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Urban air mobility (UAM) using electrical vertical take-off and landing (eVTOL) aircraft
is an emerging way of air transportation within metropolitan areas. However, the ability to
navigate eVTOL aircraft through congested urban air environment poses a great challenge for
path planning. For the successful operations of autonomous aerial vehicles inUAM, it is of great
importance to take the collision-free requirement into consideration. It is also necessary to
consider the presence of various forms of uncertainty in path planning. To address these issues,
in this paper the path planning problem is first formulated as aMarkovDecision Process (MDP)
and then solved by an online algorithm of Monte Carlo Tree Search (MCTS) incorporating
chance constraints of uncertainty. For the sake of illustration, a high-density free flight airspace
simulator is created to test the performance of this proposed algorithm. Numerical simulation
results demonstrate that this proposed algorithmoutperforms theChanceConstrainedRapidly-
exploring Random Tree (CCRRT) Algorithm, a path planning algorithm we proposed before,
in terms of many aspects.

I. Introduction
The applications of urban air mobility (UAM) using electrical vertical take-off and landing (eVTOL) aircraft are

increasingly drawing great attention [1], [2]. However, it is still faced with many challenges, among which safe flying
is a critical concern for the successful operations. Ideally, for safe and reliable flying, the requirement of collision
avoidance should be fulfilled. However, various kinds of uncertainty may be present in realistic scenarios, which may
highly increase the chance of infeasibility for operations based on the current collision avoidance system. Alternatively,
it is expected that probabilistically guaranteed feasible paths can be identified at a given risk level of collision for the
eVTOL subject to distinct forms of uncertainty. Lower risk leads to higher computational intensity and longer planning
time and trajectories. Therefore, it is important to achieve a balance between the planning conservatism and the risk of
infeasibility entailed by collision.

Several different forms of uncertainty are found in common path planning scenarios involving collision avoidance
[3]–[6]. One named model uncertainty is derived from every vehicle itself. Another one is derived from the sensing
uncertainty of environmental obstacles that need to be evaded by all the vehicles in the team. Prentice et al. considered
a linear system subject to Gaussian process noise to achieve the desired probability of feasibility [7]. Pepy et al. sought
guaranteed feasibility for a nonlinear system subject to bounded state uncertainty of the model [8]. In addition to model
uncertainty, many existing works have also focused on the environmental sensing uncertainty. Luders et al. studied
probabilistic robustness to both process noise and uncertain dynamic obstacles following deterministic trajectories [9],
[10]. Aoude et al. discussed the path planning for autonomous robots operating amidst dynamic obstacles with uncertain
motion patterns [11]. In this paper, we will consider the location uncertainty for all the aircraft in a multi-agent system.

For an eVTOL operating in a complex environment, one effective way to achieve the balance between planning
conservatism and the risk of infeasibility is through formulating the probabilistic bound for collision with obstacles as
the chance constraints, meaning that the probability of constraint violation does not exceed a prescribed value [12].
Through a transformation, it’s possible to convert probabilistic constraints into equivalent deterministic ones. That way
the desired probability of feasibility for path planning can be achieved. Blackmore et al. proposed a chance constraints
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formulation for a system subject to Gaussian noise, assuming all environmental obstacles have static, deterministic
locations [13], [14]. Toit et al. developed the chance constrained framework to consider other types of uncertainty [15].
Luders et al. extended the chance constraints formulation to allow dynamic, probabilistic obstacles [10]. However, such
formulations only work for convex polygon obstacles and are also very conservative. In contrast, we propose a chance
constraints formulation corresponding to Gaussian distribution, which is more generic and accurate than existing ones.

Decades of research have explored a variety of approaches for designing collision avoidance systems for aircraft,
which can be categorized as centralized and decentralized ways. In centralized methods, the conflicts between aircraft
are resolved by a central supervising controller. Under such scenario, the state of each aircraft, the obstacle information,
the trajectory constraint as well as the terminal condition are known to the central controller (thus centralized methods
are always cooperative), and the central controller in return designs the whole individual trajectory for all aircraft
before the flight, typically by formulating it to an optimal control problem. However, these formulations can become
computationally intensive when the state space becomes large or high-dimensional. To address this issue, sample-based
planning algorithms like Rapidly-exploring Random Tree (RRT) are proposed [3], [16]. On the other hand, decentralized
methods scale better with respect to the number of agents and are more robust since they do not possess a single
point of failure [17]. In decentralized methods, all the conflicts are resolved by each aircraft individually. With the
help of machine learning and reinforcement learning [18]–[22], collision avoidance algorithm can have a promising
performance, but usually needs much time to train. Using the Monte Carlo Tree Search algorithm (MCTS) to solve this
problem [23] does not need model training. In this paper, we formulate this guidance and collision avoidance system as
a Markov Decision Process (MDP) and solve this MDP using the online algorithm MCTS with chance constraints,
where the chance constraints are introduced to account for both model and environmental uncertainty. The aircraft can
adopt continuously different actions at each time step.

The remainder of this article is organized as follows. In section II, we come up with the statement of the problem,
chance constraints formulation, and MDP formulation. In section III, we develop MCTS and CCRRT algorithms for
path planning. In section IV, the performance of the two proposed algorithms is compared through the simulation study.
Finally, we conclude this article in section V.

II. Mathematical Modeling

A. Problem Statement
This paper is proposed to navigate a multi-agent system consisting of multiple eVTOL aircraft to fly from their

departure points to respective destinations through a series of control actions with the intent to avoid conflicts among
them. This is a sequential decision-making problem and can be formulated as a Markov Decision Process (MDP)
problem. In addition, instead of the MDP formulation which considers a single aircraft only, we formulate Multi-agent
Markov Decision Process (MMDP) as an extension of MDP to fit the setting of the multi-agent system presented in this
paper. In the MMDP formulation, for every decision, the aircraft’s action is determined by its state which contains all
the information to decide the optimal action for the current state.

To achieve the goal, an algorithm which acts on every aircraft in the multi-agent system is required. Two algorithms
are developed based on the method of Chance Constrained Rapidly-exploring Random Tree (CCRRT) and Monte Carlo
Tree Search (MCTS) respectively. In this paper, a high-density free flight airspace scenario is considered: every aircraft
is equipped with the two algorithms and will try to avoid conflicts with other aircraft in the system. To control the
aircraft, all the aircraft in the system are assumed to fly at the same altitude and thus only horizontal actions need to
be considered. In addition, the location uncertainty of the aircraft is considered in this paper, and the performance
comparisons of the two algorithms are made.

The objectives of this specific MMDP problem are presented as follows: 1) To avoid potential conflicts among
all the aircraft as much as possible; 2) To navigate all the aircraft in a multi-agent system to reach their respective
destinations as soon as possible. The details of the MMDP problem will be introduced next.

B. LOCCS Formulation
A Loss of Separation (LOS) event is defined to be an event when the distance between two aircraft is less than a

minimum distance, i.e.,

‖x 9 − x8 ‖ ≤ A 9 + A8 (1)
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where A 9 and A8 are the required safety ranges, and x 9 and x8 are the locations of the aircraft 9 and the aircraft 8 at time C,
respectively. In this paper, for simplicity, A 9 and A8 are assumed to be constant at any time C. Due to location uncertainty,
it’s impossible to find paths that absolutely avoids LOS events. Therefore, we attempt to find safe assured paths for
all the aircraft to reach their goal positions. That is, the probability of the occurrence of LOS event between any two
aircraft in the system at any time is less than a certain level, i.e.,

Pr(LOS event) ≤ U (2)

where U is a given risk level.
Given unknown location uncertainty of the aircraft, both x8 and x 9 in Eq. (1) should be treated as random variables.

Thus it’s impossible to evaluate the real distance between two aircraft with the information of their states only. To
quantify the probability of an aircraft avoiding conflicts with other aircraft considering location uncertainty as presented
in Eq. (2), we first define the risk domain of a 3-dimensional Gaussian random variable. That is, a set D ⊂ R3 that
satisfies

Pr(^ ∈ D) ≥ 1 − U (3)
is called a risk domain at risk level U of a random variable ^. Especially, when the aircraft location cC8 is assumed to
obey Gaussian distribution and the safety range is ignored (i.e. A8 = 0), the boundary of the corresponding risk domain
D for cC8 only can be proved to be a circle or an ellipse, according to our previous work [24]. To be specific, let ^ ∈ R3
be a 3-dimensional random variable that obeys a 3-dimensional Gaussian distribution N3 (-,�), then the following set

D := {^ | (^ − -)T�−1 (^ − -) ≤ �−1
3 (1 − U)} (4)

specifies the risk domain of ^ at risk level U, where �−1
3

is the inverse mapping of the cumulative distribution function
(CDF) of j2 distribution with 3 degrees of freedom.

When it comes to conflict checking, the radius of the safety range for the particular aircraft and the other aircraft 8
are A∗ and A8 respectively, and the location of the aircraft 8 is cC8 obeying a Gaussian distribution. We can first obtain the
risk domain DC8 for the location cC8 of aircraft 8 at time C, assuming that A8 = 0. Next, when considering the safety range
A8 of aircraft 8, the corresponding risk domain for aircraft 8 at time step C is in fact the enveloping area of a series of
circles whose centers are inside or on the boundary of DC8 . We denote this actual risk domain as DA0=64

C8
, which is a

larger area than DC8 , as illustrated in Fig. 1.

Fig. 1 Diagram of LOCCS formulation

Since there is no explicit expression of the actual risk domain DA0=64

C8
, we will check the feasibility of the chance

constraints by measuring the minimum distance 3min between the particular aircraft’s location xC and the risk domain
DC8 for the location cC8 of aircraft 8 at time C. In fact, 3min can be treated as the distance between a point and an ellipse,
which can be evaluated explicitly according to [25]. Then we check the feasibility of the deterministic constraints using
the inequality

3min (xC ,DC8) > A8 + A∗ (5)
and if it holds, then

Pr(LOS event| Eq. (5) holds)
= Pr(‖xC − cC8 ‖ ≤ A8 + A∗ | xC ∉ DA0=64

C8
)

≤ Pr(cC8 ∉ DC8) = U
(6)
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We can quantitatively define the concept of Loss of Chance Constrained Separation (LOCCS) event. That is, an
LOCCS event occurs when

3min (xC ,DC8) ≤ A8 + A∗ (7)

Above all, to handle the location uncertainty, we introduce the concept of LOCCS event. Given a risk level U which
denotes the probabilistic bound on the chance that the particular aircraft conflicts with any other aircraft 8 at any time step
C, we can convert the stochastic constraint Eq. (6) into a deterministic constraint Eq. (5) equivalently, in consideration of
the location uncertainty of aircraft. Through the formulation of LOCCS, we learn that whether the probability of LOS
event occurrence is smaller than a given risk level or not can be judged through evaluating the distance between a point
and an ellipse and then checking whether that distance is larger than a level, which depends on the given risk level [24].

C. MMDP Formulation
In a traditional MDP formulation, one agent may choose any action 0 that is available based on current state B

at each time step. The process responds at the next time step by proceeding to a new state B′ with certain transition
probability, and gives the agent a corresponding reward A. An MDP formulation is usually composed of the following
components: (1) The state space S which consists of all the possible states; (2) The action spaceA which consists of all
the actions that the agent can take; (3) Transition function T (BC+1 |BC , 0C ) which describes the probability of arriving at
state BC+1, given the current state BC and action 0C ; (4) The reward function R(BC , 0C , BC+1) which decides the reward
received after transitioning from state B to state B′ according to action 0.

In an MDP problem, a policy c is a mapping from the state to a specific action:

c : S → A (8)

The goal of an MDP formulation is to find an optimal policy c∗ that, if followed from any initial state, maximizes
the expected cumulative rewards over all the future steps:

c∗ = argmax
c

E[
) −1∑
C=0

'(BC , 0C , BC+1) |c] (9)

&-function and value function are two important concepts in MDP. The optimal &-function &∗ (B, 0) means the
expected cumulative reward received by an agent starting in state B and picks action 0, then will behave optimally
afterwards. Therefore, &∗ (B, 0) is an indication of how good it is for an agent to pick action 0 while being in state B.
The optimal value function +∗ (B) denotes the maximum expected total reward when starting from state B, which can be
expressed as the maximum of &∗ (B, 0) over all possible actions:

+∗ (B) = max
0
&∗ (B, 0) ∀B ∈ S (10)

Based on the discussions of traditional MDP formulation, MMDP formulation can be extended to fit the setting of a
multi-agent system. The MMDP formulation presented in this paper is made up of the following five components.

(1) Continuous State Space: The state includes the necessary information for the algorithm to perform actions on
every single aircraft in the system: the position (G, H), speed E, heading angle k, and goal position (6G , 6H) for every
aircraft in the system. Capturing the information of every aircraft in the system, the state for the MMDP formulation
turns out to be an = × 6 matrix, where = is the number of aircraft and each row of the matrix represents the information
for one single aircraft in the system.

It is worth noting that in this paper the state space being discussed is continuous. For instance, all the components of
a state can take continuous values. In general, for an MDP with continuous state variables, it is not clear how to best
represent the policy, because it is impossible to enumerate all possible state–action mappings. For previous MDP-based
algorithms to solve conflict avoidance problems, some possible approaches were proposed to represent the policy include
using a grid-based discretization of the state space S and the action space A, or using policy compression techniques
[26]. The advantage of the MCTS algorithm used in this paper is that it does not need to discretize the state space. For
each state, the MCTS algorithm will generate actions for the aircraft to follow in real time.

(2) Continuous Action Space: At each time step, the aircraft can choose to turn its heading angle at a certain
rate. Each aircraft has a set of continuous actions A = {0 ∈ R| − 5 ◦/s ≤ 0 ≤ 5 ◦/s}, where the plus and minus sign
corresponds to right and left turn, respectively. This paper assumes that the aircraft is flying with cruise speed at
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190 km/h [26]. At each time step, an action will be generated from the action set for the aircraft based on the current
state, and the action will maintain the same until next step.

(3) Dynamic Model with Location Uncertainty: Built on the information from current state and action, the following
kinematic model is used to find state transition for every aircraft in the system:

¤G = E cosk (11)

¤H = E sink (12)
¤k = 0k (13)

where E is the cruise speed, k is the heading angle, and 0k is the selected action describing the changing rate of heading
angle for the aircraft, whose cruise speed is set as 190 km/h [26].

After an aircraft executes an action, the aircraft speed is held constant during one time step. In addition, we also
consider some disturbance that influences the aircraft speed and its changing rate of the heading angle. This ultimately
accounts for the location uncertainty of the aircraft, which can be modeled as a Gaussian distribution centered at the
expected position of the aircraft after one time step with a certain covariance. The disturbance here aims to capture the
uncertainty from environment and aircraft dynamics respectively.

(4) Terminal State and Reward Function: Based on the aforementioned separation requirements, the terminal state
of the MMDP formulation includes the following two different types of states, which can be determined directly from
the state information: 1) An LOCCS event occurs, i.e., the probability that an LOS event occurs is larger than a given
risk level (referred to as an LOCCS state in the following); 2) the aircraft reaches the goal position (referred to as a goal
state in the following). In addition to the terminal states listed above, all the other scenarios encountered can be stacked
together and defined as a non-terminal state.

(5) The objective of our computational guidance system is to achieve the dual objectives of maintaining safety while
guiding the aircraft to their destinations as rapidly as possible. These two objectives can be captured in the reward
function defined as follows:

A (B) =


1, if B is a goal state
0, if B is an LOCCS state
1 − 3 (>,6)

max 3 (0,6) , if B is a non-terminal state
(14)

where 3 (>, 6) denotes the distance from the aircraft to its goal position and max 3 (>, 6) is the maximum distance from
an aircraft to its goal position, which is the diagonal distance of the map. (If the map has an irregular convex shape, we
can use the diameter of this convex shape.) In this way, if an aircraft is not at the LOCCS state (which has reward 0),
this aircraft will get a positive reward between 0 and 1, depending on how far this aircraft is from the goal position.

After we have the reward function definition for one aircraft, the reward function for the MMDP is defined to be the
sum of reward for each aircraft:

'(B) =
∑
8

A8 (B) (15)

With this reward setting, when we solve the formulated MMDP by maximizing the reward, all the aircraft will try to
select action leading to a state that is closer to the goal position (which has a positive reward) and avoid any LOCCS
states (which has a reward of 0).

III. Solution Methods
The algorithm of path planning which acts on every aircraft is required to identify the safe assured paths for

the multi-agent system. In this paper, two algorithms are developed based on the method of Chance Constrained
Rapidly-exploring Random Tree (CCRRT) and Monte Carlo Tree Search (MCTS) respectively. In this article, we take
into account the scenarios of high-density free flight airspace. we will run the proposed algorithms on every individual
aircraft in the multi-agent system with the purpose of avoiding potential inter-agent conflicts. All the aircraft in the
system are assumed to fly at the same altitude (flight level) and thus only horizontal actions need to be considered. The
results of the two proposed algorithms will also be compared.
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A. Monte Carlo Tree Search (MCTS) Algorithm
Monte Carlo Tree Search (MCTS) is a method for finding optimal decisions in a given domain by taking random

samples in the decision space and building a search tree according to the results [27], [28].
The basic MCTS process is conceptually easy to understand, where a tree is built in an incremental and asymmetric

manner, as shown in Fig. 2 (from [28]). For each iteration of the algorithm, a tree policy is used to find the most urgent
node of the current tree. The tree policy attempts to balance considerations of exploration (look in areas that have not
been well sampled yet) and exploitation (look in areas which appear to be promising). A simulation is then rolled
out from the selected node and the search tree updated according to the result. This involves the addition of a child
node corresponding to the action taken from the selected node and an update of the statistics of its ancestors. Moves
are made during this simulation according to some default policy, which in the simplest case is to make uniformly
random moves. A great benefit of MCTS is that the values of intermediate states do not have to be evaluated, as for
depth-limited minimax search, which greatly reduces the amount of domain knowledge required. Only the value of the
terminal state at the end of each simulation is required.

Fig. 2 One iteration of general MCTS approach [28]

Applying the tree search algorithm to continuous action case causes tension between exploring the larger set of
candidate actions to cover more actions, and exploiting the current candidate actions to evaluate them more accurately
through deeper search and more execution outcomes. In this paper, we use GP Regression to generalize action value
estimates over the entire parameter space, which can guide the agent to add the most promising action from the action
space to the search tree.

We now describe the technical details of the MCTS algorithm with continuous action space. The overall steps
of the algorithm are similar to [26], and in this paper we only describe the difference in the selection step due to the
incorporation of continuous action space. MCTS algorithm with continuous action space, similar to MCTS algorithm
with discrete action space, selects actions by searching ahead. In the step of selection, the current node will select a
node (corresponding to an action) from all of its child nodes as next state, which maximizes the function of Upper
Confidence Bound Applied to Trees (UCT) introduced in Eq. (16). The UCT function consists of two terms: a mean
action value - 9 , and an uncertainty addition [28], [29]:

*�) = - 9 + 2�

√
2 ln =
= 9

(16)

The first term - 9 can be understood as an exploitation term derived from the formula:

- 9 = & 9/= 9 (17)

where = 9 is the number of the visits to the child node B:−1 and & 9 is the total reward of all rollouts that passed through
this node. The second term can be understood as an exploration term where = is the the number of visits to the current
node and � is a weighting parameter which seeks to balance exploitation and exploration of tree search.

For continuous action space, it is unlikely any more to figure out all the UCT scores for all the candidate actions.
Under this circumstance, the strategy of progressive widening can address the continuous action space through limiting
the number of actions in the search tree according to the times the node has been visited before and the slow-growing
discrete set for sampling actions. Once the attribute of the best available is well estimated, we can take into account the
additional actions. To be specific, for action selection, MCTS algorithm runs through either the improvement of value
estimation for current child actions by selecting an action of highest UCT score, or the exploration of untried actions by
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attaching a new action to the current node. The decision can be made according to maintaining the quantity of child
actions for a node which is bounded by a sub-linear function <(B) of the number of visits to the current node =(B):

<(B) = � · =(B)V (18)

where � and V ∈ (0, 1) are two parameters that achieve a trade-off between covering more actions and improving the
estimate of less actions. At each step of action selection, if the quantity of child actions under the current node B is
smaller than <(B), a new action will be attached to the current node B as a child action. Otherwise, an action which
owns the highest UCT score will be selected from the existing child actions. On the one hand, UCT score assures that
the depth of the search tree grows more rapidly in its promising parts; on the other hand, the progressive widening
strategy tells that the search tree also grows broader to explore more actions in some parts of the search tree.

During each step of action selection, the simulation starts from the initial current state B0, selecting actions repetitively
before arriving at an unexpanded node (which means it has no child actions). For each time step : = 1, · · ·, a decision
is made according to the comparison between the quantity of child actions |AB:−1 | for the node B:−1 and the value
<(B:−1) in Eq. (18). If |AB:−1 | ≥ <(B:−1), an action 0: will be determined by maximizing the score of UCT presented
in Eq. (16); otherwise, the agent will select a new action from the action space, attach it to the search tree, and expand
this new edge.

In this paper, assuming the & value is continuous in 0, we use GP Regression to fit the & value from the tree
search result, which can inform us to select the most promising action. More specifically, we assume that the
current node B has child actions 01, · · · , 0? with & value &(B, 01), · · · , &(B?). We use GP to fit the observation data
- = {(08 , &(B, 08) |8 = 1, ..., ?}. Then we sample < actions 01, · · · , 0< according the Gaussian policy distribution.
After evaluating these < actions, the proposed algorithm will attach the action with the maximum value to the search
tree.

In order to evaluate the reward of a selected action, it is required to conduct conflict checking between two aircraft.
Through introducing LOCCS formulation, we can propose an equivalent deterministic constraint instead of evaluating
the probability of LOS event occurrence between two aircraft. Once in compliance with the proposed deterministic
constraint, we can guarantee that the probability of LOS event occurrence between two aircraft should be less than a
prescribed risk level.

When conducting conflict checking between two aircraft considering location uncertainty at each time step, the
location of one aircraft can be represented as an ellipse while the other aircraft can be also represented as another ellipse.
Note that the direction of the long axis of the ellipse aligns with the heading orientation of the aircraft. We can obtain the
LOCCS constraint based on Eq. (7). If such a constraint is satisfied, it means the probability of LOS event occurrence
really exceeds a prescribed risk level. Thus, the aircraft is at the state of LOCCS and the reward A (B) of the current state
should be set to be A (B) = 0, as presented in Eq. (14).

The aforementioned procedure is summarized in Algorithm 1 as follows. In these pseudo codes, we use E to denote
the node and B to denote the state information of node E. B(E) indicates the state of a node and E(B) means the node
created from state B. &(E) is the total reward of all playouts that passed through the node E and # (E) is the times that
the node E has been visited before. 3 (E) represents the search depth of the node E.

B. Chance Constrained Rapidly-exploring Random Tree (CCRRT) Algorithm
We review CCRRT algorithm presented by us in [24]. For the safe flying of a multi-agent system, the possibility of

collision between any two aircraft needs to be considered. This can be addressed by decomposing the problem into a set
of single-agent path planning sub-problems, with each sub-problem solved in a pre-fixed iterative order by the algorithm
of path planning.

At the beginning of every new time step, when we are ready to extend the trajectory for a particular aircraft in
the multi-agent system, the possible trajectories for any other aircraft within the same time step may have yet to be
determined. In view of this, for the particular aircraft being prepared to be planned, the positions of other aircraft within
current time step are uncertain. Thus, when we perform CCRRT algorithms given in [24] to generate new path for a
particular aircraft in the system, all the other vehicles can be formulated as dynamic obstacles obeying a stochastic
distribution. In doing do, the multi-agent path planning problem is reduced to a set of single-agent sub-problems. To
further reduce the risk for one aircraft to collide with the other aircraft in the system, we consider the uncertainties of
aircraft at not only the current time step but also the next few steps.

The steps of CCRRT algorithm for a multi-agent system are presented in Algorithm 2 (Take a system consisting of
three vehicles 0, 1, 2 as a demo).
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Algorithm 1MCTS Algorithm
1: function Search(B0)
2: create root node E0 with state B0
3: while Runtime ≤ )<0G do
4: E; , A4F0A3 ← TREEPOLICY (E0)
5: BACKUP (E; , A4F0A3)
6: return 0(BESTCHILD(E0, 0))
7:
8: function TreePolicy(E)
9: while E nonterminal and 3 (E) ≤ 3 do
10: if E not fully expanded then
11: return expand E
12: else
13: E ← BESTCHILD (E, �)
14: return E
15:
16: function BestChild(E, �)
17: return argmax

E′∈ children of E

& (E′)
# (E′) + �

√
2 ln # (E)
# (E′)

18:
19: function Backup(E, A4F0A3)
20: while E is not null do
21: # (E) ← # (E) + 1
22: &(E) ← &(E) + A4F0A3
23: E ← parent of E

Algorithm 2 CCRRT Algorithm

1: Start point 00 ← 0start, 10 ← 1start, 20 ← 2start;
Current time step C ← 0;

2: while C < <0G do
3: ?0Cℎ_0. append(0C ), ?0Cℎ_1. append(1C ),

?0Cℎ_2. append(2C );
4: $1BC02;4!8BC_0 ← [1C , 1C+1, 1C+2, 2C , 2C+1, 2C+2];
5: [0C+1, 0C+2, 0C+3] ← CC-RRT($1BC02;4!8BC_0);
6: $1BC02;4!8BC_1 ← [0C+1, 0C+2, 0C+3, 2C , 2C+1, 2C+2];
7: [1C+1, 1C+2, 1C+3] ← CC-RRT($1BC02;4!8BC_1);
8: $1BC02;4!8BC_2 ← [0C+1, 0C+2, 0C+3, 1C+1, 1C+2, 1C+3];
9: [2C+1, 2C+2, 2C+3] ← CC-RRT($1BC02;4!8BC_2);
10: if ‖0C+1 − 0goal‖ < X or ‖1C+1 − 1goal‖ < X or

‖2C+1 − 2goal‖ < X
11: break;
12: end if
13: C ← C + 1;
14: end while
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IV. Simulation Results
In this section, we will make comparisons between the performance of MCTS and CCRRT algorithm, which are

proposed in last section.
To validate the performance of the proposed algorithms in real world applications, we will simplify the Urban Air

Mobility network by following a generic city model. In this generic city model, seven vertiports are distributed in a
hexagonal pattern of “six around one”. As shown in Fig. 3, one vertiport is at the center of the hexagon and located
equidistant from the other six vertiports at a distance of 16 km. The safety ranges for all the aircraft are defined uniformly
to be 250 m. The covariance of an aircraft is set to be � = [ 1

24 0; 0 1
96 ]. All the tests conducted in this section are

implemented in Python 3.8 and were run on an Intel Xeon Silver 4210 CPU 2.20GHz desktop with 32GB RAM.

Fig. 3 Configuration of seven vertiports

Based on the setup above, we conduct the following several tests to compare the performance of two proposed
algorithms. The performance of the two proposed algorithms is compared in terms of three different aspects: goal
probability, average running time, and flight time.

Fig. 4a shows that given the confidence level 90%, the goal probability of both MCTS and CCRRT decreases as the
number of aircraft increases from 10 to 80 with incremental step 10. It also illustrates that compared with CCRRT,
MCTS enables the aircraft to reach the goal with a higher probability. Fig. 4b shows that the average running time for
both algorithms increases at the confidence level 90% as the number of aircraft grows, while the average running time of
CCRRT increases faster than MCTS. Both MCTS and CCRRT can well identify safe assured paths for a multi-agent
system.

As shown in Fig. 5, the performance of MCTS and CCRRT like goal probability and average running time at the
confidence level of 95% follows the similar trends with Fig. 4. However, through comparing Fig. 4 and Fig. 5, we can
find that when the level of confidence is raised, the goal probability for both MCTS and CCRRT algorithm increases at
the cost of longer average running time.

To compare the en route flight time using MCTS and CCRRT respectively, we can divide the route option into three
categories based on the distance between the start vertiport and target vertiport, as shown in Fig. 6. In this vertiport map,
route 1 is the shortest (e.g., from vertiport 1 to vertiport 2), route 2 has the medium length (e.g., from vertiport 3 to
vertiport 7), and route 3 has the longest path (e.g., from vertiport 3 to vertiport 6).

Table 1 shows the en route flight time for different route options. From this table we can find that, the flight time
ratio of MCTS to CCRRT ranges from 97.9% to 93.0%, which indicates that given any route, the flight time of aircraft
using MCTS is always shorter than CCRRT. Also, as the length of route grows, the flight time difference between MCTS
and CCRRT becomes more significant, which suggests that as the length of route increases, the flight time of aircraft
using MCTS will be shorter and shorter than CCRRT.

The en route flight time comparisons across different covariances are recorded in Table 2. It illustrates that for any
covariance, the flight time using MCTS is always shorter than CCRRT. In addition, the ratio of MCTS to CCRRT varies
from 98.0% to 88.4% as the covariance increases. Thus, MCTS outperforms CCRRT in flight time, especially when the
covariance is quite large.
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(a) goal probability

(b) average running time

Fig. 4 The comparisons between MCTS and CCRRT at confidence level 90%

Table 1 Flight time comparisons for routes in seconds

Route 1 2 3
MCTS 342.1 ± 6.8 607.8 ± 9.3 687.1 ± 10.4
CCRRT 349.5 ± 7.9 632.4 ± 10.2 738.8 ± 11.7
Ratio 97.9% 96.1% 93.0%

Table 2 Flight time comparisons for covariances in seconds

Covariance 1/4� � 4�
MCTS 314.7 ± 6.0 342.1 ± 6.8 361.6 ± 7.4
CCRRT 321.1 ± 7.2 349.5 ± 7.9 409.3 ± 9.7
Ratio 98.0% 97.9% 88.4%

V. Conclusions
In this paper, we proposed a path planning algorithm with the ability of collision avoidance for autonomous free

flight operations, which can navigate the eVTOL aircraft in UAM to its goal state through the control of heading angles.
The problem is formulated as a Markov Decision Process (MDP) with uncertainty from the dynamics of aircraft and the
environment. The MDP problem is solved by Monte Carlo Tree Search (MCTS) algorithm with an estimated value
function to reduce the computation time. Compared with the algorithm of CCRRT, simulation results demonstrate that
the proposed algorithm of MCTS with chance constraints has promising performance and outperforms the algorithm of
CCRRT in the scenarios of dense air transportation. This proposed algorithm offers a promising solution framework for

10



(a) goal probability

(b) average running time

Fig. 5 The comparisons between MCTS and CCRRT at confidence level 95%

Fig. 6 Three different routes in the above vertiport setting

autonomous free flight operations in UAM.
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