
Neural Processing Letters
https://doi.org/10.1007/s11063-022-10750-8

How Does Bayesian Noisy Self-Supervision Defend Graph
Convolutional Networks?

Jun Zhuang1 ·Mohammad Al Hasan1

Accepted: 17 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In recent years, it has been shown that, compared to other contemporary machine learning
models, graph convolutional networks (GCNs) achieve superior performance on the node
classification task. However, two potential issues threaten the robustness of GCNs, label
scarcity and adversarial attacks. .Intensive studies aim to strengthen the robustness of GCNs
from three perspectives, the self-supervision-based method, the adversarial-based method,
and the detection-based method. Yet, all of the above-mentioned methods can barely handle
both issues simultaneously. In this paper, we hypothesize noisy supervision as a kind of self-
supervised learning method and then propose a novel Bayesian graph noisy self-supervision
model, namely GraphNS, to address both issues. Extensive experiments demonstrate that
GraphNS can significantly enhance node classification against both label scarcity and adver-
sarial attacks. This enhancement proves to be generalized over four classic GCNs and is
superior to the competing methods across six public graph datasets.

Keywords Defense of graph convolutional networks · Node classification · Bayesian
inference · Noisy Supervision

1 Introduction

By Generalizing convolutional operation to graph-structured data, Graph Convolutional
Networks (GCNs) achieve superior performance on the node classification task [7,24,48].
However, two potential issues threaten the robustness of GCNs, label scarcity and adversar-
ial attacks. On the one hand, lacking annotated labels may undermine the training of robust
GCNs [16]. On the other hand, GCNs may be vulnerable to adversarial attacks [3], i.e. small
well-designed perturbations may lead to dramatic degradation in a GCN’s performance.

To improve the robustness of GCNs on node classification, intensive studies have
been pursued to defend GCNs. Such efforts can be categorized into three groups: self-

B Jun Zhuang
junz@iu.edu

Mohammad Al Hasan
alhasan@iupui.edu

1 Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-022-10750-8&domain=pdf
http://orcid.org/0000-0002-7142-2193

J. Zhuang, M. A. Hasan

supervision-based method [15,46,52,54], adversarial-based method [5,9,21], and detection-
based method [45,56,58]. The adversarial-based methods improve the robustness of GCNs
by trainingwith adversarial samples, whereas the detection-basedmethods detect the attacker
nodes or edges and then alleviate the negative impact by removing them. However, neither
of them can handle both the label scarcity and adversarial attacks issues simultaneously. An
increased number of recent studies that focus on GCN’s robustness are employing a kind of
self-supervision-based method, namely, pre-training [11,18], to overcome the label scarcity.
This approach constructs a pretext task to help GCNs learn transferable graph representation
through the pre-training stage. Nevertheless, it is still a challenge to design amore generalized
pretext task that can be beneficial to the downstream tasks. Self-training [37] is an extended
form of pre-training. It assigns self-generated pseudo-labels to highly confident unlabeled
nodes and then adds up these to the labeled nodes for the next iteration. Nonetheless, the
accuracy of such pseudo-labels may suffer serious degradation when the pre-trained GCN is
under perturbation.

Learning graph representation with the noisy label is a potential solution to mitigate
both aforementioned issues, label scarcity and adversarial attacks [6]. In this paper, we
argue that the annotated noisy labels assigned to the vertices could be regarded as a kind
of self-information for each node. Thus, noisy supervision can be generalized as noisy self-
supervision, a subset of self-supervised learning methods. In this paper, our interest is to find
answers to the following questions:

Q1: Can a GCN-based node classifier benefit from noisy self-supervision on a label-scarce
graph?

Q2: Can noisy self-supervision defend a GCN-based node classifier from adversarial
attacks?

To effectively answer the above-mentioned questions,wepropose a novelBayesianGraph
Noisy Self-supervision model, named as GraphNS, which improves the robustness of a
GCN-based node classifier. In the beginning, GraphNS trains the node classifier with noisy
labels on the train graph. For each node, our model returns a multinomial distribution over
the label set, which is updated by using a conditional label transition matrix. GraphNS then
infers the label for each node by sampling from the updated multinomial distribution. The
inference expects that inferred labels would match with the corresponding latent labels. In
each iteration, the conditional label transition matrix is dynamically updated by replacing
the predicted labels with the inferred labels from Gibbs sampling, and the node classifier is
retrained.With each subsequent iterations, the prediction from the node classifier increasingly
alignswith the latent labels,making the node classificationmore robust. Note that, throughout
the whole process, the latent labels are unknown, yet GraphNS employs Bayesian inference
to approximate the latent labels over conditional label transition. This is made possible by
considering that the conditional label transition vector (a multinomial distribution) of each
of the K labels follows a Dirichlet prior, and these vectors are iteratively updated using the
Bayesian framework. The above design of GraphNS provides an affirmative answer to the
first question, as it shows that GraphNS can utilize self-information, i.e., annotated noisy
labels of the nodes, to build a robust node classifier (without knowing the ground-truth latent
labels) and thereby can be used for node prediction in a label-scarce graph. For a likewise
answer to the second question, in the experiment, we will show that GraphNS can repair the
prediction of a node classifier when the graph is under adversarial attacks.

The contribution of this paper can be summarized as follows:

• We first generalize noisy supervision as a subset of self-supervised learning methods.
This generalization offers an innovative path towards the defense of GCNs.

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

• We propose a new Bayesian graph noisy self-supervision model, namely GraphNS, to
improve the robustness of the node classifier on graph data. To the best of our knowledge,
our work is the first model that adapts Bayesian inference with noisy self-supervision on
graph data and significantly improves the robustness of GCNs against both label scarcity
and adversarial attacks.

• Extensive experiments demonstrate that GraphNS can enhance node classification under
both non-attacked and attacked environments. This enhancement proves to be generalized
over four classic GCNs and is superior to the competing methods across six public graph
datasets.

2 RelatedWork

2.1 Graph Convolutional Networks

Graph convolutional networks (GCNs) generalize conventional convolutional neural net-
works (CNNs) to graph data and achieve great success in the recent few years [47,48].
Bruna et al. [2] first generalize convolutions on graph data from the perspective of both spa-
tial method and spectral method. However, the eigendecomposition of the graph Laplacian
matrix leads to high complexity on a large graph. To improve efficiency, [4] introduce K-
order Chebyshev polynomial to approximate spectral filter. [24] limit the graph convolution
to 1-order polynomial and achieve state-of-the-art performance with high efficiency. Wu et
al. [44] further simplify the graph convolution by successively removing nonlinearities and
collapsing weight between consecutive layers without a negative impact on accuracy. Differ-
ent from the aforementioned spectral methods, [14] propose a spatial model that aggregates
features from fixed-size local neighbors of the current node. Veličković et al. [41] leverage a
masked self-attention strategy to aggregate neighborhoods’ information in both transductive
and inductive manners. All aforesaid models improve the performance from the view of the
model structure.

2.2 Defense of GCNs on Node Classification

Intensive studies about the defense of GCNs mainly focus on node classification task
[12,22,25,39]. Inspired by [38], we divide most existing defending methods into three main
categories, the self-supervised-basedmethod, which utilizes self-information to help enhance
the robustness of GCNs [20,32,40,51], the adversarial-based method, which improves the
robustness of GCNs by training with generated adversarial samples [42,49,55], and the
detection-based method, which aims to mitigate the negative impact of attacks by detect-
ing and removing potential attacker nodes or edges [45,56,58]. Within the first category,
pre-training [19,29,34] is a popular approach to mitigate the label scarcity. The approach
constructs a pretext task to help GCNs learn transferable graph representation and then fine-
tunes with the targeted task. Self-training [37] is an extended form of pre-training. It assigns
pseudo-labels to highly confident unlabeled nodes and then adds up these to the labeled nodes
for the next iteration. Nonetheless, all of the above-mentioned defending methods can barely
handle both label scarcity and adversarial attack simultaneously.

123

J. Zhuang, M. A. Hasan

2.3 Learning with Noisy Label

In the past few years, an increasing number of studies learns the deep learning networks
with noisy labels [13,28,31]. Sukhbaatar et al. [36] introduce an extra noise transition matrix
to adjust the network’s output by noisy supervision. Subsequent improvement from [26]
considers noise, not only conditioning on the input image but also conditioning on the human
annotation. [50] propose a dynamic label regression framework that improves the prediction
by embedding the noise transition into Dirichlet-distributed space. Those works achieve
great improvement in conventional CNNs. From the perspective of GCNs, [27] present a loss
correction approach to handle the graphnoisy label. [59] employGCNsas a label noise cleaner
to acquire clean labels. Both works attempt to filter noises and then acquire cleaner labels.
Inspired by [50], we propose an innovative Bayesian graph noisy self-supervision model
to improve the robustness of the node classifier on graph data without utilizing adversarial
samples or identifying perturbators.

3 Methodology

In this section, we introduce the methodology of our proposed model, Bayesian graph noisy
self-supervision model, GraphNS, as follows. Section 3.1 introduces the notation and pre-
liminary background. Section 3.2 theoretically analyzes the Bayesian noisy self-supervision.
Section 3.3 explains our algorithm and analyzes its time complexity.

3.1 Notations and Preliminaries

Given an undirected attributed graph G = (V , E), where V = {v1, v2, . . . , vN } denotes the set
of vertices, N is the number of vertices in G, and E ⊆ V × V denotes the set of edges between
vertices. We denoteA ∈ R

N×N as symmetric adjacency matrix andX ∈ R
N×d as the feature

matrix, where d is the number of features for each vertex. We define the label-scarce graph
as an extreme case in which all ground-truth labels, hereby referred to as latent labels of the
vertices Z ∈ R

N×1, are unobserved. We argue that manual annotation is a potential solution
to this problem but human annotation unavoidably brings into noises [26]. Another potential
solution is to use a secondary or weak classifier to label the vertices with pseudo-labels. This
solution also yields noisy labels; furthermore, such a solution is vulnerable to adversarial
attacks. We useY ∈ R

N×1 to denote the manual-annotated (or auto-generated) noisy labels,
which are observed for all nodes (train and test). Our task is to defend GCN-based node
classification when its noisy labels (observed) deviate from its latent labels (unobserved).
However, we assume that the entries of both Y and Z take values from the same closed
category set. Below, we first discuss the variant of graph convolutional networks (GCNs)
that we consider for our task.

The most representative GCN proposed by [24] is our preferred GCNs’ variant. The
layer-wise propagation of this GCN is presented as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(1)

InEquation (1), Ã = A+IN , D̃ = D+IN , where IN is the identitymatrix andDi,i = ∑
j Ai, j

is the diagonal degree matrix. H(l) ∈ R
N×d is the nodes hidden representation in the l-th

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Fig. 1 The diagram of Bayesian noisy self-supervision (V , Z andY denote the nodes, the latent labels, and the
noisy labels, respectively. φ denotes the conditional label transition matrix. α denotes the Dirichlet parameter.
N and K denote the number of nodes and classes, respectively.)

layer, where H(0) = X. W(l) is the weight matrix in the l-th layer. σ(·) denotes a non-linear
activation function, such as ReLU.

In the K-class node classification task, we denote zn as the latent label of node vn and yn
as the corresponding noisy label (ynk is a one-hot vector representation of yn). In our setting,
the GCN can be trained by the following loss function L:

L = − 1

N

N∑
n=1

L(yn, fθ (vn)) = − 1

NK

N∑
n=1

K∑
k=1

ynk ln fθ (vnk) (2)

where fθ (·) = so f tmax(H(l)) is the prediction of node classifier parameterized by θ .
Our idea to build a robust GCN-based node classifier is to use label transition, in which

a transition matrix of size K × K is learned, which reflects a mapping from Y to Z. We
represent such a matrix by φ (the same term is also used to denote a label to label mapping
function). Under the presence of φ, the loss function L in Equation (2) can be rewritten as
follows:

L = − 1

N

N∑
n=1

L(yn, φ−1 ◦ fθ (vn)) (3)

However, learning accurate φ and fθ is a difficult task as the latent labels of the nodes are not
available. So, in our method, the φ and fθ are iteratively updated to approximate the perfect
one by using the Bayesian framework.

3.2 Bayesian Noisy Self-supervision

As shown in the plate diagram of Bayesian noisy self-supervision (Fig. 1), the unobserved
latent labels (Z) depend on the node features,whereas the observed noisy labels (Y) depend on
bothZ and the conditional label transitionmatrix, φ, modeled by K multinomial distributions
with a Dirichlet prior parameterized by α.

The latent label of node vn , zn ∼ P (· | vn), where P (· | vn) is a Categorical distribution
modeled by the node classifier fθ (vn). The noisy label yn ∼ P

(· | φzn
)
, where φzn is the

parameter of Categorical distribution P
(· | φzn

)
. The conditional label transition matrix

φ = [φ1, φ2, , φK]T ∈ R
K×K consists of K transition vectors. The k-th transition vector

φk ∼ Dirichlet(α), where α is the parameter of Dirichlet distribution. The goal of our
label transition is to obtain an updated P (· | vn) by using Bayesian noisy self-supervision so
that the inferred label of given node sampled from this updated distribution is identical to
the latent label of that node as much as possible.

According to Fig. 1, the dependency of latent labels can be formulated as follows:

P (Z | V,Y;α) = P (Z | V,Y, φ)P (φ;α) (4)

123

J. Zhuang, M. A. Hasan

where the posterior of Z which is conditioned on the nodes V , the noisy labels Y, and the
Dirichlet parameter α.

The posterior of Z can be deduced by Bayes’ theorem as follows:

P (Z | V,Y;α) =
∫

φ

K∏
k=1

P (φk;α)

N∏
n=1

P (zn | vn, yn, φ) dφ

=
∫

φ

K∏
k=1

P (φk;α)

N∏
n=1

P (zn | vn)P (yn | zn, φ)

P (yn | vn)
dφ

(5)

We assume the Dirichlet distribution is symmetric, i.e., the parameter vector α has the
same value to all elements. Thus, Equation (5) can be further deduced as follows:

P (Z | V,Y;α) =
∫

φ

K∏
k=1

Γ
(∑K

k′ αk′
)

∏K
k′ Γ (αk′)

K∏
k′

φ
αk′−1
kk′

N∏
n=1

P (zn | vn)

P (yn | vn)

N∏
n=1

φznyn dφ

=
N∏

n=1

P (zn | vn)

P (yn | vn)

∫

φ

K∏
k=1

Γ
(∑K

k′ αk′
)

∏K
k′ Γ (αk′)

K∏
k′

φ
αk′−1
kk′

N∏
n=1

φznyn dφ

(6)

where the term
∏N

n=1
P(zn |vn)
P(yn |vn) is constant w.r.t. φ, and hence we take it out of the integration.

We simplify this term as CST in the following deduction.
According to the conjugation property between the Multinomial distribution and the

Dirichlet distribution, Equation (6) can be deduced as follows:

P (Z | V,Y;α) = CST
∫

φ

K∏
k=1

Γ
(∑K

k′ αk′
)

∏K
k′ Γ (αk′)

K∏
k′

φ
Ckk′+αk′−1
kk′ dφ

= CST
K∏

k=1

Γ
(∑K

k′ αk′
)

∏K
k′ Γ (αk′)

K∏
k=1

∏K
k′ Γ (αk′ + Ckk′)

Γ
(∑K

k′ (αk′ + Ckk′)
)

(7)

Here we denote the confusion matrix between the node prediction and the noisy labels as C,
where

∑K
k

∑K
k′ Ckk′ = N . The term

∏N
n=1 φznyn is expressed as

∏K
k

∏K
k′ φ

Ckk′
kk′ so that we

can integrate the terms based on the aforementioned conjugation property.
Unfortunately, Eq. (7) can not directly be employed to infer the label. Instead, we apply

Gibbs sampling here to approximate our goal. According to Gibbs sampling, for each time
we sample zn by fixing n-th dimension in order to satisfy the detailed balance condition on
the assumption of Markov chain [1]. Combined with Equation (7) and the recurrence relation
of Γ function, Γ (n + 1) = nΓ (n), we sample a sequence of zn as follows:

P
(
zn | Z¬zn ,V,Y;α

)
= P (Z | V,Y;α)

P
(
Z¬zn | V,Y;α

)

= P (zn | vn)

P (yn | vn)

αyn + C¬zn
znyn∑K

k′
(
αk′ + C¬zn

znk′
)

∝ P (zn | vn)
αyn + C¬zn

znyn∑K
k′

(
αk′ + C¬zn

znk′
)

(8)

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Fig. 2 The workflow of Bayesian graph noisy self-supervision (GraphNS) (The latent labels represent the
ground-truth labels, which cannot be observed (White color). The noisy labels are manually annotated, which
can be observed (Gray color).)

where we denote Z¬zn as the subset of Z that removes statistic zn . In the last row of Eq.
(8), the first term P (zn | vn) is a categorical distribution of labels for the node vn modeled
by fθ . We use the term P (Z | V) ∈ R

N×K to denote the same over all the nodes. Note that
P (Z | V) ∈ R

N×1 in this paper denotes the predicted labels. Whereas the second term repre-
sents the conditional label transition which is obtained from the posterior of the multinomial
distribution corresponding to label transition from yn to zn . We use Eq. (8) to sample the
inferred label, zn , which becomes the node vn’s label for retraining fθ . Also, φ is updated
through Bayesian inference in each iteration. Such process is repeated for a given number
of epochs with the expectation that subsequent inferred label can approximate to the latent
label.

3.3 GraphNS Algorithm and Pseudo-code

The total process of GraphNS is displayed in Fig. 2. Given an undirected attribute
graph, GraphNS classifies the nodes and generates categorical distribution P (Z | V) ∈
R

N×K at first. After that, GraphNS applies Gibbs sampling to sample the inferred labels
P (Z | V,Y;α) ∈ R

N×1 and updates the label transition matrix φ parameterized by α. The
information of V is represented by bothA andX. Simultaneously, the node classifier is itera-
tively re-trained to update P (Z | V). The inference will ultimately converge, approximating
the inferred labels P (Z | V,Y;α) to the latent labels Z as close as possible. In brief, the goal
of GraphNS is to sample the inferred labels by supervising the categorical distribution based
on dynamic conditional label transition and ultimately approximates the inferred labels to
the latent labels as close as possible.

123

J. Zhuang, M. A. Hasan

Algorithm 1: Graph Noisy Self-supervision
Input: Graph Gtrain and Gtest , which contain corresponding symmetric adjacency matrix A, feature

matrix X and noisy labels Y, Node classifier fθ , The number of warm-up steps WS, The number
of epochs for inference Epochs

1 Train fθ by Equation (2) on Gtrain ;
2 Generate categorical distribution P (Z | V) by fθ ;
3 Compute the warm-up label transition matrix φ′ based on Gtrain ;
4 Define the inferred labels P (Z | V,Y; α) and the dynamic label transition matrix φ based on Gtest ;
5 for step ← 1 to Epochs do
6 if step < WS then
7 Sample zn with warm-up φ′ by Eq. (8);
8 end
9 else

10 Sample zn with dynamic φ by Eq. (8);
11 end
12 Update dynamic φ, P (Z | V,Y; α), and retrain fθ ;
13 end
14 return P (Z | V,Y; α) and Dynamic φ;

The pseudo-code of GraphNS is shown in Algorithm (1). Training: GraphNS trains
the node classifier fθ on the train graph Gtrain at first (line 1) and then generates categorical
distributionP (Z | V) by fθ (line 2). Inference:Before the inference, GraphNS first computes
a warm-up label transition matrix φ′ by using the prediction over the train graph (line 3)
and then defines (creates empty spaces) the inferred labels P (Z | V,Y;α) and the dynamic
label transition matrix φ based on the test graph Gtest (line 4). In the warm-up stage of the
inference, GraphNS samples zn with the warm-up label transition matrix φ′ (line 7), which
is built with the categorical distribution of fθ and the noisy labels on the train graph. The
categorical distributions of both the train graph and the test graph should have high similarity
if both follow a similar distribution. Thus, the warm-up φ′ is a keystone since subsequent
inference largely depends on this distribution. After the warm-up stage, GraphNS samples zn
with the dynamic φ (line 10). This dynamic φ updates in every epoch with current sampled
zn and corresponding yn ∈ Y. Simultaneously, the inferred labels P (Z | V,Y;α) is also
updated based on the before-mentioned zn whereas the node classifier is iteratively retrained
(line 12). The inference will ultimately converge, approximating the inferred labels to the
latent labels as close as possible. Note that both the train graph and the test graph contain
corresponding symmetric adjacency matrix A, feature matrix X, and noisy labels Y. The
categorical distributions of the test graph may change abruptly when this graph is under
perturbation since the original distribution in this graph is being perturbed. In this case,
GraphNS can also help recover the original categorical distribution by dynamic conditional
label transition.

According to Algorithm (1), GraphNS applies Gibbs sampling via Eq. (8) inside the
FOR loop. The time complexity of the sampling isO(Ntest × K + K 2) since element-wise
multiplication only traverses the number of elements in matrices once, where Ntest denotes
the number of nodes in the test graph. In practice, the number of test nodes is far more than
the number of classes, i.e., N 	 K . So, the time complexity of this sampling operation is
approximately equal to O(Ntest). Hence, the time complexity of inference except the first
training (line 1) isO(Epochs×Ntest), where Epochs is the number of epochs for inference.

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Table 1 Statistics of six public
datasets (|V|, |E |, |F |, and |C |
denote the number of nodes,
edges, features, and classes,
respectively. Avg.D denotes the
average degree of test nodes.)

Dataset |V| |E | |F | |C | Avg.D

Cora 2708 10,556 1433 7 3.85

Citeseer 3327 9228 3703 6 2.78

Pubmed 19,717 88,651 500 3 4.49

AMZcobuy 7650 287,326 745 8 32.32

Coauthor 18,333 327,576 6805 15 10.01

Reddit 232,965 114,615,892 602 41 487.48

4 Experiments

In this section, we present and analyze experimental results as follows. At first, we study
how different variants of GCNs (spectral and spatial) node classifiers benefit from noisy self-
supervision, under different noise concentrations on the label-scarce graph. Furthermore,
we perform investigations on how noisy self-supervision defends node classifiers against
adversarial attacks. Finally, we analyze parameters and conduct an ablation study on our
model.

4.1 Experimental Settings

Our proposed model is evaluated on six datasets in Table 1.Cora,Citeseer, and Pubmed are
famous citation graph data [33]. AMZcobuy comes from the photo segment of the Amazon
co-purchase graph [17,35], where nodes represent the products, whereas edges indicate that
two products are frequently bought together. Product reviews are encoded by bag-of-words
as the feature. The node label is the product category. Coauthor is co-authorship graphs of
computer science based on theMicrosoftAcademicGraph from theKDDCup2016 challenge
1. Each Node represents one author. Two nodes are connected if they are co-authors of one
paper. The feature represents all paper keywords for this author. The node label is the most
active research area for this author.Reddit dataset is constructed by connecting Reddit posts
if the same user comments on both posts [14]. The node label is the community that this post
belongs to. For each post, its feature vector includes the embedding of title and comments,
score, and the number of comments.

For all six datasets, the percentage of train, validation, and test partition comprise 40%,
30%, and 30% of the nodes, respectively. In the training phase, all node classifiers converge
within 200 epochs for training. Thus, we set the number of training epochs as 200. To generate
noisy labels, we randomly replace the ground-truth label of a node with another label, chosen
uniformly. To implement the adversarial attacks, we execute non-targeted node-level direct
evasion attacks [61] on the edges and features (L&F) of the victim nodes, whereas the trained
node classifier remains unchanged. The attacker randomly selects 20% of the test nodes as
victims. Similar to [53], the intensity of perturbation n pert is set to be 2 (for Cora, Citeseer,
and Pubmed), 5 (for AMZcobuy and Coauthor), and 10 (for Reddit), respectively. The ratio of
n pert between applying on links and applying on features is 1 : 10. For example, the attacker
applies 2 perturbations on links and 20 perturbations on features for L&F . The noise ratio nr
is 0.1 here. We run each experiment five times and present its mean and standard deviation.

1 https://www.kdd.org/kdd-cup/view/kdd-cup-2016.

123

https://www.kdd.org/kdd-cup/view/kdd-cup-2016

J. Zhuang, M. A. Hasan

To evaluate the defending performance, we compare our proposed model against six
popular defending methods and present the hyper-parameters below. For reproducibility, we
maintain the same denotation for each competingmethod as the corresponding original paper.
The competing models are trained by Adam optimizer with 200 epochs.

• AdvTrain [43,53] assigns pseudo labels to generated adversarial samples and then
retrains the node classifier with both noisy labeled nodes and adversarial nodes. To
implement this adversarial training method, we first generate the adversarial samples by
L&F . The number of adversarial samples is equal to 10% of victim nodes. After that, we
add up these generated adversarial samples into the training set and then retrain the node
classifier. Finally, we evaluate the defending result of adversarial training by implement-
ing L&F on the victim nodes. The approach of adversarial training can be formulated
as follows:

Lnoisy = L(Ynoisy, fθ (Ã,X)),

Ladv = L(Ypseudo, fθ (A
′,X′)),

θ∗ = argmin
θ

(Lnoisy + Ladv

)
,

(9)

where Ynoisy , Ypseudo are the corresponding labels to compute loss functions, and A′,
X′ are perturbed adjacency, feature matrices generated by the attacking algorithm.

• GNN-Jaccard [45] preprocesses the graph by eliminating suspicious connections, whose
Jaccard similarity of node’s features is smaller than a given threshold. The similarity
threshold for dropping edges is 0.01. The number of hidden units is 16. The dropout rate
is 0.5.

• GNN-SVD [8] proposes another preprocessing approach with low-rank approximation
on the perturbed graph to mitigate the negative effects from high-rank attacks, such as
Nettack [61]. The number of singular values and vectors is 15. The number of hidden
units is 16. The dropout rate is 0.5.

• GRAND [10] proposes random propagation and consistency regularization strategies to
address the issues of over-smoothing and non-robustness of GCNs. We follow the same
procedure to tune the hyper-parameters. The optimal hyper-parameters of GRAND in
this paper are reported in Table 2.

• SelfGNN [23] introduces a contrastive self-supervised approach for GCNs that leverages
Batch Normalization and requires no explicit negative sampling. The number of units
for each layer is 512 and 128, respectively. The dropout rate is 0.2. The learning rate is
1e-4. For the GAT model, the number of heads for each layer is 8 and 1, respectively.

• GMNN[30]models the joint label distributionwith a conditional randomfield, which can
be effectively trained with the variational EM algorithm. We apply RMSprop optimizer
on Cora and Citeseer with learning rate lr = 0.05 and alternatively use Adam optimizer
on the rest datasets with learning rate lr = 0.01. The decay rate is 5e-4. The number of
hidden units is 16. The input dropout rate is 0.5. For the rest of the hyper-parameters, we
follow the default settings in the paper [30].

Extra details about reproducibility are described in Appendix.

4.2 Node Classification Using GraphNS

Can node classifiers benefit from noisy self-supervision on the label-scarce graph? In this
experiment, we study how node classifiers benefit from noisy self-supervision over two
groups of popular methods, spectral methods (GCN [24], SGC [44]) and spatial methods

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Table 2 Hyper-parameters of GRAND in this paper

Hyper-parameters Cora Citeseer Pubmed AMZcobuy Coauthor Reddit

DropNode probability 0.5 0.5 0.5 0.5 0.5 0.6

Propagation step 8 2 5 5 5 5

Data augmentation times 4 2 4 3 3 4

CR loss coefficient 1.0 0.7 1.0 0.9 0.9 1.0

Sharpening temperature 0.5 0.3 0.2 0.4 0.4 0.5

Learning rate 0.01 0.01 0.2 0.2 0.2 0.2

Early stopping patience 200 200 100 100 100 100

Hidden layer size 32 32 32 32 32 32

L2 weight decay rate 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Dropout rate in input layer 0.5 0.0 0.6 0.6 0.6 0.6

Dropout rate in hidden layer 0.5 0.2 0.8 0.5 0.5 0.6

(GraphSAGE [14],GAT [41]), across six public datasets. As presented inTable 3,we compare
the test accuracy of these node classifiers between the original performance Orig. and the
performance after noisy self-supervisionNS under different noise ratios nr = [0.5, 0.3, 0.1],
where the value of noise ratio indicates the fraction of vertices, whose label has been replaced.

As seen in Table 3, as expected, the accuracy increases as the noise ratio decreases.
According to the result, all node classifiers benefit from GraphNS, often substantially when
the noise ratio is small. However, node classifiers may sometimes be weakened when (1 −
nr) is much lower than the original accuracy in some cases. For example, GraphNS is
weakened by using the noisy labels (nr = 0.5) onCiteseer.We argue thatGraphNS iteratively
updates the predicted labels with the inferred labels, whereas the inferred labels are obtained
from Gibbs sampling based on both the updated multinomial distribution and the noisy
labels. However, the accuracy of the inferred labels may get worse if (1 − nr) is much
lower than that of the predicted labels. We affirmatively observe that GraphNS can stably
achieve superior improvement when (1−nr) is not lower than the original accuracy. We also
observe that GraphSAGE achieves the best classification performance on Cora, Citeseer, and
Pubmed whereas GCN achieves that on AMZcobuy, Coauthor, and Reddit. We argue that
the difference is caused by the degree of nodes. Compared to GCN, which applies 1-order
polynomial on layer-wise graph convolution, GraphSAGE aggregates features from fixed-
size local neighbors of the current node. Such aggregation may lose more information when
the degree of nodes increases. That is to say, GCN can outperform GraphSAGE when the
graph is denser (higher degrees of nodes).

4.3 GraphNS Defends Node Classifiers

Can noisy self-supervision defend node classifiers from adversarial attacks?We investigate
howGraphNS defends node classifiers against Nettack [61]. In this investigation, we compare
the defending performance of GraphNS against the competing methods and visualize the
defending results on Cora, Citeseer, and Pubmed as examples.

In Table 4, we highlight the best performance for each dataset. All node classifiers origi-
nally have comparable performance. After the adversarial attacks, the results explicitly state
that GraphNS achieves robust defending results on top of all node classifiers across six public

123

J. Zhuang, M. A. Hasan

Ta
bl
e
3

In
ve
st
ig
at
io
n
ab
ou
th

ow
no
de

cl
as
si
fie
rs
f θ

be
ne
fit

fr
om

G
ra
ph

N
S
un

de
r
di
ff
er
en
tn

oi
se

ra
tio

s
nr

(O
ri
g.
an
d
N
S
de
no
te
th
e
ac
cu
ra
cy

be
fo
re
/a
ft
er

no
is
y
se
lf
-s
up
er
vi
si
on
,

re
sp
ec
tiv

el
y.
)

Te
st
A
cc

(%
)

nr
C
or
a

C
ite

se
er

Pu
bm

ed
A
M
Z
co
bu
y

C
oa
ut
ho

r
R
ed
di
t

O
ri
g.

N
S

O
ri
g.

N
S

O
ri
g.

N
S

O
ri
g.

N
S

O
ri
g.

N
S

O
ri
g.

N
S

G
C
N

0.
5

75
.6
5

76
.2
6

56
.4
6

58
.5
5

76
.6
4

81
.4
6

90
.7
2

89
.1
5

91
.3
5

73
.0
9

92
.5
8

87
.7
2

0.
3

77
.8
6

87
.0
9

66
.1
7

76
.7
8

80
.5
4

86
.4
3

92
.1
1

95
.1
6

92
.2
5

94
.0
9

92
.8
3

95
.0
1

0.
1

83
.0
3

93
.8
5

69
.5
7

93
.0
9

82
.6
4

94
.2
9

93
.1
2

97
.5
6

92
.2
9

97
.7
3

93
.4
1

98
.1
4

SG
C

0.
5

78
.3
5

82
.7
8

62
.2
6

59
.4
6

77
.8
4

84
.7
5

85
.7
5

87
.7
6

89
.9
1

69
.6
7

88
.7
6

82
.7
4

0.
3

83
.3
9

88
.3
2

69
.3
7

76
.6
7

82
.3
0

87
.5
3

87
.2
3

93
.6
8

90
.4
7

94
.9
8

89
.9
7

91
.8
2

0.
1

84
.8
7

94
.4
7

70
.4
7

93
.4
9

83
.7
4

93
.8
5

90
.2
0

96
.5
6

91
.3
6

97
.4
1

91
.0
3

96
.5
9

G
ra
ph
SA

G
E

0.
5

78
.6
0

79
.7
1

62
.0
6

58
.5
6

79
.9
0

86
.5
3

90
.2
8

75
.4
7

90
.7
1

82
.6
2

92
.5
3

93
.8
1

0.
3

81
.5
5

88
.6
8

70
.6
7

76
.6
8

84
. 1
1

89
.6
6

91
.7
6

94
.8
6

91
.7
6

82
.8
0

92
.7
8

95
.9
4

0.
1

85
.8
5

94
.7
1

73
.0
7

93
.7
9

85
.0
9

96
.0
4

92
.5
1

97
.5
5

92
.2
8

96
.7
8

92
.9
9

97
.4
8

G
A
T

0.
5

77
.1
2

74
.7
8

61
.8
6

65
.2
6

78
.1
8

83
.6
5

89
.5
9

70
.9
4

90
.8
0

78
.8
2

92
.4
4

93
.6
7

0.
3

80
.8
1

81
.6
7

69
.6
7

81
.8
8

81
.3
2

86
.1
0

92
.3
7

94
.6
8

91
.5
6

94
.7
4

92
.5
7

94
.1
5

0.
1

85
.3
6

94
.0
7

70
.6
7

92
.5
9

82
.2
2

93
.9
3

93
.0
2

97
.5
0

92
.0
1

96
.9
5

93
.1
2

97
.6
1

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Ta
bl
e
4

C
om

pa
ri
so
n
of

th
e
de
fe
nd

in
g
re
su
lts

(t
es
ta
cc
ur
ac
y)

be
tw

ee
n
ou

r
m
od

el
,G

ra
ph

N
S,

an
d
th
e
co
m
pe
tin

g
m
et
ho

ds
(O

ri
g.
/A

tta
ck

de
no

te
th
e
te
st
ac
cu
ra
cy

be
fo
re
/a
ft
er

th
e

no
n-
ta
rg
et
ed

at
ta
ck
s
(L

&
F
).
)

Te
st
A
cc

(%
)

C
or
a

C
ite

se
er

Pu
bm

ed
A
M
Z
co
bu
y

C
oa
ut
ho

r
R
ed
di
t

G
C
N

O
ri
g.

81
.6
9(

±2
.8
7)

70
.5
2(

±0
.8
5)

81
.9
3(

±0
.4
1)

92
.3
4(

±1
.0
6)

91
.8
4(

±0
.9
0)

93
.7
2(

±0
.6
8)

A
tta
ck

23
.4
6(

±1
.3
2)

36
.3
5(

±3
.5
4)

57
.0
6(

±3
.2
7)

45
.2
5(

±3
.1
5)

36
.7
7(

±3
.2
1)

49
.2
7(

±4
.2
8)

A
dv

T
ra
in

44
.4
9(

±3
.1
3)

49
.2
2(

±1
.9
6)

60
.4
0(

±3
.1
1)

58
.9
7(

±2
.3
4)

61
.4
4(

±1
.6
0)

66
.4
1(

±2
.3
0)

G
N
N
-J
ac
ca
rd

73
.1
2(

±2
.4
0)

69
.1
7(

±2
.0
5)

79
.3
2(

±1
.4
3)

80
.6
4(

±2
.4
9)

67
.4
1(

±1
.7
1)

75
.3
5(

±1
.8
9)

G
N
N
-S
V
D

66
.5
2(

±1
.9
1)

64
.2
8(

±2
.8
0)

72
.5
4(

±1
.3
1)

76
.7
9(

±1
.6
8)

63
.4
5(

±1
.0
9)

70
.6
3(

±3
.3
0)

G
R
A
N
D

28
.9
5(

±3
.8
6)

61
.7
2(

±5
.4
4)

75
.3
9(

±1
.8
1)

52
.8
4(

±1
2.
08

)
64

.7
9(

±7
.9
9)

66
.9
9(

±6
.4
8)

Se
lf
G
N
N

68
.9
5(

±1
.6
4)

55
.7
2(

±1
.7
7)

69
.5
8(

±2
.2
3)

63
.2
5(

±1
.8
4)

62
.4
6(

±1
.3
7)

78
.0
1(

±1
.7
8)

G
M
N
N

68
.3
9(

±3
.8
6)

65
.4
5(

±4
.0
4)

81
.4
9(

±1
.4
4)

81
.5
9(

±3
.2
1)

69
.1
9(

± 1
.4
6)

77
.5
9(

±2
.8
7)

G
ra
ph
N
S

81
.5
5(

±2
.2
4)

70
.5
4(

±1
.3
6)

91
.6
2(

±1
.9
9)

88
.8
2(

±2
.0
7)

72
.0
7(

±2
.4
6)

86
.8
7(

±2
.8
6)

SG
C

O
ri
g.

83
.7
5(

±2
.5
9)

69
.8
5(

±0
.8
2)

84
.7
5(

±1
.3
8)

91
.0
0(

±1
.2
3)

90
.9
8(

±1
.2
3)

91
.7
6(

±0
.4
9)

A
tta
ck

56
.9
9(

±1
.2
7)

45
.2
3(

±7
.6
9)

4.
24

(±
1.
20

)
43

.0
0(

±5
.4
2)

43
.7
0(

±4
.9
8)

40
.0
9(

±2
.4
0)

A
dv

T
ra
in

64
.9
9(

±3
.4
2)

63
.4
2(

±2
.8
5)

46
.1
3(

±8
.5
4)

61
.4
0(

±4
.1
2)

71
.3
2(

±4
.7
6)

64
.5
6(

±3
.4
6)

G
N
N
-J
ac
ca
rd

80
.5
2(

±2
.4
9)

78
.2
7(

±2
.9
4)

63
.8
6(

±2
.8
2)

77
.7
2(

±2
.1
5)

75
.1
6(

±3
.6
0)

76
.2
1(

±1
.9
2)

G
N
N
-S
V
D

61
.4
2(

±3
.0
8)

69
.9
1(

±2
.8
5)

58
.0
5(

±2
.9
8)

73
.5
7(

±2
.4
6)

68
.9
4(

±3
.4
8)

70
.1
9(

±2
.8
8)

G
R
A
N
D

28
.7
5(

±3
.9
0)

69
.2
0(

±1
.1
7)

71
.6
4(

±7
.2
2)

50
.0
7(

±7
.2
3)

65
.8
1(

±1
1.
22

)
66

.2
1(

±6
.7
2)

Se
lf
G
N
N

64
.7
7(

±1
.2
8)

51
.3
3(

±1
.8
1)

67
.3
4(

±2
.1
1)

56
.1
5(

±2
.3
7)

66
.0
3(

±1
.6
5)

78
.9
8(

±1
.5
4)

G
M
N
N

75
.4
2(

±2
.6
3)

80
.6
4(

±2
.9
5)

68
.8
6(

±1
.3
9)

78
.4
6(

±1
.7
2)

76
.8
6(

±2
.6
4)

78
.3
7(

±3
.8
6)

G
ra
ph
N
S

84
.5
5(

±3
.7
8)

86
.2
2(

±4
.2
2)

71
.8
6(

±2
.9
9)

86
.4
6(

±2
.8
3)

83
.1
3(

±3
.7
9)

83
.9
9(

±1
.9
6)

123

J. Zhuang, M. A. Hasan

Ta
bl
e
4

co
nt
in
ue
d

Te
st
A
cc

(%
)

C
or
a

C
ite

se
er

Pu
bm

ed
A
M
Z
co
bu
y

C
oa
ut
ho

r
R
ed
di
t

G
ra
ph

SA
G
E

O
ri
g.

84
.1
5(

±1
.1
6)

72
.3
6(

±1
.0
9)

83
.0
5(

±3
.1
7)

93
.0
4(

±0
.7
9)

91
.4
7(

±0
.8
4)

93
.1
2(

±0
.6
5)

A
tta
ck

44
.0
3(

±7
.5
5)

28
.9
8(

±5
.1
9)

3.
95

(±
1.
44

)
42

.5
7(

±6
.3
2)

43
.8
3(

±5
.0
2)

51
.2
5(

±2
.6
1)

A
dv

T
ra
in

48
.4
3(

±7
.7
1)

44
.4
9(

±2
.9
4)

45
.7
4(

±7
.7
4)

56
.4
9(

±6
.1
2)

73
.5
6(

±3
.6
9)

67
.2
7(

±3
.4
8)

G
N
N
-J
ac
ca
rd

79
.9
6(

±2
.5
7)

76
.1
9(

±2
.9
5)

62
.2
5(

±2
.6
5)

76
.7
2(

±3
.1
5)

74
.2
2(

±2
.2
9)

75
.6
2(

±2
.9
6)

G
N
N
-S
V
D

61
.0
3(

±3
.2
8)

63
.9
0(

±2
.5
2)

59
.7
3(

±2
.9
0)

72
.4
2(

±3
.3
1)

68
.6
9(

±2
.0
7)

69
.6
1(

±2
.0
8)

G
R
A
N
D

28
.5
5(

±3
.5
7)

68
.5
4(

±3
.0
6)

66
.3
9(

±1
0.
10

)
43

.6
7(

±4
.1
8)

63
.7
4(

±8
.2
9)

68
.5
1(

±3
.0
2)

Se
lf
G
N
N

65
.4
3(

±1
.5
9)

49
.8
8(

±1
.9
6)

64
.9
5(

±1
.5
1)

52
.1
2(

±1
.4
4)

69
.2
8(

±1
.4
7)

80
.8
9(

±1
.9
6)

G
M
N
N

75
.1
0(

±2
.9
8)

75
.2
0(

±1
.8
8)

66
.3
5(

±1
.9
1)

76
.1
7(

±1
.9
2)

75
.5
7(

± 1
.4
0)

77
.9
9(

±2
.1
3)

G
ra
ph
N
S

84
.9
4(

±1
.6
2)

79
.1
7(

±2
.1
3)

69
.7
9(

±1
.5
2)

85
.3
3(

±3
.6
9)

84
.6
6(

±2
.3
8)

85
.1
9(

±2
.1
7)

G
A
T

O
ri
g.

85
.7
5(

±2
.6
0)

72
.7
0(

±1
.5
5)

82
.4
8(

±2
.8
0)

92
.4
2(

±0
.5
6)

91
.9
8(

±0
.5
3)

92
.2
9(

±0
.4
1)

A
tta
ck

44
.4
5(

±2
.3
8)

29
.8
1(

±4
.1
1)

5.
93

(±
1.
62

)
42

.9
6(

±3
.5
9)

44
.6
4(

±3
.6
1)

52
.1
7(

±2
.6
4)

A
dv

T
ra
in

65
.3
2(

±1
.7
4)

43
.8
6(

±3
.0
3)

42
.0
9(

±3
.1
5)

53
.3
7(

±2
.5
4)

72
.2
3(

±3
.3
1)

68
.0
7(

±2
.3
8)

G
N
N
-J
ac
ca
rd

72
.3
6(

±2
.3
9)

72
.3
6(

±2
.0
5)

84
.7
3(

±1
.3
9)

81
.0
6(

±2
.8
2)

78
.8
7(

±2
.8
6)

79
.7
3(

±3
.5
5)

G
N
N
-S
V
D

70
.7
8(

±3
.7
9)

60
.3
1(

±3
.2
5)

79
.4
3(

±4
.2
9)

76
.1
3(

±2
.8
3)

71
.6
1(

±2
.7
1)

72
.6
3(

±2
.2
5)

G
R
A
N
D

32
.0
2(

±3
.6
2)

61
.0
4(

±3
.0
1)

48
.5
2(

±4
.2
3)

44
.6
0(

±1
.2
0)

62
.7
8(

±7
.6
8)

65
.6
7(

±4
.1
3)

Se
lf
G
N
N

65
.3
7(

±1
.9
2)

64
.0
3(

±1
.6
8)

70
.9
9(

±2
.3
2)

74
.8
7(

±2
.2
2)

78
.2
3(

±2
.2
4)

81
.5
7(

±2
.1
9)

G
M
N
N

70
.5
8(

±3
.5
3)

62
.7
1(

±1
.0
7)

84
.3
4(

±1
.6
3)

73
.9
4(

±2
.0
1)

77
.0
1(

±2
.2
0)

79
.3
4(

±2
.7
2)

G
ra
ph
N
S

86
.2
1(

±3
.1
7)

76
.2
3(

±2
.9
4)

87
.5
4(

±0
.3
8)

85
.6
6(

±1
.8
3)

85
.2
6(

±2
.1
8)

86
.0
8(

±1
.8
7)

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Cora

5

3

1

0

2

4

Annotated LabelsBefore Perturbation After Perturbation Defending Results

5

3

1

0

2

4

Citeseer

5

3

1
0

2

4

6
7

Pubmed

Fig. 3 The confusion matrices (heatmap) of the defending performances on Cora, Citeseer and Pubmed for
GraphNS (nr=0.1) (We apply log-scale to the confusion matrix for fine-grained visualization.)

datasets and also gains superior defense against the competing methods. Such defense recov-
ers the performance after perturbations and even exceeds the original performance in some
cases. We argue that edges of citation graphs may not be always coherent, that is probably
the reason that in the citation graphs GraphSS sometimes outperforms the original perfor-
mance. The extent of recovery may sometimes be influenced by the attacking consequence,
i.e., GraphNS can retrieve higher accuracy when the node classifier undergoes less degrada-
tion. Furthermore, we have several observations on the competing methods. 1) AdvTrain and
GRAND are two fragile defending methods. For AdvTrain, more serious perturbations lead
to a much weaker recovery, which reveals that simply using adversarial samples is insuffi-
cient to obtain a robust classifier. For GRAND, its performance is worse (under Nettack [61])
than what was reported in [10] (under Metattack [60]). One of the reasons for this is that
GRAND assumes that the network satisfies homophily property, and if the input network
does not satisfy such, it may not work well with GRAND. Nettack simultaneously alters the
graph structures and features, which may make the network not satisfy homophily property
leading to poor performance by GRAND. We also notice that GRAND is sensitive to the
parameter’s setting as we spent substantial time tuning the optimal parameters on different
datasets. On the contrary, GraphNS does not assume such network property, and it is also
easy to tune. 2) GNN-SVD presents lower performance compared to GNN-Jaccard across all
datasets because GNN-SVD is designed for targeted attacks rather than non-targeted attacks.
3) SelfGNN achieves stable performance with a relatively lower standard deviation across
all datasets. We argue that leveraging Batch Normalization and feature augmentation may
help recover the accuracy from adversarial perturbations. 4) Both GMNN [30] and Bayesian-
GCNN [57] aim to solve semi-supervised classification problems via Bayesian approaches.
We select GMNN as the competing method and examine its defending performance. The
results successfully verify its capacity of defense.

We also visualize the defending performances for GraphNS (on top of GCN) on Cora,
Citeseer, and Pubmed as examples in Fig. 3. The first three columns present the predic-
tions before perturbation, after perturbation, and our defending results by GraphNS. The last

123

J. Zhuang, M. A. Hasan

Fig. 4 Analysis of the number of warm-up stepsWS (blue curve) and the number of retraining epochs Retrain
(red curve) for GraphNS inference (nr=0.3)

column shows the annotated noisy labels, where nr = 0.1. The visualization clarifies that
GraphNS can recover the prediction as close as that before perturbation.

4.4 Analysis of Parameters

In this experiment, we analyze how the number of warm-up steps WS and the number of
retraining epochs Retrain affects the accuracy. We select GCN as the node classifier and
conduct this analysis on the validation set with nr=0.3. We fix the number of epochs for
inference as 100 since our model can achieve the best performance with this range. We then
apply grid search to look for the optimal values for the above-mentioned parameters, where
WS ∈ [5, 80] and Retrain ∈ [20, 100]. The results turn out that WS, Retrain reach the
optimum nearby 40, and 60, respectively. To display the trend clearly, we fix one parameter
as its optimal value and present another one in a curve. For example, we fix Retrain as 60
and investigate how the validation accuracy changes with differentWS in the blue curve. To
enlarge the difference,we display these curves separately in Fig. 4.Weobserve that both larger
and smallerWS have a negative effect on accuracy. LargerWS means insufficient inference,
whereas smaller WS implies inadequate epochs to build the dynamic label transition matrix
φ. This property also applies to Retrain. Larger Retrain is even harmful to the performance.
In this study, we select the aforementioned optimal values for our model.

Besides the parameters, we also analyze the runtime of GraphNS inference. The second
row of Table 5 presents the average runtime of inference with different WS. It’s expected
that our model has longer runtime on a larger graph. We observe that the standard deviation
for each dataset is stable, which indicates that the runtime stays stable no matter how theWS
changes. In addition, we also present the runtime per 100 nodes in the third row of Table 5.
The result specifies that this unit runtime maintains stability as the size of the graph increases
in most cases, which means that the size of the graph doesn’t affect the speed of inference.
However, the unit runtime does increase slightly as the graph has denser connections. We
argue that the inference gets slower on the denser graph (higher degrees of nodes).

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

Ta
bl
e
5

A
na
ly
si
s
of

th
e
av
er
ag
e
ru
nt
im

e
an
d
th
e
un

it
ru
nt
im

e
(p
er

10
0
no

de
s)
fo
r
G
ra
ph

N
S
in
fe
re
nc
e
w
ith

di
ff
er
en
tW

S
(n
r=

0.
3)

R
un

tim
e
(s
)

C
or
a

C
ite

se
er

Pu
bm

ed
A
M
Z
co
bu
y

C
oa
ut
ho

r
R
ed
di
t

A
ve
ra
ge

15
.1
1(

±0
.9
6)

17
.8
9(

±0
.8
5)

11
9.
34

(±
3.
85

)
58

.6
2(

±4
.4
4)

11
0.
15

(±
2.
89

)
17

94
.9
0(

±3
3.
04

)

U
ni
t

0.
55

8
0.
53

77
0.
60

53
0.
76

63
0.
60

08
0.
77

05

123

J. Zhuang, M. A. Hasan

Fig. 5 Ablation study of GraphNS (on top of GCN) across six graph datasets ({Retrain, No Retrain} denote
whether we retrain the node classifier in each iteration. {Fixed φ, Dynamic φ} denote whether we dynamically
update the transition matrix φ in each iteration.)

4.5 Ablation Study

We conduct an ablation study on top of GCN to illustrate how the label transition matrix
φ and retraining affect the defending performance of our model architecture under four
scenarios. We follow the same procedure as our previous defense experiments and repeat
the experiments five times. According to Fig. 5, we observe that the accuracy has no change
without dynamically updating the transition matrix φ. In the last two scenarios (Dynamic φ),
we notice that retraining the node classifier can help increase the accuracy further. This study
reveals that dynamic transition matrix φ is a crucial component of GraphNS. Retraining can
further promote the robustness of the node classifier with the help of dynamic φ.

4.6 Limitation, Future Probe, and Community Impact

The inference of GraphNS significantly depends on the warm-up transition matrix φ′, which
is built with the categorical distribution on the train graph. Such dependence indicates that
GraphNS can only handle the evasion attacks at this point. In the future, our model can be
improved to defend the poisoning attacks by iteratively updating the noisy labels if necessary.
Besides, we could also use auto-generated labels as noisy labels to supervise the categorical
distribution, which may be used in the label scarcity scenario for self-training purposes.

These potential directions could benefit the GCNs community. On the one hand, most
existing defending methods don’t consider the recovery from the point of node distribution.
In this direction, there are still plenty of low-hanging fruits waiting for us. On the other hand,
incorporating self-supervision into the defense of GCNs is a promising approach. Our model
shows a new alternative path from this perspective.

123

How Does Bayesian Noisy Self-Supervision Defend Graph…

5 Conclusion

In this paper, we first generalize noisy supervision as a subset of self-supervised learning
methods. This generalization regards the annotated noisy label as one kind of self-information
for each node. The robustness of the node classifier can be improved by such self-information.
We then propose a new Bayesian graph noisy self-supervision model, namely GraphNS,
to accomplish this improvement by supervising the categorical distribution of the latent
labels based on dynamic conditional label transition, which follows the Dirichlet distribution.
Extensive experiments demonstrate that GraphNS can enhance node classification against
both label scarcity and adversarial attacks. This enhancement proves to be generalized over
four classic GCNs and is superior to the competing methods across six public graph datasets.

A Implementation

A.1 Hardware and Software

All above-mentioned experiments are conducted on the server with the following configura-
tions:

• Operating System: Ubuntu 18.04.5 LTS
• CPU: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70 GHz
• GPU: NVIDIA Tesla V100 PCIe 16GB
• Software: Python 3.8, PyTorch 1.7.

A.2 Model Architecture and Hyper-parameters

The model architecture of GCNs and hyper-parameters are described in Table 6 and 7,
respectively. We assume the Dirichlet distribution in this paper is symmetric and thus fix α

as 1.0 (a.k.a. flat Dirichlet distribution).

Table 6 Model architecture of GCNs

Model #Hops Aggregator #Heads Activation Dropout

GCN × × × ReLU 0.0

SGC 2 × × × 0.0

GraphSAGE × gcn × ReLU 0.0

GAT × × 3 ReLU 0.0

Table 7 Model hyper-parameters
(#Hidden denotes the number of
neurons in each hidden layer of
GCNs.)

Hyper-parameters Values

#Layers 2

#Hidden 200

Optimizer Adam

Learning Rate 1 × 10−3

123

J. Zhuang, M. A. Hasan

References

1. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin
2. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203
3. Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018) Adversarial attack on graph structured

data. arXiv preprint arXiv:1806.02371
4. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast

localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852
5. Deng Z, Dong Y, Zhu J (2019) Batch virtual adversarial training for graph convolutional networks. arXiv

preprint arXiv:1902.09192
6. Du B, Xinyao T, Wang Z, Zhang L, Tao D (2018) Robust graph-based semisupervised learning for noisy

labeled data via maximum correntropy criterion. IEEE Trans Cybern
7. Du J, Zhang S, Wu G, Moura JM, Kar S (2017) Topology adaptive graph convolutional networks. arXiv

preprint arXiv:1710.10370
8. Entezari N, Al-Sayouri SA, Darvishzadeh A, Papalexakis EE (2020) All you need is low (rank) defending

against adversarial attacks on graphs. In: Proceedings of the 13th International Conference onWeb Search
and Data Mining

9. Feng F, He X, Tang J, Chua TS (2019) Graph adversarial training: Dynamically regularizing based on
graph structure. IEEE Trans Knowl Data Eng

10. Feng W, Zhang J, Dong Y, Han Y, Luan H, Xu Q, Yang Q, Kharlamov E, Tang J (2020) Graph random
neural network for semi-supervised learning on graphs. In: NeurIPS’20

11. Galke L, Vagliano I, Scherp A (2019) Can graph neural networks go “online"? an analysis of pretraining
and inference. arXiv preprint arXiv:1905.06018

12. Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via robust aggregation. Adv
Neural Inf Process Syst, 33

13. Goldberger J, Ben-Reuven E (2017) Training deep neural-networks using a noise adaptation layer. Inter-
national Conference on Learning Representations

14. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances
in neural information processing systems, pp 1024–1034

15. Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning on graphs. In: Inter-
national conference on machine learning, PMLR, pp 4116–4126

16. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019a) Strategies for pre-training graph
neural networks. In: International conference on learning representations

17. Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020a) Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687

18. Hu Z, Fan C, Chen T, Chang KW, Sun Y (2019b) Pre-training graph neural networks for generic structural
feature extraction. arXiv preprint arXiv:1905.13728

19. Hu Z, Dong Y, Wang K, Chang KW, Sun Y (2020b) Gpt-gnn: Generative pre-training of graph neural
networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp 1857–1867

20. Hwang D, Park J, Kwon S, Kim KM, Ha JW, Kim HJ (2020) Self-supervised auxiliary learning with
meta-paths for heterogeneous graphs. arXiv preprint arXiv:2007.08294

21. Jin H, Zhang X (2019) Latent adversarial training of graph convolution networks. In: ICML workshop
on learning and reasoning with graph-structured representations

22. Jin W, Ma Y, Liu X, Tang X, Wang S, Tang J (2020) Graph structure learning for robust graph neural
networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp 66–74

23. Kefato ZT, Girdzijauskas S (2021) Self-supervised graph neural networks without explicit negative sam-
pling. arXiv preprint arXiv:2103.14958

24. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907

25. Miller BA, ÇamurcuM,GomezAJ, ChanK, Eliassi-Rad T (2019) Improving robustness to attacks against
vertex classification. In: MLG Workshop

26. Misra I, Lawrence Zitnick C, Mitchell M, Girshick R (2016) Seeing through the human reporting bias:
Visual classifiers from noisy human-centric labels. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 2930–2939

27. NT H, Jin CJ, Murata T (2019) Learning graph neural networks with noisy labels. arXiv preprint
arXiv:1905.01591

123

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1806.02371
http://arxiv.org/abs/1902.09192
http://arxiv.org/abs/1710.10370
http://arxiv.org/abs/1905.06018
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/1905.13728
http://arxiv.org/abs/2007.08294
http://arxiv.org/abs/2103.14958
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1905.01591

How Does Bayesian Noisy Self-Supervision Defend Graph…

28. Patrini G, Rozza A, Krishna Menon A, Nock R, Qu L (2017) Making deep neural networks robust to
label noise: A loss correction approach. In: Proceedings of the IEEE conference on computer vision and
pattern recognition

29. Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020) Gcc: Graph contrastive
coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp 1150–1160

30. Qu M, Bengio Y, Tang J (2019) Gmnn: Graph markov neural networks. In: International conference on
machine learning, PMLR, pp 5241–5250

31. Reed S, Lee H, Anguelov D, Szegedy C, Erhan D, Rabinovich A (2014) Training deep neural networks
on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596

32. Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020) Self-supervised graph transformer on
large-scale molecular data. Adv Neural Inf Process Syst, 33

33. Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in
network data. AI magazine

34. Shang J, Ma T, Xiao C, Sun J (2019) Pre-training of graph augmented transformers for medication
recommendation. arXiv preprint arXiv:1906.00346

35. Shchur O, Mumme M, Bojchevski A, Günnemann S (2018) Pitfalls of graph neural network evaluation.
Relational Representation Learning Workshop, NeurIPS

36. Sukhbaatar S, Bruna J, Paluri M, Bourdev L, Fergus R (2014) Training convolutional networks with noisy
labels. arXiv preprint arXiv:1406.2080

37. Sun K, Zhu Z, Lin Z (2019) Multi-stage self-supervised learning for graph convolutional networks. arXiv
preprint arXiv:1902.11038

38. Sun L, Dou Y, Yang C, Wang J, Yu PS, Li B (2018) Adversarial attack and defense on graph data: A
survey. arXiv preprint arXiv:1812.10528

39. Tang X, Li Y, Sun Y, Yao H, Mitra P, Wang S (2020) Transferring robustness for graph neural network
against poisoning attacks. In: Proceedings of the 13th international conference on web search and data
mining

40. Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E (2018) Sgr: Self-supervised spectral graph repre-
sentation learning. arXiv preprint arXiv:1811.06237

41. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In:
International conference on learning representations

42. Wang S, Chen Z, Ni J, Yu X, Li Z, Chen H, Yu PS (2019a) Adversarial defense framework for graph
neural network. arXiv preprint arXiv:1905.03679

43. Wang X, Liu X, Hsieh CJ (2019b) Graphdefense: Towards robust graph convolutional networks. arXiv
preprint arXiv:1911.04429

44. Wu F, Zhang T, Souza Jr AHd, Fifty C, Yu T, Weinberger KQ (2019a) Simplifying graph convolutional
networks. arXiv preprint arXiv:1902.07153

45. Wu H, Wang C, Tyshetskiy Y, Docherty A, Lu K, Zhu L (2019b) Adversarial examples on graph data:
Deep insights into attack and defense. arXiv preprint arXiv:1903.01610

46. Xie Y, Xu Z, Zhang J, Wang Z, Ji S (2021) Self-supervised learning of graph neural networks: A unified
review. arXiv preprint arXiv:2102.10757

47. Xu B, Shen H, Cao Q, Qiu Y, Cheng X (2019a) Graph wavelet neural network. arXiv preprint
arXiv:1904.07785

48. Xu K, Hu W, Leskovec J, Jegelka S (2018) How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826

49. Xu K, Chen H, Liu S, Chen PY, Weng TW, Hong M, Lin X (2019b) Topology attack and defense for
graph neural networks: an optimization perspective. arXiv preprint arXiv:1906.04214

50. Yao J,WuH,ZhangY,Tsang IW,Sun J (2019)Safeguardeddynamic label regression for noisy supervision.
Proc AAAI Conf Artif Intell 33:9103–9110

51. Yasunaga M, Liang P (2020) Graph-based, self-supervised program repair from diagnostic feedback. In:
International conference on machine learning, PMLR, pp 10799–10808

52. You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y (2020a) Graph contrastive learning with augmentations.
Adv Neural Inf Process Syst, 33

53. You Y, Chen T,Wang Z, Shen Y (2020b)When does self-supervision help graph convolutional networks?
In: International conference on machine learning, PMLR, pp 10871–10880

54. You Y, Chen T, Shen Y, Wang Z (2021) Graph contrastive learning automated. arXiv preprint
arXiv:2106.07594

55. Zhang A, Ma J (2020) Defensevgae: Defending against adversarial attacks on graph data via a variational
graph autoencoder. arXiv preprint arXiv:2006.08900

123

http://arxiv.org/abs/1412.6596
http://arxiv.org/abs/1906.00346
http://arxiv.org/abs/1406.2080
http://arxiv.org/abs/1902.11038
http://arxiv.org/abs/1812.10528
http://arxiv.org/abs/1811.06237
http://arxiv.org/abs/1905.03679
http://arxiv.org/abs/1911.04429
http://arxiv.org/abs/1902.07153
http://arxiv.org/abs/1903.01610
http://arxiv.org/abs/2102.10757
http://arxiv.org/abs/1904.07785
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1906.04214
http://arxiv.org/abs/2106.07594
http://arxiv.org/abs/2006.08900

J. Zhuang, M. A. Hasan

56. Zhang Y, Khan S, CoatesM (2019a) Comparing and detecting adversarial attacks for graph deep learning.
In: Proc. Representation Learning on Graphs and Manifolds Workshop, Int. Conf. Learning Representa-
tions, New Orleans, LA, USA

57. Zhang Y, Pal S, Coates M, Ustebay D (2019) Bayesian graph convolutional neural networks for semi-
supervised classification. Proc AAAI Conf Artif Intell 33:5829–5836

58. Zheng C, Zong B, Cheng W, Song D, Ni J, Yu W, Chen H, Wang W (2020) Robust graph representation
learning via neural sparsification. In: International conference on machine learning, PMLR, pp 11458–
11468

59. Zhong JX, Li N, KongW, Liu S, Li TH, Li G (2019) Graph convolutional label noise cleaner: Train a plug-
and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition

60. Zügner D, Günnemann S (2019) Adversarial attacks on graph neural networks via meta learning. arXiv
preprint arXiv:1902.08412

61. Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In:
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp 2847–2856

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1902.08412

	How Does Bayesian Noisy Self-Supervision Defend Graph Convolutional Networks?
	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Convolutional Networks
	2.2 Defense of GCNs on Node Classification
	2.3 Learning with Noisy Label

	3 Methodology
	3.1 Notations and Preliminaries
	3.2 Bayesian Noisy Self-supervision
	3.3 GraphNS Algorithm and Pseudo-code

	4 Experiments
	4.1 Experimental Settings
	4.2 Node Classification Using GraphNS
	4.3 GraphNS Defends Node Classifiers
	4.4 Analysis of Parameters
	4.5 Ablation Study
	4.6 Limitation, Future Probe, and Community Impact

	5 Conclusion
	A Implementation
	A.1 Hardware and Software
	A.2 Model Architecture and Hyper-parameters

	References

