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Abstract—Autonomous unmanned aerial vehicle (UAV) systems
have broad applications in surveillance, disaster management,
and search and rescue (SAR) operations. Field deployments of
intelligent multi-UAV systems are heavily constrained by available
power and networking capabilities, and limited computational
processing resources which are needed to reduce large volumes
of on-board sensor data in real-time. In this work, we design
a WearAble Super-Computing Platform (WASP) to address such
challenges associated with multi-UAV deployments in remote
field environments based on a human-in-the-loop (HITL) design.
The WASP system is an advanced edge computing instrument
designed from commodity embedded processing devices inter-
connected through an on-board Ethernet network. Networking
is further extended through wireless networking capabilities to
communicate with UAVs. Computational workloads and storage
are orchestrated as discrete containers across WASP and the
UAVs, which accounts for processor heterogeneity and time-
varying workloads that must adapt dynamically to account
for unpredictable failures of wireless networking in the field.
We use our prototype to demonstrate advantages in terms of
power management, redundancy, robustness, and human-robot
collaboration in challenging field environments.

Index Terms—Artificial Intelligence, Inference, Distributed
Systems, Cyber physical Systems, Edge Computing, Wearable
Computing

I. INTRODUCTION

Autonomous robots have significantly extended human ca-
pabilities for tasks ranging from nano-robots for medical
diagnosis to rovers for space exploration [1], [2]. Unmanned
aerial vehicles (UAVs) in particular have been of significant
interest due to their potential impact in diverse fields such
as transportation, surveillance, defense, agriculture, search
and rescue (SAR), and photography [3]–[8]. However, for
autonomous UAVs (and other agents) to be viable in field
applications, they must overcome critical practical limitations.
Specifically, available on-board power and computational re-
sources are key constraints for autonomous agents, especially
UAVs. With evolving sensors and their ubiquity, management
and concerted aggregation of vast streams of localized data
are essential to meet cognitive demands from the system.
Connectivity and management of big data have emerged as
integral challenges that must be addressed at the system design
level to achieve scalable deployments.

Advancements in machine intelligence are driving shifts
in traditionally human-driven applications through increasing
reliance on autonomy and robotic agents. Modern Search and
Rescue (SAR) stands out as an emerging area that requires
complex interactions and information flow among multiple
agents in a system including human responders, comput-
ers, and robots. The introduction of computing and robotic
agents have not only helped overcome several limitations held
by human-only missions including inaccessibility, situational
awareness, viability, and scalability, but have also enhanced
safety of the human responders in the process [9]–[11]. As
of today, advanced ground station equipment and intelligent
mobile agents have successfully been deployed in real situa-
tions otherwise prohibitive for human-only operations [11]–
[18]. With data generation rates continuing to outpace growth
in processing capability, solutions that leverage intelligent
systems will continue to suffer in terms of collaboration,
viability, and scalability.

In this work, we propose a new multi-agent system for
SAR operations by prototyping a wearable and mobile com-
pute cluster to overcome practical challenges that limit the
capabilities of such a system. The primary objectives behind
developing the mobile compute cluster are:

• Coordination: Enhanced coordination among human re-
sponders and robotic agents in the system by means of
multi-modal data aggregation, information sharing, and
situation-aware fallback mechanisms;

• Computing: A high-performance accelerated surface for
compute-intensive workloads and real-time intelligence
that is scalable and robust for field applications;

• Distribution: Offloading computational and physical pay-
loads from field (aerial) agents to reduce on-board power
footprint.

The following section describes the evolution of multi-agent
systems in SAR and impact of modern computing paradigms
such as distributed and edge computing. Section III defines our
proposed system, including the WASP and interaction among
agents in the system. In Section IV, we quantitatively evaluate
the computational characteristics for our design prototype and
demonstrate its advantages over existing systems.
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II. BACKGROUND

Introduction of unmanned agents, especially UAVs, in SAR
stems from successful deployments in military applications.
The most significant constraints for UAVs and similar field
autonomous agents [11], [19] can be summarised as:

• Insufficient on-board power, seldom supplied by a robust
and continuous power source, to support viable flight
times, sensors, and other payload;

• Insufficient on-board computational resources for opera-
tions at the edge such a machine learning inference for
detection, path planning, and storage;

• Lack of continuously available low-latency, high-
bandwidth channels for communication with other agents
and/or with cloud based servers.

Power efficiency is critical to developing autonomous sys-
tems that can surpass human capabilities in a field setting;
biological systems are remarkable in terms of their energy
efficiency. A direct impact of insufficient on-board power for
UAVs is short flight times ranging from 15 - 40 minutes which
severely limits their operational viability. Physical payload
further loads UAV motors and on-board computing based on
the relationship depicted in Figure 1. The development of
high capacity portable power sources continues to remain a
work in progress. Investigation of power sources is out of
scope for this work. The primary goals of our effort are
to optimize computational systems within the context of the
limitations associated with payload, computational resources,
communication channels, and the interplay among multi-agent
systems.

Autonomy in a SAR-like system may ultimately become a
function of computational resources performing high-accuracy
inferences. Collaborative action and coordination rely on net-
working capabilities and management. Within such a system,
different kinds of computing elements may be made available,
and it is desirable to map tasks to the particular processing
element where they can be performed most efficiently. Factors
influencing such a mapping include algorithmic constraints,
data locality, and field power constraints. Software systems
should be highly fault-tolerant and opportunistic in nature,
particularly with respect to intermittent failures of wireless
networking. Computational systems must be designed with
these factors in mind. The advancement and maturation of
such systems represent a basic computational barrier to the
deployment of UAV teams that can operate autonomously in
challenging field environments.

Adjusting for the saturation of Moore’s law, over the last
two decades we have continued to observe increasing compu-
tational power per unit die area, while the power consumption
has continued to diminish. New workloads and efficient tools
have brought about a shift away from general purpose com-
puting and have renewed interest in hardware and software
for specialized logic and operations in the form of FPGAs,
GPUs, and ASICs. This recent paradigm shift has been further
propelled by the advancement of machine learning techniques

Fig. 1. Augmenting UAV with processing capabilities can reduce flight time
due to increased payload. UAV carrying onboard processors must account for
the weight of these elements in addition to their own power consumption.

and increasing data volumes that benefit from specialized
processing capabilities.

A promising theme in overcoming computational lim-
itations has been to offload tasks away from resource-
constrained agents. Offloading computational processes from
mobile agents allows for significant energy reduction. Previous
work comparing on-board and offloaded computation on UAVs
for video processing records more than 100x reduction in
energy consumption [20]. The ability to offload computation
also ensures that the system can scale as per changing sit-
uational requirements. Two common surfaces for offloading
computation are cloud services and secondary local devices.
Cloud services such as Amazon Web Services (AWS), Google
Cloud Platform (GCP), and Microsoft Azure Services have
evolved and matured over the last decade to allow multiple
computational backends suitable for a particular task combined
with a suite of supporting tools and resources. They have also
made it possible to provision virtually infinite resources for
applications. Despite the advantages and convenience, utiliza-
tion of such services assumes a continuous high bandwidth
and low latency channel to the internet. This restricts the
utilization of such services for field applications such as
SAR and disaster relief, which are motivating applications
for our work [21]. Fog computing and edge computing [22],
[23], in contrast to cloud computing, develops the idea of
bringing computational resources closer to the source of data
or sensors, by means of standalone devices available locally
or embedded at the source of data. Bringing computation
nearer to the source of data enables low latency results for
time critical and remote applications. Ubiquity and physical
form factors of such computing resources have also helped
strengthen the scalability and viability of edge-based solutions.
This work focuses on leveraging edge devices to address
computational shortcomings for systems deployed in remote
and harsh environments.
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Fig. 2. System Design and Interactions. Edge computing approach to provide processing capabilities to a team of UAV. Computations can be offloaded to
balance tradeoff between data locality and payload / flight time. Hardware elements are mounted onto a backpack frame that can be carried into the field.
Compute resources within a cluster may be contained within the backpack or attached to UAV. Both network and compute resources may be heterogeneous.

Previous work in partitioning and offloading computation to
edge devices has found applicability for many use cases espe-
cially surveillance. Significant work has been done to highlight
the advantages of partitioning and offloading computation with
edge devices in SAR-like applications, and devising optimal
methods or triggers for the same [24], [25]. More prominent
among such strategies were based on geographical proximity
[21] and minimizing the net energy consumption of the system
[26]. MILP techniques have also been applied and evaluated
to extend distribution based on minimizing the net energy
consumption of the system [27].

Another significant aspect of such field distributed systems
is intelligent task prioritization and scheduling. We would
consider this as a secondary level of power optimization by
managing decisions and computations based on the availability
of resources and context of computation. This eliminates
redundancies and extraneous computational cycles that of-
fer minimal rewards. Developments in heterogeneous task
scheduling and real-time systems have been much more recent
due to the increased availability of a wide range of de-
vices and inter-compatibility owing to software standardization
and community-led developments. Mobility of agents add
to scheduling complexity. A novel Mobile Resource Aware
(MRA) scheduling algorithm, proposed by Wan et al., extends
generic stable scheduling algorithms to dynamic clients and
servers [28].

Modern software workloads, such as Deep Learning Infer-

ence and highly parallelized path planning have also opened
up unique challenges in terms of execution and scheduling.
Pruned-down networks, at the cost of slight accuracy losses,
have made it possible to run extensive deep learning solutions
such as object detection and semantic segmentation on edge
nodes providing real-time results [29]. Due to their inherently
hierarchical nature, scheduling for deep learning inference
might require a different approach depending on their network
design. Such considerations may be particularly important in
designing systems that are able to learn on the fly [23], [24],
[30].

III. WASP DESIGN AND DEVELOPMENT

A high-level design of the proposed system with its agents,
their function and interactions are depicted in Figure 2.
Decentralization in terms of functions, scalability, systemic
redundancy and enhanced on-board capabilities were key mo-
tivational objectives driving our high-level design. The three
major agents in our proposed system can be identified as:

• Human Responder(s)
In contrast to traditional SAR operations, where the
human responders are committed to the complete man-
agement and execution of the operation, our proposed
system emphasizes on decentralization of core functions.
The human responder(s) maintains responsibility for only
critical and high-level decision making and control of a
mission, incorporating tasks such as prioritization and
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observation. Aspects of the mission such as generating
the body of knowledge, coordination, efficient path plan-
ning, device monitoring and detection are off-loaded to
other computing agents in the system and are largely
automated. The human interfaces with the other agents
using a Graphical User Interface (GUI) exposed through a
handheld device to manage and monitor the agents in the
system. The degree of human intervention is expected to
decrease with increasing autonomy in unmanned agents
in the system and computational prowess.

• Unmanned Agents (UAVs, UGVs)
Robotic agents supplant ground human responders re-
sponsible for the search and act as eyes in the ground
(UGVs) and the sky (UAVs). Robots can keep the human
responders away from risk-prone search areas, and aug-
ment understanding by offering alternate points of view
(POVs). Significant improvements in UAV design and
available power have enabled modern drones to host an
array of sensors and lightweight processors. Payloads are
much less restrictive for unmanned ground vehicles. Sen-
sors used for SAR are expected to be cameras working
in the visible and infra-red wavelengths and LiDAR. The
on-board computer is responsible for data aggregation
and transmission, and for running light-weight perception
algorithms and/or fallback applications.

• Wearable Mobile Compute Cluster
The standalone wearable compute cluster, which defines
the most significant contribution of this work, enables
us to address decentralization, systemic redundancies
in case of failures, efficient data aggregation, enhanced
coordination and understanding.
The cluster bears the responsibility for heavy-lifting the
central software stack that comprises mapping, task rec-
ommendation, prioritization, waypoint generation, path
planning, intelligence software backbone, networking
pipeline and the user interface. Additionally, the cluster
supplements the mobile agents to meet the computational
demands of the mission by limiting the latter’s utilization
of energy for tasks relating to mobility and informa-
tion capture. Multiple heterogeneous computing surfaces
contained in the cluster and efficient node management
by software tools prevent loss of information. Such a
tool also allows efficient flow and distribution of data
and task execution to maximize platform utilization to
generate high systemic throughput. Seamless data trans-
actions across the agents and the backpack is realised
by networking hardware on-board the compute cluster
providing high bandwidth channels through Wi-Fi and
Ethernet.

The design and prototyping of WASP were motivated by four
pillar design decisions viz. Scalability, Portability, Safety and
Ergonomics. The form factor of the compute cluster is derived
from a hiking utility backpack, a common part of gear for
rescue personnel. The backpack is designed to be standalone
in terms of power, compute and networking. The cluster hosts

three NVIDIA Jetson Xavier AGX to support compute loads
and storage. Low power requirements, known efficacy in man-
aging highly parallelized workloads including Deep Learning
inference, thorough documentation and a mature SDK drove
our choice of embedded hardware platform. The three Jetson
Xavier AGX were interconnected through Ethernet on a Local
Area Network managed through a Netgear Tri-Band Router.
Networking was established between the cluster and smaller
embedded computers (NVIDIA Jetson Xavier NX) mounted
on UAVs through Wi-Fi. All components mounted on the
WASP are powered through an array of four portable Li-Ion
batteries each offering capacity of 85W through DC (5V, 9V)
and AC (120V).

The physical construction of the WASP is achieved around
an lightweight Aluminium frame from a hiking backpack with
ergonomic straps and supports. A perforated PVC sheet, for its
non-conducting and interfering properties, is used as a base for
the embedded computers, networking router and batteries. All
the components are attached together by off-the-shelf clamps
or custom 3D printed connectors. The first finished iteration
of the backpack holds 3 compute devices (maximum of 6) and
4 batteries on-board (maximum of 6).

Our computational design is intended to support scalable
Human-in-the-loop (HITL) interactions. In typical SAR appli-
cations, UAVs would be deployed in conjunction with human
search terms, and the HITL design is important to manage
interactions between human searchers and UAV teams. Within
this context, the WASP system must perform data reduction
tasks so that information collected by UAV can be more easily
digested by humans. The human responder in our HITL system
maintains the high level control for defining the goals and
perimeter of the mission. High definition GIS map along with
victim parameters are fed to an implementation of dynamic
lost-person behavior model [31]. On the basis of the behavior-
model, the high definition map is broken down into sectors
or tasks. Task prioritization could either be made manually
by rescue personnel or recommended to the responder by a
region and risk aware recommendation application [32]–[34].
On determining optimal traversal of task sectors and priority, a
risk-aware path planning algorithm [35]–[37] generates paths
for the unmanned agents in the form of navigation waypoints.
The waypoints are then passed onto the UAVs and control
signals are set.

The unmanned agents utilize the waypoints to follow a
defined path. During this process, the agents collect and reduce
data through compression and eliminating data redundancies
while limiting the loss of information. The data is then
transmitted back to the WASP, where the information is stored
in a Distributed File System (DFS). Data on the cluster is
managed through Hadoop Distributed File System (HDFS)
across the nodes. The data is then acted upon by multiple
instances of Containers running DL inference applications.
Docker was utilized to develop custom containers to enable
the isolation of such instances. Kubernetes was the choice of
container orchestrator to scale the instances across the nodes
on the WASP as well as the UAVs. The applications generate
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Fig. 3. Workload (Deep Learning inference, ResNet-Inception-V2) distribution for 8 instances of network running across 3 Nodes (2 Xavier AGX, 1 Xavier
NX) at time t’=0, 5, 10, 15 sec. Each colored block represents average throughput recorded for each pod (container instance) until time t’.

the necessary analytics and visualizations to aids the human
responder in making operational decisions. The WASP also
extends a feedback mechanism by exposing a GUI to a human
responder through a handheld device.

IV. EVALUATION

This section evaluates the impact attributed to the addition
of the wearable compute cluster in a SAR-type mission.

A. Computing

A complex system like the one we propose can be expected
to run a fairly diverse set of software applications and com-
plex algorithms for tasks including but not limited to image
preprocessing, data reduction, computer vision, path planning
and user interface. A large subset of such algorithms bene-
fits from hardware and software parallelism and application-
specific hardware. By utilising accelerated hardware platforms
and efficient data and workload distribution infrastructure we
extend the computational capabilities of traditional systems
in use for SAR-like applications. We evaluated our proposed
system based on real-time performance of workloads and the
impact of distribution across multiple nodes in the system. For
evaluation, we identified Deep Learning Inference as one of
the most compute-intensive workloads for tasks (object detec-
tion, semantic segmentation, etc.) in SAR-like applications.

Single node inference throughput, measured in frames
processed per second, was collected for compute nodes on
the WASP (Xavier AGX) and UAV (Xavier NX) for four
representative Deep Neural Networks including semantic seg-
mentation [38], pose estimation [39], high-accuracy [40] and
light-weight [29] object detection in Figure 4. We observed
that the throughput across any given node for representative
tasks was higher than the frequency of the fastest on-board
sensor (RGB Camera, 60 FPS) thereby implying par real-time
single node performance.

A more involved evaluation was made on the distribution of
computational payload to improve systemic throughput. Dis-
tribution and collaboration ensure that the nodes are efficiently
utilized and knowledge from various nodes is aggregated to
develop a global body of knowledge for SAR-like applications.

We measure distribution by means of increase in inference
throughput for a single representative task over multiple com-
putational surfaces. We revert to model parallelism wherein
same copy of the model is executed in multiple instances (or
Kubernetes pods).

Fig. 4. Benchmarking results for video processing inference tasks on the
WASP and UAV. The nodes in the system were observed to be sufficient to
keep-up with the frame rate associated with generic cameras and UAV sensors.

To evaluate throughput in distributed inference, we provi-
sion two nodes on the backpack and a node mounted on a UAV,
interconnected through the router through wired and wireless
channels, respectively. We spawn a sample 8 Kubernetes pods
running deep learning inference with ResNet-Inception-V2
network [40]) across those devices. The observations are
summarized in Figure 3. We observe a consistent 300+ FPS
throughput consistently distributed across nodes on devices
which was sufficient for as many as 5 simultaneous camera
feeds at 60 FPS.
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Fig. 5. Evaluation of network bandwidth for data transfers across agents (Top to Bottom: AGX to AGX via Ethernet, UAV to AGX via Wi-Fi, UAV to
UAV via Wi-Fi through router, UAV-UAV through standalone access points). Data transfer rates are sufficient to offload video data for the small UAV teams
considered in this work.

Load Type Uptime

Session 1 Jetson AGX (30W)
via USB-C Idle 10h: 27m : 18s

Session 2 Jetson AGX (30W)
via USB-C

DetectNet Object Detection
(SSD / Mobilenet-v2) 06h: 52m : 54s

Session 3 Netgear Nighthawk XS6 AC4000
via AC

1 Hz ping across devices
(3 x Wi-Fi; 3 x LAN) 05h: 15m : 23s

TABLE I
POWER BENCHMARKING: BATTERY LONGEVITY VS PAYLOAD

B. Connectivity

The ability to transmit large amounts of data such as
video streams and databases with high bandwidth and reliable
channels is essential for developing collaborative multi-agent
systems. To assess the impact of the WASP with powerful
on-board networking infrastructure we identified bandwidth
as a representative parameter. The evaluation was made with
iperf3 utility for Linux and bidirectional tests were conducted
across all communication channels i.e. WASP-WASP (Ether-
net), WASP-UAV (Wi-Fi), UAV-UAV (Wi-Fi) for a period of
30 seconds each.
We observed that introducing the router between the UAVs
not only extended the communication range but also doubled
the throughput for inter-UAV communication. We observed
a 4x and 8x increase in bandwidth for transmission of the
UAV with the backpack and inter-node communication of the
backpack, respectively. This represents significantly faster data
movement and processing when done on the backpack with
respect on-board computing as is summarized in Figure 5.

C. Power Management

To evaluate the longevity of the WASP for field applicability,
we subject the power source to three experimental loads. The

loads includes an idle WASP node, a WASP node executing
DNN-based object detection with the hardware configured on
its highest power mode, and finally, the networking router
connected to 3 wired and 3 wireless devices with a 1 Hz
ping established across all devices and disabled power saving
settings. The results are recorded in Table I. We determine our
bottleneck at the networking infrastructure with an uptime of
315 minutes, which is more than 7 times the upper limit of the
UAV flight times in our experiments when used as standalone
agents in SAR missions.

V. CONCLUSION

By provisioning a functional prototype of a wearable com-
pute cluster and software infrastructure, we demonstrate the
impact and advantages of distributed intelligence for multi
agent cyber-physical systems. This work extends existing
systems in use in SAR by enabling scalability, efficiency in
computational processes, robust collaboration and communica-
tion across agents by means of a new field agent. Our success
with preliminary physical field-testing and evaluation of the
wearable backpack motivates us to lay down future work
including, but not limited to, development and optimization
of task-specific payloads, intensive field testing and redesign
into a more robust and rugged form factor.
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