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Abstract— This paper considers a cell-free massive multiple-1

input multiple-output network (cfm-MIMO) with a massive2

number of access points (APs) distributed across an area to3

deliver information to multiple users. Based on only local channel4

state information, conjugate beamforming is used under both5

proper and improper Gaussian signalings. To accomplish the6

mission of cfm-MIMO in providing fair service to all users,7

the problem of power allocation to maximize the geometric8

mean (GM) of users’ rates (GM-rate) is considered. A new9

scalable algorithm, which iterates linear-complex closed-form10

expressions and thus is practical regardless of the scale of the11

network, is developed for its solution. The problem of quality-of-12

service (QoS) aware network energy-efficiency is also addressed13

via maximizing the ratio of the GM-rate and the total power14

consumption, which is also addressed by iterating linear-complex15

closed-form expressions. Intensive simulations are provided to16

demonstrate the ability of the GM-rate based optimization to17

achieve multiple targets such as a uniform QoS, a good sum18

rate, and a fair power allocation to the APs.19

Index Terms— Cell-free massive MIMO (cfm-MIMO), con-20

jugate beamforming (CB), energy efficiency, geometric mean,21

nonconvex optimization, scalable algorithms.22

I. INTRODUCTION23

FOR massive access beyond 5G (B5G), cell-free massive24

MIMO (cfm-MIMO) [1]–[3], under which a massive25

number of access points (APs) are distributed across an area26
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to provide uniform service to multiple users, has attracted 27

significant attention. Resource allocation problems for spectral 28

efficiency (SE) and energy efficiency (EE) maximization in a 29

cfm-MIMO system are of paramount importance [4], [5] but 30

are computationally demanding due to the network size. 31

To mitigate the computational burden caused by the large 32

scale of cmf-MIMO, zero-forcing beamforming (ZFB) and 33

conjugate beamforming (CB) are used [1], [6] with the 34

preference going for the latter due to its low computational 35

complexity yet substantial performance gain as the number 36

of APs increases. Note that when the number of APs grows 37

large, the channels become favorable, and hence, even with 38

CB, the inter-user interference can be reduced significantly. 39

More importantly, CB can be implemented in a distrib- 40

uted manner [1]. Other linear processing techniques such 41

as MMSE/regularized ZFB may enhance the system perfor- 42

mance, which however require high computational complexity 43

(due to taking the expectation of random matrix inversions) 44

and are subject to backhaul specifications. In addition, ZFB 45

is very sensitive in scenarios where the channel matrix is 46

rank deficient such as double-scattering channels, or correlated 47

channels. This is a major reason why CB has continued 48

to attract attention [7]–[11]. The conventional SE index is 49

the minimum users’ rate, which has been incorporated into 50

constraints [12]–[15] or optimization objective functions [13], 51

[15], [16]. However all algorithms proposed in these works 52

must be based on iterating large-scale convex problems, which 53

is computationally demanding. 54

Against the above background, this paper offers the follow- 55

ing contributions: 56

• We show that the geometric mean of users’ rates 57

(GM-rate) is an appropriate SE index. As GM-rate is a 58

function of the product of the all users’ rates, its maxi- 59

mization gives rise to rates for users suffering from poor 60

channel conditions without enforcing QoS constraints, 61

maintaining a good sum rate (SR). Analogously, we show 62

that GM-EE as the ratio of the GM-rate to the total power 63

consumption is a meaningful EE index for quantifying the 64

EE as its maximization also still maintains the QoS to 65

all users. This is in contrast to the conventional SR-EE 66

as the ratio of the SR to the total power consumption, 67

which is a meaningful EE index only under additional 68

QoS constraints. 69

• We develop a sophisticated but scalable optimization 70

algorithms for these GM-rate and GM-EE maximization 71

problems, which iterate linear-complex closed-form 72
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expressions. They are in sharp contrast to those algo-73

rithms developed in [12]–[16], which iterate large scale74

convex problems of third order polynomial complexity at75

best and thus are not practical for large-size networks. It is76

revealed that GM-rate maximization leads to very fair rate77

allocations to all users and achieves a better SR than that78

achieved by the max-min rate optimization. Moreover, the79

transmit powers at the APs are also rationally distributed80

without imposing any constraint.81

• CB does not force the multi-user interference (MUI)82

to zero, which would require global CSI, but rather it83

manages MUI by exploiting the local CSI (each AP84

requires only its own channel estimates between itself85

and the users [17]). It is understood that under CB,86

cmf-MIMO is an interference-limited network, for which87

proper Gaussian signaling (PGS) relying on circularly88

symmetric Gaussian signals for carrying information is89

not necessarily the best signaling. Recent studies such90

as [18]–[23] and references therein have shown that91

improper Gaussian signaling (IGS) [24], which relies92

on improper/noncircular symmetric Gaussian signals for93

carrying information, can manage the interference more94

effectively. We thus use IGS to improve both the GM-rate95

and the GM-EE. Accordingly, we also propose scalable96

algorithms to solve GM-rate and GM-EE maximization97

under IGS. Compared to PGS, IGS not only improves98

the GM-rate and the GM-EE, but it also promises99

fairer rate distribution with smaller variance among the100

users.101

The paper is organized as follows. Section II is devoted102

to PGS for cfm-MIMO, where the basic modeling and com-103

munication protocol are recalled, the problem of maximizing104

GM-rate or GM-EE is formulated and scalable algorithms105

(Alg. 1 and Alg. 2, respectively) are developed for its solu-106

tion. Section III introduces IGS for payload data transmission107

and accordingly develops scalable optimization algorithms108

(Alg. 3 and Alg. 4) for the IGS-based GM-rate and GM-109

EE problems, respectively. Section IV provides simulations110

to confirm the analytical results of Sections II and III. Section111

V concludes the paper.112

Notation: Bold-faced upper-case and lower-case letters, e.g.,113

X and x, are used for matrices and vectors, respectively, while114

lower-case letters, e.g., x, are used for scalars. xH , xT , and x∗
115

denote Hermitian transpose, normal transpose, and conjugate116

of the vector x, respectively. ‖ ·‖ denotes a vector’s Euclidean117

norm and | · | stands for the absolute value of a complex/real118

scalar number. 〈x,y〉 = xHy for the vectors x and y and119

〈X,Y〉 = trace(XHY) for the matrices X and Y. We also120

use 〈X〉 = trace(X) for the matrix X. Also X � 0 means the121

Hermitian symmetric matrix X is positive definite. C and R,122

and R+ denote the sets of all complex numbers, real numbers,123

and positive numbers, respectively. �{x} and �{x} denote124

the real and imaginary parts of a complex vector x, and In125

is the identity matrix of size n × n. C(0, 1) is the set of126

circular (proper) Gaussian random variables with zero means127

and unit variances, while CN (0, 1) is the set of non-circular128

(improper) Gaussian random variables with zero means and129

Fig. 1. An illustration of a cell-free massive MIMO system. Later, the
simulation results also consider a user-centric cell-free network, where the
users are served by a set of selected APs.

unit variances. Their fundamental difference is that E(x2) = 130

0 for x ∈ CN (0, 1) but E(x2) 	= 0 for x ∈ C(0, 1). 131

The following inequalities, which were proved in [25], are 132

frequently used in the theoretical derivations: 133

ln
(

1 +
x2

y

)
≥ ln

(
1 +

x̄2

ȳ

)
− x̄2

ȳ
+ 2

x̄

ȳ
x 134

− x̄2

ȳ(x̄2 + ȳ)
(x2 + y), (1) 135

for all x ∈ R, y > 0, and x̄ ∈ R, ȳ > 0, and 136

ln
∣∣I2 + [V]2(Y)−1

∣∣ 137

≥ ln
∣∣I2 + [V̄]2(Ȳ)−1

∣∣− 〈(Ȳ)−1, [V̄]2〉 138

+ 2�{〈(Ȳ)−1V̄,V〉} 139

−〈(Ȳ)−1 − (Ȳ + [V̄]2)−1, [V]2 + Y〉, (2) 140

for all matrices V, Y � 0, V̄, and Ȳ � 0 of size 2× 2. 141

II. BASIC MODELING AND PROPER GAUSSIAN SIGNALING 142

Consider a cfm-MIMO system, which consists of M APs, 143

indexed by m ∈ M � {1, . . . , M}, serving N single-antenna 144

users (UEs) indexed by n ∈ N � {1, . . . , N}. Each AP is 145

equipped with Nt antennas. The APs, which are linked to 146

a central processing unit through backhauls, are distributed 147

across the area to make them closer to the UEs. Under time- 148

division duplexing, there are two phases of communication 149

within each coherence interval [1]: uplink training for CSI 150

acquisition, followed by payload data transmission. 151

A. Uplink Training for CSI Acquisition 152

Following [1], the channel vector hmn ∈ CNt×1 between 153

AP m and UE n is modeled as 154

hmn =
√

βmnh̃mn, (3) 155

where βmn represents the large-scaling fading, which can be 156

assume to be known a priori, and h̃mn is an Nt × 1 vector 157
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of small-scale fading coefficients, the elements of which are158

unknown and independent and identically distributed (i.i.d.)159

CN (0, 1) random variables. Therefore, hmn is unknown and160

needs to be estimated.161

We assume channel reciprocity to estimate the channel hmn162

between AP m and UE n. The standard block fading model163

is used, hence the channel hmn is constant in time-frequency164

blocks of t channel uses, where t is the length of the coherence165

interval in samples defined by the product of the coherence166

time and coherence bandwidth B. Let tu be the uplink training167

interval, so tu < t. For CSI acquisition, all UEs send their168

pilot sequences
√

τuψn ∈ Ctu×1 with ‖ψn‖2 = 1, n ∈ N169

and τu � tupu, where pu is the power allocated to pilots ψn.170

The signal received at AP m ∈M is171

Ym =
√

τu
N∑

n′=1

hmn′ψH
n′ + Wm, (4)172

where Wm is an Nt × tu noise matrix whose elements are173

i.i.d. CN (0, σ2) random variables. Applying a matched filter174

to the received signal Ym yields175

ȳmn = Ymψn176

=
√

τuhmn +
√

τu
∑

n′∈N\{n}
hmn′ϕn′n + Wmψn, (5)177

where ϕnn′ � 〈ψn,ψn′〉. Thus, a minimum-mean-square-178

error (MMSE) estimate of hmn is179

ĥmn = E
{
hmnȳH

mn

} (
E
{
ȳmnȳH

mn

})−1
ȳmn180

= αmnȳmn, (6)181

where αmn �
√

τuβmn

τu
∑

n′∈N βmn′ |ϕn′n|2 + σ2
u

, which is depen-182

dent on the large scale fading βmn, training length tu, uplink183

power allocation pu, and ϕnn′ . The mean-square of the i-th184

element of the channel estimate vector, for all i = {1, . . . , Nt},185

is given by [12]186

ξmn � E

{∣∣∣[ĥmn]i
∣∣∣2}187

=
τuβ2

mn

τu
∑

n′∈N βmn′ |ϕn′n|2 + σ2
u

. (7)188

The channel estimation error ĥmn − hmn is indepen-189

dent of the channel estimate ĥmn, and its elements are190

i.i.d. CN (0, βmn − ξmn) random variables [12]. Thus, the191

mean-square error of the elements of channel estimation error192

vector is given by193

εmn = E

{∣∣∣[ĥmn]i − [hmn]i
∣∣∣2}194

= βmn − ξmn195

= βmn − τuβ2
mn

τu
∑

n′∈N βmn′ |ϕn′n|2 + σ2
u

. (8)196

By using (8) and the definition of αmn, defined below (6),197

we can express αmn = ξmn/(
√

τuβmn). It should be realized198

that while ĥmn is available by (6), the scaling parameter αnm,199

mean-square estimation error εmn and mean-square estimate200

ξmn, are deterministic that are defined beforehand.201

B. Payload Data Transmission 202

We adopt the following CB at AP m [15], 203

xm =
∑

n′∈N
pn′ ĥ∗

mn′sn′ , pn′ ∈ R, (9) 204

where pn′ is the square-root of power allocation to UE n�, 205

i.e., p2
n′ expresses the power allocation across all the APs for 206

the symbol sn′ intended for UE n�.1 The design of this CB 207

involves only N decision variables instead of MN decision 208

variables for the conventional CB [1], [12]. For instance, for 209

M = 128 and N = 32, the design of CB (9) involves only 210

32 decision variables while that CB [1], [12] involves already 211

4096 decision variables. More importantly, the computational 212

complexity of each iteration in all algorithms proposed in this 213

paper is scalable in N while that of each iteration in those 214

algorithms proposed in [12] is third order polynomial in NM 215

at best. Using (9), the power transmitted by the AP m is given 216

by 217

E
{‖xm‖2

}
=

∑
n′∈N

E

{
‖ĥmn′‖2

}
p2

n′ 218

= Nt

∑
n′∈N

ξmn′p2
n′ 219

� πm(p), (10) 220

which is a convex quadratic function in p � {pn, n = 221

1, . . . , N}. 222

The signal received at UE n is 223

yn =
∑

m∈M
hT

mnxm + wn 224

= pn

∑
m∈M

hT
mnĥ∗

mnsn +
∑

n′∈N\{n}
pn′Tnn′sn′ + wn, 225

(11) 226

where wn ∼ CN (0, σ2) is the additive noise at UE n, and 227

Tnn′ �
∑

m∈M
hT

mnĥ∗
mn′ , n� ∈ N \ {n}. (12) 228

Cfm-MIMO offers channel hardening property [1], especially 229

when multiple antennas are considered at the APs [26]. The 230

channel hardening property ensures that with high probability, 231

the instantaneous effective channel gain of the desired signal 232∑
m∈M hT

mnĥ∗
mn is very close to its mean value Sn � 233

E

{∑
m∈M hT

mnĥ∗
mn

}
. Thus, we can rewrite (11) as 234

yn = pnSnsn + pnUnsn +
∑

n′∈N\{n}
pn′Tnn′sn′ + wn

︸ ︷︷ ︸
�ν̃n

, 235

(13) 236

where the first term is considered as the desired signal part 237

with deterministic channel gain Sn, and the sum of remaining 238

terms, denoted by ν̃n, is considered as the effective noise, with 239

Un �
∑

m∈M
hT

mnĥ∗
mn − E

( ∑
m∈M

hT
mnĥ∗

mn

)
. (14) 240

1The use of p2
n′ instead of a simple symbol pn′ helps later in handling

non-convex problems.
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The corresponding effective SINR at UE n is241

gn(p) =
p2

n|Sn|2
E(|ν̃n|2)242

=
p2

n|Sn|2
p2

nE(|Un|2) +
∑

n′∈N\{n} p2
n′E(|Tnn′ |2) + σ2

,243

(15)244

By using a similar argument as that used for deriving245

[1, eq. (24)], we can obtain the following analytical246

expressions:247

Sn = Nt

∑
m∈M

ξmn, (16)248

E(|Un|2) = Nt

∑
m∈M

βmnξmn, (17)249

and250

E(|Tnn′ |2) = Nt

∑
m∈M

βmnξmn′251

+ τuN2
t |ϕn′n|2

( ∑
m∈M

βmnαmn′

)2

, (18)252

where βmn and ξmn are deterministic quantities that are253

determined beforehand in (3) and (7).254

Hence, (15) becomes255

gn(p) =
λnp2

n

ϕn(p) + σ2
, (19)256

with257

λn � N2
t

( ∑
m∈M

ξmn

)2

, (20)258

and259

ϕn(p) � Nt

∑
n′∈N

p2
n′

∑
m∈M

βmnξmn′260

+ τuN2
t

∑
n′∈N\{n}

p2
n′ |ϕn′n|2

( ∑
m∈M

βmnαmn′

)2

,261

(21)262

which is a positive convex quadratic function.263

The achievable rate in nats/sec/Hz for decoding the signal264

pnSnsn in (13) is given by265

rn(p) = ln (1 + gn(p)) , (22)266

where the UE n needs to only know the mean of the effective267

channel gain, Sn to detect its desired signal sn. Let r(p) �268

(r1(p), . . . , rN (p)). Define the geometric mean (GM):269

f(r1, . . . , rN ) � (
N∏

n=1

rn)1/N , (23)270

which is a concave function, and then f(r(p)) as the compo-271

sition of f and the vector-valued function r(p), i.e. f(r(p))272

is the GM of users rates. Motivated by [27], we consider the273

following problem for GM-rate maximization subject to the274

total power constraint:275

max
p∈RN

F (p) � f(r(p)) (24a)276

s.t.
M∑

m=1

πm(p) ≤MP, (24b) 277

where P is a given power budget. As shown by our simula- 278

tions, (24) not only facilitates scalable computation but it also 279

achieves multiple targets such as 280

• Inherently fair user rate allocations with high sum rate. 281

There is no need to consider the problem of either sum 282

rate maximization or GM maximization subject to users 283

rate constraints [28], which only cause artificially tense 284

computation. 285

• Inherently fair power allocations to the APs due to the fair 286

rate allocations. There is no need to impose the individual 287

power constraints πm(p) ≤ P , m ∈ M, for the APs’ 288

physical transmission, which only cause artificially tense 289

computation. 290

We develop an iterative process for computing (24). Let 291

p(κ) � {p(κ)
n , n = 1, . . . , N} be the feasible point for (24) 292

that is found from the (κ − 1)-st iteration. We note that the 293

linearized function of f(r1, . . . , rN ) at r(p(κ)) is 294

F (p(κ)))
N

N∑
n=1

rn

rn(p(κ))
. (25) 295

Since F (p(κ)) > 0, we generate the next feasible point 296

p(κ+1) by considering the following problem of steep descent 297

optimization for the concave function for the concave function 298

f(r1, . . . , rN ): 299

max
p

F (p(κ))
N

N∑
n=1

rn(p)
rn(p(κ))

s.t. (24b), (26) 300

which is equivalent to the following problem: 301

max
p

f (κ)(p) �
N∑

n=1

γ(κ)
n rn(p) s.t. (24b), (27) 302

for 303

γ(κ)
n � maxn′∈N rn′(p(κ))

rn(p(κ))
, n = 1, . . . , N. (28) 304

Though the objective function in (27) looks like conventional 305

weighted sum-rate optimization, however, quite different from 306

the conventional weighted sum-rate optimization, which is 307

based on constant user-specific weights, our proposed imple- 308

mentation optimizes those weights analytically and updates 309

them at each iteration, with an implicit objective of achieving 310

fairer rate distribution. 311

By applying the inequality (1) for (x, y) = 312

(
√

λnpn, ϕn(p)+σ2) and (x̄, ȳ) = (
√

λnp
(κ)
n , ϕn(p(κ))+σ2) 313

we obtain 314

rn(p) ≥ a(κ)
n + 2b(κ)

n pn − c(κ)
n (λnp2

n + ϕn(p)) 315

� r(κ)
n (p), (29) 316

for a
(κ)
n � rn(p(κ)) − gn(p(κ)) − c

(κ)
n σ2, b

(κ)
n � 317

λnp(κ)
n

ϕn(p(κ))+σ2 , and c
(κ)
n � gn(p(κ))

λn

�
p
(κ)
n

�2
+ϕn(p(κ))+σ2

. The func- 318

tion r
(κ)
n (p) is concave, which matches with rn(p) at p(κ), 319
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i.e., rn(p(κ)) = r
(κ)
n (p(κ)). We solve the following problem320

at the κ-th iteration to generate p(κ+1):321

max
p

f̄ (κ)(p) �
∑
n∈N

γ(κ)
n r(κ)

n (p) s.t. (24b), (30)322

for323

f̄ (κ)(p) �
∑
n∈N

γ(κ)
n r(κ)

n (p)324

=
∑
n∈N

γ(κ)
n

[
a(κ)

n + 2b(κ)
n pn − c(κ)

n (λnp2
n + ϕn(p))

]
325

=
∑
n∈N

γ(κ)
n

[
a(κ)

n + 2b(κ)
n pn − c(κ)

n

(
λnp2

n326

+
∑

n′∈N
p2

n′znn′ + τu
∑

n′∈N\{n}
p2

n′ |ϕn′n|2z̄nn′

)]
327

=
∑
n∈N

γ(κ)
n

(
a(κ)

n + 2b(κ)
n pn − d

(κ)
n p2

n

γ
(κ)
n

)
, (31)328

where329

znn′ � Nt

∑
m∈M

βmnξmn′ ,330

z̄nn′ � N2
t

( ∑
m∈M

βmnαmn′

)2

,331

d(κ)
n � γ(κ)

n c(κ)
n λn +

∑
n′∈N

γ
(κ)
n′ c

(κ)
n′ zn′n332

+ τu
∑

n′∈N\{n}
γ

(κ)
n′ c

(κ)
n′ |ϕnn′ |2z̄n′n.333

The problem (30) admits the closed-form solution334

p(κ+1)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
(κ)
n b

(κ)
n

d
(κ)
n

if υ(κ) ≤MP

γ
(κ)
n b

(κ)
n

d
(κ)
n + μe

(κ)
n

otherwise,

(32)335

where υ(κ) � Nt

∑
m∈M

∑
n∈N ξmn

(
γ

(κ)
n b

(κ)
n /d

(κ)
n

)2

,336

e
(κ)
n � Nt

∑
m∈M ξmn and μ > 0 can be found by bisection337

search such that338

Nt

∑
m∈M

∑
n∈N

ξmn

(
γ

(κ)
n b

(κ)
n

d
(κ)
n + μe

(κ)
n

)2

= MP.339

Algorithm 1 provides the pseudo-code for the pro-340

posed computational procedure. It should be noted that341

one still needs to form a line search for finding342

the step size θ(κ+1) ∈ [0, 1] such that F
(
p(κ) +343

θ(κ+1)(p(κ+1) − p(κ))
)
) > F (p(κ)) [29] to update p(κ+1) →344

p(κ) + θ(κ+1)(p(κ+1)−p(κ)). Fortunately, we always observe345

in our simulations that346

F (p(κ+1))) > F (p(κ)), (33)347

i.e. the full step size of length one θ(κ+1) = 1 is achieved,348

bypassing the line search. This can be explained as follows.349

Algorithm 1 Scalable Algorithm for PGS-Based GM-Rate
Optimization Problem (24)

1: Initialization: Initialize a feasible point p(0). Set κ = 0.
2: Repeat until convergence of p(κ) : Update γ

(κ)
n by (28).

Generate p(κ+1) by (32). Reset κ← κ + 1.
3: Output p(κ) as the optimal solution of (24).

By noting that 350

F (p) = min
γγγ∈Γ

[
N∑

n=1

γnrn(p)

]
, 351

for Γ � {γγγ � (γ1, . . . , γN ) :
∏N

n=1 γn = 1/NN , γn > 0, n = 352

1, . . . , N}, we can express the problem (24) as the following 353

maximin problem 354

max
p∈P

min
γγγ∈Γ

[
N∑

n=1

γnrn(p)

]
, (34) 355

where P is the set of feasible points for the power con- 356

straint (24b). Now, for p(κ) ∈ P and γ(κ) defined from (28), 357

γ(κ) = arg min
γγγ∈Γ

[
N∑

n=1

γnrn(p(κ))

]
, 358

so Algorithm 1 provides a procedure of alternating optimiza- 359

tion between p and γγγ. A general-purpose projective gradient 360

algorithm for GM-rate maximization [30] is much higher 361

computation consuming due to the subtle fact that the GM-rate 362

is a very high-order function of the decision variables so it is 363

not easy to determine the Lipschitz constant of its gradient that 364

plays a crucial role for the algorithm convergence and then it 365

is challenging to implement Armijo rule of a line search to 366

update the step size. Note that the computational complexity 367

of (32) is linear that in contrast with that in [12], [15] of 368

third order polynomial complexity for iterating their convex 369

problems. 370

Before closing this section, it should be noted that Algo- 371

rithm 1 can be easily adjusted to address a similar problem of 372

normalized conjugate beamforming [8]. 373

C. Energy Efficient Payload Data Transmission 374

Recalling that the function f is defined from (23), we now 375

provide a new model of EE maximization, which also pro- 376

motes the quality-of-service (QoS) as 377

max
p∈RN

f(r(p))
πte(p)

s.t. (24b), (35) 378

where 379

πte(p) = α
∑

m∈M
πm(p) + NtMPsc 380

+ M
(
P0 + PbtBNf(r(p))/ ln 2

)
, (36) 381

which is the total power consumption [12], [31]. Here, α is 382

the reciprocal of drain efficiency of the the power amplifier 383

at APs, Psc is the internal power required for running the 384

circuit components at each antenna of the AP, P0 is the power 385
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consumption of each backhaul, and Pbt is the traffic-dependent386

power (in Watt per bits/s). The first and second terms in (36)387

recap the transmission power consumption, while the third388

term recaps the power consumption of the backhauls [32].389

Note that unlike [33], [34], we set N(
∏

n∈N rn(p))1/N
390

instead of
∑

n∈N rn(p). By maximizing the objective in (35)391

one achieves both the QoS in terms of users’ minimum rates392

because the GM-rate in its numerator must be maximized393

and thus the QoS of all users are promoted, while the power394

consumption in its denominator must be minimized and thus395

the EE is promoted as well.396

Observe that397

f(r(p))
πte(p)

=
(

π(p)
f(r(p))

+
BNMPbt

ln 2

)−1

, (37)398

for399

π(p) � α
∑

m∈M
πm(p) + ν, (38)400

where ν � NtMPsc + MP0 is a positive constant. Therefore,401

the problem (35) is equivalent to the following problem:402

max
p∈RN

fE(r(p), π(p)) � f(r(p))
π(p)

s.t. (24b). (39)403

Let p(κ) � (p(κ)
1 , p

(κ)
2 , . . . , p

(κ)
N )T be the feasible point404

for (39) that is found from the (κ − 1)-st iteration. The405

linearized function of fE(r(p), π(p)) at (r(p(κ)), π(p(κ))) is406

fE(r(p(κ)), π(p(κ))) +
1
N

fE(r(p(κ)), π(p(κ)))407

×
(

N∑
n=1

rn(p)
rn(p(κ))

−N
π(p)

π(p(κ))

)
. (40)408

The steepest ascents aim to solve the problem409

max
p

[
N∑

n=1

γ(κ)
n rn(p)− η(κ)π(p)

]
s.t. (24b), (41)410

for411

η(κ) � N
maxn′∈N rn′(p(κ))

π(p(κ))
, (42)412

and413

γ(κ)
n � maxn′∈N rn′(p(κ))

rn(p(κ))
. (43)414

Recalling that the function r
(κ)
n (p) from (29), at the κth415

iteration we solve the following convex problem to generate416

the next iterative point p(κ+1):417

max
p

[
N∑

n=1

γ(κ)
n r(κ)

n (p)− η(κ)π(p)

]
s.t. (24b), (44)418

which admits the closed-form solution419

p(κ+1)
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ
(κ)
n b

(κ)
n

d
(κ)
n + αη(κ)e

(κ)
n

if ῡ(κ) ≤MP

γ
(κ)
n b

(κ)
n

d
(κ)
n + (αη(κ) + μ̄)e(κ)

n

otherwise,

(45)420

Algorithm 2 Scalable Algorithm for PGS-Based GM-EE
Problem (35)

1: Initialization: Initialize a feasible point p(0). Set κ = 0.
2: Repeat until convergence of p(κ): Update η(κ) and γ

(κ)
n

by (42) and (43). Generate p(κ+1) by (45). Reset κ← κ+1.
3: Output p(κ) as the optimal solution of (35).

where ῡ(κ) � Nt

∑
m∈M

∑
n∈N ξmn

(
γ(κ)

n b(κ)
n

d
(κ)
n +αη(κ)e

(κ)
n

)2

, 421

e
(κ)
n � Nt

∑
m∈M ξmn and μ̄ > 0 can be found by bisection 422

search such that 423

Nt

∑
m∈M

∑
n∈N

ξmn

(
γ

(κ)
n b

(κ)
n

d
(κ)
n + (αη(κ) + μ̄)e(κ)

n

)2

= MP. 424

Algorithm 2 provides the pseudo-code for the proposed steep 425

ascent. The computational complexity of (45) is linear. 426

D. Instantaneous Performance 427

This subsection will address the GM-rate and energy- 428

efficiency performances when the optimization formulations 429

are based on the online effective channel estimate available at 430

UE n, which are referred as instantaneous performances. 431

Instead of (11), the received signal at the UE n can be 432

expressed as: 433

yn =
∑

m∈M
ĥT

mnxm +
∑

m∈M

(
hT

mn − ĥT
mn

)
xm + wn (46) 434

=
∑

m∈M
ĥT

mn

( ∑
n′∈N

pn′ ĥ∗
mn′sn′

)
435

+
∑

m∈M

(
hT

mn − ĥT
mn

)
xm + wn 436

= pnλ̃nnsn +
∑

n′∈N\{n}
pn′ λ̃nn′sn′ + ν̃n + wn, (47) 437

for 438

λ̃nn′ �

⎧⎪⎪⎨
⎪⎪⎩

∑
m∈M

‖ĥmn‖2 for n� = n∑
m∈M

ĥT
mnĥ∗

mn′ otherwise,
(48a) 439

ν̃n �
∑

m∈M

(
hT

mn − ĥT
mn

)
xm. (48b) 440

Using (8) and (9) 441

E(|ν̃n|2) =
∑

m∈M
εmn

∑
n′∈N

p2
n′‖ĥ∗

mn′‖2 442

� en(p), (49) 443

so the instantaneous SINR at UE n is 444

g̃n(p) =
λ̃2

nnp2
n

ϕ̃n(p) + σ2
, (50) 445

with 446

ϕ̃n(p) �
∑

n′∈N\{n}
p2

n′ |λ̃nn′ |2 + en(p). (51) 447
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The achievable rate of decoding pnλ̃nnsn in (47) is448

χn(p) � ln(1 + g̃n(p)), (52)449

while the transmit power at AP m is defined by450

π̃m(p) �
∑
n∈N
‖ĥmn‖2p2

n. (53)451

Algorithm 1 and Algorithm 2 can be transparently adjusted452

for computing the corresponding problems of GM-rate453

and GM-EE optimization, with modification of the def-454

initions:, i.e., a
(κ)
n � χn(p(κ)) − g̃n(p(κ)) − c

(κ)
n σ2,455

b
(κ)
n � λ̃2

nnp(κ)
n

ϕ̃n(p(κ))+σ2 , c
(κ)
n � g̃n(p(κ))

λ̃2
nn(p

(κ)
n )2+ϕ̃n(p(κ))+σ2

,456

d
(κ)
n �

∑
n′∈N γ

(κ)
n′ c

(κ)
n′ |λ̃n′n|2 +

∑
n′∈N γ

(κ)
n′ c

(κ)
n′ zn′n, e

(κ)
n �457 ∑

m∈M ‖ĥmn‖2, and znn′ �
∑

m∈M εmn‖ĥmn′‖2.458

While the rate defined by (22) is achievable when the459

mean value Sn � E

{∑
m∈M hT

mnĥ∗
mn

}
is available at460

the UE n, the rate defined by (52) is achievable when the461

instantaneous value of the effective channel gain, i.e., λ̃nn �462 ∑
m∈M ‖ĥmn‖2 is available at the UE n, the information of463

which can be provided at the UE n by employing downlink464

channel estimation [35].2465

III. IMPROPER GAUSSIAN SIGNALING TO466

IMPROVE THE DOWNLINK PAYLOAD467

A. Rates’ GM Efficient Payload Data Transmission468

Until now, the transmit signal xm by (9) is proper469

Gaussian (E(xm(xm)T ) = 0) because each E(s2
n′ ) = 0 as470

sn′ ∈ CN (0, 1). It has been recently shown that (see471

e.g. [18]–[22] and references therein) the release of Gaussian472

properness improves the signal degree of freedom, which helps473

to improve the rate performances of interfering networks. This474

section aims to use improper Gaussian signaling (IGS) to475

improve the users’s GM rate as well as the energy efficiency476

of the considered cfm-MIMO system, where the signal trans-477

mitted by the AP m is given by478

xm =
∑

n′∈N
ĥ∗

mn′(v1,n′sn′ + v2,n′s∗n′),479

vn′ � (v1,n′ , v2,n′) ∈ C× C, (54)480

i.e. the symbol sn is widely linearly beamformed by a pair481

of two beamformers ĥ∗
mn′v1,n′ ∈ CNt×1 and ĥ∗

mn′v2,n′ ∈482

CNt×1. It is immediate to check that E(xm(xm)T ) 	= 0483

because E((v1,n′sn′ + v2,n′s∗n′)2) = 2v1,n′v2,n′ 	= 0, i.e.484

xm is an improper Gussian signal.485

Based on the channel statistical data, we can observe486

from (11) that pseudo-covariance E((
∑

n′∈N\{n} pn′Tnn′sn′)487

(
∑

n′∈N\{n} pn′Tnn′sn′)T of the pre-last term,488 ∑
n′∈N\{n} pn′Tnn′sn′ , is still zero because hmn and489

ĥmn are circular Gaussian. Thus, being sum of many490

RVs, this interference term can be approximated by proper491

Gaussian RV, so employing IGS (54) cannot be advantageous492

2We assume perfect estimation of the effective channel gain in the downlink
and under this assumption, our results can serve as an upper bound on the
achievable rate and EE. Integration of downlink channel estimation using
beamforming [35] can be the subject of future research.

over PGS (9) because the latter is optimal for proper Gaussian 493

interference networks [24]. Therefore, in this section, we shall 494

consider only the case of instantaneous performance, i.e., 495

the effective channel λ̃nn �
∑

m∈M ‖ĥmn‖2 is available at 496

UE n. Using (54), the received signal at the UE n under IGS, 497

instead of (47), becomes 498

yn = λ̃nn(v1,nsn + v2,ns∗n) +
∑

n′∈N\{n}
λ̃nn′(v1,n′sn′ 499

+ v2,n′s∗n′) +
∑

m∈M

(
hT

mn − ĥT
mn

)
500

×
∑

n′∈N
ĥ∗

mn′(v1,n′sn′ + v2,n′s∗n′) + wn, (55) 501

with λ̃nn′ defined from (48). In what follows, we use the 502

following notations: 503

ȳn �
[�{yn}
�{yn}

]
, s̄n �

[�{sn}
�{sn}

]
, w̄n �

[�{wn}
�{wn}

]
, 504

Vn �
[�{v1,n + v2,n} −�{v1,n − v2,n}
�{v1,n + v2,n} �{v1,n − v2,n}

]
, 505

Λnn′ �
[�{λ̃nn′} −�{λ̃nn′}
�{λ̃nn′} �{λ̃nn′}

]
. 506

Gm,n =
[
eT

mn,1 −eT
mn,2

eT
mn,2 eT

mn,1

]
507

�

⎡
⎣�

{
hT

mn − ĥT
mn

}
−�

{
hT

mn − ĥT
mn

}
�
{
hT

mn − ĥT
mn

}
�
{
hT

mn − ĥT
mn

}
⎤
⎦ , 508

and 509

Ĥm,n �

⎡
⎣ �

{
ĥmn

}
�
{
ĥmn

}
−�

{
ĥmn

}
�
{
ĥmn

}
⎤
⎦ , 510

and it can be readily shown that E{[s̄n]2} = 1
2I2 and 511

E{[w̄n]2} = 1
2σ2I2. Also, each element of a channel esti- 512

mation error vector, hmn − ĥmn, is a proper Gaussian with 513

zero mean and variance εmn, so E(‖emn,
‖2) = Ntεmn/2, 514

� = 1, 2, and 515

E
(
eT

mn,1emn,2

)
= 0. 516

As such for a deterministic and real matrix of size 2Nt × 2 517

A =
[
a11 a12

a21 a22

]
, 518

where a
,
̄ ∈ RNt×1, �, �̄ = 1, 2, we can easily calculate 519

E
(
[Gm,nA]2

)
520

= E

([
eT

mn,1a11 − eT
mn,2a21 eT

mn,1a12 − eT
mn,2a22

eT
mn,2a11 + eT

mn,1a21 eT
mn,2a12 + eT

mn,1a22

]2
)

521

=
Ntεmn

2
〈[A]2〉I2. (56) 522

The equivalent real composite form of (55) is 523

ȳn = ΛnnVns̄n +
∑

n′∈N\{n}
Λnn′Vn′ s̄n′ 524

+
∑

m∈M
Gm,n

∑
n′∈N

Ĥm,n′Vn′ s̄n′ + w̄n. (57) 525

Authorized licensed use limited to: Princeton University. Downloaded on November 14,2022 at 17:12:38 UTC from IEEE Xplore.  Restrictions apply. 



TUAN et al.: SCALABLE USER RATE AND ENERGY-EFFICIENCY OPTIMIZATION IN CELL-FREE MASSIVE MIMO 6057

Under the variable change526

Pn �
[
p11

n p12
n

p21
n p22

n

]
527

=
[�{v1,n + v2,n} −�{v1,n − v2,n}
�{v1,n + v2,n} �{v1,n − v2,n}

]
, (58)528

which is invertible, i.e.,529

VVVn �
[�{v1,n} �{v1,n}
�{v2,n} �{v2,n}

]
530

=
1
2

[
p11

n + p22
n p21

n − p12
n

p11
n − p22

n p21
n + p12

n ,

]
, (59)531

we have532

ȳn = ΛnnPns̄n +
∑

n′∈N\{n}
Λnn′Pn′ s̄n′533

+
∑

m∈M
Gm,n

∑
n′∈N

Ĥm,n′Pn′ s̄n′ + w̄n. (60)534

Furthermore, we have535

‖VVVn‖2 = 〈[VVVn]2〉 = 1
2
‖Pn‖2 =

1
2
〈[Pn]2〉,536

and by using (56)537

E

⎧⎨
⎩
[ ∑

m∈M
Gm,n

∑
n′∈N

Ĥm,n′Pn′ s̄n′

]2
⎫⎬
⎭538

=
∑

m∈M

∑
n′∈N

E

{[
Gm,nĤm,n′Pn′ s̄n

]2}
539

=
1
2

∑
m∈M

∑
n′∈N

E

{[
Gm,nĤm,n′Pn′

]2}
540

=
Nt

4

( ∑
m∈M

εmn

∑
n′∈N

〈[
Ĥm,n′Pn′

]2〉)
I2541

� Φn(P), (61)542

for P � {Pn, n = 1, . . . , N}. Thus, the rate of sn is given543

by (1/2)ρn(P) [36] with544

ρn(P) = ln

∣∣∣∣∣I2 + [ΛnnPn]2545

×
( ∑

n′∈N\{n}
[Λnn′Pn′ ]2 + 2Φn(P) + σ2I2

)−1
∣∣∣∣∣.546

(62)547

The problem of GM-rate maximization is548

max
P

[∏
n∈N

1
2
ρn(P)

]1/N

(63a)549

s.t.
∑

m∈M
π̃m(P) ≤MP, (63b)550

where π̃m(P) � 1
2

∑
n∈N

〈[
ĤT

m,n

]2
[Pn]2

〉
. With the func-551

tion f defined from (23), and ρ(P) � (ρ1(P), . . . , ρN (P)),552

the problem (63) is equivalent to the following problem:553

max
P

f (ρ1(P), . . . , ρN (P)) s.t. (63b). (64)554

Let P(κ) � {P(κ)
n , n = 1, . . . , N} be the feasible point 555

for (64) that is found from the (κ− 1)-st iteration. Like (27), 556

we solve the following problem at the κ-th iteration to seek 557

the steepest ascent: 558

max
P

f (κ)(P) �
N∑

n=1

γ(κ)
n ρn(P) s.t. (63b), (65) 559

for 560

γ(κ)
n � maxn′∈N ρn′(P(κ))

ρn(P(κ))
, n = 1, . . . , N. (66) 561

By applying the inequality (2) for (V,Y) = 562

(ΛnnPn,
∑

n′∈N\{n}[Λnn′Pn′ ]2 + 2Φn(P) + σ2I2) and 563

(V̄, Ȳ) = (ΛnnP(κ)
n ,

∑
n′∈N\{n}[Λnn′P(κ)

n′ ]2+2Φn(P(κ))+ 564

σ2I2), we obtain 565

ρn(P) ≥ ā(κ)
n + 2〈B(κ)

n ,Pn〉 −
∑

n′∈N

〈
C(κ)

nn′ , [Pn′ ]2
〉

566

−
∑

m∈M

∑
n′∈N

〈
D(κ)

mnn′ , [Pn′ ]2
〉

567

� ρ(κ)
n (P), (67) 568

where ā
(κ)
n � ρn(P(κ)) −

〈
(Ψ(κ)

n )−1, [ΛnnP(κ)
n ]2

〉
− 569

σ2〈Γ(κ)
n 〉, B(κ)

n � ΛT
nn(Ψ(κ)

n )−1ΛnnP(κ)
n , C(κ)

nn′ � 570

ΛT
nn′Γ(κ)

n Λnn′ , D(κ)
mnn′ � 1

2εmn〈Γ(κ)
n 〉[ĤT

m,n′ ]2, Ψ(κ)
n � 571∑

n′∈N\{n}[Λnn′P(κ)
n′ ]2 + 2Φn(P(κ)) + σ2I2, and Γ(κ)

n � 572(
Ψ(κ)

n

)−1

−
(
Ψ(κ)

n + [ΛnnP(κ)
n ]2

)−1

. The function ρ
(κ)
n (P) 573

is concave, which matches with ρn(P) at P(κ): ρn(P(κ)) = 574

ρ
(κ)
n (P(κ)). We solve the following problem at the κ-th 575

iteration to generate P(κ+1): 576

max
p

f̄ (κ)(P) �
∑
n∈N

γ(κ)
n ρ(κ)

n (P) s.t. (63b), (68) 577

for 578

f̄ (κ)(P) 579

�
∑
n∈N

γ(κ)
n ρ(κ)

n (P) 580

=
∑
n∈N

γ(κ)
n

(
ā(κ)

n + 2〈B(κ)
n ,Pn〉 −

∑
n′∈N

〈
C(κ)

nn′ , [Pn′ ]2
〉

581

−
∑

m∈M

∑
n′∈N

〈
D(κ)

mnn′ , [Pn′ ]2
〉)

582

=
∑
n∈N

γ(κ)
n

(
ā(κ)

n + 2〈B(κ)
n ,Pn〉 − 1

γ
(κ)
n

〈E(κ)
n , [Pn]2〉

)
, 583

(69) 584

where 585

E(κ)
n �

∑
n′∈N

γ
(κ)
n′ C(κ)

n′n +
∑

n′∈N

∑
m∈M

γ
(κ)
n′ D(κ)

mn′n, 586

The problem (68) admits the following closed-form solution 587

of linear computational complexity 588

P(κ+1)
n =

⎧⎨
⎩(E(κ)

n )−1γ
(κ)
n B(κ)

n if ω(κ) ≤MP(
2E(κ)

n + μGn

)−1

2γ
(κ)
n B(κ)

n otherwise,
589

(70) 590
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Algorithm 3 Scalable Algorithm for IGS-Based GM-Rate
Optimization Problem (63)

1: Initialization: Initialize a feasible point P (0). Set κ = 0.
2: Repeat until convergence of P(κ) : Update γ

(κ)
n by (66).

Generate P(κ+1) by (70). Reset κ← κ + 1.
3: Output P(κ) as the optimal solution of (63).

where ω(κ) � 1
2

∑
n∈N

〈
Gn,

[
(E(κ)

n )−1γ(κ)
n B(κ)

n

]2〉
, Gn �591

∑M
m=1

[
ĤT

m,n

]2
and μ > 0 can be found by bisection search592

such that593

1
2

∑
n∈N

〈
Gn,

[(
2E(κ)

n + μGn

)−1

2γ(κ)
n B(κ)

n

]2
〉

= MP.594

Algorithm 3 provides the pseudo-code for the proposed595

scalable procedure for computing (63), which like Algorithm 1596

converges at least to a locally optimal solution.597

B. Energy Efficient Payload Data Transmission598

Like (35), the GE-EE maximization under IGS is formulated599

as600

max
P

[
∏

n∈N
1
2ρn(P)]1/N

π̃te(P)
s.t. (63b), (71)601

where π̃te(P) is the total power consumption [12], [31], given602

by603

π̃te(P) = α
∑

m∈M
π̃m(P) + NtMPsc604

+ M

⎛
⎝P0 +

PbtBN

ln 2

(∏
n∈N

1
2
ρn(P)

)1/N
⎞
⎠ . (72)605

By using a similar argument for obtaining (39) and by defining606

πte(P) � α
∑

m∈M π̃m(P) + ν and ν � NtMPsc + MP0,607

the equivalent problem for problem (71) is:608

max
P

fE(ρ(P), π̃(P)) � f(ρ(P))
π̃(P)

s.t. (63b). (73)609

Let P(κ) � {P(κ)
n , n = 1, . . . , N} be the feasible point610

for (39) that is found from the (κ− 1)-st iteration. Like (41),611

we seek the steepest ascent by solving the problem612

max
P

[
N∑

n=1

γ(κ)
n ρn(P) − η(κ)π̃(P)

]
s.t. (63b), (74)613

for614

η(κ) � N max
n′∈N

ρn′(P(κ))/π̃(P(κ)), (75)615

and616

γ(κ)
n � max

n′∈N
ρn′(P(κ))/ρn(P(κ)). (76)617

Recalling the function ρ
(κ)
n (P) from (67), at the κth iteration,618

we solve the following convex problem to generate the next619

Algorithm 4 Scalable Algorithm for IGS-Based GM-EE Prob-
lem (71)

1: Initialization: Initialize a feasible point P (0). Set κ = 0.
2: Repeat until convergence of P(κ): Update η(κ) and γ

(κ)
n

by (75) and (76). Generate P(κ+1) by (78). Reset κ ←
κ + 1.

3: Output P(κ) as the optimal solution of (71).

iterative point P(κ+1): 620

max
P

[
N∑

n=1

γ(κ)
n ρ(κ)

n (P)− η(κ)π̃(P)

]
s.t. (63b), (77) 621

which admits the following closed form solution of linear 622

computational complexity: 623

P(κ+1)
n =

⎧⎪⎨
⎪⎩
(
2E(κ)

n + η̄(κ)Gn

)−1

2γ
(κ)
n B(κ)

n if ω̄(κ)≤MP(
2E(κ)

n + (η̄(κ)+μ̄)Gn

)−1

2B(κ)
n otherwise,

624

(78) 625

where η̄(κ) = η(κ)α, Gn �
∑M

m=1

[
ĤT

m,n

]2
, 626

ω̄(κ) � 1
2

∑
n∈N

〈
Gn,

[(
2E(κ)

n + η(κ)αGn

)−1

2γ(κ)
n B(κ)

n

]2
〉

627

and μ̄ > 0 can be found by bisection search such that 628

1
2

∑
n∈N

〈
Gn,

[(
2E(κ)

n + (η̄(κ) + μ̄)Gn

)−1

629

× 2γ(κ)
n B(κ)

n

]2
〉

= MP. 630

Algorithm 4 provides the pseudo-code for the proposed scal- 631

able procedure for computing (71), which like Algorithm 2 632

converges at least to a locally optimal solution. 633

IV. SIMULATIONS 634

In this section, we analyze the performance of our proposed 635

algorithms. We start by first describing our simulation para- 636

meters. The large-scale fading coefficient in (3) is given by 637

βmn = 10(−PLmn+Xmn)/10, (79) 638

where PLmn is the path-loss (in dB) and 10Xmn/10 repre- 639

sents the shadowing effect with Xmn ∼ N (0, σ2
sh). We use 640

a three-slope model for path-loss [37], which is given by 641

(in dB) 642

PLmn 643

=

⎧⎪⎨
⎪⎩

L + 35 log10(dmn), dmn > d1

L + 15 log10(d1) + 20 log10(dmn), do < dmn ≤ d1

L + 15 log10(d1) + 20 log10(do), dmn ≤ do,

644

(80) 645

where the constant factor L depends on the carrier frequency 646

and the heights of the users and APs and dmn is the distance 647

between the AP m and UE n. In our simulations, we set 648
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σsh = 8 dB, do = 10 m, d1 = 50 m, and L = 140.7 dB.649

These parameters resemble those in [1], [12].650

We have randomly deployed the APs and the UEs within a651

square of 1×1 km2. The square is wrapped around at the edges652

to avoid boundary effects. Unless stated otherwise, the pilot653

sequences for N UEs are obtained from N orthogonal pilot654

sequences of length tu = N , where the rows of fast-Fourier655

transform (FFT) matrix are used to generate pilot sequences.656

However, to study the effect of pilot contamination, we also657

analyze the performance of the proposed algorithms under658

smaller pilot sequences of length tu < N , under which the659

pilot sequences would not remain orthogonal and will be based660

on the truncated rows of FFT matrix. The length of coherence661

interval is t = 320 samples, corresponding to a coherence662

bandwidth of B = 320 KHz and coherence time of 1 ms.663

In addition, we set the system bandwidth to 10 MHz, noise664

power density is set to −174 dBm/Hz and noise figure is equal665

to 9 dB [1], [2].666

To simulate the energy efficiency performance of a network,667

the drain efficiency of power amplifier is set to 0.4, i.e.,668

α = 1/0.4 in (36), internal power for running the circuit669

components is set to Psc = 0.2 W, fixed power consumption670

for each backhaul is P0 = 0.825 W, and traffic-dependent671

backhaul power is Pbt = 0.25 W/(Gbits/s). These values are672

taken from [12].673

Unless otherwise specified, we use M = 128 APs, N =674

32 UE, training length tu = N , Nt = 2 antennas per AP, and675

power budget P = 20 dBm. The power allocated to the pilots,676

pu, is set to P . We use MATLAB for simulating our proposed677

algorithms.678

In what follows, we refer to our proposed algorithms as679

follows for convenience:680

• PGS stat. perf. (Alg. 1) refers to the performance (perf.)681

of PGS based Alg. 1 (for the rate defined by (22).682

• PGS instant. perf. (Alg. 1) refers to the performance of683

PGS based modified Alg. 1 for the rate defined by (52).684

• IGS instant. perf. (Alg. 3) refers to the performance of685

IGS based Alg. 3.686

Alg. 1 and Alg. 3 refer to the GM-rate optimization algorithms.687

On the other hand, if we replace them by Alg. 2 and Alg. 4,688

respectively, the above description will refer to the GM-EE689

algorithms. Note that in all the figures, the rates are calculated690

in bps/Hz, which are obtained by dividing the rates (defined691

in nats/sec/Hz) by ln 2. The results are averaged over random692

realizations of the AP/user locations, shadow fading, and693

small-scale fading.694

In the following subsections, we separately analyze the695

GM-rate performance and the GM-EE performance of our696

proposed algorithms.697

A. GM-Rate Performance698

Fig. 2 plots the distribution of individual user-rate χn, for699

n ∈ N , achieved by solving the PGS based instantaneous700

GM-rate optimization Alg. 1. Fig. 2 also plots the GM-rate,701 (∏
n∈N χn

)1/N
and the max-min rate. The latter solves the702

max-min rate optimization problem using the approach in [15]703

and the individual user-rate achieved by solving that problem704

Fig. 2. Individual user-rate distribution by PGS instant. Alg. 1 with
tu = N/2 and Nt = 1.

Fig. 3. Individual user-rate distribution by IGS instant. Alg. 3 with
tu = N/2 and Nt = 1.

is plotted for comparison. Since max-min rate optimization 705

ensures maximization of the worst-case user-rate to achieve 706

fair rate-distribution, comparing this approach with the pro- 707

posed GM-rate optimization algorithms will indicate whether 708

the latter are successful in achieving fair rate-distribution 709

among the users. Similarly, Fig. 3 plots the distribution of 710

individual user-rate 1
2ρn, for n ∈ N , achieved by solving the 711

IGS based instantaneous GM-rate optimization Alg. 3 along 712

with the GM-rate,
(∏

n∈N
1
2ρn

)1/N
and the max-min rate. 713

Fig. 2 and Fig. 3 assume tu = N/2 to provide comparison in 714

the presence of pilot contamination. Moreover, Nt is set to 1 715

because the max-min rate algorithms in [15] assume single- 716

antenna APs. 717

Remark 1: The following interesting insights can be 718

observed from Figs. 2 and 3, which appreciate the importance 719

of the proposed GM-rate optimization Algs. 1 and 3. 720
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Fig. 4. Individual user-rate distribution by Alg. 1 (SR 97.65 bps/Hz;
norm. rate-var. 0.21) and by QoS constrained SR maximization [15].
(SR 99.02 bps/Hz; normalized rate-var. 0.29.)

• The individual user rate by the GM-rate optimization721

is minimally compromised compared to that by the722

max-min rate optimization. Only for very few users,723

the user-rate by GM-rate optimization is smaller than724

that by the conventional max-min rate optimization.725

On the other hand, the computational complexity of the726

proposed GM-rate optimization Algorithms 1 and 3 is727

O(N), which is very small, thanks to the proposed728

closed-form based solutions, compared to that offered by729

the conventional max-min rate optimization algorithms.730

Particularly, due to the dependency on convex solvers,731

the computational complexities of PGS and IGS based732

conventional max-min rate algorithms are O(N3) and733

O(N4), respectively [38].734

• In addition to the better rates provided by the IGS than735

those by the PGS, the former also promises fairer rate736

distribution (with smaller variance) among the user-rates.737

For the example in Figs. 2 and 3, the standard-deviation738

in the user-rates is 1.42 and 1.12 for the PGS and IGS739

based implementations, respectively.740

Fig. 4 compares the individual user-rate distribution741

achieved by solving the PGS based instantaneous GM-rate742

optimization Alg. 1 with that achieved by solving conventional743

SR maximization with QoS user-rate constraints. The solution744

of the latter is based on the approach in [15], which relies on745

the use of convex-solvers. It can be observed from Fig. 4 that746

compared to the conventional SR maximization, the proposed747

GM-rate maximization leads to a fairer rate allocation to all748

users (smaller variance (var) among the users’ rates) with a749

marginal compromise in the achievable sum-rate. In addition,750

the proposed GM-rate maximization is computationally very751

efficient compared to the conventional SR maximization (the752

complexity of former versus latter is O(N) versus O(N4)),753

thanks to our proposed solution based on closed-form expres-754

sions. Similar results are observed in Fig. 5 for the IGS based755

implementation.756

Fig. 5. Individual user-rate distribution by Alg. 3 (SR 99.76 bps/Hz;
norm. rate-var. 0.13) and by QoS constrained SR maximization [15].
(SR 105.93 bps/Hz; normalized rate-var. 0.32.)

Fig. 6. Average transmit power πm(p) versus the AP index m for PGS
instant. Alg. 1.

Figs. 6 and 7 plot the average transmit power π̃m(p) and 757

π̃m(P), respectively, versus the AP index m, for PGS instant. 758

Alg. 1 and IGS instant. Alg. 3, respectively. Figs. 6 and 7 con- 759

firm that though we are using a single sum-power constraint 760

in (24b) and (63b) instead of separate M power constraint 761

for all the APs, the average transmit power requirement is 762

still balanced over all the APs. In addition, we have verified 763

through simulations that we can keep the average transmit 764

power at each AP within some specific power budget, say P̄ , 765

by decreasing the total power budget P . This obviously results 766

in a slight performance loss owing to the decrease in total 767

power budget P . For example, if the average transmit power 768

at each AP has to be kept smaller than P̄ = 23 dBm (the 769

average transmit power of AP 47 in Fig. 6 exceeds this limit), 770

we can achieve this by decreasing the total power budget 771

P from 20 dBm to 19.5 dBm, which slightly decreases the 772

achievable GM-rate from 3.48 bps/Hz to 3.43 bps/Hz. 773
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Fig. 7. Average transmit power π̃m(P) versus the AP index m for IGS
instant. Alg. 3.

Fig. 8. GM-rate versus the number of antennas per AP Nt for M = 128.

Fig. 8 and Fig. 9 plot the GM-rate versus the number of774

antennas at each AP Nt, such that Fig. 8 assumes fixed number775

of APs M = 128, while Fig. 9 assumes that the product776

MNt = 256 is kept fixed. Fig. 8 and Fig. 9 also plot the777

GM-rate achieved by using random (rand.) power allocation,778

which is referred to as “rand. initialization”. We can observe779

from these figures that compared to such random power780

allocation, the optimized power allocation by the proposed781

Algorithms 1 and 3 is substantially helpful in uplifting the782

GM-rate performance. Fig. 8 shows that the GM-rate increases783

with the increase in Nt due to increase in the number of784

resources. On the other hand, the GM-rate is decreasing upon785

increasing Nt in Fig. 9 because total number of distributed786

antennas MNt is kept fixed. Fig. 9 shows that under fixed787

product MNt, Nt = 1 yields the best performance.788

Fig. 10 plots the GM-rate versus the number of users789

N . As expected, the GM-rate decreases with the increase790

Fig. 9. GM-rate versus the number of antennas per AP Nt for MNt = 256.

Fig. 10. GM-rate vs. the number of users N .

in the the number of users N . This is because when 791

more users will be competing for the same fixed resources 792

(fixed power budget), their performance will be affected. 793

Fig. 10 shows that as N increases, the instantaneous perfor- 794

mance gets closer to the performance based on the statistical 795

data. 796

Fig. 11 plots the optimized GM-rate versus the number of 797

APs M . Fig. 11 also shows the performance of the proposed 798

Algorithms 1 and 3 with user-centric (UC) approach, where 799

each UE is served by a set of selected APs [12, Sec. V]. The 800

APs selection in UC approach can save power consumption 801

and reduce the backhaul/fronthaul requirements. Particularly, 802

we employ largest large-scale fading based approach for APs 803

selection, where the UE n is associated with only Mn ≤ 804

M APs, corresponding to the Mn largest large-scale fading 805

coefficients. Particularly, following [12, Alg. 3], the proposed 806

algorithms can be easily modified to implement UC approach. 807

It can be observed from Fig. 11 that by employing UC 808
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Fig. 11. GM-rate by Algorithms 1 and 3 adjusted for UC approach.

Fig. 12. Convergence of Algorithms 1 and 3.

approach, the achievable GM-rate gets better for PGS instant.809

perf. (Alg. 1) and IGS instant. perf. (Alg. 3), however, it gets810

slightly worse for PGS stat. perf. (Alg. 1). The improvement811

in the achievable rate under UC approach is expected as812

this approach saves power consumption at the APs and thus813

reduces undue interference at the UEs. However, the improve-814

ment is not observed for PGS stat. perf. (Alg. 1), which can815

be explained owing to our simpler implementation, which is816

based on the same power allocation across all the APs for a817

given UE.818

Fig. 12 plots the convergence performance of the proposed819

Algorithms 1 and 3. It can be observed from Fig. 12 that the820

proposed PGS based Alg. 1 converges fairly promptly within821

15-20 iterations, whereas the proposed IGS based Alg. 3822

requires more iterations (around 25-30) for convergence. This823

is because the latter has to optimize 3N additional opti-824

mization variables than the former. The same trend of the825

convergence performance has been observed for the proposed826

Fig. 13. Convergence of Algorithms 2 and 4.

Fig. 14. Individual UE-rate distributions by GM-EE and SR-EE optimizations
with tu = N/2 and Nt = 1.

TABLE I

COMPARISON OF PGS BASED GM-EE (ALG. 2) WITH THE SR-EE
ALGORITHM (APPROACH IN [15]) FOR Nt = 1, tu = N/2

GM-EE maximization Algorithms 2 and 4, which is plotted in 827

Fig. 13. 828

B. Energy Efficiency Performance 829

In this section, we analyze the GM-rate based EE 830

(GM-EE) performance by plotting
N [
�

n∈N rn(p)]1/N

πte(p) for PGS 831
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Fig. 15. Individual IGS UE-rate distributions by GM-EE and SR-EE
optimizations with tu = N/2 and Nt = 1.

stat. perf. (Alg. 2),
N [
�

n∈N χn(p)]1/N

πte(p) for PGS instant. perf.832

(Alg. 2), and
N [
�

n∈N
1
2 ρn(P)]1/N

π̃te(P) for IGS instant. perf. (Alg 4).833

Note that we have multiplied the numerator of EEs by a834

factor N to have comparable numbers as that are obtained835

by the conventional sum-rate (SR) based EE (SR-EE) metrics,836 �
n∈N rn(p)

πte(p) ,
�

n∈N χn(p)

πte(p) , and
�

n∈N
1
2 ρn(P)

π̃te(P) , respectively.837

Fig. 14 plots the distribution of individual user-rate χn,838

for n ∈ N , achieved by solving the proposed PGS based839

instantaneous GM-EE optimization Alg. 2. Similarly, Fig. 15840

plots the individual user-rate 1
2ρn, achieved by solving IGS841

based instantaneous GM-EE optimization Alg. 4. In both842

figures, we compare the achievable rates by the proposed843

GM-EE maximization (solution by closed-form iterations)844

with that by the conventional SR-EE maximization (solution845

based on the off-the-shelf convex solvers [12], [15]). To plot846

SR-EE maximization results, we use the solution approach847

of [15]3 and set the QoS user-rate constraint to be equal848

to the minimum user-rate achieved by the proposed GM-EE849

optimization. Fig. 14 and Fig. 15 assume tu = N/2 to850

provide comparison in the presence of pilot contamination.851

Moreover, Nt is set to 1 because SR-EE algorithms in [15]852

assume single-antenna APs. The detailed comparison of the853

proposed GM-EE algorithms and the conventional SR-EE854

algorithms is provided in Tables I and II, which show the855

achievable average sum-EE (the conventional EE objective),856

GM-EE, sum-rate, standard-deviation among the user rates857

(rate-dev.), number of iterations required for convergence and858

computational complexity. It can be observed from Fig. 14859

and Fig. 15 and Tables I and II that though the individual860

user rates, sum-rates, and sum-EE are minimally compromised861

by proposed GM-EE algorithms compared to the conventional862

SR-EE algorithms, the former promise fairer rate distribution863

and much smaller computational complexity.864

3The path-following algorithms of [15] are used by employing convex
solver, such as CVX, however, for fair comparison, we use single sum-power
constraint and imperfect channel estimation, as adopted in this work.

TABLE II

COMPARISON OF IGS BASED GM-EE (ALG. 4) WITH THE SR-EE
ALGORITHM (APPROACH IN [15]) FOR Nt = 1, tu = N/2

Fig. 16. GM-EE versus the number of antennas per AP Nt for M = 128.

Fig. 17. GM-EE vs. the number of antennas per AP Nt for MNt = 256.

Fig. 16 and 17 plot the GM-EE versus the number of 865

antennas at each AP Nt, such that Fig. 16 assumes fixed 866

number of APs M = 128, while Fig. 17 assumes that the 867

product MNt = 256 is kept fixed. Fig. 16 shows that the 868

GM-EE increases upon increasing Nt due to increase in 869

the number of resources, however, the improvement starts 870
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Fig. 18. GM-EE versus the training length tu .

Fig. 19. GM-EE with UC approach.

diminishing for the larger values of Nt because of the increase871

in power consumption (the factor in the denominator of EE).872

However, the improvement in GM-EE is not affected in that873

way in Fig. 17 because the total number of distributed antennas874

MNt is kept fixed. Fig. 16 and Fig. 17 show the supremacy875

of IGS over PGS as the performance gain by the former gets876

substantial for larger values of Nt.877

Fig. 18 plots the GM-EE versus the length of the pilot878

sequences, tu. Since the number of users is kept fixed to879

N = 32, Fig. 18 shows the effect of pilot contamination880

because when tu is smaller than N , the pilots sequences would881

not remain orthogonal. The GM-EE performance degrades for882

smaller values of tu due to pilot contamination. Fig. 19 plots883

the optimized GM-EE versus the number of APs M . Fig. 19884

also plots the performance of the proposed Algorithms 2 and 4885

with APs selection based UC approach and shows the advan-886

tage of employing this approach for PGS instant. perf. (Alg. 2)887

and IGS instant. perf. (Alg. 4).888

V. CONCLUSION 889

The paper has proposed a particular power allocation for 890

conjugate beamforming to deliver information to users of 891

a cell-free massive MIMO network. It has introduced the 892

maximization of the GM of users’ rates as a new way of 893

achieving balanced users’ rates while keeping their sum high. 894

New algorithms of very low computational complexity, which 895

are based on closed-form expressions, have been developed for 896

solutions under both proper Gaussian signaling and improper 897

Gaussian signaling. The paper has also exploited the ratio of 898

the user rates’ GM to the total transmit power as a new way to 899

gauge the network energy efficiency with users’ rates balanced. 900

Its maximization is also achieved by iterating closed-form 901

expressions. The provided simulations have clearly demon- 902

strated the advantages of the proposed approach in bringing 903

about multiple performance advantages in terms of achievable 904

individual user rates and their sum, and the energy efficiency 905

with fair power allocations to the access points of the cfm- 906

MIMO. A possible future research direction is to investigate 907

the performance of the proposed algorithms under a Rician 908

fading channel assumption. 909
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