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Abstract— In this paper, a semantic communication framework
is proposed for textual data transmission. In the studied model,
a base station (BS) extracts the semantic information from textual
data, and transmits it to each user. The semantic information is
modeled by a knowledge graph (KG) that consists of a set of
semantic triples. After receiving the semantic information, each
user recovers the original text using a graph-to-text generation
model. To measure the performance of the considered semantic
communication framework, a metric of semantic similarity (MSS)
that jointly captures the semantic accuracy and completeness
of the recovered text is proposed. Due to wireless resource
limitations, the BS may not be able to transmit the entire semantic
information to each user and satisfy the transmission delay
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constraint. Hence, the BS must select an appropriate resource
block for each user as well as determine and transmit part of
the semantic information to the users. As such, we formulate
an optimization problem whose goal is to maximize the total
MSS by jointly optimizing the resource allocation policy and
determining the partial semantic information to be transmitted.
To solve this problem, a proximal-policy-optimization-based rein-
forcement learning (RL) algorithm integrated with an attention
network is proposed. The proposed algorithm can evaluate the
importance of each triple in the semantic information using an
attention network and then, build a relationship between the
importance distribution of the triples in the semantic information
and the total MSS. Compared to traditional RL algorithms, the
proposed algorithm can dynamically adjust its learning rate thus
ensuring convergence to a locally optimal solution. Simulation
results show that the proposed framework can reduce by 41.3%
data that the BS needs to transmit and improve by two-fold
the total MSS compared to a standard communication network
without using semantic communication techniques.

Index Terms— Semantic communications, resource allocation,
attention networks, policy gradient, reinforcement learning (RL),
semantic similarity.

I. INTRODUCTION

NEW wireless applications such as extended reality and
digital twinning are generating unprecedented amounts

of data (at zetta-byte scale) which will strain the capacity
of wireless networks [2]. To support these human-centered
services and applications, wireless networks must be care-
fully designed based on content, human-related requirements,
human-related knowledge, and experience-based metrics [3].
One of the solutions for these challenges is semantic com-
munication, which allows the meaning of the data (behind
digital bits) to be extracted and exploited during wireless
transmission [3]–[5]. Semantic communication has recently
attracted significant interest due to its advantages in terms of
providing human-oriented services and improving communica-
tion efficiency. However, deploying semantic communications
in wireless networks faces several challenges including extrac-
tion of data meaning, semantic-oriented resource allocation,
semantic encoding and decoding, measurement of semantic
communication performance, and security of semantic com-
munications.

A. Related Works

Recently, a number of works such as [4]–[9] have inves-
tigated semantic communications over wireless networks.
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In particular, in [4], the authors proposed a deep learning
approach to optimize the mutual information between the
original and decoded signals. The authors in [6] designed
a distributed semantic communication system for capacity-
limited networks. In [4] and [6], the authors used a deep neural
network based autoencoder to encode data and considered
the output of the autoencoder as the semantic information
of the data. However, the output of the autoencoder being
a vector of decimals is incomprehensible for humans and
does not have any physical meaning. In [7] and [8], the
authors developed a semantic communication framework for
real-time control systems and considered the control signals as
the semantic information of the data. However, using control
signals as semantic information is not applicable for text or
image data transmission since control signals cannot represent
the content related to a text or image. The authors in [9]
used a hierarchical structure to represent the relationships
among the objects in the real world so as to understand the
meaning underlying the data to be transmitted. In [5], the
authors provided an overview on the use of semantic detection
and knowledge modeling techniques for semantic information
extraction. However, neither [5] nor [9] considered the design
of semantic metrics that can measure the performance of
semantic communications.

In [10]–[13], the authors proposed a number of metrics for
evaluating the performance of semantic communication sys-
tems. The work in [10] derived the semantic channel capacity
based on the mutual information between the transmitted sym-
bols and the desired meaning. In [11], the authors proposed
a semantic communication system whose goal is to minimize
the average age of incorrect information (AoII) that captures
the accuracy and freshness of the real-time data. The authors
in [12] used the perceptual evaluation of speech distortion as
well as speech signal metrics to evaluate the performance of
a semantic-based speech transmission framework. The work
in [13] defined the semantic distance between two words
based on the distribution of words in a given corpus so as
to measure the semantic similarity of two sentences. While
interesting, the metrics developed in [10]–[13] only capture
whether the information in the received data is correct without
guaranteeing that the received data contains all the information
in the original data to be transmitted. Meanwhile, these prior
works [10]–[13] assumed that all the semantic information
extracted from the original data can be transmitted over
the network and did not consider the semantic communica-
tion over wireless resource-constrained networks. In practice,
due to wireless resource limitations (e.g., bandwidth), the
BS may not be able to transmit the entire semantic informa-
tion to all users [14]. A number of existing works such as
in [15]–[19] studied the problem of resource allocation in
wireless networks. However, the solutions in these existing
works [15]–[19] cannot be applied in semantic communi-
cations since they do not consider the effects of semantic
information extraction and transmission on resource allocation.

B. Contributions

The main contribution of this work is a novel semantic
communication framework that jointly considers semantic

information extraction and transmission, data recovery, as well
as performance evaluation. The key contributions are summa-
rized as follows:

• We consider a semantic communication network in which
a base station (BS) uses semantic communication tech-
niques to extract the meaning of the text data and trans-
mits it to its associated users. The meaning of the text data
is defined as the semantic information and modeled by a
knowledge graph (KG) that consists of a set of semantic
triples in the form of “entity-relation-entity”. Based on the
received semantic information, each user uses a graph-to-
text generation model to recover the original text.

• We propose a mathematical metric, called the metric
of semantic similarity (MSS), to capture the semantic
communication performance. The proposed MSS can
measure whether the information in the recovered text
is correct and whether the recovered text contains all the
information in the original text.

• To satisfy the delay constraint, the BS must optimize the
resource allocation for each user and transmit a part of
the semantic information to each user. This problem is
formulated as an optimization problem whose goal is to
maximize the total MSS by optimizing the resource allo-
cation policy and determining the semantic information
that needs to be transmitted.

• To solve this problem, we propose an attention proximal
policy optimization (APPO) algorithm that can evaluate
the importance of each triple in the semantic information.
Then, the proposed algorithm can analyze the relationship
between the importance distribution of the triples in the
semantic information and the total MSS, thus finding the
effective policies for resource allocation and semantic
information transmission.

• We analyze the convergence of the proposed APPO
algorithm. The analytical result shows that the APPO
algorithm is guaranteed to converge to a locally optimal
solution of the studied total MSS maximization problem.

Simulation results show that, compared to a standard com-
munication network that does not consider semantic com-
munications, the proposed APPO algorithm can reduce the
number of words that the BS needs to transmit by up
to 41.3% while achieving a 2-fold improvement in the
total MSS. To our knowledge, this is the first work that
introduces a mathematical model for semantic communication
enabled wireless networks and optimizes resource allocation
and semantic information transmission to improve the perfor-
mance of semantic-driven wireless networks.

The rest of this paper is organized as follows. The proposed
semantic communication framework and the problem formula-
tion are described in Section II. The use of APPO algorithm for
resource allocation and partial semantic information determi-
nation is introduced in Section III. In Section IV, the numerical
results are presented and discussed. Finally, conclusions are
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless network that consists of a BS using
semantic communication techniques to transmit the meaning
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TABLE I

LIST OF NOTATION

of text data to a set U of U users. Hereinafter, the meaning
of the text data transmitted over wireless links is referred to
semantic information. To achieve semantic communications,
the BS extracts the semantic information from the original
text and sends it to the corresponding user.1 Then, each user
recovers the text based on the received semantic information.
In particular, the considered semantic communication process
consists of four phases (shown in Fig. 1): a) semantic infor-
mation extraction, b) semantic-oriented resource allocation and
semantic information selection, c) original text data recovery,
and d) semantic similarity evaluation. Next, the process of
semantic communications is first introduced. Then, a semantic
similarity model is proposed to measure the performance of
semantic communications.

A. Semantic Information Extraction

A token wi,n is used to represent a word, a symbol, or a
punctuation in the text data. As a result, the text data that the
BS needs to transmit to user i consists of a sequence of tokens,
as follows:

Li = {wi,1, wi,2, . . . , wi,n, . . . , wi,Ni}, ∀wi,n ∈ V , (1)

where V is the set of tokens in a corpus and Ni is the
number of tokens in Li. For example, if the BS requirs to
transmit “Little girls are playing.” to user i, then, we have

1In this work, we only consider the textual data transmission. One can easily
extend the proposed model to other types of data such as audio data and image
data [20]–[22].

Fig. 1. Illustration of the proposed semantic communication framework.

Li = {[little], [girls], [are], [playing], [.]}, where wi,1 =
[little], wi,2 = [girls], wi,3 = [are], wi,4 = [playing], and
wi,5 = [.].

In our model, the semantic information extracted from a
text data is modeled by a KG [23]. Hence, the semantic
information consists of a set of nodes and a set of edges,
as shown in Fig. 2. In particular, each node in the semantic
information is an entity that refers to an object or a concept
in the real world. Hereinafter, we define entity j that consists
of a subsequence of text Li as ei,j . For example, in Fig. 2,
“baseform of word” is an entity that consists of four tokens
in the example text. An information extraction system such
as the scientific information extractor in [24] can be used to
recognize the set Ei of Ei entities in text Li.

Edges are the relations between each pair of entities. Given
a pair of recognized entities (ei,j , ei,k), j �= k, the BS must
find the relation ri,jk ∈ Ri between them, where Ri is the set
of Ri relations involved in text Li. For example, in Fig. 2, the
relation between entity “baseform of word” and “stochastic
lexicon model” can be formulated as “part of ”. Note that
the relations (i.e., the edges of the semantic information) are
directional and, hence, we have ri,jk �= ri,kj . We assume
that there is a predefined set R containing all relations in
the texts and each relation is a two-token sequence such as
“part of ” and “evaluate for”, as done in [24]. Hence, given a
pair of entities ei,j and ei,k in the original text Li, the relation
ri,jk between ei,j and ei,k can be obtained by classification
algorithms such as convolutional neural networks [25]. Here,
the input of the relation classification algorithm is the sentence
containing the pair of entities in the original text and the output
is the predefined two-token relation that can summarize the
description of the entities in the input sentence. We assume
that the information extraction system can recognize all the
entities in the original text. Hence, the extracted triples in the
form of “entity-relation-entity” can represent the meaning of
the original text.

Based on the recognized entities and the extracted relations,
the semantic information of text Li can be modeled as

Gi ={ε1
i , . . . , ε

g
i , . . . , ε

Gi

i }, (2)

where εg
i = (eg

i,j , r
g
i,jk, e

g
i,k), ∀eg

i,j , e
g
i,k ∈ Ei, j �= k,

∀rg
i,jk ∈ Ri is a semantic triple and Gi is the number of

semantic triples in Gi. Since each entity (e.g., eg
i,j or eg

i,k)
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Fig. 2. An example of an original text and the extracted semantic information.

and each relation rg
i,jk consist of a sequence of

tokens (e.g., ei,j = {[baseform], [of], [word]}, ei,k =
{[stochastic], [lexicon], [model]}, and ri,jk = {[part], [of]}),
triple εg

i can be expressed as εg
i = {vg

i,1, . . . , v
g
i,b, . . . , v

g
i,Bg

i
},

where vg
i,b ∈ V is token b in semantic triple εg

i and
Bg

i = Sg
i,j +Sg

i,k+Sg
i,jk with Sg

i,j and Sg
i,jk being the number

of tokens in entity eg
i,j and relation rg

i,jk , respectively. Then,
the number of tokens in semantic information Gi is

Z(Gi) =
Gi∑

g=1

(
Sg

i,j + Sg
i,k + Sg

i,jk

)
. (3)

From Fig. 2, we see that the data size of the extracted
semantic information is much smaller than the data size of
the original text (i.e., Z(Gi) � Ni). The reason is that the
two-token relations between the entity pairs in Gi can reduce
the redundant context in original text Li.

B. Transmission Model

An orthogonal frequency division multiple access
(OFDMA) technique is used for semantic information
transmission. In our model, a set Q of Q downlink
orthogonal resource blocks (RBs) can be allocated to
serve the users. The RB allocation vector of user i is
αi = [αi,1, . . . , αi,q, . . . , αi,Q], where αi,q ∈ {0, 1}. Here,
αi,q = 1 implies that RB q is allocated to user i; otherwise,
we have αi,q = 0. In our model, we assume that each RB can
only be allocated to one user and each user can only occupy
one RB. Then, we have

Q∑
q=1

αi,q � 1, ∀i ∈ U ;
U∑

i=1

αi,q � 1, ∀q ∈ Q. (4)

The downlink channel capacity of the BS transmitting seman-
tic information Gi to user i is given as [26]

ci(αi) =
Q∑

q=1

αi,qW log2

(
1 +

Pφi

Iq +WN0

)
(5)

where W is the bandwidth of each RB, P is the transmit
power of the BS, Iq represents the interference caused by BSs
that are located in other service areas and use RB q, N0 is
the noise power spectral density, and φi = γidi

−2 is the
channel gain between the BS and user i with γi being the
Rayleigh fading parameters and di being the distance between
the BS and user i. Here, we assume that the transmit power P
of each user i is a constant and one can easily consider
the optimization of transmit power by extending the studied
model. We also assume that the transmission delay between
the BS and each user i is limited to D. Given the data
rate ci(αi), the maximum number of tokens that can be
transmitted within the transmission delay D is determined.
Hence, to satisfy the transmission delay constraint, the BS
must determine partial semantic information (i.e., a subset of
triples) to be transmitted.

C. Text Recovery

The partial semantic information that the BS transmits to
user i is given as

G′i ={ε′1
i , . . . , ε

′h
i , . . . , ε

′Hi

i } ⊂ Gi, (6)

where ε′h
i = (e′hi,j , r

′h
i,jk, e

′h
i,k) and Hi is the number of

selected semantic triples in G′i. Given the transmission delay
threshold D, the selected semantic information G′i should
satisfy the delay constraint as follows:

Z(G′i)O
ci(αi)

� D, (7)

where Z(G′i)=
Hi∑

h=1

(
Sh

i,j + Sh
i,k + 2

)
and O is the number of

bits used to represent each token. After each user i receives
the partial semantic information G′i, a graph-to-text generation
model, such as the graph transformer in [27], can be used to
recover the coherent multi-sentence text from G′i. We assume
that the graph-to-text generation model [27] is well-trained and
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shared among all users. The text recovered by user i based on
G′i is

L′
i(αi,G′i) = {w′

i,0, w
′
i,1, . . . , w

′
i,m, . . . , w

′
i,Mi
}, (8)

where Mi is the number of tokens in the recovered text L′
i.

D. Semantic Similarity Model

To measure the quality of semantic communications,
we propose a metric of semantic similarity (MSS). Compared
to the existing cosine similarity metric [4], the proposed
MSS can capture semantic similarity while avoiding semantic
errors caused by word vectorization. Hereinafter, we define the
degree of the information in the recovered text being correct
as semantic accuracy and the degree of the recovered text
containing the information of the original text as semantic
completeness. Compared to the existing bilingual evaluation
understudy (BLEU) metric [28] that only captures the semantic
accuracy of the recovered text, the proposed MSS jointly cap-
tures the semantic accuracy and completeness of the recovered
text. A method based on token matching is introduced to
calculate the semantic accuracy and completeness [29]. The
semantic accuracy of recovered text L′

i(αi,G′i) is defined as

Ai(αi,G′i) =

Mi∑
m=1

min
(
σ
(
L′

i(αi,G′i), w′
i,m

)
, σ(Li, w

′
i,m)

)
Mi∑

m=1
σ
(
L′

i(αi,G′i), w′
i,m

) ,

(9)

where σ(L′
i(αi,G′i)i, w

′
i,m) and σ(Li, w

′
i,m) is the num-

ber of occurrences of token w′
i,m in recovered text

L′
i(αi,G′i) and in original text Li, respectively, and

min
(
σ
(
L′

i(αi,G′i), w′
i,m

)
,σ(Li, w

′
i,m)

)
indicates the number

of correct occurrences of token w′
i,m in recovered text

L′
i(αi,G′i). For example, if token w′

i,m = [you] occurs twice
in the recovered text and once in the original text, only one of
the two occurrences of w′

i,m = [you] is correct in the recov-

ered text. In (9),
Mi∑

m=1
min

(
σ
(
L′

i(αi,G′i), w′
i,m

)
, σ(Li, w

′
i,m)

)
represents the sum of the number of correct occurrences of

each token in the recovered text and
Mi∑

m=1
σ
(
L′

i(αi,G′i), w′
i,m

)
represents the sum of the number of occurrences of each token
in the recovered text. Hence, Ai(αi,G′i) is defined as the ratio
of the sum of the number of correct occurrences of each token
to the sum of the number of occurrences of each token.

The semantic completeness of the recovered text is defined
as

Ri(αi,G′i)=

Mi∑
m=1

min
(
σ
(
L′

i(αi,G′i), w′
i,m

)
, σ(Li, w

′
i,m)

)
Ni∑

n=1
σ(Li, wi,n)

.

(10)

In (10),
Ni∑

n=1
σ(Li, wi,n) represents the the sum of the number

of occurrences of each token in the original text. Hence,

Ri(αi,G′i) is defined as the ratio of the sum of the num-
ber of correct occurrences of each token in the recov-
ered text to the sum of the number of occurrences of
each token in the original text. Next, we use an example
to explain the differences between the semantic accuracy
and the semantic completeness more clearly. For example,
Li = {[little], [girls], [are], [playing]}. For a recovered text
L′

i(αi,G′i) = {[girls], [are], [playing]}, we have Ai(αi,G′i) =
1+1+1
1+1+1 = 1 and Ri(αi,G′i) = 1+1+1

1+1+1+1 = 3
4 , respectively.

Based on (9) and (10), the MSS of recovered text L′
i(αi,G′i)

can be given as

Ei(αi,G′i) = ξi
Ai(αi,G′i)Ri(αi,G′i)

ϕAi(αi,G′i) + (1 − ϕ)Ri(αi,G′i)
, (11)

where ϕ ∈ (0, 1) is a weight parameter used to adjust the
contributions of semantic accuracy and completeness to the
MSS. ξi is an additional penalty for short text and can be
represented by [28]

ξi =

⎧⎨
⎩

1, Mi � Ni,

e
1− Ni

Mi , Mi < Ni.
(12)

Changing the value of ξi, each user can efficiently use of
the received partial semantic information for text recovery.
From (11), we see that the proposed MSS used to evaluate the
recovered text can control the tradeoff between the semantic
accuracy and the semantic completeness. In particular, for a
given token w′

i,m in the recovered text L′
i(αi,G′i), if it appears

more times in L′
i(αi,G′i) than Li, then Ai(αi,G′i) decreases;

otherwise, Ri(αi,G′i) decreases.

E. Problem Formulation

Given the defined system model, our goal is to maximize
the total MSS of all the texts recovered by the users while
satisfying the transmission delay requirement. This maxi-
mization problem includes the RB allocation optimization
and the partial semantic information determination. The MSS
maximization problem is formulated as follows:

max
αi,G′

i

U∑
i=1

Ei(αi,G′i), (13)

s.t. αi,q ∈ {0, 1}, ∀i ∈ U , ∀q ∈ Q, (13a)
Q∑

q=1

αi,q � 1, ∀i ∈ U , (13b)

U∑
i=1

αi,q � 1, ∀q ∈ Q, (13c)

Zi(G′i)O
ci(αi)

� D, ∀i ∈ U , (13d)

where the constraints in (13a), (13b), and (13c) guarantee that
each user can only occupy one RB and each RB can only be
allocated to one user for semantic information transmission.
The constraint in (13d) is the delay requirement of semantic
information transmission. Problem (13) is challenging to solve
by the traditional algorithms such as greedy algorithms due
to the following reasons. First, from (11), we see that the
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objective function of problem (13) depends not only on
the transmitted partial semantic information G′i and the RB
allocation αi, but also on the text generation model which
is implemented by neural networks. Second, the relationship
between the non-convex objective function (i.e., the total
MSS) and the optimization variables (i.e., G′i and αi) cannot
be characterized accurately. Third, the coupling between the
semantic information selection and the RB allocation further
complicates the MSS maximization problem. In particular, the
size of the selected partial semantic information for each user
depends on the allocated RB. Meanwhile, the RB allocation
depends on the importance of different semantic information in
terms of the MSS improvement. To solve (13), we propose an
attention network based reinforcement learning (RL) algorithm
that enables the BS to evaluate the importance of semantic
triples and optimize the RB allocation and the partial semantic
information selection based on the importance of triples so as
to improve the total MSS of all recovered texts.

III. ATTENTION RL FOR SEMANTIC INFORMATION

SELECTION AND RESOURCE ALLOCATION

We now introduce a proximal policy optimization (PPO)-
based RL algorithm [30] integrated with an attention net-
work [31], called attention proximal policy optimization
(APPO). First, for each semantic triple εg

i , we use an attention
network to calculate the corresponding importance value.
Since the triples that are highly correlated with the original text
are important for text recovery, the importance of a semantic
triple is defined as the correlation between the triple and the
original text. Hereinafter, we use an importance vector f i(Gi)
to represent the importance distribution of the triples in each
semantic information Gi. Based on the importance evaluation,
the proposed APPO algorithm enables the BS to analyze the
relationship between the importance distribution f i(Gi) and
the total MSS so as to optimize the policy for the RB allocation
and semantic information selection. Here, since the trained
text recovery model can be considered as the prior knowledge
of the texts to transmitted, it is shared by the users and the
BS. Hence, the BS can obtain the total MSS once the RB
allocation and the partial semantic information to transmit
are determined. We first introduce the use of the attention
networks to calculate the importance of the triples in each
semantic information. Then, we explain the components of the
APPO algorithm and the process of using our proposed APPO
algorithm to optimize the RB allocation for each user and
determine the partial semantic information to be transmitted.
Finally, we show the complexity and convergence of the
proposed APPO algorithm.

A. Attention Network for Importance Evaluation

Given semantic information Gi that consists of Gi triples,
an attention network is used to capture the importance of
each triple εg

i ∈ Gi. Then, the importance distribution f i(Gi)
of semantic information Gi can be obtained by normalizing
the values of importance. In particular, an attention network
consists of an input layer, a hidden layer, an output layer, and

Fig. 3. The architecture of the attention networks.

a softmax layer, as shown in Fig. 3. Next, we introduce each
layer of an attention network.

• Input layer: To obtain the importance of semantic
triple εg

i , the BS first needs to vectorize each token vg
i,b in

triple εg
i and each token wi,n in original text Li as done

in [32]. We define the vector used to represent token vg
i,b

as xg
i,b ∈ R

Dx and the vector used to represent token wi,n

as xi,n ∈ R
Dx , where Dx is the dimension of each token

vector. The input of an attention network is a sequence
of token vectors Xg

i = (xg
i,1, . . . ,x

g
i,b, . . . ,x

g
i,Bg

i
) that

represent semantic triple εg
i and a sequence of token

vectors XL
i = (xi,1, . . . ,xi,n, . . . ,xi,Ni) that represent

original text Li.
• Hidden layer: The hidden layer is used to find the

correlation between each token vg
i,b ∈ εg

i and each token
wi,n in original text Li. Given the token vectors, the
correlation between vg

i,b and wi,n can be given as

ψ(xg
i,b,xi,n) = (W trix

g
i,b)

T(W texxi,n), (14)

where W tri ∈ R
Da×Dx and W tex ∈ R

Da×Dx are both
parameter matrices of the attention network with Da ×
Dx being the size of the parameter matrices. Then, the
correlation between triple εg

i in Gi and token wi,n in Li

can be given as

βg
i (xi,n) =

Bg
i∑

b=1

ψ(xg
i,b,xi,n)
Bg

i

, (15)

where Bg
i is the number of tokens in triple εg

i .
• Output layer: The output of an attention network is the

importance of semantic triple εg
i , as follows:

ςgi =
Ni∑

n=1

βg
i (xi,n). (16)

• Softmax layer: Since the importance ωg
i obtained by an

attention network can be any value, the BS cannot directly
determine the resource allocation and the partial semantic
information to be transmitted based on ωg

i . A softmax
layer is used to normalize each importance ωg

i so as
to obtain the importance distribution of the triples in
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semantic information Gi as follows

f(Gi) =
eςi

Gi∑
g=1

eςg
i

= [y1
i , . . . , y

g
i , . . . , y

Gi

i ], (17)

where e is the Euler number, ςi = [ς1i , . . . , ς
g
i , . . . , ς

Gi

i ].
Here, note that f (Gi) is an importance vector whose
length is the number of the semantic triples in Gi.
From (17), we see that each element yg

i ∈ [0, 1] represents
the normalized importance of the corresponding semantic

triple εg
i and

Gi∑
g=1

yg
i = 1.

Here, we note that, given the importance distribution f (Gi),
the BS still cannot use the traditional algorithms such as
greedy algorithms to directly obtain the optimal RB allocation
and determine the partial semantic information to be trans-
mitted. The reason is that the MSS of each user depends
on the received semantic information and the partial semantic
information that can be transmitted depends on the RB allo-
cation. The BS is not aware of the relationship between each
importance distribution f(Gi) and the optimal RB allocation.

B. Components of the APPO Algorithm

Next, we introduce the components of the proposed APPO
algorithm. The APPO algorithm consists of five components:
a) agent, b) actions, c) states, d) policy, and e) reward, which
are specified as follows:

• Agent: Our agent is the BS that determines the RB
allocation and the partial semantic information to be
transmitted for each user.

• Actions: We define the action of the agent as a vector
a = [α1, . . . ,αi, . . . ,αU ] that represents the RB allo-
cation for all users. The action space A is the set of
all optional actions that satisfy the constraints in (13).
Here, once the RB allocated for each user is determined,
the BS can transmit the triples in the corresponding
semantic information in the order of the importance
until the delay threshold is reached. Hence, given the
RB allocation αi, the partial semantic information G′i to
be transmitted to user i consists of the most important
triples in Gi while satisfying Zi(G′

i)O
ci(αi)

� D. For example,
we consider Gi = {(“stochastic lexicon model, used
for, speech recognizer”), (“baseform of word, part of,
stochastic lexicon model”)} and hence, ε1

i = (“stochastic
lexicon model, used for, speech recognizer”) and ε2

i =
(“baseform of word, part of, stochastic lexicon model”).
Based on (17), we have f(Gi) = [0.7, 0.3]. We also set
that only 10 tokens can be transmitted over the wireless
network given the determined RB allocation αi and the
delay constraint D. Then, the BS will transmit the most
important triple ε1

i to the user i. Hence, each G′i is
determined based on each αi in the selected action a.

• States: The state defined as s = [f (G1), . . . ,f(GU )] is
the importance distribution of all semantic information.
The state space S is a continuous space whose size
depends on the number of users and the number of triples
in each semantic information.

• Policy: The policy is the probability of the agent choosing
each action given state s. The APPO algorithm uses a
deep neural network (DNN) parameterized by θ to build
the relationship between the input state s and the output
policy that can achieve the maximum total MSS. Then,
the policy can be expressed as πθ(s,a) = P (a|s).

• Reward: The reward of choosing action a based on state

s is R(a|s) =
U∑

i=1

Ei(αi,G′i) which is the total MSS

resulting from action a at state s. Since the reward
function of the proposed APPO algorithm is equivalent
to the objective function of problem (13) and the APPO
algorithm aims to maximize the reward, the proposed
APPO algorithm can solve the total MSS maximization
problem (13).

C. APPO for Total MSS Maximization

Next, we introduce the entire training process for the pro-
posed APPO algorithm that allows us to solve problem (13).
The proposed APPO algorithm is trained offline, which means
that the RB allocation and semantic information selection
policy is trained using the historical data of semantic commu-
nications. Different from the attention policy gradient (APG)
algorithm [1] that uses a static learning rate for policy update,
the proposed APPO algorithm can dynamically adjust the
learning rate according to the difference between the old policy
and the updated policy. Hence, the proposed APPO algorithm
can improve the total MSS over the training process and
is guaranteed to converge to a locally optimal solution of
problem (13). In addition, different from the APG algorithm
of [1] that samples new training data based on the policy
updated at each iteration, the proposed APPO enables the BS
to perform the RB allocation sampling and the policy update
asynchronously. In other words, the proposed APPO algorithm
can use historical sampled actions and their rewards for model
training thus reducing the overhead caused by continuously
sampling new actions when the policy is iteratively updated.
In particular, the BS stores a historical policy πθ∗(s,a)
(i.e., the policy updated at a past iteration) and samples K RB
allocation vectors according to πθ∗(s,a). The set of collected
actions is K = {a∗

1, . . . ,a
∗
k, . . . ,a

∗
K} that is used to train the

policy πθ(s,a) for total MSS maximization. The expected
reward of policy πθ(s,a) that the BS aims to optimize is
defined as

Ā(θ) = Ea∼πθ(s,a) (R(a|s)) ,

=
∫
R(a|s)πθ(s,a)da,

=
∫
R(a|s)

πθ(s,a)
πθ∗(s,a)

πθ∗(s,a)da,

= Ea∼πθ∗(s,a)

(
R(a|s)

πθ(s,a)
πθ∗(s,a)

)
,

≈ 1
K

K∑
k=1

R(a∗
k|s)

πθ(s,a∗
k)

πθ∗(s,a∗
k)
, (18)

where Ea∼πθ(s,a)(·) is the expectation with respect to action
a following the policy πθ(s,a). In (18), in order to ensure
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that the set of sampled actions D can be used to evaluate and
iteratively update the policy πθ(s,a), the difference between
the stored policy πθ∗(s,a) and the policy πθ(s,a) to be
updated must be controlled [33]. Hence, the goal of optimizing
the policy πθ(s,a) is to maximize the total MSS with the
penalty that captures the difference between πθ∗(s,a) and
πθ(s,a). Therefore, we have

max
θ

J(θ), (19)

where J(θ) = Ā(θ) − λfKL (πθ∗(s,a),πθ(s,a)) with λ
being the penalty coefficient and fKL (πθ∗(s,a),πθ(s,a))
being the Kullback–Leibler divergence (KLD) that represents
the difference between πθ∗(s,a) and πθ(s,a). At each itera-
tion t, the policy πθ(s,a) will be updated using the standard
gradient ascent method so as to improve the total MSS. The
policy update rule is given as

θ(t) ← θ(t−1) + δ∇θJ(θ), (20)

where θ(t) is the parameters of the policy at iteration t, δ is
the learning rate, and the policy gradient is

∇θJ(θ) = ∇θĀ(θ)− λ∇θfKL (πθ∗(s,a),πθ(s,a)) ,

≈ 1
K

K∑
k=1

R(a∗
k|s)
∇θπθ(s,a∗

k)
πθ∗(s,a∗

k)

+λ

K∑
k=1

πθ∗(s,a∗
k)∇θ log

πθ(s,a∗
k)

πθ∗(s,a∗
k)
,

=
1
K

K∑
k=1

πθ(s,a∗
k)

πθ∗(s,a∗
k)
R(a∗

k|s)
∇θπθ(s,a∗

k)
πθ(s,a∗

k)

+λ

K∑
k=1

∇θ log πθ(s,a∗
k),

=
1
K

K∑
k=1

πθ(s,a∗
k)

πθ∗(s,a∗
k)
R(a∗

k|s)∇θ log πθ(s,a∗
k)

+λ
K∑

k=1

∇θ log πθ(s,a∗
k). (21)

From (20) and (21), we can see that the learning rate can
be adjusted by the penalty coefficient λ to guarantee the
convergence of the APPO algorithm. Hence, after T iterations
based on (20), we update the penalty coefficient λ as

λ←

⎧⎪⎪⎨
⎪⎪⎩
ηλ, fKL (πθ∗(s,a),πθ(T )(s,a)) > μhigh,
λ

η
, fKL (πθ∗(s,a),πθ(T )(s,a)) < μlow,

λ, otherwise,

(22)

where μhigh = 1 + τ and μlow = 1 − τ are the thresholds
that trigger the update of the penalty coefficient λ and η > 1
is a coefficient used to adjust the learning rate according to
the difference between the stored policy πθ∗(s,a) and the
updated policy πθ(T )(s,a). Then, the BS replace the stored
policy as

θ∗ = θ(T ), (23)

and resamples the actions for next T policy update iterations.

Algorithm 1 Training Process of the Proposed APPO
Algorithm
1: Input: Text Li required to transmit to each user, delay

threshold D, and interference Iq of each RB.
2: Initialize: Parameters θ∗ generated randomly, semantic

information extraction model, text recovery model, penalty
coefficient λ, threshold τ , coefficient η.

3: Obtain the importance distribution f(Gi) of each semantic
information based on (17).

4: repeat
5: Store the policy πθ∗(s,a) and collect K trajectoriesK =
{a1, . . . ,aK} using πθ∗(s,a).

6: for i = 1→ T do
7: Update the parameters of the policy πθ(s,a) based

on (20).
8: end for
9: Update the penalty coefficient λ based on (22).

10: Replace the stored policy based on (23).
11: until the objective function defined in (19) converges.

By iteratively updating the policy until the proposed APPO
algorithm converges, the policy parameter θ can find the
relation between the importance distributions of all seman-
tic information and the total MSS. Hence, the policy for
RB allocation and semantic information selection that can
achieve maximum total MSS of all recovered texts can be
obtained [34]. The specific training process of the proposed
APPO algorithm is summarized in Algorithm 1.

D. Complexity and Convergence of APPO

Next, we analyze the computational complexity and the
convergence of the proposed APPO algorithm for resource
allocation and partial semantic information determination. The
complexity of the APPO algorithm lies in calculating the
importance distribution by using the attention network and
determining the resource allocation by using the trained policy.
We first analyze the complexity of the attention network-based
semantic importance evaluator. From (15), the complexity of
calculating the correlation between semantic triple εg

i and
token wi,n in original text Li is O (Bg

i (2DaDx +Da
2)
)
,

where Da ×Dx is the size of parameter matrices W tri and
W tok of the attention network. We assume that Da � Dx

(e.g., Da = 64 and Dx = 500 as done in [27]). Hence,
we have O (Bg

i (2DaDx +Da
2)
)

= O (Bg
i DaDx). From (16)

and (17), the complexity of using the attention network to cal-
culate the importance distribution for all semantic information

can be given as O
(

U∑
i=1

Gi∑
g=1

NiB
g
i DaDx

)
. Next, we investi-

gate the complexity for resource allocation that depends on the
size of the policy parameter θ. The size of the policy parameter
θ depends on the size of action space A and the size of state
space S. The action space A is a set of all possible resource
allocation whose size is |A| = U !

(U−Q)! . Based on (17), the

size of state space S is |S| =
U∑

i=1

Gi. Then, the complexity of
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TABLE II

SYSTEM PARAMETERS [15], [30], [32]

using the trained policy to determine the resource allocation

is O
(

U !
(U−Q)!

(
U∑

i=1

Gi

)
L−1∏
l=2

Hl

)
, where L is the number of

layers in deep neural network used to train the policy and
Hl is the number of the neurons in layer l. In consequence, the
computational complexity of the proposed APPO algorithm for
resource allocation and semantic information selection will be

O
(

U∑
i=1

Gi∑
g=1

NiB
g
i DaDx+

U !
(U−Q)!

(
U∑

i=1

Gi

)
L−1∏
l=2

Hl

)
.

(24)

From (24), given the structure of the proposed APPO model
(i.e., Da, Dx, and Hl), the complexity of APPO depends on
the number of users, the number of RBs, and the number of
triples in each extracted semantic information.

With regards to the convergence of the proposed APPO
algorithm, we can directly use the result of [33, Theorem 1]
which shows that the policy of an APPO algorithm will
converge to a locally optimal solution when it satisfies the
following conditions.

Lemma 1 (Follows From [33]): The proposed APPO algo-
rithm used to solve the total MSS maximization problem (13)
converges if the following conditions are satisfied:

i) J(θ) defined in (19) is a lower bound function of the
objective function Ā(θ) defined in (18) that the BS aims
to optimize.

ii) The actions sampled according to a stored policy
πθ∗(s,a) can be used to evaluate and iteratively update
the policy πθ(s,a).

iii) The value of the objective function Ā(θ) monotonically
increases as the policy θ is iteratively updated based
on (20).

Proof: Next, we prove that our proposed algorithm sat-
isfies the conditions from [33]. For condition i), the design
of the lower bound function J(θ) follows [33] and, hence,
the proof in [33] is still hold. For condition ii), the difference
between the stored policy πθ∗(s,a) and the policy πθ(s,a)
to be updated is controlled by the penalty of the Kullback
Leibler divergence as we specified in (19). For condition iii),
the learning rate of the APPO algorithm can be adjusted based

on (22) so that the value of the objective function Ā(θ) can
monotonically increase according to the proof in [33]. �

From Lemma 1, we see that, the convergence of the pro-
posed APPO algorithm depends on the lower bound function
J(θ) and the dynamic learning rate. In particular, as the policy
is iteratively updated, the lower bound function J(θ) locally
approximates the objective function Ā(θ) and the learning
rate decreases until the APPO algorithm converges to the
locally optimal solution of problem (13). According to [33],
the proposed APPO algorithm for solving (13) will converge.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, a circular network is considered with one
BS and U = 30 uniformly distributed users. Other parameters
are listed in Table II. We use the semantic information extrac-
tion model in [24] and the text recovery model in [27]. The
text datasets used to train the proposed APPO algorithm are
the abstract generation dataset (AGENDA) [35] which consists
of 40 thousand paper titles and abstracts from the proceedings
of 12 top artificial intelligence conferences and the DocRED
dataset [36] which consists of 5053 Wikipedia documents. For
comparison purposes, we consider five baselines: baseline a)
being the APG algorithm proposed in [1], baseline b) being a
deep Q network integrated with attention network (ADQN)
algorithm, baseline c) that optimizes RB allocation using
the proposed RL solution and directly transmits the original
text data, baseline d) that optimizes RB allocation using the
proposed RL solution and randomly selects semantic triples to
be transmitted, and baseline e) being the semantic framework
proposed in [4]. Here, for baseline c), the BS transmits the
original texts to the users token by token until the delay
threshold is reached [37]. The MSS measures the semantic
similarity between the original text and the partial text received
by each user.

Figure 4 shows the correlation (as defined in (15)) between
a semantic triple and the tokens in the original text. In Fig. 4,
the importance of the triple “(stochastic lexicon model, used
for, speech recognize)” is shown as the sum of correlations
(i.e., (16)). In particular, we use different colors to represent
the correlation between the semantic triple (“stochastic lexicon
model, used for, speech recognize”) and different tokens in the
original text. As the correlations between the semantic triple
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Fig. 4. The correlation between an example of the semantic triple and the original text.

Fig. 5. An example of the original text and the extracted semantic information.

and the tokens in the original text increase, the color used
to mark the tokens changes from white to blue. From Fig. 4,
we can see that the expression “the proposed approach” in the
fourth line of the original text is highly correlated with the
example triple “(stochastic lexicon model, used for, speech
recognizer)”. This implies that the attention networks can
extract correlations between the triples and the original text
according to the meaning of the tokens in the context. This is
due to the fact that, compared with the traditional approaches
that obtain the correlation between two token sequences by

word frequency statistics, the attention networks can generate
the representation for each token according to the context
of the token and calculate the correlations based on these
representations. In consequence, the attention networks enable
the BS to obtain the importance of the triples in the semantic
information.

Figure 5 shows an example of the original text, the extracted
semantic information Gi, and the importance distribution of
the semantic triples in Gi. In Fig. 5, the entities recognized
in the original text are shown in red and the extracted
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Fig. 6. An example of the transmitted data and the corresponding recovered text.

semantic triples are written in different colors according to
their importance. In particular, as the importance of a triple
increases, the color of that semantic triple changes from blue
to yellow. For example, the importance of the yellow triple
(i.e., “statistical migration technique, used for, model
migration”) is 0.1923 while the importance of the blue triple
(i.e., “feature vector sequences, feature of, speech waveforms”)

is 0.0385. The sum of the importance of all the triples in a
semantic information is 1. From Fig. 5, we can see that, using
our proposed semantic communication framework, the BS
needs to transmit only 86 tokens of the semantic information
instead of 178 tokens of the original text data to the user.
Therefore, in this example, the proposed framework can reduce
the size of the data that needs to be transmitted by 51.7%.
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Fig. 7. The reduction ratio of the data size using the semantic communication
framework.

Figure 6 shows the partial semantic information that will
be transmitted and the corresponding recovered text for the
example in Fig. 5. Fig. 6(a) shows the partial semantic
information G′i selected by the proposed APPO algorithm and
the text recovered using G′i. In Fig. 6(a), the BS uses the
APPO algorithm to select the most important triples in the
extracted semantic information and transmits them to the user.
Figs. 6(b) and 6(c) show the results of baselines a) and b).
From Figs. 6(a) and 6(b), we see that the proposed algorithm
can improve 36.7% total MSS compared to baseline a). This
is because the proposed APPO algorithm can evaluate the
importance of the triples in the semantic information and, then
determines the RB allocation and partial semantic information
to be transmitted. Therefore, the text recovered using the most
important semantic triples contains the main meaning of the
original text. From Figs. 6(a) and 6(c), we observe that the
proposed algorithm can improve 2-fold total MSS compared
to baseline b). This gain stems from the fact that the proposed
semantic communication framework can extract the meaning
of the original data and transmit it to each user.

Figure 7 shows how the ratio of the data size of the semantic
information to the data size of the original text changes as the
number of tokens in the original text changes. We assume
that the data size of an english letter is 8 bits and each token
consists of 10 letters. Hence, the number of bits used to encode
a token is 80 (i.e., in (7), O = 80) [38]. Baseline e) uses
16-dimensional feature vectors extracted by the deep neural
networks to represent the semantic information of the tokens
in the original text [4]. We also assume that a decimal consists
of 32 bits. From Fig. 7 we can see that, compare to baseline
c) and baseline e), the proposed semantic communication
framework can reduce the size of the data that needs to be
transmitted by up to 41.3% and 84%, respectively The reason
is that our proposed framework enables the BS to extract the
meaning of the texts and model the extracted meaning by a
knowledge graph. From Fig. 7, we also observe that, as the
number of tokens in the original texts increases, the ratio of the
size of the semantic information to the size of the original text
decreases. This is due to the fact that the semantic information
in multiple sentences in long texts can be expressed by a single

semantic triple. Hence, extracting the semantic information
from long texts can significantly reduce the number of tokens
that need to be transmitted.

Figure 8 shows examples of the texts recovered by the
graph-to-text generation models that are trained via the loss
function different metrics. In particular, we include the result
of the graph-to-text generation model that aims to maximize
the proposed MSS and BLEU in [28]. From Fig. 8, we can see
that the text recovered using the MSS-based text generation
model contains all semantic triples in the received semantic
information and all semantic triples is arranged with artic-
ulated textual context. In contrast, the text recovered using
the BLEU-based text generation model misses the semantic
triple “feature vector sequences, used for, statistical migration
technique”. This is due to the fact that, compared to the BLEU
metric that only captures the accuracy of the recovered text, the
proposed MSS can capture both accuracy and completeness
of the recovered text. From Fig. 8, we can also see that,
compared to the BLEU-based text generation model that
copies semantic triples from the received semantic information
for text recovery, the MSS-based text generation model can
generate additional descriptions based on the context of the
semantic triples. For example, the MSS-based text generation
model generates “the experimental results show that. . .”. This
is because an additional penalty for short text is considered in
the definition of MSS.

Figure 9 shows the convergences of the APPO, APG, and
DQN integrated with attention networks (ADQN) algorithms
in a semantic communication-enabled network with 10 RBs.
The line and shadow are the mean and standard deviation
computed over 10 independent runs. From Fig. 9, we observe
that, compared to the APG and ADQN algorithms that require
about 300 iterations and 250 iterations to reach convergence,
respectively, the proposed APPO algorithm converges after
100 iterations. This stems from the fact that the proposed
APPO algorithm can adjust the learning rate at each iteration
so as to speed up the convergence. The improvement in
the convergence speed indicates that the proposed APPO
algorithm can reduce the time and energy overhead of the
training process in practical semantic communication systems.
Figure 9 also shows that, the proposed APPO algorithm can
improve the MSS by 11.2% and 18.5%, respectively, compared
with the APG algorithm and ADQN algorithm. The reason is
that, when the updated policy approximates the locally optimal
solution, the APPO algorithm can further improve the total
MSS by decreasing the learning rate. In practice, this indicates
that the APPO algorithm enables the BS to effectively allocate
the limited RBs according to the importance distribution of
semantic information so as to improve the performance of
the proposed semantic communication framework. In Fig. 9,
we can also see that, the APPO algorithm achieves up to
53.3% and 60.1% reduction in the standard deviation of the
total MSS compared to the APG algorithm. In practice, this
implies that, the performance of the proposed APPO algorithm
is more stable than that of the APG and ADQN algorithms.

Figure 10 shows how the total MSS changes as the number
of RBs varies. This figure is simulated using the DocRED
dataset. From Fig. 10, we can see that the proposed APPO
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Fig. 8. The text recovered based on different metric.

Fig. 9. The training process of the considered algorithms.

algorithm can improve 17.8%, 26.8% and 2-fold total MSS on
DocRED dataset compared to baselines a), b) and c), respec-
tively. The 17.8% and 26.8% gains stem from the fact that the
proposed APPO algorithm dynamically adjusts the learning
rate during training process. Hence, the APPO algorithm is
guaranteed to obtain a locally optimal RB allocation policy
for partial semantic information transmission. The 2-fold%
gain stems from the fact that the proposed algorithm enables
the BS to transmit the most important semantic triples using
the limited wireless resource thus significantly improving the
transmission efficiency.

Fig. 10. The total MSS as the number of RBs varies.

Figure 11 shows how the total MSS changes as the number
of users varies. This figure is simulated using the AGENDA
dataset. From Fig. 11, we can see that the proposed algorithm
can serve 30 users. From Fig. 11, we can also see that, the
proposed APPO algorithm can improve 16.9%, 22.3% and
1-fold total MSS compared to baselines a), b) and c), respec-
tively. The 16.9% and 22.3% gains stem from the fact that the
proposed APPO algorithm can build the relationship between
the importance distribution of the semantic information and
the total MSS, thus effectively finding the locally optimal RB
allocation policy for partial semantic information transmission.
The 1-fold% gain stems from the fact that the proposed
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Fig. 11. The total MSS as the number of users varies.

Fig. 12. The total MSS as the percentage of the masked tokens varies.

algorithm uses the knowledge graph to model the semantic
information and transmit the important semantic triples thus
significantly improving the transmission efficiency.

Figure 12 shows how the total MSS changes as the per-
centage of the masked tokens varies. In Fig. 12, we randomly
mask a subset of the tokens in the original texts in the
AGENDA dataset to verify the robustness of the proposed
semantic communication framework. The obtained texts with
masks are used to simulate texts containing typos in actual
scenarios. From Fig 12, we can see that, as the percentage
of masked tokens increases, the total MSS of the proposed
APPO algorithm, baseline a), and baseline b) decreases by
2.75%, 3.8%, and 67%, respectively. The reason why the total
MSS of the proposed APPO algorithm and baseline a) remain
stable is because the occasional masks do not change the
semantic information of the original texts. The semantic
information extraction and original text recovery approaches
enable the proposed semantic communication framework to
ignore the masks in original texts. The 67% MSS reduction
of baseline b) stems from the fact that the standard communi-
cation networks directly transmit the texts with masks to each
user.

V. CONCLUSION

In this paper, we have proposed a semantic driven wireless
networks. We have modeled the semantic information of the
textual data by a KG. To measure the performance of the
semantic communications, we have introduced a new met-
ric, MSS, that captures the semantic accuracy and semantic
completeness between the original text and the recovered text.
We have jointly considered the wireless resource limitations,
transmission delay requirements, and the performance of the
semantic communications and formulated an optimization
problem whose goal is to maximize the total MSS by opti-
mizing the RB allocation for partial semantic information
transmission. To solve this problem, we have developed an
APPO algorithm that can obtain the importance distribution
of the triples in the semantic information and then build
the relationship between the importance distribution and the
total MSS. Hence, the proposed APPO algorithm enables
the BS to find the policies for RB allocation and semantic
information selection for maximizing the total MSS. Com-
pared with the traditional RL algorithms, the proposed APPO
dynamically adjusts the learning rate during training process,
thus improving the total MSS, the convergence speed, and the
stability. Simulation results have demonstrated that the pro-
posed semantic communication framework can significantly
reduce the size of data required to transmit and increase the
total MSS.
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