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Scalable User Rate and Energy-Efficiency
Optimization in Cell-Free Massive MIMO
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E. Dutkiewicz

Abstract— This paper considers a cell-free massive multiple-
input multiple-output network (cfm-MIMO) with a massive
number of access points (APs) distributed across an area to
deliver information to multiple users. Based on only local channel
state information, conjugate beamforming is used under both
proper and improper Gaussian signalings. To accomplish the
mission of c¢fm-MIMO in providing fair service to all users,
the problem of power allocation to maximize the geometric
mean (GM) of users’ rates (GM-rate) is considered. A new
scalable algorithm, which iterates linear-complex closed-form
expressions and thus is practical regardless of the scale of the
network, is developed for its solution. The problem of quality-of-
service (QoS) aware network energy-efficiency is also addressed
via maximizing the ratio of the GM-rate and the total power
consumption, which is also addressed by iterating linear-complex
closed-form expressions. Intensive simulations are provided to
demonstrate the ability of the GM-rate based optimization to
achieve multiple targets such as a uniform QoS, a good sum
rate, and a fair power allocation to the APs.

Index Terms— Cell-free massive MIMO (cfm-MIMO), con-
jugate beamforming (CB), energy efficiency, geometric mean,
nonconvex optimization, scalable algorithms.

I. INTRODUCTION

OR massive access beyond 5G (B5G), cell-free massive
MIMO (cfm-MIMO) [1]-[3], under which a massive
number of access points (APs) are distributed across an area
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to provide uniform service to multiple users, has attracted
significant attention. Resource allocation problems for spectral
efficiency (SE) and energy efficiency (EE) maximization in a
cfm-MIMO system are of paramount importance [4], [5] but
are computationally demanding due to the network size.

To mitigate the computational burden caused by the large
scale of cmf-MIMO, zero-forcing beamforming (ZFB) and
conjugate beamforming (CB) are used [1], [6] with the
preference going for the latter due to its low computational
complexity yet substantial performance gain as the number
of APs increases. Note that when the number of APs grows
large, the channels become favorable, and hence, even with
CB, the inter-user interference can be reduced significantly.
More importantly, CB can be implemented in a distrib-
uted manner [1]. Other linear processing techniques such
as MMSE/regularized ZFB may enhance the system perfor-
mance, which however require high computational complexity
(due to taking the expectation of random matrix inversions)
and are subject to backhaul specifications. In addition, ZFB
is very sensitive in scenarios where the channel matrix is
rank deficient such as double-scattering channels, or correlated
channels. This is a major reason why CB has continued
to attract attention [7]-[11]. The conventional SE index is
the minimum users’ rate, which has been incorporated into
constraints [12]-[15] or optimization objective functions [13],
[15], [16]. However all algorithms proposed in these works
must be based on iterating large-scale convex problems, which
is computationally demanding.

Against the above background, this paper offers the follow-
ing contributions:

e We show that the geometric mean of users’ rates
(GM-rate) is an appropriate SE index. As GM-rate is a
function of the product of the all users’ rates, its maxi-
mization gives rise to rates for users suffering from poor
channel conditions without enforcing QoS constraints,
maintaining a good sum rate (SR). Analogously, we show
that GM-EE as the ratio of the GM-rate to the total power
consumption is a meaningful EE index for quantifying the
EE as its maximization also still maintains the QoS to
all users. This is in contrast to the conventional SR-EE
as the ratio of the SR to the total power consumption,
which is a meaningful EE index only under additional
QoS constraints.

e We develop a sophisticated but scalable optimization
algorithms for these GM-rate and GM-EE maximization
problems, which iterate linear-complex closed-form
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expressions. They are in sharp contrast to those algo-
rithms developed in [12]-[16], which iterate large scale
convex problems of third order polynomial complexity at
best and thus are not practical for large-size networks. It is
revealed that GM-rate maximization leads to very fair rate
allocations to all users and achieves a better SR than that
achieved by the max-min rate optimization. Moreover, the
transmit powers at the APs are also rationally distributed
without imposing any constraint.

e CB does not force the multi-user interference (MUI)
to zero, which would require global CSI, but rather it
manages MUI by exploiting the local CSI (each AP
requires only its own channel estimates between itself
and the users [17]). It is understood that under CB,
cmf-MIMO is an interference-limited network, for which
proper Gaussian signaling (PGS) relying on circularly
symmetric Gaussian signals for carrying information is
not necessarily the best signaling. Recent studies such
as [18]—[23] and references therein have shown that
improper Gaussian signaling (IGS) [24], which relies
on improper/noncircular symmetric Gaussian signals for
carrying information, can manage the interference more
effectively. We thus use IGS to improve both the GM-rate
and the GM-EE. Accordingly, we also propose scalable
algorithms to solve GM-rate and GM-EE maximization
under IGS. Compared to PGS, IGS not only improves
the GM-rate and the GM-EE, but it also promises
fairer rate distribution with smaller variance among the
users.

The paper is organized as follows. Section II is devoted
to PGS for cfm-MIMO, where the basic modeling and com-
munication protocol are recalled, the problem of maximizing
GM-rate or GM-EE is formulated and scalable algorithms
(Alg. 1 and Alg. 2, respectively) are developed for its solu-
tion. Section III introduces IGS for payload data transmission
and accordingly develops scalable optimization algorithms
(Alg. 3 and Alg. 4) for the 1GS-based GM-rate and GM-
EE problems, respectively. Section IV provides simulations
to confirm the analytical results of Sections II and III. Section
V concludes the paper.

Notation: Bold-faced upper-case and lower-case letters, e.g.,
X and x, are used for matrices and vectors, respectively, while
lower-case letters, e.g., x, are used for scalars. xH xT and x*
denote Hermitian transpose, normal transpose, and conjugate
of the vector x, respectively. || - || denotes a vector’s Euclidean
norm and | - | stands for the absolute value of a complex/real
scalar number. (x,y) = x"y for the vectors x and y and
(X,Y) = trace(X1Y) for the matrices X and Y. We also
use (X) = trace(X) for the matrix X. Also X > 0 means the
Hermitian symmetric matrix X is positive definite. C and R,
and R denote the sets of all complex numbers, real numbers,
and positive numbers, respectively. R{x} and {x} denote
the real and imaginary parts of a complex vector x, and I,
is the identity matrix of size n x n. C(0,1) is the set of
circular (proper) Gaussian random variables with zero means
and unit variances, while CN(0,1) is the set of non-circular
(improper) Gaussian random variables with zero means and
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Fig. 1. An illustration of a cell-free massive MIMO system. Later, the
simulation results also consider a user-centric cell-free network, where the
users are served by a set of selected APs.

unit variances. Their fundamental difference is that E(2?) =
0 for z € CN(0,1) but E(z?) # 0 for = € C(0,1).

The following inequalities, which were proved in [25], are
frequently used in the theoretical derivations:

2 —2 —2 -
ln(lﬁ_) 21n<1+x_> I
Y Y Yy Yy
_ L@? + ) (1)
g@vy . Y
forall z € R, y >0, and £ € R, y > 0, and
In | + [V]*(Y) ™|
> In | + [VI2(Y) 7! = ()71, [V]?)
+2R{((Y)"'V, V)}
(V) = (Y +[VP) LIV +Y), (2)

for all matrices V, Y =0, V, and Y = 0 of size 2 x 2.

II. BASIC MODELING AND PROPER GAUSSIAN SIGNALING

Consider a ¢fm-MIMO system, which consists of M APs,
indexed by m € M = {1,..., M}, serving N single-antenna
users (UEs) indexed by n € N' £ {1,...,N}. Each AP is
equipped with N; antennas. The APs, which are linked to
a central processing unit through backhauls, are distributed
across the area to make them closer to the UEs. Under time-
division duplexing, there are two phases of communication
within each coherence interval [1]: uplink training for CSI
acquisition, followed by payload data transmission.

A. Uplink Training for CSI Acquisition

Following [1], the channel vector h,,, € C"¢*! between
AP m and UE n is modeled as

hmn =V ﬁmnﬁmn; (3)

where (3, represents the large-scaling fading, which can be
assume to be known a priori, and h,,, is an N; x 1 vector
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of small-scale fading coefficients, the elements of which are
unknown and independent and identically distributed (i.i.d.)
CN(0,1) random variables. Therefore, h,,,, is unknown and
needs to be estimated.

We assume channel reciprocity to estimate the channel h,,,,,
between AP m and UE n. The standard block fading model
is used, hence the channel h,,,, is constant in time-frequency
blocks of ¢ channel uses, where ¢ is the length of the coherence
interval in samples defined by the product of the coherence
time and coherence bandwidth B. Let ¢y be the uplink training
interval, so ty < t. For CSI acquisition, all UEs send their
pilot sequences /7y, € Cu*! with ||, [|> =1, n € N
and 7y £ tupu, where py is the power allocated to pilots 1,,.

The signal received at AP m € M is

N
Y, = Vv Tu Z hmn"‘/)g + Wm7 4)
n'=1
where W,,, is an N; x t, noise matrix whose elements are
i.i.d. CN(0,02) random variables. Applying a matched filter
to the received signal Y, yields

Ymn = Ym¢n
= VAthpn V0 Y B @nn + Winth,,, (5)

n’eN\{n}

where @n,s = (1,,,,,). Thus, a minimum-mean-square-
error (MMSE) estimate of h,,,, is

A _ _ _ —1 _
h,,, = E {hmnYZn} (E {Ymnygn}) Ymn
= OmnYmn, (6)
where i, 2= V7uBmn —
Tu ZWEN 5mn/ |50n/n| + o
dent on the large scale fading /(3,,,,,, training length t,,, uplink

power allocation p,,, and ¢,,,,. The mean-square of the i-th
element of the channel estimate vector, foralli = {1,..., N,},

is given by [12]
2
w{ i}

_ 7—11572,”1
Tu ane/\[ ﬁmn/ |30n/n|2 + UE[

which is depen-

(>

@)

The channel estimation error flmn — h,,, is indepen-
dent of the channel estimate flmn, and its elements are
iid. CN (0, Brn — &mn) random variables [12]. Thus, the
mean-square error of the elements of channel estimation error
vector is given by

~ 2
= ﬁmn - fmn
2
= Bn 7Bl ®)

Tu En’EN B |50n’n|2 + Ul21 .
By using (8) and the definition of «,,,, defined below (6),
We can express Qn = Emn/ (\/ﬁﬁmn). It should be realized
that while flmn is available by (6), the scaling parameter v,
mean-square estimation error &,,, and mean-square estimate
Emn, are deterministic that are defined beforehand.
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B. Payload Data Transmission
We adopt the following CB at AP m [15],

Xm = 3 Puhsn, pw ER, ©)
n’eN

where p,,s is the square-root of power allocation to UE n/,
ie., p%, expresses the power allocation across all the APs for
the symbol s,/ intended for UE n'.! The design of this CB
involves only NV decision variables instead of M N decision
variables for the conventional CB [1], [12]. For instance, for
M = 128 and N = 32, the design of CB (9) involves only
32 decision variables while that CB [1], [12] involves already
4096 decision variables. More importantly, the computational
complexity of each iteration in all algorithms proposed in this
paper is scalable in N while that of each iteration in those
algorithms proposed in [12] is third order polynomial in N M
at best. Using (9), the power transmitted by the AP m is given

by
E{Ixnl} = 3 E{lbmnl?} 52
n’eN
= Nt Z gmn’p%’
n’eN
2 T (P), (10)
which is a convex quadratic function in p £ {pn,n =
1,...,N}
The signal received at UE n is
meM
= Pn Z hﬁnh:nnsn + Z P/ Lpns Spr + Wy,
meM n’eN\{n}
(11)

where w,, ~ CN(0,0?) is the additive noise at UE n, and
T £ Z hﬁnfl:nn/, n' GN\ {’I’L} (12)

meM
Cfm-MIMO offers channel hardening property [1], especially
when multiple antennas are considered at the APs [26]. The
channel hardening property ensures that with high probability,
the instantaneous effective channel gain of the desired signal
Y meM h? hr, is very close to its mean value S, 2

E {ZmEM h?n7zhrr1,n}

Yn = annsn + annSn + Z pn’Tnn’Sn’ + wy,
n’eN\{n}

. Thus, we can rewrite (11) as

Ao~
=Vn

13)

where the first term is considered as the desired signal part
with deterministic channel gain .S,,, and the sum of remaining
terms, denoted by 7,,, is considered as the effective noise, with

meM meM

'The use of pfl, instead of a simple symbol p,,s helps later in handling
non-convex problems.
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The corresponding effective SINR at UE n is

2 2
;||
P = B
p72z|Sn|2
p%E(|Un|2) + Zn’e./\/\{n} pi/EﬂTnn/ |2) + 02 ,

15)

By using a similar argument as that used for deriving

[1, eq. (24)], we can obtain the following analytical
expressions:
S, = N, Z Emn,s (16)
meM
E(Unl*) = Ne > Bumnmn, (17)
meM
and
(|Tnn/ =N Z 5mn£mn/
meM
2
+TuNt2|50n’n|2 ( Z ﬁmnamn’> ,  (18)
meM

where [,,, and &, are deterministic quantities that are
determined beforehand in (3) and (7).
Hence, (15) becomes

AnD2
n(p) = ——"—, (19)
9n(P) on(p) + 02
with
2
£ N} ( > fmn> : (20)
meM
and
) £ Nt Z pi/ Z ﬁmngmn’
n’eN meM
2
+TUNt2 Z pi"@n’nﬁ < Z anamn’> )
n’eN\{n} meM
(21)

which is a positive convex quadratic function.
The achievable rate in nats/sec/Hz for decoding the signal

PnSnSy in (13) is given by
r(P) = (1+ gn(P))

where the UE n needs to only know the mean of the effective
channel gain, S,, to detect its desired signal s,. Let 7(p) =
(ri(p),...,rn(p)). Define the geometric mean (GM):

N
& (L™,

n=1

(22)

f(?“l,...,T'N) (23)
which is a concave function, and then f(r(p)) as the compo-
sition of f and the vector-valued function r(p), i.e. f(r(p))
is the GM of users rates. Motivated by [27], we consider the
following problem for GM-rate maximization subject to the
total power constraint:

) £ f(r(p)) (24a)

max F(p
PERN
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WE

s.t. Tm(p) < M P, (24b)

m=1

where P is a given power budget. As shown by our simula-
tions, (24) not only facilitates scalable computation but it also
achieves multiple targets such as

o Inherently fair user rate allocations with high sum rate.
There is no need to consider the problem of either sum
rate maximization or GM maximization subject to users
rate constraints [28], which only cause artificially tense
computation.

« Inherently fair power allocations to the APs due to the fair
rate allocations. There is no need to impose the individual
power constraints 7, (p) < P, m € M, for the APS’
physical transmission, which only cause artificially tense
computation.

We develo an iterative process for computing (24). Let
plr) & {p ,n =1,...,N} be the feasible point for (24)
that is found from the (k — 1)-st iteration. We note that the
linearized function of f(ry,...,ryn) at r(p(™)) is

) N
z_: (R)

Since F(p*)) > 0, we generate the next feasible point
p" 1 by considering the following problem of steep descent
optimization for the concave function for the concave function

I{

P

(25)

f(?"l,. .. ,TN)Z
F(p) < mm(p)
Lo (24b 26

which is equivalent to the following problem:

max " (p Z% ra(p) st (24b), 27)

n=1

for

(o) & A% en T (P™) n=1,...,N.  (28)

’yn - T (p(,{)) )

Though the objective function in (27) looks like conventional
weighted sum-rate optimization, however, quite different from
the conventional weighted sum-rate optimization, which is
based on constant user-specific weights, our proposed imple-
mentation optimizes those weights analytically and updates
them at each iteration, with an implicit objective of achieving
fairer rate distribution.

By applying the inequality (1) for (x,y) =
(VA @n(P)+0?) and (2,5) = (VAupi on(p™) +02)
we obtain

() = ali? + 268 p, — ) (Aup], + n(P))
£ (p), (29)
for ay’ 2 r,(p®)) — g.(p") — o B 2
(r) K
wrn(/\;rff)ﬁ_z’ and ¢\ 2 92 (@) The func-

An (pi )) +on(P))+o?

(=) (p) is concave, which matches with r,,(p) at p(*),

tion 7y,
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ie., r,(p) = i )(p(“)) We solve the following problem

at the x-th iteration to generate p(*+1):

max FPp) & > A (p) st (24b),  (30)
neN
for
f(ﬂ)(p) A Z 7(f-i) (R)
neN
=>4 [aﬁf) + 260 pn — e (Anph + on (p))}
neN
5 o i o
neN
—+ Z p%;znn/ +7—u Z p%’|¢n’n|22nn/)]
n'eN n’eN\{n}
dgl"i) 2
=3 AW (o) + 26p, - L) @
(k)
neN Tn
where

Znn! £ Ny Z 5mn£mn/7

meM

2
_ A 2
Znn! = Nt < § anamn’> ,

meM

d) 2 PPN, + 3 el 2,
n’eN

Z ’77(; n’) |30nn’| Zn'n-
n’eN\{n}

+ Tu

The problem (30) admits the closed-form solution

(k)7 (%)
T (f)" if v < MP
(k+1) _ dn
Pn () () (32)
i )" “ o) otherwise,
dnK + /J/enl.i
2
where U(R) = Nt ZmEM ZnEN gm,n ('YSLH)bgln) /dgln)) 5
(K) = N ZmeM &mn and p > 0 can be found by bisection

search such that

Ap 2
Nf Z men <W> ZMP.

meMneN

Algorithm 1 provides the pseudo-code for the pro-
posed computational procedure. It should be noted that
one still needs to form a line search for finding
the step size 0"+t e [0,1] such that F(p® +
Ol 1) (p(at1) (H)))) > F(p") [29] to update p*t1) —

p) 90+ (p(t1) — p(#)) Fortunately, we always observe

in our simulations that
F(p"tV)) > F(p), (33)

i.e. the full step size of length one §(*t1) = 1 is achieved,
bypassing the line search. This can be explained as follows.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 9, SEPTEMBER 2022

Algorithm 1 Scalable Algorithm for PGS-Based GM-Rate
Optimization Problem (24)

1: Initialization: Initialize a feasible point p(©), Set k= 0.

2: Repeat until convergence of p(*) : Update ~,," () by (28).
Generate p'"t1) by (32). Reset x «— £ + 1.

3: Output p(*) as the optimal solution of (24).

By noting that

F p N I’;(IEIII"I lz ’Yn’l“n ‘| ’

for T = {y £ (71,...,7N) : anlfyn =1/NN,~y,>0,n=
., N}, we can express the problem (24) as the following
maximin problem

max min

4
pEP yel (3 )

[Z TnTn (p)] )

n=1

where P is the set of feasible points for the power con-
straint (24b). Now, for p(*) € P and 7(*) defined from (28),

N
(k) _ : (k)
y arg I;nenrl Lz:l YnTn (P )] J

so Algorithm 1 provides a procedure of alternating optimiza-
tion between p and 7. A general-purpose projective gradient
algorithm for GM-rate maximization [30] is much higher
computation consuming due to the subtle fact that the GM-rate
is a very high-order function of the decision variables so it is
not easy to determine the Lipschitz constant of its gradient that
plays a crucial role for the algorithm convergence and then it
is challenging to implement Armijo rule of a line search to
update the step size. Note that the computational complexity
of (32) is linear that in contrast with that in [12], [15] of
third order polynomial complexity for iterating their convex
problems.

Before closing this section, it should be noted that Algo-
rithm 1 can be easily adjusted to address a similar problem of
normalized conjugate beamforming [8].

C. Energy Efficient Payload Data Transmission

Recalling that the function f is defined from (23), we now
provide a new model of EE maximization, which also pro-
motes the quality-of-service (QoS) as

max fr(®)) s.t. (24b), (35)
pPERY Wte(P)
where
7Tte(p) =« Z 7Tm(p) + N M P,
meM
+ M (Py + Py BN f(r(p))/In2), (36)

which is the total power consumption [12], [31]. Here, « is
the reciprocal of drain efficiency of the the power amplifier
at APs, P, is the internal power required for running the
circuit components at each antenna of the AP, P, is the power
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consumption of each backhaul, and Py; is the traffic-dependent
power (in Watt per bits/s). The first and second terms in (36)
recap the transmission power consumption, while the third
term recaps the power consumption of the backhauls [32].
Note that unlike [33], [34], we set N([],cn rn(p))"/V
instead of ) -7, (p). By maximizing the objective in (35)
one achieves both the QoS in terms of users’ minimum rates
because the GM-rate in its numerator must be maximized
and thus the QoS of all users are promoted, while the power
consumption in its denominator must be minimized and thus
the EE is promoted as well.
Observe that

f(r(p) 7(p) BNM P, -1
Tep) (f<r<p>> e ) S
for
7T(p) £a Z 7Tm(p) + v, (38)

meM

where v 2 N,MP,.+ MP, is a positive constant. Therefore,
the problem (35) is equivalent to the following problem:

a f(r(p))
max fe(r(p),(p)) = O (24b). (39
Let p*) £ (p (F"),pgi ,...,pN) be the feasible point

for (39) that is found from the (k — 1)-st iteration. The
linearized function of fg(r(p),7(p)) at (r(p™), 7(p*))) is

1
fe(r@E™), 7)) + 5 o), ()
N
T (P) m(p)
X - N . (40)
(; (™) m(p)
The steepest ascents aim to solve the problem
[Z Y1 (p n(”)ﬂ(p)l st (24b),  (41)
n=1
for
()
(k) & NmaXn'eN Tn! (p ) 42
n = (p™) ; (42)
and
(I{) A ma‘Xn EN T"ﬂ (p(’i)) (43)

" ra(P™)

Recalling that the function e ( ) from (29), at the xth
iteration we solve the following convex problem to generate
the next iterative point p(<t1):

Z AW E) (p)y — M r(p)| st (24b), (44)
n=1
which admits the closed-form solution
o) %ﬁ)b%: (%) if (7)) < MP
pt = O‘%bﬁ?) (45)
dgf) (™ 1 1)ek ) otherwise,
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Algorithm 2 Scalable Algorithm for PGS-Based GM-EE

Problem (35)

1: Initialization: Initialize a feasible point p(?). Set x = 0.

2: Repeat until convergence of p(*): Update n(*) and 'yT(,,”)
by (42) and (43). Generate p(**t1) by (45). Reset k — k-+1.

3: Output p(*) as the optimal solution of (35).

(%) () 2
(k) A Vo' br,
where © Nt ZmEM Enej\/ gmn d( )+om(")egb") P

(”) £ N, > men Emn and fi > 0 can be found by bisection
search such that

'yff)b%”) 2
N, . =MP.
YT e (it

meM neN

Algorithm 2 provides the pseudo-code for the proposed steep
ascent. The computational complexity of (45) is linear.

D. Instantaneous Performance
This subsection will address the GM-rate and energy-
efficiency performances when the optimization formulations
are based on the online effective channel estimate available at
UE n, which are referred as instantaneous performances.
Instead of (11), the received signal at the UE n can be
expressed as:

Z flanxﬂ’l,_‘_ Z (hﬁn

- flﬁn) X +wy,  (46)

Yn =
meM meM
Sy, ( > pn,ﬁrm,snf)
meM n'eN
meM
n’eN\{n}
for
> hpnl®  for n/=n
Ap & QMEM , (48a)
Z hl h’ ., otherwise,
meM
S (th - hfn) X (48b)
meM
Using (8) and (9)
E(|ﬂn|2) = Z Emn Z pn/”hmn/H2
meM n'eN
2 en(p), (49)
so the instantaneous SINR at UE n is
32 2
gn(p) = ———"—., (50)
() én(p) +0?
with
4,571,(13) £ Z pi’ |5\nn’ |2 + en(p)- (51)

n’eN\{n}
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The achievable rate of decoding p, A\, S, in (47) is

Xn(P) = In(1 + 4n(P)), (52)
while the transmit power at AP m is defined by
7:‘:m(p) = Z ||f1mn||2p72l- (53)

neN

Algorithm 1 and Algorithm 2 can be transparently adjusted
for computing the corresponding problems of GM-rate
and GM-EE optimization, with modification of the def-

initions:, ie. a2 x,(p®)) — g.(p®) — Vo2,
p) A X (k) s n (@)

; enpt)Fc> T X2, ()24 @n (p(0)) 402
dS’LK) é En/ eN 75;7)655) |)\n’n|2 + ZHIEN 75:7/\ CE'LIT)ZYL'TL» enl'i é

ZmEM ”hm’ﬂ”2’ and 2y £ ZmEM Emthmn’HQ'

While the rate defined by (22) is achievable when the
mean value S, = E{ZmEM h? h*

mn=-Tmn
the UE n, the rate defined by (52) is achievable when the
instantaneous value of the effective channel gain, i.e., A, £
> mem B ||? is available at the UE n, the information of
which can be provided at the UE n by employing downlink
channel estimation [35].2

is available at

III. IMPROPER GAUSSIAN SIGNALING TO
IMPROVE THE DOWNLINK PAYLOAD

A. Rates’ GM Efficient Payload Data Transmission

Until now, the transmit signal x,, by (9) is proper
Gaussian (E(x,,(x,,)?) = 0) because each E(s2,) = 0 as
$pr € CN(0,1). It has been recently shown that (see
e.g. [18]-[22] and references therein) the release of Gaussian
properness improves the signal degree of freedom, which helps
to improve the rate performances of interfering networks. This
section aims to use improper Gaussian signaling (IGS) to
improve the users’s GM rate as well as the energy efficiency
of the considered cfm-MIMO system, where the signal trans-
mitted by the AP m is given by

sk *
Xm = E hmn/ (vl,n"sn/ + v2,n/sn’)7
n'eN

Un/! £ (Ul,n’;UQ,n’) ceCxC, (54

i.e. the symbol s,, is widely linearly beamformed by a pair
of two beamformers ﬁ;n,vlmz € CNex1 and flfnn,vgmz €
CNex1 Tt is immediate to check that E(X,,(x,)%) # 0
because E((vinsn + von85)?) = 201002, # 0, ie.
X, 1s an improper Gussian signal.

Based on the channel statistical data, we can observe
from (11) that pseudo-covariance E((} /. N\{n} Dt T St )
e AN\ (n) P T s )T of  the  pre-last  term,
Zn’e/\f\{n} P ThnSnr, 18 still zero because h,,, and
h,,, are circular Gaussian. Thus, being sum of many
RVs, this interference term can be approximated by proper
Gaussian RV, so employing IGS (54) cannot be advantageous

2We assume perfect estimation of the effective channel gain in the downlink
and under this assumption, our results can serve as an upper bound on the
achievable rate and EE. Integration of downlink channel estimation using
beamforming [35] can be the subject of future research.
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over PGS (9) because the latter is optimal for proper Gaussian
interference networks [24]. Therefore, in this section, we shall
consider only the case of instantaneous performance, i.e.,
the effective channel X £ Y, v [hmn||? is available at
UE n. Using (54), the received signal at the UE n under IGS,
instead of (47), becomes

Z Ann/ ('Ul,n’ Sn’

n’eN\{n}
+ UQJVS:L’) + Z (hﬁn - fl%n)
meM

ok *
X E hy (V1S + V2 sty ) + W,
n’'eN

Yn = S\nn(vl,nsn + 'U2,n8rz) +

(55)

with A, defined from (48). In what follows, we use the
following notations:

A —%{yn} 5 2 §R{Sn} W A §R{wn}
yn _%{yn} b n %{Sn} b n %{wn} I
Vv, 2 —%{Ul,n + 'U2,n} _(\}{'Ul,n - UQ,n}
" _%{/Ul,n + vQ,n} 8%{/Ul,n - vQ,n} ’
A, AL —%{E\nn’} _si;\nn’}
Sy R} |
'eT _eT
G", — mn,1 mn,2:|
r _eZnTL,Q emn,l
A R h?nn - fl?nn =S {thn - BZnn}
and

R 6 S 2
Hm,n = ~ [t A
_\f{hmn} R hy.n
and it can be readily shown that E{[s,]’} = 1I, and
E{[w,]?} = 30°I,. Also, each element of a channel esti-
mation error vector, h,,,,, — h,,,, is a proper Gaussian with
zero mean and variance €,,n, 50 E(||€mn.c||?) = Nicmn/2,
{=1,2, and
E (eTTnn’lemn,Q) =0.
As such for a deterministic and real matrix of size 2/N; x 2
a a
A - a1 12|
Azl Az
where a, ; € RNext g, [ = 1,2, we can easily calculate

E ([Gm.nAJ?)

T T
=E <|:emn,lall - emn,2a21

T T
emn,Qa‘l2 + e'mn,la22

T T 2
m m emn,la12 - emn,2a22:|
emn,Qall + emn,la21

N;e
= %qA]%IQ. (56)
The equivalent real composite form of (55) is
}_’n = Annvngn + Z Ann’Vn’gn’
n’eN\{n}
+ Z Gm,n Z Hm,n’Vn’gn’ + W (57)
meM n'eN
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Under the variable change

p a 112
n - ?ll piQ
_ §R{Ul,n + v2,n} _S{vl,n - v2,n} (58)
(\}{Ul,n + U2,n} §R{'Ul,n - UQ,n} ’
which is invertible, i.e.,
v, 2 R{vint v}
5}%{1)2 n} \Y{vg n}
1 [p), +pn Py —pﬂ
7 1 ; 59
2[n S A 69
we have
Yn = AnnPrs, + Z AppPriSy
n’eN\{n}
+ Z Gm,n Z I:Im,n’Pn’gn’ + Wp. (60)
meM n'eN
Furthermore, we have
1 1
Vnl? = (Va]®) = §|\Pn|\2 = §<[Pn]2>7
and by using (56)
2
lz Gm,n Z I:Im,n’Pn’gn’
meM n'eN
R 2
= Z Z E{{Gm,nHm,n’Pn’gn} }
mEM n’eN
R 2
- = Z Z E{[Gm,nHm,n’Pn’} }
mEM n'eN
2
= <Z 6'mnz: <|: mn/Pn/i| >>12
meM n'eN
£ ®,(P), (61)

for P = {P,,n=1,...,
by (1/2)pn(P) [36] with

N}. Thus, the rate of s, is given

pn(P) =In Iz + [AnnPn]2
-1
X < Z [Ann/Pn/]Q —+ 2¢n(P) + 0'2]:2) .
n’eN\{n}
(62)
The problem of GM-rate maximization is
) 1/N
max [ ipn(P) (63a)
neN
s.t Z Tm(P) < MP, (63b)
meM
. 2
where 7, (P) 2157 < [Hmn} [Pn]2>. With the func-

tion f defined from (23), and p(P) £ (p1(P),..., pn(P)),
the problem (63) is equivalent to the following problem:

mlgtxf (m(P),...,pn(P)) st (63b). (64)
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Let P®) 2 (P n = 1,... N} be the feasible point
for (64) that is found from the (x — 1)-st iteration. Like (27),
we solve the following problem at the k-th iteration to seek
the steepest ascent:

max P Z Y9, (P) st (63b),  (65)
for
() & MAXwen pw(PC) (66)
" pa(P) o T
By applying the inequality (2) for (V,Y) =

(A’ﬂnPn’Zn’e,/\/\{n}[Ann’Pn’]Q + 2®,(P) + 0%I;) and

(V. Y) = (AP, Sovenn oy [ Py TP +285 (PO 4
0215), we obtain
pu(P) = al) +2(BL, Py) = Y (CU) [Pu?)
n'eN
a Z Z <D§:nn’7 ’]2>
meMn’'eN

2 ol (P), 67)

where al) £ pu(PO) — ()7 [AnPLT) -

(), B £ AL (w()A, P, )
AZT,,I‘(”)AW,, DY & Lo (CUNHAL 2 el

Zn/eN\{n}[A7ln'P§l/)]2 + 28, (P(*)) + ¢21,, and T
Y —1

(\If§f>) - (\I:§f> + [Am,,Pﬁﬁ]?) . The function p{ (P)

is concave, which matches with p,, (P) at P(®): p, (P(®)) =

pgf)(P(”)). We solve the following problem at the r-th
iteration to generate P(+1):

(> 1> >

max f(P) £ 3" AWl (P) st (63b),  (68)
P neN
for
F™®)
S IRTAr Al
neN
= > A (al + 2B P = 3 (Ch)L[Pa)
neN n’eN
a Z Z <D§:nn” ’]2>)
meMn’'eN
1
= 3k (a0 20080 ) - 0600, 201 )
neN Tn
(69)
where

n’eN
The problem (68) admits the following closed-form solution
of linear computational complexity

n’eN memM

(ES)~19"BY if W) < MP
Pl — —1
(2E5LK) + an) 27{IBY) otherwise,
(70)
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Algorithm 3 Scalable Algorithm for IGS-Based GM-Rate
Optimization Problem (63)

Algorithm 4 Scalable Algorithm for IGS-Based GM-EE Prob-
lem (71)

1: Initialization: Initialize a feasible point P(®). Set K= 0.

2: Repeat until convergence of P(*) : Update 'y by (66).
Generate P(*t1) by (70). Reset k — x + 1.

3: Output P(¥) as the optimal solution of (63).

1 2
where w("‘) £ 5 Z <Gn7 [(Egzﬁ))_lvﬁzﬁ)Bgzﬂ)} >7 Gn =
neN

Zm 1 [HT ] and ;2 > 0 can be found by bisection search
such that

1 = ?
52 <Gm [(ZE%") + 4G 27&“)135[‘)} > = MP.
neN

Algorithm 3 provides the pseudo-code for the proposed
scalable procedure for computing (63), which like Algorithm 1
converges at least to a locally optimal solution.

B. Energy Efficient Payload Data Transmission
Like (35), the GE-EE maximization under IGS is formulated
as
[Tnen 3o (PN

max S.t.
P

Tie(P)

(63b), (71)

where 7. (P) is the total power consumption [12], [31], given
by

FeP)=a Y fm

meM
PyBN YN
P+ bf (H ~pn(P ) . (72

By using a similar argument for obtaining (39) and by defining
Te(P) £ aX cpTm(P) + v and v £ NyM Py + MP,,
the equivalent problem for problem (71) is:

A f(p(P))
7(P)

(P) + Ny M Py,

+ M

max fe(p(P),7(P)) s.t. (63b).  (73)
Let P(®) £ {ng), n = 1,...,N} be the feasible point
for (39) that is found from the (x — 1)-st iteration. Like (41),
we seek the steepest ascent by solving the problem

N
Z,ygn)p P _n(“)ﬁ(P) s.t. (63b), (74)
n=1
for
MONSY max o (P(n))/fr(P(K))’ (75)
n’ée
and
7 & max (PU))/pn(P™). (76)

Recalling the function p(ﬁ) (P) from (67), at the «th iteration,
we solve the following convex problem to generate the next

1: Initialization: Initialize a feasible point P(®), Set x = 0.

2: Repeat until convergence of P(*): Update (") and 'yT(,,”)
by (75) and (76). Generate P(**t1) by (78). Reset r «—
K+ 1.

3: Output P as the optimal solution of (71).

iterative point P(++1):

lz ,y(n) (H)

which admits the following closed form solution of linear
computational complexity:

—nWEP)| st (63b), (77)

—1
(2B +709G, ) 20BY ife®<mp

PELKH): -1
<2E$f)+(77(“)+ﬂ)(}n) 2B otherwise,
(78)
2
where 7_7(&) = 77(“)04, G, £ Zm 1 {HT } >

1 —
22> (G [(2E§f> +n(“)aGn) 27,<f>135f>]

ne
and i > 0 can be found by bisection search such that

- Z < <2E m) g () +ﬂ)Gn>

ne./\f

2
x 2%(,“)B<“>} > — MP.

Algorithm 4 provides the pseudo-code for the proposed scal-
able procedure for computing (71), which like Algorithm 2
converges at least to a locally optimal solution.

IV. SIMULATIONS

In this section, we analyze the performance of our proposed
algorithms. We start by first describing our simulation para-
meters. The large-scale fading coefficient in (3) is given by

where PL,,, is the path-loss (in dB) and 10X=»/10 repre-
sents the shadowing effect with X,,,, ~ N(0,032). We use
a three-slope model for path-loss [37], which is given by

—PLinp+Xmn)/10
)

(in dB)
PL,.,,
L + 35logyo(dmn), A > di
= ¢ L+ 15logo(d1) + 201og,(dmn), do < dmn < di
L +151ogyo(d1) +201ogo(do),  dmn < do,

(80)

where the constant factor L depends on the carrier frequency
and the heights of the users and APs and d,,,, is the distance
between the AP m and UE n. In our simulations, we set
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osh = 8 dB, d, = 10 m, d; = 50 m, and L = 140.7 dB.
These parameters resemble those in [1], [12].

We have randomly deployed the APs and the UEs within a
square of 1x 1 km?. The square is wrapped around at the edges
to avoid boundary effects. Unless stated otherwise, the pilot
sequences for N UEs are obtained from /N orthogonal pilot
sequences of length ¢, = NN, where the rows of fast-Fourier
transform (FFT) matrix are used to generate pilot sequences.
However, to study the effect of pilot contamination, we also
analyze the performance of the proposed algorithms under
smaller pilot sequences of length ¢, < N, under which the
pilot sequences would not remain orthogonal and will be based
on the truncated rows of FFT matrix. The length of coherence
interval is ¢ = 320 samples, corresponding to a coherence
bandwidth of B = 320 KHz and coherence time of 1 ms.
In addition, we set the system bandwidth to 10 MHz, noise
power density is set to —174 dBm/Hz and noise figure is equal
to 9 dB [1], [2].

To simulate the energy efficiency performance of a network,
the drain efficiency of power amplifier is set to 0.4, i.e.,
a = 1/0.4 in (36), internal power for running the circuit
components is set to Ps. = 0.2 W, fixed power consumption
for each backhaul is Py = 0.825 W, and traffic-dependent
backhaul power is P,; = 0.25 W/(Gbits/s). These values are
taken from [12].

Unless otherwise specified, we use M = 128 APs, N =
32 UE, training length ¢, = N, N; = 2 antennas per AP, and
power budget P = 20 dBm. The power allocated to the pilots,
pu, is set to P. We use MATLAB for simulating our proposed
algorithms.

In what follows, we refer to our proposed algorithms as
follows for convenience:

o PGS stat. perf. (Alg. 1) refers to the performance (perf.)

of PGS based Alg. 1 (for the rate defined by (22).
o PGS instant. perf. (Alg. 1) refers to the performance of
PGS based modified Alg. 1 for the rate defined by (52).
o IGS instant. perf. (Alg. 3) refers to the performance of
IGS based Alg. 3.
Alg. 1 and Alg. 3 refer to the GM-rate optimization algorithms.
On the other hand, if we replace them by Alg. 2 and Alg. 4,
respectively, the above description will refer to the GM-EE
algorithms. Note that in all the figures, the rates are calculated
in bps/Hz, which are obtained by dividing the rates (defined
in nats/sec/Hz) by In 2. The results are averaged over random
realizations of the AP/user locations, shadow fading, and
small-scale fading.

In the following subsections, we separately analyze the
GM-rate performance and the GM-EE performance of our
proposed algorithms.

A. GM-Rate Performance

Fig. 2 plots the distribution of individual user-rate x,, for
n € N, achieved by solving the PGS based instantaneous
GM-rate optimization Alg. 1. Fig. 2 also plots the GM-rate,
(Hn N Xn)l/ ™ and the max-min rate. The latter solves the
max-min rate optimization problem using the approach in [15]
and the individual user-rate achieved by solving that problem
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Elrate-distrib. by Alg. 1
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Fig. 2. Individual user-rate distribution by PGS instant.
ty = N/2 and N; = 1.
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Fig. 3. Individual user-rate distribution by IGS instant.
ty = N/2 and N; = 1.

Alg. 3 with

is plotted for comparison. Since max-min rate optimization
ensures maximization of the worst-case user-rate to achieve
fair rate-distribution, comparing this approach with the pro-
posed GM-rate optimization algorithms will indicate whether
the latter are successful in achieving fair rate-distribution
among the users. Similarly, Fig. 3 plots the distribution of
individual user-rate %pn, for n € NV, achieved by solving the
IGS based instantaneous GM-rate optimization Alg. 3 along
with the GM-rate, (Hne N %pn)l/N and the max-min rate.
Fig. 2 and Fig. 3 assume ¢, = N/2 to provide comparison in
the presence of pilot contamination. Moreover, [V, is set to 1
because the max-min rate algorithms in [15] assume single-
antenna APs.

Remark 1: The following interesting insights can be
observed from Figs. 2 and 3, which appreciate the importance
of the proposed GM-rate optimization Algs. 1 and 3.
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Fig. 4. Individual user-rate distribution by Alg. 1 (SR 97.65 bps/Hz;
norm. rate-var. 0.21) and by QoS constrained SR maximization [15].
(SR 99.02 bps/Hz; normalized rate-var. 0.29.)
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o The individual user rate by the GM-rate optimization
is minimally compromised compared to that by the
max-min rate optimization. Only for very few users,
the user-rate by GM-rate optimization is smaller than
that by the conventional max-min rate optimization.
On the other hand, the computational complexity of the
proposed GM-rate optimization Algorithms 1 and 3 is
O(N), which is very small, thanks to the proposed
closed-form based solutions, compared to that offered by
the conventional max-min rate optimization algorithms.
Particularly, due to the dependency on convex solvers,
the computational complexities of PGS and IGS based
conventional max-min rate algorithms are O(N?) and
O(N*), respectively [38].

o In addition to the better rates provided by the IGS than
those by the PGS, the former also promises fairer rate
distribution (with smaller variance) among the user-rates.
For the example in Figs. 2 and 3, the standard-deviation
in the user-rates is 1.42 and 1.12 for the PGS and IGS
based implementations, respectively.

Fig. 4 compares the individual user-rate distribution
achieved by solving the PGS based instantaneous GM-rate
optimization Alg. 1 with that achieved by solving conventional
SR maximization with QoS user-rate constraints. The solution
of the latter is based on the approach in [15], which relies on
the use of convex-solvers. It can be observed from Fig. 4 that
compared to the conventional SR maximization, the proposed
GM-rate maximization leads to a fairer rate allocation to all
users (smaller variance (var) among the users’ rates) with a
marginal compromise in the achievable sum-rate. In addition,
the proposed GM-rate maximization is computationally very
efficient compared to the conventional SR maximization (the
complexity of former versus latter is O(N) versus O(N%)),
thanks to our proposed solution based on closed-form expres-
sions. Similar results are observed in Fig. 5 for the IGS based
implementation.
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Fig. 5. Individual user-rate distribution by Alg. 3 (SR 99.76 bps/Hz;
norm. rate-var. 0.13) and by QoS constrained SR maximization [15].
(SR 105.93 bps/Hz; normalized rate-var. 0.32.)
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Fig. 6. Average transmit power 7, (p) versus the AP index m for PGS
instant. Alg. 1.

Figs. 6 and 7 plot the average transmit power 7,,(p) and
7m (P), respectively, versus the AP index m, for PGS instant.
Alg. 1 and IGS instant. Alg. 3, respectively. Figs. 6 and 7 con-
firm that though we are using a single sum-power constraint
in (24b) and (63b) instead of separate M power constraint
for all the APs, the average transmit power requirement is
still balanced over all the APs. In addition, we have verified
through simulations that we can keep the average transmit
power at each AP within some specific power budget, say P,
by decreasing the total power budget P. This obviously results
in a slight performance loss owing to the decrease in total
power budget P. For example, if the average transmit power
at each AP has to be kept smaller than P = 23 dBm (the
average transmit power of AP 47 in Fig. 6 exceeds this limit),
we can achieve this by decreasing the total power budget
P from 20 dBm to 19.5 dBm, which slightly decreases the
achievable GM-rate from 3.48 bps/Hz to 3.43 bps/Hz.
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Fig. 7. Average transmit power 7., (P) versus the AP index m for IGS
instant. Alg. 3.

—o-IGS instant. pcr‘f. (Alg. 3)

45 ||[=—PGS instant. perf. (Alg. 1) )
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-©-1GS instant. perf. (rand. initial.) /
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0-5 1 1
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number of antennas at each AP, N;

Fig. 8. GM-rate versus the number of antennas per AP N; for M = 128.

Fig. 8 and Fig. 9 plot the GM-rate versus the number of
antennas at each AP Ny, such that Fig. 8 assumes fixed number
of APs M = 128, while Fig. 9 assumes that the product
MN; = 256 is kept fixed. Fig. 8 and Fig. 9 also plot the
GM-rate achieved by using random (rand.) power allocation,
which is referred to as “rand. initialization”. We can observe
from these figures that compared to such random power
allocation, the optimized power allocation by the proposed
Algorithms 1 and 3 is substantially helpful in uplifting the
GM-rate performance. Fig. 8 shows that the GM-rate increases
with the increase in IN; due to increase in the number of
resources. On the other hand, the GM-rate is decreasing upon
increasing NN, in Fig. 9 because total number of distributed
antennas M N; is kept fixed. Fig. 9 shows that under fixed
product M Ny, Ny = 1 yields the best performance.

Fig. 10 plots the GM-rate versus the number of users
N. As expected, the GM-rate decreases with the increase

6061

4
3.5F J
—o-IGS instant. perf. (Alg. 3)
——PGS instant. perf. (Alg. 1)
N 3r —+—PGS stat. perf. (Alg. 1) 1
% R -©-IGS instant. perf. (rand. initial.)
Q \\\ -+-PGS instant. perf. (rand. initial)] —F
82 5. “y_|-#-PGS stat. perf. (rand. initial.) |
[l N <
©
=
G 2
1.5

number of antennas at each AP, N;

Fig. 9. GM-rate versus the number of antennas per AP N; for M N; = 256.
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Fig. 10. GM-rate vs. the number of users V.

in the the number of users N. This is because when
more users will be competing for the same fixed resources
(fixed power budget), their performance will be affected.
Fig. 10 shows that as NV increases, the instantaneous perfor-
mance gets closer to the performance based on the statistical
data.

Fig. 11 plots the optimized GM-rate versus the number of
APs M. Fig. 11 also shows the performance of the proposed
Algorithms 1 and 3 with user-centric (UC) approach, where
each UE is served by a set of selected APs [12, Sec. V]. The
APs selection in UC approach can save power consumption
and reduce the backhaul/fronthaul requirements. Particularly,
we employ largest large-scale fading based approach for APs
selection, where the UE n is associated with only M, <
M APs, corresponding to the M,, largest large-scale fading
coefficients. Particularly, following [12, Alg. 3], the proposed
algorithms can be easily modified to implement UC approach.
It can be observed from Fig. 11 that by employing UC
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Fig. 11. GMe-rate by Algorithms 1 and 3 adjusted for UC approach.
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Fig. 12.  Convergence of Algorithms 1 and 3.

approach, the achievable GM-rate gets better for PGS instant.
perf. (Alg. 1) and IGS instant. perf. (Alg. 3), however, it gets
slightly worse for PGS stat. perf. (Alg. 1). The improvement
in the achievable rate under UC approach is expected as
this approach saves power consumption at the APs and thus
reduces undue interference at the UEs. However, the improve-
ment is not observed for PGS stat. perf. (Alg. 1), which can
be explained owing to our simpler implementation, which is
based on the same power allocation across all the APs for a
given UE.

Fig. 12 plots the convergence performance of the proposed
Algorithms 1 and 3. It can be observed from Fig. 12 that the
proposed PGS based Alg. 1 converges fairly promptly within
15-20 iterations, whereas the proposed IGS based Alg. 3
requires more iterations (around 25-30) for convergence. This
is because the latter has to optimize 3N additional opti-
mization variables than the former. The same trend of the
convergence performance has been observed for the proposed
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Fig. 14. Individual UE-rate distributions by GM-EE and SR-EE optimizations
with t, = N/2 and Ny = 1.
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TABLE I

COMPARISON OF PGS BASED GM-EE (ALG. 2) WITH THE SR-EE
ALGORITHM (APPROACH IN [15]) FOR Ny = 1, t, = N/2

GM-EE Alg. 2 (PGS | SR-EE (PGS)
instant. perf) (using [15])
sum-EE 0.67 bits/J/Hz 0.69 bits/J/Hz
GM-EE 0.59 bits/J/Hz 0.57 bits/J/Hz
sum-rate 93.9 bps/Hz 92.9
rate-dev. 0.52 0.60
# iter. 33.0 14.33
complexity | O(N) O(N?) [38]

GM-EE maximization Algorithms 2 and 4, which is plotted in

Fig. 13.

B. Energy Efficiency Performance

In this section, we analyze the GM-rate based EE

1/N
(GM-EE) performance by plotting Naen @I g0 pGs

Tte (P)
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Bl GM-EE maximization, Alg. 4
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Fig. 15. Individual IGS UE-rate distributions by GM-EE and SR-EE
optimizations with ¢, = N/2 and Ny = 1.
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1/N
stat. perf. (Alg. 2), W

(Alg. 2), and N[H”ej‘{f %(;;L)(P)]lm for IGS instant. perf. (Alg 4).
Note that we have iilultiplied the numerator of EEs by a
factor N to have comparable numbers as that are obtained
by the conventional sum-rate (SR) based EE (SR-EE) metrics,

Tn n Lpn(P
T, San B and S gD
Fig. 14 plots the distribution of individual user-rate X,
for n € N, achieved by solving the proposed PGS based
instantaneous GM-EE optimization Alg. 2. Similarly, Fig. 15
plots the individual user-rate %pn, achieved by solving IGS
based instantaneous GM-EE optimization Alg. 4. In both
figures, we compare the achievable rates by the proposed
GM-EE maximization (solution by closed-form iterations)
with that by the conventional SR-EE maximization (solution
based on the off-the-shelf convex solvers [12], [15]). To plot
SR-EE maximization results, we use the solution approach
of [15]% and set the QoS user-rate constraint to be equal
to the minimum user-rate achieved by the proposed GM-EE
optimization. Fig. 14 and Fig. 15 assume ¢, = N/2 to
provide comparison in the presence of pilot contamination.
Moreover, N, is set to 1 because SR-EE algorithms in [15]
assume single-antenna APs. The detailed comparison of the
proposed GM-EE algorithms and the conventional SR-EE
algorithms is provided in Tables I and II, which show the
achievable average sum-EE (the conventional EE objective),
GM-EE, sum-rate, standard-deviation among the user rates
(rate-dev.), number of iterations required for convergence and
computational complexity. It can be observed from Fig. 14
and Fig. 15 and Tables I and II that though the individual
user rates, sum-rates, and sum-EE are minimally compromised
by proposed GM-EE algorithms compared to the conventional
SR-EE algorithms, the former promise fairer rate distribution
and much smaller computational complexity.

for PGS instant. perf.

, respectively.

3The path-following algorithms of [15] are used by employing convex
solver, such as CVX, however, for fair comparison, we use single sum-power
constraint and imperfect channel estimation, as adopted in this work.
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TABLE II

COMPARISON OF IGS BASED GM-EE (ALG. 4) WITH THE SR-EE
ALGORITHM (APPROACHIN [15]) FOR Ny = 1, t, = N/2

GM-EE Alg. 4 (IGS | SR-EE (IGS)
instant. perf) (using [15])
sum-EE 0.68 bits/J/Hz 0.74 bits/J/Hz
GM-EE 0.61 bits/J/Hz 0.59 bits/J/Hz
sum-rate 96.9 bps/Hz 98.8
rate-dev. 0.43 0.57
# iter. 48.7 36.0
complexity | O(N) O(N?) [38]

—o-IGS instant. perf. (Alg. 4)
—+PGS instant. perf. (Ig. 2)
[|—PGS stat. perf. (Alg. 2)

-©-1IGS instant. perf. (rand. initial.)
[I-+-PGS instant. perf. (rand. initial.)
-#%-PGS stat. perf. (rand. initial.)

o
©

o
™

77\3

<
3
.
.

o
~

o
w

energy efficiency (bits/Joule/Hz)

number of antennas at each AP, N;

Fig. 16. GM-EE versus the number of antennas per AP N; for M = 128.
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Fig. 17. GM-EE vs. the number of antennas per AP IN; for M Ny = 256.

Fig. 16 and 17 plot the GM-EE versus the number of
antennas at each AP NV, such that Fig. 16 assumes fixed
number of APs M = 128, while Fig. 17 assumes that the
product M N, = 256 is kept fixed. Fig. 16 shows that the
GM-EE increases upon increasing N; due to increase in
the number of resources, however, the improvement starts
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diminishing for the larger values of NV; because of the increase
in power consumption (the factor in the denominator of EE).
However, the improvement in GM-EE is not affected in that
way in Fig. 17 because the total number of distributed antennas
M N, is kept fixed. Fig. 16 and Fig. 17 show the supremacy
of IGS over PGS as the performance gain by the former gets
substantial for larger values of N;.

Fig. 18 plots the GM-EE versus the length of the pilot
sequences, t,. Since the number of users is kept fixed to
N = 32, Fig. 18 shows the effect of pilot contamination
because when t,, is smaller than N, the pilots sequences would
not remain orthogonal. The GM-EE performance degrades for
smaller values of ¢,, due to pilot contamination. Fig. 19 plots
the optimized GM-EE versus the number of APs M. Fig. 19
also plots the performance of the proposed Algorithms 2 and 4
with APs selection based UC approach and shows the advan-
tage of employing this approach for PGS instant. perf. (Alg. 2)
and IGS instant. perf. (Alg. 4).
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V. CONCLUSION

The paper has proposed a particular power allocation for
conjugate beamforming to deliver information to users of
a cell-free massive MIMO network. It has introduced the
maximization of the GM of users’ rates as a new way of
achieving balanced users’ rates while keeping their sum high.
New algorithms of very low computational complexity, which
are based on closed-form expressions, have been developed for
solutions under both proper Gaussian signaling and improper
Gaussian signaling. The paper has also exploited the ratio of
the user rates” GM to the total transmit power as a new way to
gauge the network energy efficiency with users’ rates balanced.
Its maximization is also achieved by iterating closed-form
expressions. The provided simulations have clearly demon-
strated the advantages of the proposed approach in bringing
about multiple performance advantages in terms of achievable
individual user rates and their sum, and the energy efficiency
with fair power allocations to the access points of the cfm-
MIMO. A possible future research direction is to investigate
the performance of the proposed algorithms under a Rician
fading channel assumption.
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