2, · · · , δm)Q†, (42) 636

and the semantic rate distortion function in Theorem 2 can be 637

further written in terms of the following optimization problem: 638

RG(Ds, Do) = min
δ1,δ2,··· ,δm

1
2

m∑
j=1

log
(

σj

δj

)
(43) 639

s.t. 0 < δj ≤ σj , ∀j ∈ {1, 2, · · · , m}, 640

(44) 641

m∑
j=1

αjδj ≤ Ds − tr(KZ), (45) 642

m∑
j=1

δj ≤ Do. (46) 643

Proof: See Appendix IV. � 644

In order to describe the weighted reverse water-filling solu- 645

tion, we first introduce the following curves. 646

• Curve Cs: 647

Cs =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
∑m

j=1
αj min

(
σj ,

1
λ

)
+tr(KZ)

∑m

j=1
min

(
σj ,

1
λ

)
⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
λ > 0

⎫⎪⎪⎬
⎪⎪⎭

, 648

(47) 649

which starts from (tr(HKXHT + KZ), tr(KX)) and 650

ends at (tr(KZ), 0). 651

• Curve Co: 652

Co =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
∑q

j=1
αj min

(
σj ,

1
μαj

)
+tr(KZ)

∑q

j=1
min

(
σj ,

1
μαj

)
+
∑m

j=q+1
σj

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
μ>0

⎫⎪⎪⎬
⎪⎪⎭

, 653

(48) 654

which starts from (tr(HKXHT + KZ), tr(KX)) and 655

ends at (tr(KZ),
∑m

j=q+1 σj). Here,
∑m

j=1+1 σj is inter- 656

preted as 0 if HTH is full-rank and thus q = m. 657

We then introduce the following partitioning of the 658

(Ds, Do) plane, based upon the curves Cs and Co: 659

• A0 = {(Ds, Do)|Ds ≥ tr(HKXHT + KZ), Do ≥ 660

tr(KX)}; 661

• A1: on the right of the curve Cs, and between the two 662

horizontal lines Do = 0 and Do = tr(KX); 663

• A2: above the curve Co, and between the two vertical 664

lines Ds = tr(KZ) and Ds = tr(HKXHT + KZ); 665

• A3: surrounded by the curves Cs and Co, and the vertical 666

line Ds = tr(KZ). 667

An example of the partitioning above is plotted in Figure 6. 668

The following theorem describes the weighted reverse 669

water-filling solution. 670

Theorem 3: For the model of Gaussian observation 671

with linear state-observation relationship in Section IV, 672

under the diagonalizability condition, the optimal Δ = 673

Q diag(δ1, δ2, · · · δm)Q† is given by 674
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TABLE I

ACTIVITY OF CONSTRAINTS (45) AND (46) IN A0 , A1 , A2 AND A3

• If (Ds, Do) ∈ A0:675

δ∗j = σj , ∀j ∈ {1, 2, · · · , m}. (49)676

• If (Ds, Do) ∈ A1:677

δ∗j = min
(

σj ,
1
λ

)
, ∀j ∈ {1, 2, · · · , m}, (50)678

where λ is chosen to satisfy
∑m

j=1 δ∗j = Do.679

• If (Ds, Do) ∈ A2:680

δ∗j =

⎧⎨
⎩

min
(

σj ,
1

μαj

)
, αj > 0

σj , αj = 0,

681

∀j ∈ {1, 2, · · · , q}, (51)682

where μ is chosen to satisfy
∑q

j=1 αjδ
∗
j = Ds−tr(KZ).683

• If (Ds, Do) ∈ A3:684

δ∗j = min
(

σj ,
1

λ + μαj

)
, ∀j ∈ {1, 2, · · · , m},685

(52)686

where λ, μ are chosen to satisfy
∑m

j=1 δ∗j = Do and687 ∑q
j=1 αjδ

∗
j = Ds − tr(KZ).688

Proof: See Appendix IV. �689

The partitioning {A0, A1, A2, A3} is closely related to690

activity of the constraints (45) and (46), as summarized in691

Table I. In A0, both constraints are inactive, and hence the692

optimization is unconstrained yielding the trivial solution (49).693

In A1, only the observation distortion constraint is active,694

and the solution (50) is a standard reverse water-filling with695

water level 1/λ. In A2, only the state distortion is active, and696

the solution (51) essentially makes the weighted eigenvalues697

α1δ1, α2δ2, · · · , αmδm fulfill a reverse water-filling structure,698

with water level 1/μ. Alternatively, we may view the term699

1/(μαj) in (51) as a water level with weight 1/αj . In A3,700

both constraints are active, and the solution (52) also fulfills701

a reverse water-filling structure with unequal water levels.702

A. Case Study: Circulant KX and H and Weighted Reverse703

Water-Filling in Frequency Domain704

A case of special interest is where KX and H are both705

circulant matrices [38]. As the dimension of X grows large,706

this models the scenario where X is a circularly stationary707

Gaussian process,4 and S is obtained via passing X through a708

time-invariant linear filter whose response is given by the first709

row of H. For a circulant matrix, the corresponding unitary710

matrix Q is the well known discrete Fourier transform (DFT)711

4If we remove the circulant restriction and consider a stationary Gaussian
process, then we encounter a Toeplitz KX , for which our solution still
approximately applies; see, e.g., [38].

Fig. 6. The (Ds, Do) plane is divided into four regions A0, A1, A2,
A3, which determine the form of the optimal Δ. Five points on the contour
RG(Ds, Do) = 50 are marked with colors varying from purple to yellow.

Fig. 7. Diagonal elements α0, α1, · · · , α127 of Q†HT HQ.

matrix, and its eigenvalues are the DFT of the first row of 712

the matrix. Hence the weighted reverse water-filling may be 713

interpreted as exercised in the frequency domain, similar to 714

its counterpart for the standard rate distortion function of 715

stationary Gaussian processes. 716

In the illustrative example below, consider KX as a 717

128 × 128 circulant matrix with the first row 718

[1, 0.4, 0, · · · , 0, 0.4], 719

H as a 128 × 128 circulant matrix with the first row 720

[0.3, 0.3, 0.3, 0.3, 0, · · · , 0], 721

and KZ as a 128×128 zero matrix (i.e., no noise in the state- 722

observation relationship). Therefore, Q is the 128× 128 DFT 723

matrix whose (i, j)-th element is 724

1√
128

e−i 2π
128 ij , i, j = 0, 1, · · · , 127. 725

The diagonal elements α0, α1, · · · , α127 of Q†HTHQ are 726

shown in Figure 7, and the diagonal elements σ0, σ1, · · · , 727

σ127 of Q†KXQ are shown as the blue solid curve in Figure 8. 728

Figure 6 shows the four regions A0, A1, A2, A3 and the two 729

curves Cs, Co. It also displays five points on the contour 730

of RG(Ds, Do) = 50, marked with colors varying from 731

purple to yellow. The weighted reverse water-filling solution 732
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Fig. 8. Optimal diagonal elements (δ∗1 , δ∗2 , δ∗3 ) of QΔQT for the marked points in Figure 6, plotted with the colors in Figure 6.

(δ∗0 , δ∗1 , · · · , δ∗127) for these points are depicted in Figure 8. For733

(Ds,1, Do,1), the optimal solution degenerates into a standard734

reverse water-filling form, as indicated by the purple line.735

When we go from (Ds,1, Do,1) to (Ds,2, Do,2), the water level736

begins to “ripple”. Note that this weighted reverse water-filling737

can be viewed as exercised in the frequency domain, and the738

angular frequencies are marked on the top of Figure 8.739

VI. CONCLUSION740

We have provided a general source model to describe741

information sources that have semantic aspects, and proposed742

a corresponding rate distortion problem formulation for char-743

acterizing the amount of information content of such semantic744

sources. We have studied the case of Gaussian extrinsic745

observation subject to a linear state-observation relationship746

and a quadratic distortion structure. There are a variety of747

issues that we have not touched upon in the present work.748

First, calculating and bounding the semantic rate distortion749

functions for other interesting cases would make further use750

of our proposed framework, for example, when the intrinsic751

state is a discrete categorical random variable, corresponding752

to the important problem of classification; see [1] for some753

preliminary results. Second, a more challenging problem is754

to estimate the semantic rate distortion function, and more755

importantly, to develop effective lossy compression methods756

when the joint probability distribution of the intrinsic state757

and the extrinsic observation is not perfectly known, say,758

when only finite training data of the state-observation pair are759

available.760

APPENDIX I761

PROOF OF THEOREM 1762

The key to proving Theorem 1 is converting the seman-763

tic rate distortion problem into an equivalent standard rate764

distortion problem, with an indirect (state) distortion con- 765

straint and a direct (observation) distortion constraint. More 766

precisely, we need to show that the constraint with respect 767

to the state distortion measure ds(s, ŝ) is equivalent to a 768

constraint on a converted distortion measure d̂s(x, ŝ); that 769

is, as long as a reproduction Ŝ satisfies the constraint on 770

d̂s(x, ŝ), it will satisfy the constraint on ds(s, ŝ), and vice 771

versa. 772

A general and unified approach to the indirect rate-distortion 773

function put forward in [33] is first showing that the 774

one-shot expected distortion E

[
ds(S, Ŝ)

]
is equivalent to 775

E

[
d̂s(X, Ŝ)

]
, and then invoking a tensorization argument to 776

extend the one-shot equivalence to block codes. Here we 777

directly illustrate how this can be accomplished for Sn ↔ 778

Xn ↔ (Ŝn, X̂n) generated by an arbitrary encoder-decoder 779

pair, as follows: 780

E

[
ds(Sn, Ŝn)

]
781

=
∑

sn,ŝn

p(sn, ŝn)ds(sn, ŝn) 782

=
∑

sn,xn,ŝn

p(sn, xn, ŝn)ds(sn, ŝn) 783

(a)
=

∑
sn,xn,ŝn

p(sn, xn)p(ŝn|xn)ds(sn, ŝn) 784

=
∑

xn,ŝn

p(ŝn|xn)
∑
sn

p(sn, xn)ds(sn, ŝn) 785

(b)
=
∑

xn,ŝn

p(ŝn|xn)
∑
sn

p(sn, xn)
1
n

n∑
i=1

ds(si, ŝi) 786

=
∑

xn,ŝn

p(ŝn|xn)
1
n

n∑
i=1

∑
sn

p(sn, xn)ds(si, ŝi) 787
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(c)
=
∑

xn,ŝn

p(ŝn|xn)
1
n

n∑
i=1

∑
s̄i

∑
si∈S

p(s̄i, x̄i)p(si, xi)ds(si, ŝi)788

=
∑

xn,ŝn

p(ŝn|xn)
1
n

n∑
i=1

∑
s̄i

p(s̄i, x̄i)
∑
si∈S

p(si, xi)ds(si, ŝi)789

=
∑

xn,ŝn

p(ŝn|xn)
1
n

n∑
i=1

p(x̄i)
∑
si∈S

p(si, xi)ds(si, ŝi)790

=
∑

xn,ŝn

p(ŝn|xn)
1
n

n∑
i=1

p(xn)
∑
si∈S

p(si|xi)ds(si, ŝi)791

(d)
=
∑

xn,ŝn

p(xn, ŝn)
1
n

n∑
i=1

d̂s(xi, ŝi)792

=
∑

xn,ŝn

p(xn, ŝn)d̂s(xn, ŝn)793

= E

[
d̂s(Xn, Ŝn)

]
, (53)794

where x̄i = (x1, . . . , xi−1, xi+1, . . . , xn), s̄i =795

(s1, . . . , si−1, si+1, . . . , sn), (a) is due to the existence796

of the Markov chain Sn ↔ Xn ↔ Ŝn and hence797

p(sn|xn) = p(sn|xn, ŝn), (b) follows from the definition798

of block-wise distortion measure in (1), (c) is by the fact799

that (Si, Xi)i∈N is an i.i.d. sequence, and (d) is by the800

definition of d̂s(x, ŝ) in (12). Subsequently, the problem is801

reduced into a standard lossy source coding problem with802

two distortion constraints, one on do(x, x̂) and the other on803

d̂s(x, ŝ). The semantic rate distortion function hence follows804

from standard achievability and converse proofs [34, Sec. VII]805

[35, Prob. 7.14] [3, Prob. 10.19].806

APPENDIX II807

PROOF OF THEOREM 2808

The proof of Theorem 2 involves two steps. First we prove809

that the semantic rate distortion function can be achieved by810

jointly Gaussian X̂ and Ŝ. Then we show that we can further811

endow a Markov chain structure on X , X̂ and Ŝ, so that812

we only need to optimize with one variable, i.e., X̂ , while813

generating Ŝ from X̂ subsequently.814

A. Optimality of Jointly Gaussian Reproduction815

By the definition of d̂s(X ; Ŝ) in (12), E

[
d̂s(X ; Ŝ)

]
can be816

written as follows:817

E

[
d̂s(X ; Ŝ)

]
818

=
∫

p(x, ŝ)
(∫

p(s|x)ds(s, ŝ)ds

)
dxdŝ819

=
∫

p(x, ŝ)820

×
(∫

p(Hx+z|x)(Hx+z−ŝ)(Hx+z−ŝ)T dz

)
dxdŝ821

(a)
=
∫

p(x, ŝ)
(∫

p(z) tr(HxxT HT + HxzT − Hxŝ822

+ zxTH+zzT−zŝT −ŝxT HT −ŝzT + ŝŝT )dz

)
dxdŝ823

(b)
=
∫

p(x, ŝ) 824

× tr(HxxT HT − Hxŝ + KZ − ŝxT HT + ŝŝT )dxdŝ 825

= tr(HKXHT − HKXŜ + KZ − KŜXHT + KŜ) 826

(c)
= tr(HKXHT − 2HKXŜ + KZ + KŜ), (54) 827

where (a) is due to independence between Z and X , (b) is 828

according to the problem setup that E(Z) = 0, and (c) is due 829

to the fact that tr(HKXŜ) = tr(KŜXHT ). From this chain of 830

identities, we see that for any two reproductions of the intrinsic 831

state, Ŝ and Ŝ′, we have E

[
ds(S; Ŝ)

]
= E

[
ds(S; Ŝ′)

]
as long 832

as KŜ = KŜ′ and KXŜ = KXŜ′ . 833

Therefore, by Theorem 1, the semantic rate distortion func- 834

tion RG(Ds, Do) can be further written as 835

RG(Ds, Do) 836

= min I(X ; Ŝ, X̂) = h(X) − maxh(X |Ŝ, X̂) (55) 837

s.t. tr(KX − 2KXX̂ + KX̂) ≤ Do (56) 838

tr(HKXHT − 2HKXŜ + KZ + KŜ) ≤ Ds. 839

(57) 840

Notice that, by denoting T � (Ŝ, X̂) for convenience, 841

h(X |Ŝ, X̂) can be upper bounded as 842

h(X |Ŝ, X̂) 843

= h(X |T ) 844

= h(X − KXTK−1
T T |T ) 845

(a)

≤ h(X − KXTK−1
T T ) 846

(b)

≤ 1
2

log det(2πeKX−KXT K−1
T T ) 847

=
1
2

log det(2πe(KX − KXTK−1
T KTX)), (58) 848

where (a) is by the fact that conditioning reduces entropy, 849

and equality holds when X − KXTK−1
T T is independent of 850

T ; (b) is due to the fact that Gaussian distribution maximizes 851

differential entropy with given second central moment. Over- 852

all, we can see that this upper bound of h(X |Ŝ, X̂) is achieved 853

when X and T are jointly Gaussian. 854

Based on the argument above, for an arbitrary T = (Ŝ, X̂), 855

we can generate T ′ = (Ŝ′, X̂ ′) according to a linear relation- 856

ship 857

(Ŝ′, X̂ ′) = KTXK−1
X X + N, (59) 858

where N is a multivariate Gaussian random variable following 859

N (0,KT −KTXK−1
X KXT ) and is independent of X . Clearly 860

it holds that KT ′ = KT and KXT = KXT ′ . According 861

to (58), we can see that h(X |Ŝ, X̂) ≤ h(Ŝ′, X̂ ′). That is 862

to say, for any (Ŝ, X̂) that satisfies the distortion constraints, 863

there always exists a Gaussian (Ŝ′, X̂ ′) which also satisfies the 864

distortion constraints, but achieving a lower code rate. We thus 865

establish that jointly Gaussian reproduction (Ŝ, X̂) achieves 866

the semantic rate distortion function. 867

B. Reduction to One Optimization Variable 868

In fact, it is unnecessary to optimize with two random 869

variables (Ŝ, X̂) simultaneously, and in the following we 870
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reduce the number of optimization variables to only one.871

We choose the new optimization variable as cov(X |X̂, Ŝ),872

defined as873

cov(X |X̂, Ŝ)=E

[(
X−E

[
X |X̂, Ŝ

])(
X−E

[
X |X̂, Ŝ

])T
]
,874

i.e., the error covariance matrix of MMSE estimating X by875

(X̂, Ŝ). By denoting cov(X |X̂, Ŝ) as Δ for short, we can876

write I(X ; X̂, Ŝ) as (26). Therefore, now the key point is to877

show that the feasible region defined by (56)-(57) (denoted as878

R1) is the same as the feasible region defined by (27)-(29)879

(denoted as R2).880

First we show that R1 ⊆ R2. For any K(Ŝ,X̂) ∈ R1, with881

Δ = cov(X |Ŝ, X̂), we have Δ � cov(X |X̂) and Δ �882

cov(X |Ŝ), and correspondingly tr(Δ) ≤ tr(cov(X |X̂)) ≤883

Do and884

tr(HΔHT + KZ) ≤ tr(Hcov(X |Ŝ)HT + KZ)885

= tr(cov(HX + Z|Ŝ)) ≤ Ds. (60)886

That is to say, for any K(Ŝ,X̂) ∈ R1, we can find a887

corresponding Δ ∈ R2, and hence R1 ⊆ R2.888

Then we show that R2 ⊆ R1. For any Δ ∈ R2, we consider889

a test channel with X = X̂ + N and let Ŝ = HX̂ , where N890

obeys Gaussian distribution N (0,Δ). Hence we have891

E

[
do(X, X̂)

]
= tr(Δ) ≤ Do, (61)892

E

[
ds(S, Ŝ)

]
= tr(Hcov(X |Ŝ)HT + KZ)893

= tr(HΔHT + KZ) ≤ Ds. (62)894

That is to say, for any Δ ∈ R2, we can also find a895

corresponding tuple of K(Ŝ,X̂) ∈ R1, and hence R2 ⊆ R1.896

Now, we can conclude that, under the setting of Theorem 2,897

Theorems 1 and 2 define two optimization problems with the898

same objective function and the same feasible region. This899

therefore completes the proof.900

APPENDIX III901

PROOF OF COROLLARY 4902

By Theorem 2 and the identities H = KSXK−1
X and KZ =903

KS − KSXK−1
X KT

SX in (21), the semantic rate distortion904

function of a jointly Gaussian semantic source with covariance905

matrix (20) is given by906

RG(Ds, Do) = min
Δ∈Sm

1
2

log
(

det(KX)
det(Δ)

)
(63)907

s.t. O ≺ Δ � KX , (64)908

tr(KSXK−1
X ΔK−1

X KT
SX)909

≤ Ds − tr(KS − KSXK−1
X KT

SX),910

(65)911

tr(Δ) ≤ Do. (66)912

We will prove913

R(Ds, Do) ≤ 1
2

log
(

det(KX)
det(Δ)

)
(67)914

for an arbitrary symmetric matrix Δ that satisfies (64), (65)915

and (66), by constructing a test channel. This implies that916

R(Ds, Do) is no greater than (63).917

In order to construct the test channel, let U be a Gaussian 918

vector with zero mean and covariance matrix Δ−ΔK−1
X Δ, 919

independent of (S, X). That Δ − ΔK−1
X Δ is semi-definite 920

will be proved in Lemma 2 at the end of this subsection. 921

Define X̂ = (Im − ΔK−1
X )X + U and Ŝ = KSXK−1

X X̂ . 922

Thus S ↔ X ↔ X̂ ↔ Ŝ is a Markov chain. We will verify in 923

the next paragraphs that E[d̂s(X, Ŝ)] ≤ Ds, where d̂s(x, ŝ) = 924

E[	S − ŝ	2
2|X = x], E[	X − X̂	2

2] ≤ Do, and 925

I(X ; Ŝ, X̂) ≤ 1
2

log
(

det(KX)
det(Δ)

)
. (68) 926

These leads to (67), and thus proves Corollary 4. 927

By the definitions of X̂ and Ŝ, we have S − Ŝ = S − 928

KSXLX − KSXK−1
X U , where L = K−1

X − K−1
X ΔK−1

X . 929

Noticing E[SUT ] = Ol×m and E[XUT ] = Om×m, we can 930

obtain, after some algebraic manipulations, 931

E

[
(S − Ŝ)(S − Ŝ)T

]
932

= KS − KSXK−1
X KT

SX + KSXK−1
X ΔK−1

X KT
SX . 933

Taking the trace in this equation and using (65), we get E[	S− 934

Ŝ	2
2] ≤ Ds. Similar calculations lead to E[	X − X̂	2

2] ≤ Do. 935

For every x ∈ R
m and every ŝ ∈ R

l, we have 936

E[	S − Ŝ	2
2|X = x, Ŝ = ŝ] = E[	S − ŝ	2

2|X = x, Ŝ = ŝ] 937

= E[	S − ŝ	2
2|X = x] 938

= d̂s(x, ŝ), 939

where the second equality is due to S ↔ X ↔ Ŝ. An appli- 940

cation of the law of total expectation immediately leads to 941

E[d̂s(X, Ŝ)] = E[	S − Ŝ	2
2] ≤ Ds. 942

It remains to verify (68). We have 943

I(X ; Ŝ, X̂) (a)= I(X ; X̂) 944

= h(X̂)−h(X̂ |X) 945

(b)= h(X̂) − 1
2

log((2πe)m det(Δ − ΔK−1
X Δ)) 946

(c)≤ 1
2

log((2πe)m(KX − Δ)) 947

− 1
2

log((2πe)m det(Δ − ΔK−1
X Δ)) 948

=
1
2

log
(

det(KX)
det(Δ)

)
, 949

where (a) is by X ↔ X̂ ↔ Ŝ, (b) is because after translation 950

h(X̂|X) = h(U), and (c) is because the Gaussian distribution 951

maximizes the differential entropy subject to a covariance 952

constraint. 953

Finally let us verify the existence of the auxiliary random 954

vector U . 955

Lemma 2: For any Δ, K ∈ Sm, Δ � K, Δ − ΔK−1Δ 956

is semi-definite. 957

Proof: Because Δ is positive definite, there exists an m× 958

m matrix Q such that Δ = QTQ. For every λ < 0, 959

det(λIm − (Im − QK−1QT )) 960

= (λ − 1)m det
(
Im +

1
λ − 1

QK−1QT

)
961
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= (λ − 1)m det
(
Im +

1
λ − 1

K−1QTQ
)

962

= (λ − 1)m det
(
K−1

(
K +

1
λ − 1

Δ
))

963

=
det((λ − 1)K + Δ)

det(K)
�= 0,964

because (λ − 1)K + Δ = λK − (K − Δ) is negative965

definite. So Im − QK−1QT does not have any negative966

eigenvalue. Therefore Im−QK−1QT is positive semi-definite,967

and consequently Δ − ΔK−1Δ = QT (Im − QK−1QT )Q968

is also positive semi-definite. �969

APPENDIX IV970

DERIVATION OF THE WEIGHTED REVERSE971

WATER-FILLING SOLUTION972

We first rewrite (26) with a variable substitution Δ =973

QDQ†. This leads to974

RG(Ds, Do) = min
D∈B(Ds,Do)

1
2

log
(

det(KX)
det(D)

)
,975

where B(Ds, Do) is the set of positive definite real matrices976

D that satisfy977

D � Q†KXQ,978

tr(Q†HTHQD) ≤ Ds − tr(KZ),979

tr(D) ≤ Do.980

Any optimal D in this minimization is diagonal. To see981

this, consider a non-diagonal D ∈ B(Ds, Do). Replacing the982

non-diagonal elements in D with zeros, we get a new matrix983

D′ = diag(δ1, δ2, · · · , δm). Because984

Om ≺ D � Q†KXQ = diag(σ1, σ2, · · · , σm),985

we have 0 < δj ≤ σj for each j ∈ {1, 2, · · · , m}, which986

impies Om ≺ D′ � Q†KXQ. Moreover,987

tr(Q†HTHQD′) =
m∑

j=1

αjδj = tr(Q†HTHQD)988

≤ Ds − tr(KZ),989

tr(D′) =
m∑

j=1

δj = tr(D)990

≤ Do.991

So D′ ∈ B(Ds, Do). By Hadamard’s inequality,992

1
2

log
(

det(KX)
det(D′)

)
<

1
2

log
(

det(KX)
det(D)

)
.993

Therefore, any non-diagonal D ∈ B(Ds, Do) is suboptimal,994

and (43) is verified.995

By the Karush-Kuhn-Tucker (KKT) optimality conditions,996

there exist non-negative numbers λ, μ, ν1, ν2, · · · , νm that997

satisfy998

λ

⎛
⎝ m∑

j=1

δ∗j − Do

⎞
⎠ = 0,999

μ

⎛
⎝ m∑

j=1

αjδ
∗
j − Ds + tr(KZ)

⎞
⎠ = 0, 1000

νj(δ∗j − σj) = 0, ∀j ∈ {1, 2, · · · , m}, 1001

− 1
δ∗j

+ λ + μαj + νj = 0, ∀j ∈ {1, 2, · · · , m}. 1002

Suppose λ = 0 and μ = 0. For each j ∈ {1, 2, · · · , m}, 1003

we have νj = 1/δ∗j > 0, so δ∗j = σj . Because δ∗1 , δ∗2 , · · · , δ∗m 1004

satisfy (45) and (46), we have 1005

Ds ≥
m∑

j=1

αjσj + tr(KZ) = tr(HKXHT + KZ), 1006

Do ≥
m∑

j=1

σj = tr(KX), 1007

i.e. (Ds, Do) ∈ A0. 1008

Suppose λ > 0 and μ = 0. The problem now reduces to the 1009

one involved in the rate distortion problem of parallel Gaussian 1010

sources [3], because the constraint (46) is active and (45) is 1011

not. Thus (50) holds, and 1012

Do =
m∑

j=1

δ∗j =
m∑

j=1

min
(

σj ,
1
λ

)
, 1013

Ds ≥
m∑

j=1

αjδ
∗
j + tr(KZ) =

m∑
j=1

αj min
(

σj ,
1
λ

)
+ tr(KZ), 1014

i.e. (Ds, Do) ∈ A1. 1015

Similarly, the conditions λ = 0 and μ > 0 imply (51) 1016

leading to (Ds, Do) ∈ A2, and the conditions λ > 0 and 1017

μ > 0 imply (52) leading to (Ds, Do) ∈ A3. 1018

REFERENCES 1019

[1] J. Liu, W. Zhang, and H. V. Poor, “A rate-distortion framework for 1020

characterizing semantic information,” in Proc. IEEE Int. Symp. Inf. 1021

Theory (ISIT), Jul. 2021, pp. 2894–2899. 1022

[2] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. 1023

Tech. J., vol. 27, no. 3, pp. 379–423, 1948. 1024

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. 1025

Hoboken, NJ, USA: Wiley, 2006. 1026

[4] S. Ma, X. Zhang, S. Wang, X. Zhang, C. Jia, and S. Wang, “Joint 1027

feature and texture coding: Toward smart video representation via front- 1028

end intelligence,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, 1029

no. 10, pp. 3095–3105, Oct. 2019. 1030

[5] L. Duan, J. Liu, W. Yang, T. Huang, and W. Gao, “Video coding 1031

for machines: A paradigm of collaborative compression and intelligent 1032

analytics,” IEEE Trans. Image Process., vol. 29, pp. 8680–8695, 2020. 1033

[6] S. Yang, Y. Hu, W. Yang, L.-Y. Duan, and J. Liu, “Towards coding for 1034

human and machine vision: Scalable face image coding,” IEEE Trans. 1035

Multimedia, vol. 23, pp. 2957–2971, 2021. 1036

[7] Y. Yang, G. Shu, and M. Shah, “Semi-supervised learning of feature 1037

hierarchies for object detection in a video,” in Proc. IEEE Conf. Comput. 1038

Vis. Pattern Recognit., Jun. 2013, pp. 1650–1657. 1039

[8] Y. Wu et al., “Person reidentification by multiscale feature representation 1040

learning with random batch feature mask,” IEEE Trans. Cognit. Develop. 1041

Syst., vol. 13, no. 4, pp. 865–874, Dec. 2021. 1042

[9] K. Liu, D. Liu, L. Li, N. Yan, and H. Li, “Semantics-to-signal scal- 1043

able image compression with learned revertible representations,” Int. J. 1044

Comput. Vis., vol. 129, no. 9, pp. 2605–2621, Jun. 2021. 1045

[10] L. R. Rabiner and R. W. Schafer, “Introduction to digital speech 1046

processing,” Found. Trends Signal Process., vol. 1, nos. 1–2, pp. 1–194, 1047

2007. 1048

[11] S. Furui, “Cepstral analysis technique for automatic speaker verifica- 1049

tion,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 2, 1050

pp. 254–272, Apr. 1981. 1051

Authorized licensed use limited to: Princeton University. Downloaded on November 14,2022 at 17:00:42 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: INDIRECT RATE-DISTORTION CHARACTERIZATION FOR SEMANTIC SOURCES: GENERAL MODEL 5959

[12] C. E. Shannon, “Coding theorems for a discrete source with a fidelity1052

criterion,” IRE Nat. Conv. Rec., vol. 4, pp. 142–163, Mar. 1959.1053

[13] P. Popovski, O. Simeone, F. Boccardi, D. Gunduz, and O. Sahin,1054

“Semantic-effectiveness filtering and control for post-5G wireless con-1055

nectivity,” 2019, arXiv:1907.02441.1056

[14] M. Kountouris and N. Pappas, “Semantics-empowered communication1057

for networked intelligent systems,” 2020, arXiv:2007.11579.1058

[15] H. Seo, J. Park, M. Bennis, and M. Debbah, “Semantics-native commu-1059

nication with contextual reasoning,” 2021, arXiv:2108.05681.1060

[16] Y. Bar-Hillel and R. Carnap, “Semantic information,” Brit. J. Philosophy1061

Sci., vol. 4, no. 14, pp. 147–157, 1953.1062

[17] L. Floridi, “Outline of a theory of strongly semantic information,” Minds1063

Mach., vol. 14, no. 2, pp. 197–221, May 2004.1064

[18] J. Bao et al., “Towards a theory of semantic communication,” in Proc.1065

IEEE Netw. Sci. Workshop, Jun. 2011, pp. 110–117.1066

[19] B. Juba, Universal Semantic Communication. Berlin, Germany:1067

Springer, 2011.1068

[20] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck1069

method,” in Proc. 37th Annu. Allerton Conf. Commun. Control Comput.,1070

Monticello, IL, USA, Sep. 1999, pp. 368–377.1071

[21] Z. Goldfeld and Y. Polyanskiy, “The information bottleneck problem1072

and its applications in machine learning,” IEEE J. Sel. Areas Inf. Theory,1073

vol. 1, no. 1, pp. 19–38, May 2020.1074

[22] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Medard, “From the1075

information bottleneck to the privacy funnel,” in Proc. IEEE Inf. Theory1076

Workshop (ITW), Nov. 2014, pp. 501–505.1077

[23] Y. Y. Shkel, R. S. Blum, and H. V. Poor, “Secrecy by design with1078

applications to privacy and compression,” IEEE Trans. Inf. Theory,1079

vol. 67, no. 2, pp. 824–843, Feb. 2021.1080

[24] N. Shlezinger, Y. C. Eldar, and M. R. D. Rodrigues, “Hardware-limited1081

task-based quantization,” IEEE Trans. Signal Process., vol. 67, no. 20,1082

pp. 5223–5238, Oct. 2019.1083

[25] Y. Blau and T. Michaeli, “Rethinking lossy compression: The rate-1084

distortion-perception tradeoff,” in Proc. Int. Conf. Mach. Learn. (ICML),1085

Jun. 2019, pp. 675–685.1086

[26] A. Kipnis, S. Rini, and A. J. Goldsmith, “The rate-distortion risk in1087

estimation from compressed data,” IEEE Trans. Inf. Theory, vol. 67,1088

no. 5, pp. 2910–2924, May 2021.1089

[27] L. Rabiner, “A tutorial on hidden Markov models and selected applica-1090

tions in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,1091

Feb. 1989.1092

[28] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,1093

U.K.: Cambridge Univ. Press, 2011.1094

[29] R. W. Yeung, Information Theory and Network Coding (Information1095

Technology: Transmission, Processing and Storage). New York, NY,1096

USA: Springer, 2008.1097

[30] R. Dobrushin and B. Tsybakov, “Information transmission with addi-1098

tional noise,” IRE Trans. Inf. Theory, vol. 8, no. 5, pp. 293–304,1099

Sep. 1962.1100

[31] J. K. Wolf and J. Ziv, “Transmission of noisy information to a noisy1101

receiver with minimum distortion,” IEEE Trans. Inf. Theory, vol. IT-16,1102

no. 4, pp. 406–411, Jul. 1970.1103

[32] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ, USA: Prentice-1104

Hall, 1971.1105

[33] H. S. Witsenhausen, “Indirect rate distortion problems,” IEEE Trans. Inf.1106

Theory, vol. IT-26, no. 5, pp. 518–521, Sep. 1980.1107

[34] A. A. El Gamal and T. M. Cover, “Achievable rates for multiple1108

descriptions,” IEEE Trans. Inf. Theory, vol. IT-28, no. 6, pp. 851–857,1109

Nov. 1982.1110

[35] I. Csiszár and J. Körner, Information Theory: Coding Theorems for1111

Discrete Memoryless Systems, 2nd ed. Cambridge, U.K.: Cambridge1112

Univ. Press, 2011.1113

[36] Y. Xia, C. Sun, and W. X. Zheng, “Discrete-time neural network for1114

fast solving large linear L1 estimation problems and its application to1115

image restoration,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5,1116

pp. 812–820, Mar. 2012.1117

[37] Y. Oohama, “The rate-distortion function for the quadratic Gaussian1118

CEO problem,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1057–1070,1119

May 1998.1120

[38] R. M. Gray, Toeplitz and Circulant Matrices: A Review. Boston, MA,1121

USA: NOW, 2009.1122

Jiakun Liu received the B.S. degree in electronic 1123

information engineering from the University of 1124

Science and Technology of China, Hefei, China, 1125

in 2018, where he is currently pursuing the Ph.D. 1126

degree. His research focuses on information theory 1127

and statistical learning. 1128

Shuo Shao (Member, IEEE) received the B.S. 1129

degree in information science from Southeast Uni- 1130

versity, China, in 2011, the M.A.Sc. degree in 1131

electrical and computer engineering from McMaster 1132

University, Canada, in 2013, and the Ph.D. degree 1133

from Texas A&M University, USA, in 2017. Since 1134

2017, he has been with the School of Electronics, 1135

Information, and Electrical Engineering, Shanghai 1136

Jiao Tong University, China. His research interests 1137

are in network information theory, algebraic code, 1138

and machine learning. 1139

Wenyi Zhang (Senior Member, IEEE) received 1140

the bachelor’s degree in automation from Tsinghua 1141

University, Beijing, China, in 2001, and the master’s 1142

and Ph.D. degrees in electrical engineering from the 1143

University of Notre Dame, Notre Dame, IN, USA, in 1144

2003 and 2006, respectively. He was with the Com- 1145

munication Science Institute, University of Southern 1146

California, as a Post-Doctoral Research Associate 1147

and with Qualcomm Inc., Corporate Research and 1148

Development. He is currently a Professor with the 1149

Department of Electronic Engineering and Informa- 1150

tion Science, University of Science and Technology of China, Hefei, China. 1151

His research interests include wireless communications and networking, infor- 1152

mation theory, and statistical signal processing. He was an Editor of IEEE 1153

COMMUNICATIONS LETTERS and IEEE TRANSACTIONS ON WIRELESS 1154

COMMUNICATIONS. 1155

H. Vincent Poor (Life Fellow, IEEE) received the 1156

Ph.D. degree in EECS from Princeton University in 1157

1977. From 1977 to 1990, he was on the faculty 1158

of the University of Illinois at Urbana–Champaign. 1159

Since 1990, he has been on the faculty of Princeton 1160

University, where he is currently the Michael Henry 1161

Strater University Professor. During 2006 to 2016, 1162

he served as the Dean of Princeton’s School of 1163

Engineering and Applied Science. He has also held 1164

visiting appointments at several other universities, 1165

including most recently at Berkeley and Cambridge. 1166

His research interests are in the areas of information theory, machine learning 1167

and network science and their applications in wireless networks, and energy 1168

systems and related fields. Among his publications in these areas is the forth- 1169

coming book Machine Learning and Wireless Communications (Cambridge 1170

University Press). He is a member of the National Academy of Engineering 1171

and the National Academy of Sciences and is a foreign member of the Chinese 1172

Academy of Sciences, the Royal Society, and other national and international 1173

academies. He received the IEEE Alexander Graham Bell Medal in 2017. 1174

Authorized licensed use limited to: Princeton University. Downloaded on November 14,2022 at 17:00:42 UTC from IEEE Xplore.  Restrictions apply. 


