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Abstract— A new source model, which consists of an intrinsic
state part and an extrinsic observation part, is proposed and its
information-theoretic characterization, namely its rate-distortion
function, is defined and analyzed. Such a source model is
motivated by the recent surge of interest in the semantic aspect
of information: the intrinsic state corresponds to the semantic
feature of the source, which in general is not observable but
can only be inferred from the extrinsic observation. There are
two distortion measures, one between the intrinsic state and its
reproduction, and the other between the extrinsic observation and
its reproduction. Under a given code rate, the tradeoff between
these two distortion measures is characterized by the rate-
distortion function, which is solved via the indirect rate-distortion
theory and is termed the semantic rate-distortion function of
the source. As an application of the general model and its
analysis, the case of Gaussian extrinsic observation is studied,
assuming a linear relationship between the intrinsic state and the
extrinsic observation, under a quadratic distortion structure. The
semantic rate-distortion function is shown to be the solution of a
convex programming problem with respect to an error covariance
matrix, and a reverse water-filling type of solution is provided
when the model further satisfies a diagonalizability condition.

Index Terms—Lossy compression, rate distortion theory,
reverse water-filling, semantic rate distortion function, semantic
source model, task-oriented communication.
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Fig. 1. Tllustration of a semantic source and its lossy compression.

I. INTRODUCTION

STANDARD approach to describe an information source

is to model a source as a stochastic process {X;}, and
when the stochastic process is memoryless, it suffices to model
a source as a random variable! X with a given probability
distribution p(x) [2], [3]. In this paper, we study a new source
model, which consists of an intrinsic state process and an
extrinsic observation process. In the memoryless case, we can
describe such a source model as a pair of random variables
(S,X), with a given joint probability distribution p(s,z),
defined over an appropriate product alphabet S x X.

In order to characterize the information-theoretic aspect of
such a source, consider the problem of compressing the source
(S,X) so as to reproduce, in a lossy sense, a reproduction
(S’ , X ) over a reproduction product alphabet Sx X. Of course,
a pair of distortion measures, ds : S X S +— R and dy : X x
X — R, are introduced correspondingly. Here, the subscript s
stands for “state” and the subscript o stands for “observation”.
A key point of the problem is that the compressor only

has access to X, the extrinsic observation; — while S, the
intrinsic state, remains unrevealed. The situation is illustrated
in Figure 1.

Our source model, termed a semantic source in the sequel,
is motivated by the recent surge of interest in the semantic
aspect of information. In a number of applications that may
benefit from taking into account the “semantic” feature of
information, it is adequate to adopt a goal-oriented perspective;
that is, the destination’s interest in obtaining a piece of infor-
mation is to accomplish a certain goal. Furthermore, it is cus-
tomary to adopt an inference-theoretic problem formulation,

"In this paper, random variables can be drawn from general alphabets,
so random vectors are vector-valued random variables.
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which casts the accomplishment of the said goal as solving a
statistical inference problem. The reproduction of the intrinsic
state .S corresponds to the semantic inference part of the
source, and the reproduction of the extrinsic observation X
corresponds to the conventional lossy compression part of the
source.

We give two examples of the above consideration:

o Systems that support MPEG Video Coding for
Machines (VCM) are becoming popular in applications.
In VCM, both the video itself and its features are
reproduced: the video signal is for human vision, and
the features are for machine vision tasks [4], [5] [6].
Treating the video as a semantic source, the video signal
itself corresponds to its extrinsic observation, and the
underlying features correspond to its intrinsic state, so as
to embody the semantic aspect of the video. Usually
the code rate required for reproducing features can be
drastically lower than that required for reproducing the
video signal itself. Intuitively, features typically have
much smaller rate distortion functions and hence can be
described with many fewer bits, compared with video
signals. For instance, previous works have shown that
neural network-based learning techniques can extract a
very small amount of data from video signals to satisfy
the need of action recognition, target classification
and many other tasks [7], [8]. In contrast, traditional
video coding schemes such as H.264/AVC/MPEG-4 and
H.265/HEVC/MPEG-H Part 2 target reproducing the
video signal with high fidelity, but may perform poorly
for machine vision purposes [9].

e In coding of speech signals, the semantic aspect is
embodied as a sequence of text words, which, of course,
can only be inferred from the speech signal itself. Treat-
ing the speech as a semantic source, the words correspond
to its intrinsic state and the speech signal corresponds to
its extrinsic observation. It is the usual case that both the
words and the speech signal are desirable, because the
words carry the meaning of speech, and the speech signal
waveform may help us infer the stress and emotion of the
speaker [10], and may further help us accomplish tasks
like speaker recognition and speaker verification [11].

Our main contributions include:

o We propose a theoretical framework based on rate distor-
tion theory for characterizing semantic information.

o We define and derive a single-letter expression for the
semantic rate distortion function.

o When the extrinsic observation is Gaussian and satisfies
a linear relationship with the intrinsic state, we reduce
the calculation of the semantic rate distortion function
to a convex programming problem, which is tractable
with standard scientific computing software. Furthermore,
under a diagonalizability condition, we obtain a weighted
reverse water-filling solution for the semantic rate distor-
tion function.

We give a brief overview of related works in the remain-
ing part of this section. Then we provide a formal math-
ematical description of the semantic source model and the
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corresponding semantic rate-distortion problem formulation in
Section II, for which we establish the semantic rate-distortion
function in general form in Section III. As an application of
the general results, in Section IV we turn to a case study
of Gaussian extrinsic observation, assuming a linear relation-
ship between the intrinsic state and the extrinsic observation,
under a quadratic distortion structure. Therein, we formulate
a convex programming problem to solve for the semantic
rate-distortion function. When the Gaussian observation model
further satisfies a diagonalizability condition, we develop a
reverse water-filling type of solution in Section V. Finally we
conclude this paper in Section VI.

A. Related Works

The first formulation in Shannon’s information theory is
lossless source coding, wherein a sequence of symbols obeying
a certain probabilistic law is represented as a bit string (i.e.,
a codeword) by an encoder, and the decoder reproduces, based
upon the codeword, the original sequence of symbols, with
success probability exactly one or asymptotically approaching
one. Hence, the coding is solely determined by the proba-
bilistic model of the source, and there is certainly no role
of the semantic aspect of the source. This is also consistent
with Shannon’s remark in his landmark paper [2], saying
“these semantic aspects of communication are irrelevant to
the engineering problem.”

In a broad sense, however, the lossy source coding
formulation in Shannon’s information theory, namely, the
rate-distortion theory [12], has provided a means of studying
the semantic aspects of a source. This is because the coding is
not solely determined by the probabilistic model of a source,
but is also affected by a distortion measure, which may be
defined in a rather versatile way so as to capture the “utility”
when the source is reproduced at the decoder.

Our present work goes one step further, by endowing a
source with a state-observation structure and studying the
rate distortion function of such a source model. This model
captures the fact that the semantic aspects of a source are
generally embedded as intrinsic features, and hence should
be characterized by studying the reproduction of the intrinsic
state, in addition to the reproduction of the extrinsic obser-
vation. Our treatment of semantic aspects of sources is also
in line with the recent heightened interest in the development
of 5G and beyond wireless systems [13], [14] [15], where
for many applications the semantic aspects correspond to
the accomplishment of certain inference goals. Hence, if we
consider an information theoretic characterization of such a
“semantic” source, the task of coding is to efficiently encode
the extrinsic observation so that the decoder can infer both the
intrinsic state and the extrinsic observation, subject to fidelity
criteria on both, simultaneously. Our problem formulation and
approach are closely related to two variants of the standard rate
distortion theory, namely, the indirect rate distortion function
and the rate distortion function under multiple distortion mea-
sures; see our discussion following Theorem 1 in Section III.

The inference-theoretic goal-oriented approach adopted in
our problem formulation does not seek a task-independent
universal definition of semantic information, which is outside
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the scope of the present paper; for some attempts in that regard,
see, e.g., [16], [17] [18], [19] for a few representative works
that undertake drastically different approaches.

As related topics, the information bottleneck [20], [21]
and the privacy funnel [22], [23] are, in a certain sense,
dual concepts, and both place constraints in terms of mutual
information. The underlying idea of the information bot-
tleneck is, in a broad sense, similar to ours. Specifically,
there one generates a reproduction based upon the extrinsic
observation, minimizing the mutual information between the
extrinsic observation and the reproduction, while maintaining
a level of mutual information between the intrinsic state and
the reproduction. But for the information bottleneck problem
formulation, there is neither an explicit distortion measure, nor
an operational definition of lossy compression.

Task-based compression has been approached mainly from
the perspective of quantizer design [24]. It has been demon-
strated that steering the design goal according to the task
leads to performance benefits compared with a conventional
task-agnostic approach, a conclusion in line with what we
advocate in our work. The perception-distortion tradeoff [25]
imposes an additional constraint on the probability distribution
of the reproduction. None of these related works proposes to
decompose the information source into intrinsic and extrinsic
parts as in our work, let alone investigates the joint behavior
of them. In [26], a similar intrinsic state-extrinsic observation
model is studied, but the encoder is designed based on the
marginal distribution of the extrinsic observation only.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As already outlined in the introduction, we model a mem-
oryless semantic source as a pair of random variables (.5, X)
that are correlated with joint probability distribution p(s, x).
The semantic aspect is embodied in the intrinsic state S, which
is not observable but can only be inferred from the extrinsic
observation X. In order to characterize the rate-distortion
behavior of the semantic source, we consider a sequence
of independent and identically distributed (i.i.d.) samples of
(S, X), denoted as (S;, X;);en, and denote its length-n block
as (S™, X™).

The i.i.d. source model is an idealistic scenario for our
information-theoretic study. Real-world data generally exhibit
sophisticated memory structures. A particularly interesting
scenario is when the intrinsic state is a Markov chain,
and the extrinsic observation obeys a hidden Markov model
(HMM) [27]. Extensions of our approach for semantic source
models with memory are left for future research.

The lossy compression of a semantic source has been
illustrated in Figure 1. The encoder only has access to a length-
n block of the extrinsic observation sequence X', and the
decoder has two tasks: reproducing the intrinsic state block
as S™ under a state distortion measure d, and reproducing
the extrinsic observation block as X™ under an observation
distortion measure d,. The encoder and the decoder are
connected via a bit pipe in which the codeword W of nR
bits is transferred from the encoder to the decoder, where R
is thus the code rate of the lossy compression system.

Below we provide a formal description of the lossy com-
pression problem of a semantic source.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 9, SEPTEMBER 2022

Letd3:8x3—>R+ anddO:Xx22—>R+ be two given
distortion measures, defined over the source product alphabet
S x X and the reproduction product alphabet S x X. The
extended block-wise distortion measures are as follows:

1 n

da(s",8") = — > ds(si, 51), (1)
=1
1 n

do(z",2") = EZdo(xi,:ﬁi). 2)
=1

We claim a tuple (R, Ds, D,) to be achievable, if for any
e > 0 and all sufficiently large n, there exist the following
functions:
o Encoding function f : X" — {1,2,...,2nH+a]}
which generates the codeword W as W = f(X");
« State decoding function g, : {1,2,...,2n(Btal} o §n,
such that

E [ds(sn,ﬁn)} <Dy +e, 3)

where S = g,(f(X™));
o Observation decoding function Jo
{1,2,...,2l»(F+a9Y s A such that

E (X", X™)] < Do+ @

where X" = g,(f(X™)).
It is clear that the state decoding function g5 and the obser-
vation decoding function g, together constitute the decoder
illustrated in Figure 1.
Our goal is to characterize the region of all achievable
(R, Ds, D,) tuples. Hence, we define the semantic rate dis-
tortion function as follows?:

R(Ds, D,) =inf{R : (R, Ds, D,) is achievable}.  (5)

Clearly, characterizing the semantic rate distortion function
R(Ds, D,) is equivalent to characterizing the achievable
region of (R, D, D).

We will also consider a variant of the distortion constraint;
that is, the state distortion and the observation distortion are
linearly combined to yield a single overall distortion. Hence,
instead of (3) and (4), the decoding functions are required to
satisfy the following weighted distortion constraint:

E [w,dy(S", ") + wdo(X", X" <D+, (6)

where w, and w, are non-negative weighting coefficients.

It is also natural to generalize the system model to
include several intrinsic state variables each associated with
a specified reproduction and a distortion. Such a seman-
tic source is described by a tuple of random variables,
(S0,51,...,5k-1,X), with joint probability distribution
(80,81, .., Sk—1,2) over So X &1 X ... X Sp_1 X X, where
each S, is an intrinsic state reflecting a certain semantic aspect
of the source. The decoder now consists of an observation
decoding function and k state decoding functions, among
which g, ; maps the codeword W € {1,2,..., 2"+ into
a reproduction sequence S’;" to satisfy

E [d&j(s;l,éy)} <D, +e @

2This is the operational definition of a rate distortion function, which has
been widely used (see, for example, [3], [28] [29]).
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The notion of achievability can be defined in a similar fashion
with respect to the tuple (R, D o, Ds 1, ..., Dsx—1, D,), and
the semantic rate distortion function is consequently defined
as

R(DS,O;DS,la o 7DS,]€—15D0)

=inf{R: (R, Dso,Ds1, - ,Dsxr—1,D,) is achievable}.

@)

Examples of such semantic sources with multiple semantic
aspects can be found in [5], [9], which consider a hierarchy of
image or video features, each feature associated with a quality
metric.

III. SEMANTIC RATE DISTORTION FUNCTION

In this section, we establish in the following theorem a
single-letter characterization of the semantic rate distortion
function R(Ds, D,) defined in Section IL

Theorem 1: For a given semantic source (S,X) with
p(s,z) over S x X, reproduction alphabet S x X', and distortion
measures d; and d,, the semantic rate distortion function
R(Ds, D,) is as follows:

R(Ds,D,) = min I(X;5,X) 9)
p(8,2]z)

st E [d (X, X)} < D,, (10)
E[d,(X,9)] <D (1)

where
dy(x,8) = s(5,8)|x] = Zp (s|z)ds(s, 3) (12)

seS

and S, X, S, X constitute a Markov chain § — X < (3, X).
Proof: See Appendix 1. (]

Here we briefly discuss the basic idea of the proof of
Theorem 1. There are two main ingredients in the problem
formulation: an indirect rate distortion problem which has
been studied in [30], [31] [32, Chap. 3, Sec. 5] [33], and
a rate distortion problem with several distortion constraints
which has been studied in [34, Sec. VII] [3, Prob. 10.19]
[35, Prob. 7.14]. A key is to recognize reproducing S as an
indirect rate distortion problem, for which the state distortion
between S and S can be equivalently converted to a distortion
between X and S. Indeed, the converted distortion is nothing
but the conditional expectation of the original state distortion
ds(S, §), over p(s|z). This conversion hence circumvents the
difficulty due to the absence of access to S at the encoder.
The detailed derivation, which is based on a unified treatment
in [33], is given in Appendix I.

We note that the semantic rate distortion function can be
non-trivial even for the special case where S is a deterministic
function of X, because from a lossy reproduction of X it
is generally impossible to reproduce S in a lossless fashion.
Specifically, suppose that S = g(X). Then d(z,§) can be
simplified into

Is(x,3) = ) p(sla)ds(s,3) =

seS

ds(g(x), 8). 13)
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Similar to standard rate distortion functions, a corollary of
the semantic rate distortion function as given by Theorem 1
is the following regarding monotonicity and convexity.

Corollary 1: The semantic rate distortion function
R(Ds, D,) in Theorem 1 has the following properties:

e R(Ds, D,) is monotonically nonincreasing with Dy and

D,.

o R(Ds, D,) is jointly convex with respect to (Ds, D,).
o The contour set {(Ds, D,) : R(Ds, D,) < R} is convex

for any R > 0.

Proof: The proof of the first two properties is exactly
the same as that for standard rate distortion functions; see,
e.g., [3]. The third property is then an immediate corollary of
the second property. 0

Corollary 1 implies a trade-off between the two distortions:
for a given code rate, the smaller the state distortion, the larger
the observation distortion, and vice versa. Concrete numerical
examples can be found in Section IV, where Figures 2 and 4
plot the achievable regions of (R, D, D,) and their pro-
jections under different values of R, for two experimental
setups, respectively. These plots demonstrate that for fixed R,
the achievable (D, D,) pairs form a convex region, whose
boundary exhibits a trade-off between D, and D,. Hence a
sensible coding scheme of a semantic source should exhibit
such behavior.

Now consider the weighted distortion constraint (6).
We have the following corollary.

Corollary 2: For a given semantic source under the
weighted distortion constraint (6), the rate distortion function
is as follows:

R(D) = min { R(Dy, Dy)|wsDy +w,D, < D}.  (14)

Proof: Given the semantic rate distortion function
R(Ds, D,) in Theorem 1, we have that any coding scheme
that achieves (R, D) should achieve a (R, D, D,) tuple for
the semantic rate distortion problem under distortion con-
straints (3) and (4), for some Dy and D, satisfying wsDs +
wy,D, < D, and vice versa. O

We end this section with the semantic rate distortion func-
tion (8) for semantic sources with several intrinsic states,
as given by the following corollary. Its proof is essentially
identical to that of Theorem 1.

Corollary 3: For a semantic source (Sp, S1,...,S¢—1,X)
with p(sg, S1, ..., 8k— 1,3:) over So X §1 X ... X Sp1 x A,
reproduction alphabet So xS X ... xSp_1 ¥ X and distortion
measures {d; 5 } j=0,1,....k—1 and do, the semantic rate distortion
function R(Ds,, Ds,,...,Ds,_,,D,) is as follows:

R(DsoaDSU" '7DSk—1aDO)
= min I(X;80,50,...,5_1,X) (15)
p(§0,§1,...,§7€,1,§1“x)
st E [d (X, X)} < D,, (16)

E{ (XS)} <D, j=01,. k-1,
(17)

Authorized licensed use limited to: Princeton University. Downloaded on November 14,2022 at 17:00:42 UTC from IEEE Xplore. Restrictions apply.



5950

where
dSJ (J,‘, §j) =K [dsj (Sja §])|$} = Z p(sjlx)dsj' (Sja §j)7
SJESJ'
(13)

and {Sj}j=0,1,...,k—17X7{S’j}j:0717,,,,k_1,X constitute a
Markov chain (So, S1,...,Sk-1) < X < (S0,51,...,
Sk—1,X).

IV. GAUSSIAN OBSERVATION WITH LINEAR
STATE-OBSERVATION RELATIONSHIP

Theorem 1 establishes the general form of the semantic
rate distortion function, which comes with an optimization
problem, extending its counterpart in a standard rate distortion
problem. In this section, we specialize the general result to
a case where the extrinsic observation X is Gaussian and
the intrinsic state-extrinsic observation pair (S, X) satisfies a
linear relationship, under quadratic distortion measures.

The extrinsic observation X obeys a multivariate Gaussian
distribution A/(0, K X),3 where K x is an m xm positive semi-
definite matrix. The intrinsic state S is given by

S=HX+ 7, (19)

where H is an [ x m matrix, and Z is a random vector
independent of X, with zero mean and covariance matrix K.
Note that we neither restrict Z to be Gaussian nor require H
or K7 to be full-rank. According to (19), the intrinsic state
S is a linear transformation of X, further disturbed by an
independent component Z. This linear assumption holds for
jointly Gaussian intrinsic state S and extrinsic observation X,
and can usually be extended to non-Gaussian models as well,
either precisely or approximately, for example, when a linear
estimator of .S’ conditioned upon X can be obtained by tradi-
tional statistical methods, or by multilayer perceptron (MLP)
neural networks alternatively [36]. On the other hand, note
that the linear assumption no longer holds when one invokes
nonlinear mappings, and deriving an analytical form of the
corresponding semantic rate distortion function will generally
be an extremely difficult task.

This model covers the special case where (S, X) are jointly
Gaussian. In fact, if (S, X) are jointly Gaussian with zero
mean and covariance matrix

[ Ks st}
Kiy Kx|

we can represent .S according to
S=KsxK'X + 7, (21)

where Z ~ N(0,Kg — KSXK;(lKgX); that is, H =
KsxKy' and Kz = Kg — KgxK'KE .
We consider quadratic distortion measures, defined as
ds(s,5) = ||s = 35 = tr(s — 8)(s — )7,

do(z,2) = ||z — 2|3 = tr(z — 2)(z — 2)T.

(20)

(22)
(23)
Consequently, we have

E[d.(8,9)] = r(K_s), (24)

E [do(X,X)} = t(Ky_ ). (25)

3We use Ky to denote the covariance matrix of a random column vector V.
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For the considered model (19), we can derive its semantic
rate distortion function, given by the following theorem.

Theorem 2: The semantic rate distortion function for the
semantic source with Gaussian extrinsic observation and linear
state-observation relationship (19), under quadratic distortion
measures (22) and (23), is given by:

Rg(D,,D,) = min —log <—d§;§&‘)) > 26)
st. 0 < A <Ky, 27)

tr(HAHT) < D, —tr(Ky), (28)

tr(A) < D,. (29)

where S,,, denotes the set of all m x m positive definite
matrices. Note that here we use a subscript G to emphasize
that the extrinsic observation is Gaussian.
Proof: See Appendix II. O

From (28), when Z is sufficiently strong so that tr(Kz) >
Dg, the optimization (26) is no longer feasible and hence
Rg(Ds, D,) = oo. Otherwise, there is no further restriction on
K 7. For example, even if Z = 0, i.e., the relationship between
S and X is deterministic as S = HX, the optimization
problem in Theorem 2 is still non-trivial.

A simplified case arises when H is an orthogonal matrix
satisfying H'H = I. In this case, (28) becomes

tr(HAH?)=tr(AH"H) =tr(A) < D,—tr(Kz), (30)
which can then be combined with (29) leading to a single
distortion constraint

tr(A) < min{D,, D; — tr(Kz)}. (31)

In Theorem 2, the matrix A which we optimize corresponds
to the mean squared error (MSE) of estimating X based upon
X at the decoder. The key to the proof of Theorem 2 is to
show that the semantic rate distortion function is achieved by
a Gaussian reproduction. This is similar to situations in several
Gaussian lossy compression problems, including the stan-
dard Gaussian rate distortion problem [12] and the Gaussian
quadratic CEO problem [37]. Existing techniques based on
the entropy power inequality (EPI), extremal inequalities, and
Fisher information inequalities may also be interpreted as
the optimality of Gaussian reproduction for the minimum
mean squared error (MMSE) estimation under a given MSE
constraint. In our analysis, we further need to accommodate
with two MSE constraints, corresponding to the intrinsic state
and the extrinsic observation, respectively.

Compared with the general form of semantic rate distor-
tion function in Theorem 1, Theorem 2 involves only one
matrix-valued optimization variable A, which, as remarked
in the previous paragraph, is the MSE of estimating X based
upon X alone. In fact, the solution exhibits a Markov structure,
ie, 5 X - X < S To help understand the optimality
of the Markov chain solution, supposing that an alternative
solution (X’,5’) is given which does not satisfy the Markov
structure, consequently one can form an improved reproduc-
tion as X = E(X|X’,5"), satisfying the Markov structure and
achieving the same code rate I(X; X, $') = I(X; X', 5").
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Fig. 2.

The Markov chain solution further suggests a “two-stage”
coding interpretation which is in fact extensively adopted in
practice: the decoder first generates a reproduction for X
as X, and then uses that reproduction to further generate a
reproduction for S as S. Similar to the standard Gaussian rate
distortion problem, the optimal X can be constructed with the
aid of a “test channel”, for which X as the channel input is
Gaussian and the additive Gaussian noise of the test channel
has a covariance matrix A, thereby producing X as the desired
channel output. To generate S based upon X, it suffices to
adopt a linear transform S = HX. On the other hand, the
Markov chain solution does not mean that the reproduction
of S is trivial, because the fidelity criterion on X still needs
to be adjusted according to Ds. The detailed arguments are
given in the proof in Appendix II.

An interesting property of the semantic rate distortion
function derived in Theorem 2 is that it is in fact an
upper bound for all semantic sources with the same covari-
ance structure under the quadratic distortion measure. This
essentially indicates that a semantic source with Gaussian
extrinsic observation is the hardest to describe, analogous to
its counterpart in conventional source coding problems (see,
e.g., [3, Exercise 10.8]). Formally, we have the following
corollary.

Corollary 4: For a semantic source (S,X) with general
probability density function, whose covariance matrix is
given by (20), its semantic rate distortion function subject
to quadratic distortion constraints (22) and (23) satisfies
R(Ds, D,) < Rg(Ds, D,), where Rg(Ds, D,,) is the seman-
tic rate distortion function given in Theorem 2, with H =
KsxKy' and K7 = Kg — KoxK'KL.

Proof: See Appendix III. O

A. Computation of the Semantic Rate Distortion Function

We remark that the optimization problem in Theorem 2 is
convex, and hence can be numerically solved by software like
CVX in an efficient and stable fashion. In this subsection we
present some illustrative numerical examples.

Our first example is a small-scale toy model, given by

11 0 05
Kyx=1|0 3 -2,
05 -2 2.35

D,

Surface and contour plots of the semantic rate distortion function Rg(Ds, D,) for the toy example.
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(b) Contour plot of Rg(Ds, Do)
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Fig. 3. A 16 x 64 transformation matrix H shown as a two-dimensional

grid. Elements are shown as cells with different colors corresponding to their
values: blue for —1, red for 1, and gray for O.

i | 00701 0.305  0.457
= [-0.0305 —0.220 0.671]"

K, _ | 0701 —0.305

Z 7120305  0.220 |’

The resulting semantic rate distortion function is computed
as displayed in Figure 2. The dotted region in Figure 2(b)
indicates that both constraints (28) and (29) are active. The
trade-off between the two distortions are clear: the smaller the
state distortion, the larger the observation distortion, and vice
versa.

Our second example captures a sparse state-observation
relationship, as follows. The extrinsic observation is a length-
64 vector X = [Xi,---,Xg4]T consisting of i.i.d. N(0,2)
random variables. The transformation matrix H is a randomly
masked 16 x 64 Rademacher matrix; that is, we first generate
a Rademacher matrix whose elements are i.i.d. taking values
{1,—1} with equal probability 1/2, and then independently
reset these elements to zero with probability 0.95. A real-
ization of H is shown in Figure 3. The noise vector Z =
[Z1,-++, Z16]" consists of i.i.d. N(0,1) random variables.

We numerically solve the semantic rate distortion function
according to Theorem 2, and a typical surface of Rg(Ds, D,)
is illustrated in Figure 4(a). More details of Rg(D;, D,) can
be seen from the contour plot in Figure 4(b), wherein the
dotted region indicate that both constraints (28) and (29)
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(b) Contour plot of Rg(Ds, Do)

Fig. 4. Surface and contour plots of the semantic rate distortion function Rg(Ds, Do) for the example of a sparse state-observation relationship.

— D.=44.41
150+ —— Dg=72.82
—— D,=101.22
= —— Ds=132.00
Q 100
g
v
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0,
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(a) Rg(Ds, D) versus D,
Fig. 5.

are active. From Figure 4(b), it is evident that describing
the extrinsic observation X tends to be much more costly
than describing the intrinsic state S: at the same code
rate, the achieved D, is generally much lower than the
achieved D,,.

Another interesting fact regarding Rg(Ds,D,) can be
inferred from the dotted region in the contour plot Figure 4(b),
and is more clearly revealed by plotting the trends of
Rg(Ds,D,) as a function of D, (for fixed D) or Dy
(for fixed D,), shown in Figures 5(a) and 5(b), respectively.
We find that, the code rate Rg(Ds, D,) as a function of D,
does not seem to be sensitive to the choice of D,. This fact
has an important consequence for designing lossy compression
schemes for semantic sources: although several different codes
may have similar performance in terms of reproducing the
extrinsic observation, they can differ considerably in terms
of reproducing the intrinsic state. A heuristic explanation is
as follows: since X is a high-dimensional vector, describ-
ing it along several different directions may lead to similar
quadratic distortion performance; but since S corresponds to
a low-dimensional feature of X, its reproduction only favors
the direction of describing X that retains the feature of S the
best.

B. Generalizations of Theorem 2

We can derive from Theorem 2 several corollaries cor-
responding to the variants of the problem formulation in
Section II.

801 —— Do=131.35
N —— Dy=62.69

60 — D,=94.04
= \\ —— Do=128.00
Q
9:140’
v

201

O,
20 40 60 80 100 120

Ds
(b) Rg(Ds, Do) versus Dy

The semantic rate distortion function Rg(Ds, Do) as a function of D, or Ds.

First, let us consider replacing the quadratic distortion
measures by the positive semi-definite distortion constraints.
Following the same arguments in the proof of Theorem 2,
we again arrive at the optimality of Gaussian descriptions
under positive semi-definite distortion constraints, and hence
the following corollary characterizes the semantic rate distor-
tion function.

Corollary 5: Consider the positive semi-definite distortion
measures as

ds(s,8) = (s —38)(s— §T,

do(z, %) = (v — &) (x — 2)7.

The semantic rate distortion function is given by

R(D,,D,) = Aﬁéi‘%}n %bg (%) (32)
st. O < A <Ky, (33)

HAH” <D, - K, (34)

A =<D,. (35)

This is a semi-definite programming problem and can be
readily solved by software.

Now consider the weighted distortion constraint, where
the distortion measure is defined as a weighted sum of two
individual distortion measures, i.e.

d = wsds(s, 8) + wod,(z, %)

= wlls — 3[I3 + wollz — 23. (36)
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Applying Corollary 2, we obtain the semantic rate distortion
function in the following corollary.

Corollary 6: For the weighted distortion measure d, the
semantic rate distortion function R(D) is given by

= o1 det(K
R(D) = Anéu;}n 5 log <ﬁ> (37)
st. O <A <Ky, (38)
tr((wsHTH + wol)A) < D — w, tr(Kz).
(39)

Finally, consider the case of k intrinsic states. The extrinsic
observation X is still (0, Kx). For each j € {0,1,---,
k — 1}, the j-th intrinsic state is generated according to

S; =H;X + Z;,

where H; is an [; X m matrix, and Z; is a random vector
independent of X, with zero mean and covariance matrix K Z;-
We consider quadratic distortion measures, as

Jk—1, (40)

(41)

dy,(s5,85) = s — 53, =0,1,...
do(z, &) = |l — 2|3,

The semantic rate distortion function is given by the fol-
lowing corollary.

Corollary 7: For the semantic source with a Gaussian
extrinsic observation and % intrinsic states, the semantic rate
distortion function under distortion measures ds,, ds,, - - -,
d d, is

Sk—1°

R(DQU,DSU--- Ds,_,.D,)
= min log <det(KX)>
AES,, det(A)
st. O < A <Ky,
tr(H;AH]) < D, —tr(Kz,),
je{0,1,--- k—1},
tr(A) < D,.

V. WEIGHTED REVERSE WATER-FILLING

Analogous to the standard Gaussian rate distortion problem
wherein (after appropriate linear transformation) the solution
can be interpreted as a reverse water-filling type of rate allo-
cation, for the semantic rate distortion function in Theorem 2,
under a diagonalizability condition, the solution can also be
interpreted as reverse water-filling, but with appropriately
weighted water levels.

For the model of Gaussian observation with linear
state-observation relationship in Section IV, we further assume
that the following diagonalizability condition is satisfied: there
exists an unitary matrix Q such that

. QTK)(Q = diag(ol, g2, ,O'm),

« Q'HTHQ = diag(ai, a2, - ,am)
simultaneously hold. Here it loses no generality to order
{a;}™, so that a3 > ag > -+ > . Denoting the rank
of H'H as ¢ < m, then ay >0 and g1 = -+ = ap, = 0.
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Lemma 1: Under the diagonalizability condition, the result-
ing optimal A takes the form

A= leag(éla 527 T aém)QTa

and the semantic rate distortion function in Theorem 2 can be
further written in terms of the following optimization problem:

(42)

0j
Rg(Ds, D 1 J 43
9(Ds, Do) = A Zog( ) “
st.0<6; <05, Vje{l,2,--- ,m},

(44)

m
Zaj(sj <Dy — tI‘(Kz), (45)

j=1

m
Z(sj < D,. (46)

j=1
Proof: See Appendix IV. 0

In order to describe the weighted reverse water-filling solu-
tion, we first introduce the following curves.

o Curve Ci:
E o ;min | 0 1 +tr(Kz)
j=1 "7 D)
] . l
g ., min { oy, 3

j=

Cs= A>0p,

(47)

which starts from (tr(HKxH? + Kz),tr(Kx)) and
ends at (tr(Kz),0).
o Curve C,:

a 1
S ‘min (0, — ) +tr(K
4 O Toin (U],Maj)—l— r(Kz)
E " min (o L —|—E " oj
j=1 ]’,uaj j=q+1 "’

C(,Z ﬂ>0 )

(48)

which starts from (tr(HKxH? + Kz),tr(Kx)) and
ends at (tr(Kz),> ™" ., 0;). Here, 327 | | 0 is inter-
preted as 0 if H”H is full-rank and thus ¢ = m
We then introduce the following partitioning of the
(Ds, D,) plane, based upon the curves Cs and C,:
« Ay = {(DS,DO)|DS > tl"(HKxHT + Kz),Do >
r(Kx));
e Aj: on the right of the curve Cj, and between the two
horizontal lines D, = 0 and D, = tr(Kx);
e Ajy: above the curve C,, and between the two vertical
lines D, = tr(Kz) and D, = tr(HK xH” + Kz);
o Ajs: surrounded by the curves C's and C,, and the vertical
line Dy = tr(Kyz).
An example of the partitioning above is plotted in Figure 6.
The following theorem describes the weighted reverse
water-filling solution.
Theorem 3: For the model of Gaussian observation
with linear state-observation relationship in Section IV,
under the diagonalizability condition, the optimal A =

Qdiag(dy, 02, - - 0,,)QT is given by
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TABLE I
ACTIVITY OF CONSTRAINTS (45) AND (46) IN Ag, A1, A2 AND A3

(45) active  (45) inactive
(46) inactive As Ag
(46) active As Ay

« If (D,,D,) € A:

6 =05, Vjie{l,2,---,m}. (49)
o If (DS,DO) € Aq:
X . 1 .
07 = min (Uj’X)’ vje{1,2,---,m}, (50)
where A is chosen to satisfy Z;n:l 07 = D,.
o If (D4, D,) € As:
min< L ) a; >0
05y, —— | » j
(5; _ J s, J
O'j, Oéj :07
V] € {172a aQ}v (51)

where 1 is chosen to satisfy 231':1 ;07 = Ds—tr(Kz).
o If (Ds,D,) € As:

. . 1 .
6] = min <O’j,m>, Vj€{1,2,...,m},
(52)

where A\, p are chosen to satisfy E;n:l or =
Z?:l ajé;f = .DS — tl"(Kz).
Proof: See Appendix IV. 1
The partitioning {Ag, A1, Az, A3} is closely related to
activity of the constraints (45) and (46), as summarized in
Table I. In Ag, both constraints are inactive, and hence the
optimization is unconstrained yielding the trivial solution (49).
In A;, only the observation distortion constraint is active,
and the solution (50) is a standard reverse water-filling with
water level 1/). In As, only the state distortion is active, and
the solution (51) essentially makes the weighted eigenvalues
@101, (202, - -+, QO fulfill a reverse water-filling structure,
with water level 1/u. Alternatively, we may view the term
1/(ue;) in (51) as a water level with weight 1/a;. In As,
both constraints are active, and the solution (52) also fulfills
a reverse water-filling structure with unequal water levels.

D, and

A. Case Study: Circulant Kx and H and Weighted Reverse
Water-Filling in Frequency Domain

A case of special interest is where Kx and H are both
circulant matrices [38]. As the dimension of X grows large,
this models the scenario where X is a circularly stationary
Gaussian process,* and S is obtained via passing X through a
time-invariant linear filter whose response is given by the first
row of H. For a circulant matrix, the corresponding unitary
matrix Q is the well known discrete Fourier transform (DFT)

4If we remove the circulant restriction and consider a stationary Gaussian
process, then we encounter a Toeplitz K x, for which our solution still
approximately applies; see, e.g., [38].
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175+
150 1 A2 o
1251 (tr(HKxHT + Kz), tr(Kx)
S 100
(DS,ZrD 3 Al
754
o dDs 1,Do,1)
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25 5,3:Do,3) Cs
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0 r(Kz),0) . . : T
0 20 40 60 80 100
Ds

Fig. 6. The (Ds, Do) plane is divided into four regions Ag, A1, A2,
Agz, which determine the form of the optimal A. Five points on the contour
Rg(Ds, Do) = 50 are marked with colors varying from purple to yellow.

1.4
1.2
1.0

0.81
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0.6
0.4

0.2

0.0
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j

100 120

Fig. 7. Diagonal elements ag, a1, - -+, o127 of Q'HTHQ.
matrix, and its eigenvalues are the DFT of the first row of
the matrix. Hence the weighted reverse water-filling may be
interpreted as exercised in the frequency domain, similar to
its counterpart for the standard rate distortion function of
stationary Gaussian processes.

In the illustrative example below, consider Kx as a
128 x 128 circulant matrix with the first row

[1,0.4,0,---,0,0.4],
H as a 128 x 128 circulant matrix with the first row
[0.3,0.3,0.3,0.3,0, - ,0],

and K7 as a 128 x 128 zero matrix (i.e., no noise in the state-
observation relationship). Therefore, Q is the 128 x 128 DFT
matrix whose (4, j)-th element is

1 (2
€ )
V128

The diagonal elements o, «q, -+, ajo7 of QTHTHQ are
shown in Figure 7, and the diagonal elements oy, o1, - -,
o127 of QTK x Q are shown as the blue solid curve in Figure 8.
Figure 6 shows the four regions Ag, A, Az, A3z and the two
curves Cy, C,. It also displays five points on the contour
of Rg(Ds,D,) = 50, marked with colors varying from
purple to yellow. The weighted reverse water-filling solution

-,127.
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Angular frequency
m

5955

0 /2 3mn/2 2n
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Fig. 8. Optimal diagonal elements (&7, d5,05) of QAQT for the marked points in Figure 6, plotted with the colors in Figure 6.

(08,07, ,0797) for these points are depicted in Figure 8. For
(Ds1,D, 1), the optimal solution degenerates into a standard
reverse water-filling form, as indicated by the purple line.
When we go from (D; 1, D, 1) to (Ds 2, Dy 2), the water level
begins to “ripple”. Note that this weighted reverse water-filling
can be viewed as exercised in the frequency domain, and the
angular frequencies are marked on the top of Figure 8.

VI. CONCLUSION

We have provided a general source model to describe
information sources that have semantic aspects, and proposed
a corresponding rate distortion problem formulation for char-
acterizing the amount of information content of such semantic
sources. We have studied the case of Gaussian extrinsic
observation subject to a linear state-observation relationship
and a quadratic distortion structure. There are a variety of
issues that we have not touched upon in the present work.
First, calculating and bounding the semantic rate distortion
functions for other interesting cases would make further use
of our proposed framework, for example, when the intrinsic
state is a discrete categorical random variable, corresponding
to the important problem of classification; see [1] for some
preliminary results. Second, a more challenging problem is
to estimate the semantic rate distortion function, and more
importantly, to develop effective lossy compression methods
when the joint probability distribution of the intrinsic state
and the extrinsic observation is not perfectly known, say,
when only finite training data of the state-observation pair are
available.

APPENDIX I
PROOF OF THEOREM 1

The key to proving Theorem 1 is converting the seman-
tic rate distortion problem into an equivalent standard rate

distortion problem, with an indirect (state) distortion con-
straint and a direct (observation) distortion constraint. More
precisely, we need to show that the constraint with respect
to the state distortion measure d4(s,$) is equivalent to a
constraint on a converted distortion measure d(z,3); that
is, as long as a reproduction S satisfies the constraint on
dy(x,3), it will satisfy the constraint on ds(s, §), and vice
versa.

A general and unified approach to the indirect rate-distortion
function put forward in [33] is first showing that the

one-shot expected distortion E [dS(S, S')} is equivalent to

E [d;(X .S )] , and then invoking a tensorization argument to
extend the one-shot equivalence to block codes. Here we
directly illustrate how this can be accomplished for S" «
X" - (S’",X’ ™) generated by an arbitrary encoder-decoder
pair, as follows:

E |d(s",5")]

> )

xn,§n i=1
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™ 8" i=1 §; s;€S
n
= Z p(§n|xn) Zzp(glvxl) Z p(slaxi)dS(siag')
™, §" =1 5; s; €S
n
= > pE"2") = p(i) Y plsi wi)da(si, 8:)
", 8" i=1 s, €S
n
= Z p(§n|xn) Zp(xn) Z p(sz|xz)d9(susz)
xm, 8" =1 s, €S
(@ 1
= Z p(m",é”)Eng(mz,sz)
Tn,8m i=1
= Z p(xnvsn)dAS(xn’gn)
zn,én
= E [dy(x", 5", (53)
where ; = (xla---;l‘i—hxi—i-lw--;l‘n)y S; =
(S1y.++s8i—1,8it1s---,5n), (a) is due to the existence

of the Markov chain S” < X" « S” and hence
p(s™|z™) = p(s"|z™,5"), (b) follows from the definition
of block-wise distortion measure in (1), (¢) is by the fact
that (S;, X;)ien is an i.i.d. sequence, and (d) is by the
definition of ds(z, ) in (12). Subsequently, the problem is
reduced into a standard lossy source coding problem with
two distortion constraints, one on d,(z, &) and the other on
czs(a:, §). The semantic rate distortion function hence follows
from standard achievability and converse proofs [34, Sec. VII]
[35, Prob. 7.14] [3, Prob. 10.19].

APPENDIX II
PROOF OF THEOREM 2

The proof of Theorem 2 involves two steps. First we prove
that the semantic rate distortion function can be achieved by
jointly Gaussian X and S. Then we show that we can further
endow a Markov chain structure on X, X and S’, so that
we only need to optimize with one variable, i.e., X , while
generating S from X subsequently.

A. Optimality of Jointly Gaussian Reproduction

By the definition of d,(X; $) in (12), E {CZS(X; g)} can be
written as follows:

E[JS(X;S)}
_ /p(x,é) </p(s|x)ds(s,§)ds> dads
= /p(fc,é)

X </p(Hx+z|m)(Hx+z—§)(Hx+z—§)sz) dxds
@ /p(x, 3) < /p(z) tr(Hea"H” + Ha2” — Has

+2aTHA4- 22T — 287 —52THT — 527 + §§T)dz> dxds
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o /p(x, 5)

x tr(Hea' HY — Has + Kz — s2"HT + 337 )dwds
= tr(HKxH" —HK s+ K7 - Kg H" + K;)

(@

= tr(HKxH” - 2HK , s + Kz + Kg), (54)

where (a) is due to independence between Z and X, (b) is
according to the problem setup that E(Z) = 0, and (¢) is due
to the fact that tr(HK y ¢ ) = tr(K g H"). From this chain of
identities, we see that for any two reproductions of the intrinsic
state, S and $’, we have E {dS(S; 5’)} =E {dS(S; 5”)} as long
as Kg=Kg and Ky = Kyg,.

Therefore, by Theorem 1, the semantic rate distortion func-
tion Rg(Ds, D,) can be further written as

Rg(Ds, DO)

= minI(X; 5, X) = h(X) — maxh(X|S, X) (55)

sit. tr(Kx —2K v +Ky) <D, (56)
tr(HKxH" — 2HK . ; + Kz + Kg) < D,.

(57)

Notice that, by denoting 7 2 (S,X) for convenience,
h(X]S, X) can be upper bounded as
h(X|S, X)
= hX|T)
= h(X - KxrK;'T|T)

X — Kx7K;'T)
1
3 log det(27reKX_KXTK;1T)
1
=3 logdet(2me(Kx — Kx7K,'Krx)),  (58)

where (a) is by the fact that conditioning reduces entropy,
and equality holds when X — Kx7K,'T is independent of
T; (b) is due to the fact that Gaussian distribution maximizes
differential entropy with given second central moment. Over-
all, we can see that this upper bound of 2(X|$, X) is achieved
when X and T are jointly Gaussian.

Based on the argument above, for an arbitrary T = (5’ X ),
we can generate 7’ = (S, X') according to a linear relation-
ship

(8", X") = KpxK'X + N, (59)

where N is a multivariate Gaussian random variable following
N, K —KTXK}lKXT) and is independent of X . Clearly
it holds that K7+ = K¢ and Kxr = Kx7/. According
to (58), we can see that h(X|S,X) < h(S’,X’). That is
to say, for any (S’ , X ) that satisfies the distortion constraints,
there always exists a Gaussian (S, X”) which also satisfies the
distortion constraints, but achieving a lower code rate. We thus
establish that jointly Gaussian reproduction (S, X) achieves
the semantic rate distortion function.

B. Reduction to One Optimization Variable

In fact, it is unnecessary to optimize with two random
variables (S, X) simultaneously, and in the following we
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reduce the number of optimization variables to only one.
We choose the new optimization variable as cov(X|X,S),
defined as

cov(X|X,8)=E [(X—IE [X|X, SD (X—E [X|X, SDT]

i.e., the error covariance matrix of MMSE estimating X by
(X, S). By denoting cov(X|X,S) as A for short, we can
write I(X; X , S) as (26). Therefore, now the key point is to
show that the feasible region defined by (56)-(57) (denoted as
R1) is the same as the feasible region defined by (27)-(29)
(denoted as Ro).

First we show that R; C Rs. For any K(S X) € R, with
A = cov(X|S X), we have A < cov(X|X) and A
cov(X|S), and correspondingly tr(A) < tr(cov(X|X))
D, and

tr(HAH” + K) < tr(Heov(X |S)HT + K )
= tr(cov(HX + Z|S)) < D

INTA

(60)

That is to say, for any K $.%) € Ry, we can find a
corresponding A € R, and hence R C Ro.
Then we show that Ro C R;. Forany A € Ro, we consider

a test channel with X = X + N and let $ = HX , where N
obeys Gaussian distribution N'(0, A). Hence we have

E [d,(X, %)| = t(a) < D,, 61
E [ds(s, §)} = tr(Heov(X|S)H? + Ky)
= tr(HAH” + K,) < D,. (62)

That is to say, for any A € Ry, we can also find a
corresponding tuple of K( $x) € R1, and hence Ry C Rq.

Now, we can conclude that, under the setting of Theorem 2,
Theorems 1 and 2 define two optimization problems with the
same objective function and the same feasible region. This
therefore completes the proof.

APPENDIX III
PROOF OF COROLLARY 4

By Theorem 2 and the identities H = Kgx K;(l and K, =
Ks — KsxK'K%y in (21), the semantic rate distortion
function of a jointly Gaussian semantic source with covariance
matrix (20) is given by

Rg(Ds, Do) = min %bg (%) (63)
st. 0 < A <Ky, (64)
tr(Ksx Ky AK'KLy)

<Dy —tr(Ks — KsxK'K¥y),
(65)
tr(A) < D,. (66)

We will prove
1 det(K

R(Ds,D,) < 3 log <ﬁ> (67)

for an arbitrary symmetric matrix A that satisfies (64), (65)
and (66), by constructing a test channel. This implies that
R(Ds, D,) is no greater than (63).
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In order to construct the test channel, let U be a Gaussian
vector with zero mean and covariance matrix A — AK ' A,
independent of (S, X). That A — AK'A is semi-definite
will be proved in Lemma 2 at the end of this subsection.
Define X = (I,, - AK )X 4+ U and S = KgxK;'X.
Thus S« X < X < S'is a Markov chain. We will verify in
the next paragraphs that E[ds (X, S)] < D,, where d,(z,3) =

E[||S — 8/13|X = =], E[|| X — X|3] < D, and
I(X;8,X) < %1 og <7d§;($)>. (68)

These leads to (67), and thus proves Corollary 4.

By the definitions of X and S, we have S — § = S —
KsxLX — KgxKy'U, where L = K' — K AK'.
Noticing E[SUT| = Ojyxy, and E[XUT| = Ome, we can
obtain, after some algebraic manipulations,

E [(s ~8)(5 - S)T}
=Ks - KsxK' KLy + Ksx K AK KL
Taklng the trace in this equation and using (65), we get IE[HS -

S||3] < D,. Similar calculations lead to E[|| X — X||3] <
For every x € R™ and every § € R!, we have

E[llS 331X = 2,5 = §]
= E[||S - 3]31X = 1]

= ds(l', §)7

E[|lS - SII3|1X = ,8 = 3]

where the second equality is due to S < X « S. An appli-
cation of the law of total expectation immediately leads to
Eldi(X, )] =E[||S - S|I5] < D

It remains to verify (68). We have

1(Xx;8,X) % I(X X)
= h(X)-

©hx) -

1)

h(
%1 g((2me)™ det(A — AK'A))

(2 5 log((2me)™ (Kx — A))

— % log((2me)™ det(A — AK'A))
1 (det (Kx) )
=3 log 1 AN )
2 det(A)
where (a) is by X < X < 5’, (b) is because after translation
h(X|X) = h(U), and (c) is because the Gaussian distribution
maximizes the differential entropy subject to a covariance
constraint.
Finally let us verify the existence of the auxiliary random
vector U.
Lemma 2: For any A, K € S,,, A <K, A — AK'A
is semi-definite.

Proof: Because A is positive definite, there exists an m x
m matrix Q such that A = QT'Q. For every A < 0,

QK'Q"))
= (A —1)"det (Im + ﬁQKlQT>

det(\L, — (I, —
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— (A1) 1 k17
=(\-1) det(Im-f—)\_lK 'Q Q)

= (A—1)"det (Kl <K + %A))
_ det(A— DK + A) L0,

det(K)

because (A — 1)K + A = MK — (K — A) is negative
definite. So I,, — QK~'Q” does not have any negative
eigenvalue. Therefore I,,, —QK ' Q7 is positive semi-definite,
and consequently A — AK'A = Q7(L,, - QK 'Q")Q

is also positive semi-definite. (]

APPENDIX IV
DERIVATION OF THE WEIGHTED REVERSE
WATER-FILLING SOLUTION

We first rewrite (26) with a variable substitution A =

CQD(Q]L This leads to
1 de K)(
min 1()g (—( )> )

Rg(Dy, D) = -
5(Ds, Do) DeB(D..D,) 2 det(D)

where B(D,, D,) is the set of positive definite real matrices
D that satisfy

tr(Q'H'HQD) < D, — tr(Kz),
tr(D) < D,.

Any optimal D in this minimization is diagonal. To see
this, consider a non-diagonal D € B(D,, D,). Replacing the
non-diagonal elements in D with zeros, we get a new matrix
D’ = diag(d1, 02, -+ , 0, ). Because

0,, <D < Q'KxQ = diag(o1,09, -+ ,0m),

we have 0 < ¢; < o; for each j € {1,2,---,m}, which
impies O,, < D’ < Q'K x Q. Moreover,

tr(QH"HQD') = ) 0,6, = tr(Q'H"HQD)

j=1
S .DS — tl"(Kz),
tr(D') = > §; = tr(D)
Jj=1
< D,.

So D' € B(Ds, D,). By Hadamard’s inequality,

s (G ) <2 (G

Therefore, any non-diagonal D € B(D;, D,) is suboptimal,
and (43) is verified.

By the Karush-Kuhn-Tucker (KKT) optimality conditions,
there exist non-negative numbers A, p, vy, Vo, ---, Uy, that
satisfy

m
A D 6 —D, | =0,
j=1
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1 Zajéj*- —Ds+tr(Kz) | =0,
j=1

l/j (5;

_Uj) = 07 vj € {172a am}a
1 .
—ﬁ—f—)\—i—uaj—f—l/j =0, Vjie{l,2,---,m}.
J
Suppose A = 0 and p = 0. For each j € {1,2,---,m},
we have v; = 1/5}‘ > 0, so 5;‘ = 0;. Because d7, 95, -- -, 0,
satisfy (45) and (46), we have

m
Dy > Y ajo; +tr(Kz) = tr(HKxH" + K),
j=1

m
D, > Zaj =tr(Kx),

J=1

i.e. (DS, D(,) S Ao.
Suppose A > 0 and y = 0. The problem now reduces to the
one involved in the rate distortion problem of parallel Gaussian

sources [3], because the constraint (46) is active and (45) is
not. Thus (50) holds, and

m m 1
DO = Z(S; = Zmin <O’j,x>,
j=1 j=1
m m 1
D, > jz:;ozjé; +tr(Kz) = ;aj min (aj, X) +tr(Kz),

i.e. (DS,D(,) € A

Similarly, the conditions A = 0 and p > 0 imply (51)
leading to (Ds, D,) € As, and the conditions A > 0 and
> 0 imply (52) leading to (D, D,) € As.
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