Safety Assured Online Guidance with Airborne
Separation for Urban Air Mobility Operations in
Uncertain Environments

Pengcheng Wu, Xuxi Yang, Peng Wei, Member, IEEE, and Jun Chen, Member, IEEE

Abstract—The concept of Urban Air Mobility (UAM) proposes
to use revolutionary new electrical vertical takeoff and landing
(eVTOL) aircraft to provide efficient and on-demand air trans-
portation service between places previously underserved by the
current aviation market. A key challenge for the success of UAM
is how to manage large-scale autonomous flight operations with
safety guarantee in high-density, dynamic and uncertain airspace
environments. In this paper, a safety assured decentralized online
guidance algorithm with airborne self-separation capability is
proposed and analyzed for multi-aircraft autonomous flight oper-
ations under uncertainties. The problem is formulated as a multi-
agent Markov Decision Process with continuous action space and
is solved by a customized decentralized online algorithm based
on Monte Carlo Tree Search (MCTS). To guarantee the safety
of real-time autonomous flight operations in uncertain environ-
ments, the formulation of loss of chance constrained separation is
introduced and integrated with the proposed MCTS algorithm.
In addition, Gaussian process regression along with Bayesian
optimization is employed to discretize the continuous action
space, which helps shorten the flight time. A comprehensive
numerical study shows that the proposed algorithm can provide
safe onboard guidance with guaranteed low near mid-air collision
probability in uncertain and high-density airspace environments.

Index Terms—Autonomous System, Monte Carlo Tree Search,
Chance Constraints

I. INTRODUCTION
A. Motivation

In order to alleviate ground transportation congestion in
urban areas, the concept of Urban Air Mobility (UAM) has
received significant attention from various stakeholders, such
as NASA, the Federal Aviation Administration (FAA), and
airlines [1], [2]. The vision of UAM is to use revolutionary
new electrical vertical takeoff and landing (eVTOL) aircraft
to provide efficient and on-demand air transportation service
between places previously underserved by the current aviation
market. Companies such as Airbus, Boeing, Bell, Joby, Archer,
Lilium, and Aurora Flight Sciences are competing to build
and test their newly designed eVTOL aircraft [3]. The UAM

P. Wu is with the Department of Mechanical and Aerospace Engineering,
University of California San Diego, La Jolla, CA 92093, and also with the
Department of Aerospace Engineering, San Diego State University, San Diego,
CA 92182 pcwupat@ucsd.edu, pwul@sdsu.edu

X. Yang was with the Department of Aerospace Engineering, Iowa State
University, Ames, IA 50011 xuxiyang@iastate.edu

P. Wei is with the Department of Mechanical and Aerospace Engineering,
George Washington University, Washington, DC 20052 pwei@gwu.edu

J. Chen (corresponding author) is with the Department of Aerospace
Engineering, San Diego State University, San Diego, CA 92182
jun.chen@sdsu.edu

operations are expected to bring significant changes to the city
infrastructures and people’s daily commutes. To well serve a
significant proportion of urban transportation demand, UAM
will introduce a large number of eVTOL aircraft in the limited
urban airspace [4]. Therefore, a key challenge for the success
of UAM is how to manage large-scale autonomous flight
operations with safety guarantee in high-density, dynamic and
uncertain airspace environments. In this paper, we investigate
multi-aircraft online decision making to resolve conflicts and
reach their destinations. The decisions are generated onboard
and safety assured.

Currently, most researches on UAM are proposed based
on structured airspace, where static corridors are specified
and the eVTOL aircraft need to follow the fixed routes
inside the corridors for conservative safety concerns [5]. The
structured airspace concept borrowed from the current air
traffic management (ATM) system is safe but not efficient
for UAM because the traffic density of UAM will be much
higher than ATM. To increase the airspace’s capacity, the FAA
and NASA are investigating the free-flight airspace framework
with trajectory-based operations [6]. This paper will consider
the free flight concept because previous studies show that
free flight with self-separation ability can handle higher air
traffic density even in uncertain environments [7]. Without
the protection of structured airway, aircraft need to rely on
accurate localization provided by navigation technologies such
as Automatic Dependence Surveillance-Broadcast (ADSB)
and Global Positioning System (GPS) [8]. Thus the location
uncertainty or error of an aircraft is a critical issue to ensure
safety. The location uncertainties usually arise from three
different aspects: sensor inaccuracy, dynamical uncertainty
due to vehicle performance, and environment uncertainties
like winds. This paper will introduce a novel loss of chance
constrained separation (LOCCS) formulation to ensure the
probability of conflicts under required risk level. Moreover,
when considering the potential conflicts between two aircraft,
the location uncertainties of both aircraft are efficiently ad-
dressed as one common uncertainty through a new concept of
relative uncertainty. The chance constraint is applied directly
to the common uncertainty to avoid time-consuming sampling-
based evaluation while ensuring safety.

This paper considers the decentralized decision making
setting, in which each aircraft will act based on the sensorial or
broadcast information. Model predictive control [9] is a com-
monly used method to solve the conflict avoidance problem,
but its computational load is high thus not ideal for online

settings. Potential field method [10] is fast but it requires the
discretization of the state space, which sacrifices the accuracy.
Chai et al. developed a real-time strategy based on deep
neural network to generate the path for a reentry vehicle
[11]. Deep neural network can achieve a good performance,
but it needs extremely long training time. In addition, the
conflict avoidance problem is also modeled as a Markov
Decision Process (MDP) and often solved offline [12]. Offline
algorithms need a long time to compute the optimal policy
with a discrete MDP formulation. To account for the dynamic
changes in the uncertain environment, online algorithms are
preferred. It only plans for the current states not the whole
state space, thus discrete MDP formulations are not needed.
The Monte Carlo Tree Search (MCTS) algorithm is suitable
to solve this problem online without model training. However,
only a limited set of discretized actions can be taken by the
aircraft at each time step, which makes it difficult to generate
a smooth trajectory. The MCTS with discrete actions costs
extra energy since the heading angle of aircraft will keep
changing while the aircraft approaches the desination [13].
This paper will overcome this limitation by developing the
MCTS algorithm with continuous action space to achieve
smooth and energy-efficient trajectories.

B. Related Work

The essentials of path planning for a multi-agent system in
an environment are to find conflict-free paths for every agent
in the system. The methods to achieve conflict detection and
avoidance between aircraft can be categorized into centralized
and decentralized frameworks.

For centralized methods, a central supervising controller
is usually developed to provide all aircraft the collision-free
trajectories. In such settings, the central controller usually
knows all the key knowledge of the system like the states
of all the aircraft in the system, the geometry of obstacles,
the constraints to which trajectories are subject, and the
terminal conditions. Incorporating all the knowledge obtained,
the central controller computes the whole individual trajectory
for every aircraft in the system before conducting flight oper-
ations. The central controller is often modeled as an optimal
control problem. There are various methods which contribute
to solving for such an optimal control problem, like semi-
definite programming [14], mixed-integer linear programming
(MILP) [15], [16], nonlinear programming [17], [18], mixed-
integer quadratic programming [19], second-order cone pro-
gramming [20], evolutionary techniques [21], and particle
swarm optimization [22]. Chai et al. developed a unified multi-
objective optimization scheme for aeroassisted vehicle trajec-
tory planning and solved it using an evolutionary optimiza-
tion algorithm [23]. However, the intensified computational
load will lead to the intractability of those aforementioned
computational geometry methods when the dimensions of the
state space grow [24], [25]. Some sampling-based methods
are proposed to address such issues, like Rapidly-exploring
Random Tree (RRT) [26] and probabilistic roadmaps [27]. For
these centralized methods, they are usually intended for the
pursuit of globally optimal solutions. However, for a multi-
agent system, when the number of aircraft in the system

grows, the computational time also increases. In addition, it
is often required to run these centralized methods again if
the information of the environment changes, which makes it
infeasible for many online implementations.

For decentralized methods, the conflicts between different
aircraft in the system are handled individually by each air-
craft in a distributed way. There are non-cooperative and
cooperative ways for decentralized methods. The methods
are considered non-cooperative when the communication be-
tween different aircraft in the system cannot be successfully
established. Methods like model predictive control [9] and
reinforcement learning [28] can contribute to the conflict
avoidance, but their computational load is very high and
thus the cost is too expensive. MCTS algorithms have been
used to the resolution of conflict avoidance, but only a few
discretized actions can be taken by aircraft at each time
step, which may lead to unsmooth trajectories [13]. There is
also a lot of existing literature working on the cooperative
scenarios. Methods based on message-passing schemes in
[29] are proposed to resolve conflicts without requiring the
formulation of a joint optimization problem among all the
agents in the system. The method of MILP in [30] is used
to allot a time slot for every agent in the system to obtain
conflict-free trajectories. In this paper, we will focus on the
cooperative scenarios using the decentralized online algorithm
of MCTS with continuous action space.

The multi-agent system may be subject to various forms
of uncertainty during path planning. Ideally, we expect to
identify a path for a multi-agent system, which can absolutely
guarantee that no conflicts will happen if all the aircraft in
the system follow the identified path. In other words, the
probability of conflicts is 0%. However, due to the existence of
uncertainty, it is impossible for us to achieve this. Instead, we
seek to identify a path which can assure that the probability of
conflicts is within a safety bound (not 0% though), following
the identified path [31]. Thus, accounting for the knowledge
of uncertainty in path planning is regarded as an essential
step to achieve safety assurance. In [32], a probabilistic map
is constructed using a likelihood function and a safe UAV
path is then generated by solving a probability minimization
problem. In [33], the sampling-based Monte Carlo method
is accurate enough to estimate conflicts between aircraft
stochastically, but it sacrifices computational efficiency since it
takes much computational time to figure out the probability of
conflict occurrence. To achieve the balance between planning
conservatism and efficiency, the stochastic constraints can be
reformulated as tightened deterministic constraints through
chance constraints formulation. Blackmore et al. [34], [35]
proposed chance-constrained programming model to consider
various uncertainties for conflict avoidance problem, but such
formulations based on MILP or constrained nonlinear pro-
grams are often computationally expensive, which may scale
poorly as the dimensions of configuration spaces increase.
Chai et al. planned trajectory for a single vehicle through
converting probabilistic constraints to deterministic ones [36].
Luders et al. [37] present Chance Constrained Rapidly-
exploring Random Tree (CCRRT) which uses sampling-based
methods to identify paths for linear systems subject to un-

certainty. Sampling-based algorithms like CCRRT scale well
because they perform trajectory-wise constraint checking, but
such paths do not satisfy optimality guarantees. In addition,
when considering inter-agent conflict checking, both agents
may have uncertainties but the aforementioned work treat
both uncertainties separately, which in turn makes designing
an analysis complicated and the method hard to be general-
ized. In this paper, we will build an LOCCS formulation to
account for the knowledge of uncertainty and incorporate it
in MCTS algorithm with continuous action space to identify
safety assured trajectories for every aircraft in a multi-agent
system in the presence of location uncertainty. Also, we will
employ the transformation of relative uncertainty to convert
the location uncertainties of both agents into a common one
when performing conflict checking between different agents.

C. Contributions and Structure

UAM has its own constraints and concerns like traffic
density and dynamic complexity. In this paper, we put forward
a safety assured decentralized online algorithm for a multi-
agent system of UAM. We first formulate a conflict-free
guidance system in the presence of location uncertainty as
a multi-agent Markov Decision Process (MMDP) problem,
and then solve for this MMDP problem using the MCTS
algorithm with continuous action space incorporating LOCCS
formulation. In this paper, we focus on UAM free flight setting
up, where no obstacles and constraints in structured airspace
are considered. Indeed, our method can be extended to more
general multi-agent systems.

The major contributions of this paper are summarized as
follows:

1) The LOCCS formulation is incorporated into MCTS
algorithm to deal with location uncertainty. It transforms
the original stochastic uncertainty into deterministic
ones, greatly saving computational time while assur-
ing conflict avoidance with high probability. Also, the
method of relative uncertainty transformation is intro-
duced and implemented within the UAM free flight
airspace, and therefore different uncertainties can be
transformed into common one and then be handled
efficiently in online fashion, even when the number of
agents is very large, as indicated in numerical study;

2) The MCTS algorithm with continuous action space is
developed to provide a safe, efficient and smooth trajec-
tory. This algorithm is intended to explore continuous
options of actions through Bayesian optimization with
Gaussian process regression, and to exploit the current
candidate actions to evaluate them accurately. Numerical
study justifies that this shortens the flight time of the
aircraft in UAM.

The structure of this paper is organized as follows: In
section II, the description of the problem and the MMDP
formulation are stated. In section III, the LOCCS formulation
is introduced to convert the stochastic location uncertainty into
deterministic constraints. In section IV, the MCTS algorithm
with continuous action space incorporating LOCCS formu-
lation is developed to solve the presented MMDP problem.

In section V, a comprehensive numerical study is conducted
to demonstrate the feasibility and efficiency of the proposed
algorithm. Finally, we conclude in section VI.

II. PROBLEM FORMULATION
A. Problem Statement

This paper focuses on the problem setting where multiple
eVTOL aircraft are navigated from their departure points to
respective destinations through a series of control actions with
the intent to avoid conflicts among them. As a problem of
sequential decision-making, we can formulate it as a Markov
Decision Process (MDP) problem. In addition, instead of the
MDP formulation which considers a single aircraft only, we
formulate Multi-agent Markov Decision Process (MMDP) as
an extension of MDP to fit the setting of the multi-agent
system presented in this paper. For every decision-making
procedure in an MMDP problem, the aircraft’s action is
determined by its state which contains all the information to
decide the optimal action for the current state.

To achieve the goal, an algorithm which acts on every
aircraft in the multi-agent system is required. This algorithm is
developed based on the method of Monte Carlo Tree Search
(MCTS). In this article, we take into account the scenarios
of high-density free flight airspace: we will run the proposed
online algorithm on every individual aircraft in the multi-agent
system with the purpose of avoiding inter-agent conflicts. All
the aircraft in the system are assumed to fly at the same altitude
(flight level) and thus only horizontal actions need to be
considered. In addition, the location uncertainty of the aircraft
is explored and the performance of the proposed algorithm is
tested under different levels of uncertainty.

The objectives of this specific MMDP problem are presented
as follows:

1) To minimize the total number of potential conflicts
among all the aircraft;
2) To navigate all the aircraft in a multi-agent system to
reach their respective destinations as soon as possible.
We will introduce a reward function later to capture both
objectives above. Building upon the reward function, this
problem will be formally reformulated as an MMDP problem
in the next section.

B. MMDP Formulation

Since the middle of the 20th century, MDPs have been well
studied and widely applied in many areas like robotics, control,
economics and so on [38], [39]. At every time step in the
MDP formulation, an agent in the system selects a feasible
action a according to the knowledge of current state s. Then
by following the underlying state transition probability, the
agent proceeds to next state s’ and receives a reward.

To be specific, an MDP formulation is composed of the
following four components:

1) The state space S containing all the possible states of
an agent;

2) The action space A containing all the possible actions
an agent can select;

3) Transition function 7 (s;1|st, a;) portraying the prob-
ability of reaching state sy, given current state s; and
action ay;

4) The reward function Reward(s,at, si+1) which de-
cides the reward received after transition from state s
to state s’ according to action a.

In an MDP problem, a policy 7 is a mapping from a state
to a specific action:

T:S— A (D

The purpose of our MDP formulation is to seek an optimal
policy which maximizes the expected cumulative rewards over
all the steps in the future, started from any initial state:

T-1
T = argmaxE[Z Reward(s, at, S¢+1)|7])
T t=0

There are two important notions in MDP: ()-function and
value function. The optimal Q-function Q* (s, a) represents the
expected cumulative reward received by an agent which starts
from state s, selects action a. Thus, Q* (s, a) indicates to what
extent it is good for an agent to select an action a in a state
s. The optimal value function V*(s) suggests the maximum
expected total reward for the agents which start from state s,
and can be illustrated as the maximum of Q*(s,a) over all
possible actions:

V*(s) = max Q*(s,a) VseS 3)

In this paper, an MMDP problem is formulated as an
extension of the aforementioned MDP to fit the setting of a
multi-agent system. The MMDP formulation presented in this
paper is made up of the following five components.

1) Continuous State Space: The state contains the neces-
sary knowledge for the algorithm to perform actions on every
single aircraft in the system: the position (x,y), speed v,
heading angle v, and goal position (g5, g,) for every aircraft
in the system. Capturing the information of every aircraft in
the system, the state for the MMDP formulation turns out to
be an n x 6 matrix, where n indicates the quantity of aircraft in
the system and each row of the matrix exhibits the knowledge
for a single aircraft in the system.

It is worth noting that in this paper the state space being
discussed is continuous. For instance, all the entries of a state
can be taken continuously. However, there is no way that we
can enumerate all the possible mappings from states to actions,
and therefore it is not clear how to obtain the best repre-
sentation of the policy. For MDP-based algorithms previously
discussed, to seek the solutions to conflict avoidance problems,
some methods have been presented to represent the policy
through the discretization of the state space S and the action
space A based on grids, or employing policy compression
techniques [40]. Alternatively, the advantage of the proposed
MCTS algorithm in this paper is that it doesn’t require the
discretization of the state space. For each state, the actions
can be generated by MCTS algorithm for the aircraft to take
in real time.

2) Continuous Action Space: At every time step, the air-
craft can take actions to turn its heading angle at a certain
rate. To be specific, the advisory of heading angle for every
individual aircraft constitutes the set of continuous actions
A={a € R|—-5deg/s <a < 5deg/s}, where the plus sign
indicates right turn and the minus sign indicates left turn. The
change rate of the heading angle can be decided afterwards. At
each time step, the proposed algorithm can run in real time to
select an action from the action set for the aircraft according to
the knowledge of the current state. After running, the aircraft
will maintain the selected action during the current time step.

3) Dynamic Model with Location Uncertainty: Built on
the information from current state and action, the following
kinematic model is used to find the state transition for every
aircraft in the system:

T =wvcosy “4)
Yy =wvsiny 5)
b =ay 6)

where v denotes the cruise speed, ¢ indicates the heading
angle, and ay indicates the selected action which determines
the change rate of heading angle for an aircraft.

After an aircraft executes an action, the aircraft speed is
held constant during one time step. In addition, we also
consider some disturbance that influences the aircraft speed
and its changing rate of the heading angle. This ultimately
accounts for the location uncertainty of the aircraft, which
can be modeled as a Gaussian distribution centered at the
expected position of the aircraft after one time step with a
certain covariance. The disturbance here aims to capture the
uncertainty from environment and aircraft dynamics respec-
tively. When it comes to the conflict checking between two
aircraft in the system, both location uncertainties of each
aircraft should be considered. Instead of dealing with both
uncertainties separately, we can introduce a relative uncertainty
transformation to get them settled together, which will be fully
discussed in next section.

4) Terminal State: When two aircraft cannot maintain a
minimum separation requirement, a Loss of Separation (LOS)
event occurs, which is defined formally as follows:

Definition 1 (LOS Event) An LOS event occurs when

|l — xi|| <75 475)

where x;; and x;; are the locations of the aircraft j and the
aircraft 4 at time ¢ respectively. r; and r; are the minimum
safety ranges for both aircraft to stay away from each other
to ensure safety, which depends on the speed of the aircraft
[41]. In this paper, for simplicity, r; and r; are assumed to be
constant at any time ¢.

However, given unknown location uncertainty of the air-
craft, both x;; and x;; should be treated as random variables.
Thus it’s impossible to figure out the real distance between two
aircraft with the information of their states only. Instead we
turn to ensure that the probability of LOS event occurrence
is less than a given risk level. To handle this probabilistic

measurement, we propose a new concept named as Loss of
Chance Constrained Separation (LOCCS) event, which will
be fully defined and detailedly explained in Section III. Based
on LOCCS, we can further prove that whether the probability
of LOS event occurrence is smaller than a given risk level or
not can be judged through evaluating the distance between a
point and an ellipse and then checking whether that distance
is larger than a threshold value, which depends on the given
risk level.

Building upon the aforementioned aircraft separation re-
quirements, the terminal state in the MMDP formulation is
made up of two different categories of states indicated as
follows:

1) An LOCCS event occurs, i.e., the probability that an
LOS event occurs is greater than a given risk level
(denoted as an LOCCS state);

2) The agent reaches its goal position, i.e., the distance
between the agent and its corresponding destination is
less than a threshold (denoted as a goal state).

In addition to the terminal states listed above, all the other
scenarios encountered can be stacked together and defined as
non-terminal states.

5) Reward Function: The primary objective of our model
is to minimize the total travel time of all aircraft while
maintaining safety. This bi-objective can be handled with the
following reward function:

max d(x¢,9) —d(z+¢,9)
max d(x¢,g) ’
reward(s) = { 0,

1

s is an LOCCS state
, s is a goal state
3)

where d(x;, g) is the distance between the aircraft and its goal
position; max d(x, g) is the maximum distance, for example,
the diagonal of a square map or the diameter of a convex map.
Therefore, based on the current distance from the aircraft to
its destination, the aircraft will be rewarded a positive value
between 0 and 1, if it is not at an LOCCS state.

Based on the above reward function for an individual
aircraft, the actual reward function for the MMDP is the sum
of all individual rewards, which is shown as follows:

N
Reward(s) = Z reward;(s))
i=1

where [V is the number of aircraft in the system.

In summary, this reward function will encourage the aircraft
to determine actions that drive it closer to its destination
for a positive reward and avoid any LOCCS event, which is
rewarded zero.

III. LOCCS FORMULATION
A. Risk Domain Definition

Uncertainty is a major concern when it comes to the path
planning of UAM. For an eVTOL in a multi-agent system, its
location x; at a particular time ¢ may be stochastic, due to
uncertainty arising from the inaccurate sensor of self-position

s is a non-terminal state

or environmental disturbance like wind. Especially, under the
assumption of Gaussian distribution, the location x; obeys

o~ N (pgs Bi) (10)

where N (p,,, X.) represents a Gaussian distribution which
has a time-varying mean p,, and a time-invariant covariance
3. That is, the expected location for each aircraft is the mean
of the Gaussian distribution, while the real location of each
aircraft obeys the Gaussian distribution.

To operate safely in a dynamic environment, each eVTOL
should seek to avoid conflicts with other eVTOLs in the
system. This can be achieved by introducing the following
constraints

Tt ¢ Xt \V/t
N-1
where X; := (U Xyi)

i=1

(1)

In the above constraints, we use X;; to denote the area in which
aircraft ¢+ may be located at time ¢ due to aircraft location
uncertainty, where ¢ € {1,2,...,N — 1} and N is the total
number of all the aircraft in the system. &; is formed by all the
other aircraft that the current aircraft seeks to avoid. We call
such area as the possible region for all the other aircraft ¢ at
time ¢. Note that, from the perspective of the current aircraft,
all the other aircraft in the system actually can be viewed
as obstacles to avoid. The time dependence of X; allows the
inclusion of either static or dynamic obstacles. In this paper,
for the current aircraft in the system, all the other aircraft need
to be treated as dynamic ones.

From the perspective of the current aircraft, the possible
region of another aircraft ¢ at time step ¢ can be modeled by
the following equation, by assuming Gaussian uncertainty,

Xy ={x e R | ||z — || < i} Vi,
cii ~ N (py, i)

12)

where r; is the minimum safety range for the current aircraft to
stay away from the ith aircraft to ensure safety. In addition, ¢;
represents the position of the ith aircraft at time ¢, which is an
independent Gaussian random variable, i.e., ¢y ~ N (g, 5)
with a time-varying mean p,; and a time-invariant covariance
3.

Given the concept of LOS event defined in last section, this
paper aims to find probabilistically guaranteed conflict-free
paths for a set of eVTOLSs to reach their goal positions, such
that the probability of the LOS event occurrence between any
two aircraft in the system at any time is less than a certain
threshold, i.e.,

Pr(LOS event) < « (13)

where « is a prescribed threshold, called risk level.

We aim to quantify the probability of an aircraft to avoid
conflicts with other aircraft considering location uncertainty as
presented in Eq. (13). To realize this goal, we first define the
risk domain of a d-dimensional Gaussian random variable.

Definition 2 (Risk Domain) A set D C R? that satisfies

Pr(XeD)>1-a (14)

is called a risk domain at risk level o of a random variable
X.

We can convert the possible region X;; introduced in
Eq. (12) into a risk domain D at a given risk level « (or a
confidence level 1 — «). Especially when the aircraft location
ct; is assumed to obey Gaussian distribution and the safety
range is not considered (i.e. r; = 0), the boundary of the
corresponding risk domain D for ¢; only can be proved
to be a circle or an ellipse, according to Lemma 1 in our
previous work [42], [43] as follows. For the uncertainty
obeying Gaussian distribution, an ellipse would be a good
choice since it is just the contour of the probability density
function of Gaussian distribution.

Lemma 1 Let X € RY be a d-dimensional random variable
that obeys a d-dimensional Gaussian distribution Ay(u,X),
then the following set

D={X|(X -2 (X -p) <F'1-a)} 15

specifies the risk domain of X at risk level o, where F); 1
is the inverse mapping of the cumulative distribution function
(CDF) of x? distribution with d degrees of freedom. |
We first consider simple scenarios where only aircraft ¢
has location uncertainty when checking conflicts between the
current aircraft and the other aircraft ¢. It is straightforward
to see that if the distance between the current aircraft and
the risk domain D of aircraft ¢ is less than the sum of
safety ranges r; + 7, of both aircraft, then the probability
of LOS event occurrence between both aircraft must be less
than the given risk level a. In this way, the introduction of
risk domain allows stochastic constraints to be represented
as equivalent deterministic constraints. However, the current
aircraft and aircraft 7 may both have location uncertainty. To
cope with such scenarios, we introduce the transformation of
relative uncertainty between the current aircraft and aircraft @
in next subsection, so as to reduce the location uncertainty of
both aircraft into a common one, which greatly simplifies the
process of feasibility checking for the probabilistic bounds.

B. Transformation of Relative Uncertainty

When considering conflict checking between two aircraft,
we can introduce the transformation of relative uncertainty,
which transforms the uncertainty of both aircraft into one
common uncertainty. For the simplicity of notation, let random
variable X denote the location ¢;; of an aircraft ¢ and random
variable Y denote the location x; of the current aircraft at
time step t. Consider that both Var(X) and Var(Y) are
expressed in a common coordinate system. It follows that the
new random variable Z = (X — Y") represents the relative
position between the aircraft ¢ and the current aircraft given
uncertainty, which also follows a Gaussian distribution [44].

With this, the risk domain established above for the situa-
tions where only one aircraft has location uncertainty can be
extended to the situations where there are both uncertainties.
we can also build the corresponding risk domain for the
random variable Z which represents the relative position
between the aircraft ¢ and the current aircraft at the time step
t,

(Z-p)'E" NZ-p)=F'1-a) (16

(0.0)

v

Relative Uncertainty

A 4

(0.0)

Fig. 1. Illustration of the transformation of relative uncertainty

where o is the given risk level, F; ! represents the inverse
mapping of the cumulative distribution function (CDF) of x?
distribution with 2 degrees of freedom, '’ = (m,n)? is the
mean vector after transformation, and > is the covariance
after transformation.

It’s easy to find that the boundary of Eq. (16) is also a
circle or an ellipse. Further details can be found in [43]. To
check whether the current aircraft would conflict with the other
aircraft ¢, it’s only required to check the minimum distance
dmin between the origin (0,0) and the risk domain of Z in
Eq. (16) whose center is " = (m,n)T, as shown in Fig. 1.
If dnin is greater than the safety range, the probability of
LOS event occurrence will be bounded by the prescribed risk
level «. Building upon the exploration of the transformation
of relative uncertainty above, we successfully transform both
uncertainties of two aircraft into a common one, in lieu of
addressing them separately.

C. LOCCS Definition

In this paper, the safety ranges of both aircraft are non-
negligible. The radius of the safety range for the current
aircraft and the other aircraft ¢ are r, and r; respectively.
Given that both aircraft have location uncertainty, we apply
the transformation of relative uncertainty presented in last
subsection to convert both uncertainties into a common one.
After that, the possible region X}; of the aircraft ¢ at time ¢ as
defined in Eq. (12) can be represented by the union of a series
of circles with radius r;, where the circle’s center ¢y, i.e. the
location of the aircraft i, follows a Gaussian distribution.

We can first obtain the risk domain D;; for the location c;;
of aircraft 7 at time ¢ according to Lemma 1, assuming that
r; = 0. Next, when considering the safety range r; of aircraft
i, the corresponding risk domain for aircraft 7 at time step
t is in fact the enveloping area of a series of circles whose

centers are inside or on the boundary of D;;. We denote this
actual risk domain as D;;""?°, which is a larger area than Dy,
as shown in Fig. 2.

(0,0)

Fig. 2. Illustration of LOCCS formulation

Since there is no explicit expression of the actual risk
domain D; "¢, we will check the feasibility of the chance
constraints by measuring the minimum distance d.,;, between
the current aircraft’s location @; and the risk domain Dy;
for the location ¢;; of aircraft ¢ at time ¢. In fact, d.;, can
be treated as the distance between a point and an ellipse,
which can be evaluated explicitly according to [45]. Then we
check the feasibility of the deterministic constraints using the
inequality

dmin(wty Dti) > Tt Ty 17)
if it holds, then
Pr(LOS event| Eq. (17) holds)
=Pr(||les — eyl < ri+r. | @ & D;C
(lee — el < |z & D) (18)

< Pr(ci; & D)
=

Based on the above discussion, we can now quantitatively
define the concept of an LOCCS event, which has already
been mentioned in last section.

Definition 3 (LOCCS Event) An LOCCS event occurs
when

dmin(wtypti) <7ri+rs (19)

In summary, given a risk level o which denotes the proba-
bilistic bound on the chance that the current aircraft conflicts
with any other aircraft 4 at any time step ¢, we can convert the
stochastic constraint Eq. (18) into a deterministic constraint
Eq. (17) equivalently, in consideration of the safety ranges
and location uncertainty of both aircraft.

IV. SOLUTION METHOD

We are seeking to develop an online algorithm to provide
navigation commands for the aircraft, which guides every
individual aircraft in the system to reach their respective
destinations without conflicting with each other as much as
possible. When it comes to the procedure of decision-making,
the control action can be determined by the proposed algorithm
according to the knowledge of current state. Following the
algorithm’s control action, the aircraft can reach their destina-
tions while avoiding LOCCS events. In this paper, the original
problem is formulated as an MMDP problem and solved by

algorithms based on MCTS. For original MCTS, readers can
refer to [40] and in this paper we will focus on extending orig-
inal MCTS algorithm to deal with the scenarios of continuous
action space and incorporate LOCCS formulation we built in
last section.

A. Bayesian Optimization with Gaussian Process Regression

To globally optimize the black box functions, Bayesian
optimization can be introduced as a sequential policy without
resort to derivatives [46]. The principle of Bayesian optimiza-
tion is: given the assumption that the unknown function is
sampled from a prior Gaussian process, a posterior distribution
is kept for this function as we make sequential observations.
Next we will give a concise introduction to Gaussian process
and Bayesian optimization.

For Gaussian process (GP), it offers a strong and convenient
way to explore non-parametric statistical models over the
Hilbert space consisting of functions. Specifically, a GP is a
stochastic process such that any finite subcollection of random
variables has a multivariate Gaussian distribution [47]. In
particular, a collection of random variables {f(z) : z € X'}
is said to be drawn from a GP with mean function m(-) and
covariance function k(-,-) if for any finite set of elements
r1,- -, T, € X, the associated finite set of random variables
f(z1), -+, f(zm) has distribution

f(z1)
f(@m)
m (z1) k(x1,21) k(x1,2m)
N : : :
m (z,) k(m,x1) k(m, Tim)
(20)
and for simplicity, this equation can be abbreviated as:
fC) ~GP(m(), k() 2D

Next we are going to employ GP to make predictions for
the function value evaluated at a sampling point z,. Given a
training set X = {(x;, f(x;) : i =1,...,n}, then the function
value f, evaluated at the sampling point x, will obey the
following distribution:

fulw, X ~
N(K(LL'*,X)K(X,X)_lf,
K(zs,2,) — K(z., X)K(X, X)) 'K(X, 2,))

where f is a vector comprised of all the function values, and
k is a matrix comprised of entries indicating the covariance
function k(- -). It is straightforward to show that GP not only
offers the knowledge of the possible value of the function f,
but more importantly, the knowledge of the uncertainty around
that function value.

Provided that the intended function is captured from a
GP prior and then based on the data of observation X =
{(zi, f(z;) :i=1,...,n}, it follows that a posterior over the
space of functions can be obtained. An acquisition function

(22)

can be introduced to decide which point to be evaluated next
according to a proxy optimization Zyey = arg max, a(x), and
this is temporarily the best guess to approximate the global
optima. The criterion of Upper Confidence Bound (UCB) [48]
is a good choice to serve as an acquisition function. It is
intended to minimize the regret (the expected loss due to
the selection of sub-optimal action) during the process of
optimization. The UCB acquisition function reads:

aycs (2| X) = p(x| X) + ko (z|X) (23)

where x is a tuning parameter aimed at achieving a trade-off
between mean and variance.
Therefore, Bayesian optimization is comprised of two main
components:
1) A Bayesian statistical model intended to capture the
objective;
2) An acquisition function intended to find next sampling
point.
Following the evaluation of the objective on the basis of an
initial space-filling set-up, which is often made up of points
sampled uniformly at random, these components are iteratively
utilized to allocate the budget of evaluations for the function.

B. MCTS with Continuous Action Space

Monte Carlo Tree Search (MCTS) is an approach which is
intended to obtain optimal decision-making through sampling
randomly over the decision space and generate a search tree
based on the consequence of decision-making [49]. It has
already been ubiquitously applied in planning problems and
games like the artificial intelligent computer program AlphaGo
which was used in Go games [50]. MCTS generates a tree in
an incremental and asymmetric manner, as shown in Fig. 3.
The technical details of MCTS will not be covered in this
paper (For further contents readers can refer to [49]). Instead,
we are interested in extending the original MCTS to fit the
scenarios of continuous action space.

— Selection—Expansion— Rollout —Backpropagation

Tree Policy Default Policy

\
N A J

Fig. 3. Illustration for one iteration in MCTS [49]

Extending the tree search algorithm to fit the scenarios of
continuous action space poses a great challenge of achieving
a balance between searching more extensively to explore
more candidate actions through broader expanded nodes and
searching more intensively to exploit the current candidate
action through deeper search. Recent research work has been
dedicated to adapting the tree search algorithm to continuous
action space. Truncated Monte Carlo presented by Tesauro et
al. [51] trims both candidate actions which are impossible to
become the best action, and the candidate actions whose values

are close to the current best estimate. Likewise, a trained policy
network explored in AlphaGo [52] can be used to restrict
the search to actions of high value. The conventional way
[53] to perform progressive widening can address continuous
action space in consideration of a slow-growing discrete set
for sampling actions [54]. In this article, we will take the
progressive widening strategy because of its computational
efficiency and Bayesian optimization with GP regression will
be employed to help us to select the best action.

In previous algorithms applying progressive widening strat-
egy, new actions are added to the tree according to some
predefined distribution, which ignores the insight that similar
actions may have close) values if we assume the @ function
Q(-,a) given in Section II is continuous in a. In this paper,
we use GP regression to generalize action value estimates
over the entire parameter space, which can guide the agent
to add the most promising action to the search tree from
the action space. This approach has the following benefits.
First, it allows information sharing between all actions under
consideration to approximate the values for untried actions.
Second, it can identify actions outside of the initial candidates
for further exploration by combining the mean and variance of
GP regression using UCB acquisition function introduced in
Eq. (23) [55]. Last, it can ultimately select actions outside of
the candidate set allowing it to improve on less-than-perfect
domain knowledge.

Now we turn to illustrate the details of MCTS algorithm
with continuous action space. The overall steps of the algo-
rithm are similar to [40], and in this paper we only describe
the difference in the selection step due to the incorporation
of continuous action space. MCTS algorithm with continuous
action space, similar to MCTS algorithm with discrete action
space, selects actions by searching ahead. In the step of
selection, the current node will select a node (corresponding
to an action) from all of its child nodes as next state, which
maximizes the function of Upper Confidence Bound Applied
to Trees (UCT) introduced in Eq. (24). The UCT function

consists of two terms: a mean action value X;, and an
uncertainty addition [49]:
— 21
UCT =X, +2C,| —~ (24)
nj

The first term is for exploitation, and the second for explo-
ration.

The first term Y]— can be understood as an exploitation term
derived from the formula:

X =Q;/n;

where n; is the number of the visits to the child node s*~1and
Q; is the total reward of all rollouts that passed through this
node; The second term can be understood as an exploration
term where n is the number of visits to the current node and C'
is a weighting parameter which seeks to balance exploitation
and exploration of tree search. Note that the UCT function
in Eq. (24) is different from the UCB acquisition function
in Eq. (23), since the latter one is intended for the trade-
off between mean and covariance of GP. Also, the UCT

(25)

1

function acts when selecting the best child node while the
UCB acquisition function acts when expanding child nodes.

For MCTS algorithm with discrete action space, we can
readily evaluate the UCT scores for all the candidate child
nodes. However, for continuous action space, it is unlikely
any more to figure out all the UCT scores for all the candidate
actions. Under this circumstance, the strategy of progressive
widening can address the continuous action space through
limiting the number of actions in the search tree according
to the times the node has been visited before and the slow-
growing discrete set for sampling actions. Once the attribute of
the best available is well estimated, we can take into account
the additional actions. To be specific, for action selection,
MCTS algorithm runs through either the improvement of value
estimation for current child actions by selecting an action of
highest UCT score, or the exploration of untried actions by
attaching a new action to the current node. The decision can
be made according to maintaining the quantity of child actions
for a node which is bounded by a sub-linear function m(s) of
the number of visits to the current node n(s):

m(s) = B -n(s)” (26)

where B and 8 € (0,1) are two parameters that achieve a
trade-off between covering more actions and improving the
estimate of fewer actions. At each step of action selection, if
the quantity of child actions under the current node s is smaller
than m(s), a new action will be attached to the current node s
as a child action. Otherwise, an action which owns the highest
UCT score will be selected from the existing child actions. On
the one hand, UCT score assures that the depth of the search
tree grows more rapidly in its promising parts; on the other
hand, the progressive widening strategy tells that the search
tree also grows broader to explore more actions in some parts
of the search tree.

During each step of action selection, the simulation starts
from the initial current state s°, selecting actions repetitively
before arriving at an unexpanded node (which means it has
no child actions). For each time step k, a decision is made
according to the comparison between the quantity of child
actions |Ax—1| for the node s*~! and the value m(s*~1)
in Eq. (26). If |Ag-1] > m(sk71), an action a* will be
determined by maximizing the score of UCT presented in
Eq. (24); otherwise, the agent will select a new action from
the action space, attach it to the search tree, and expand this
new edge.

In this paper, assuming the () value is continuous in a,
we use GP regression to fit the () value from the tree search
result, which can inform us to select the most promising action.
More specifically, we assume that the current node s has child
actions ag, - - - , ap With @ value Q(s,a1),--- ,Q(sp). We use
GP to fit the observation data X = {(a;,Q(s,a;) : i =
1,...,p}. Then we sample m actions aq,--- ,a,, according
the Gaussian policy distribution. After evaluating these m
actions using the acquisition function in Eq. (23), the proposed
algorithm will attach the action with the maximum value to
the search tree.

C. MCTS Incorporating LOCCS Formulation

As discussed in Section II, in order to evaluate the reward
of a selected action, it is required to conduct conflict checking
between two aircraft. Through introducing LOCCS formula-
tion in Section III, we can propose an equivalent deterministic
constraint instead of evaluating the probability of LOS event
occurrence between two aircraft. Once in compliance with
the proposed deterministic constraint, we can guarantee that
the probability of LOS event occurrence between two aircraft
should be less than a prescribed risk level.

When conducting conflict checking between two aircraft
considering location uncertainty at each time step, the location
of one aircraft can be represented as an ellipse while the other
aircraft can be also represented as another ellipse. Note that
the direction of the long axis of the ellipse aligns with the
heading orientation of the aircraft. Next employ the relative
uncertainty transformation introduced in Section III and we
can obtain the LOCCS constraint (dpi, < r; +7*) in Eq. (19).
If such a constraint is satisfied, it means the probability of LOS
event occurrence indeed exceeds a prescribed risk level. Thus,
the aircraft is at the state of LOCCS and the reward reward(s)
of the current state should be set to be reward(s) = 0, as
presented in Eq. (8).

For the conflict detection and avoidance of a multi-agent
system, the formulation of conflict between one pair of aircraft
in the system is first considered. Then that formulation will be
applied to every pair of aircraft in the system so that we can
perform inter-agent conflict checking between any two aircraft
in the system.

D. Summary

The aforementioned procedure is summarized in Algorithm
1 as follows. In the pseudo codes, v is used to represent the
node and s to represent the state of the node v. s(v) means
the state of a node and v(s) means the node created from
state s. Q(v) is the total reward of all rollouts that passed
through the node v. N(v) is the number of visits to the
node v. d(v) indicates the search depth under the node v. In
Line 28, Gaussian process regression is introduced to guide
the sampling of actions from the continuous action space. In
Line 33, the LOCCS formulation is incorporated into MCTS
algorithm to help judge whether an aircraft is at an LOCCS
state.

This algorithm runs in a distributed way since each aircraft
can compute its own action onboard and individually, and
thus it can guarantee scalability. The algorithm will check
the LOCCS feasibility on every step, so the feasibility under
required risk level can also be guaranteed. When it comes to
the decision making of an aircraft in the system, it only needs
the local information of other aircraft in its neighbourhood.
Then according to the local information acquired, it runs the
proposed MCTS algorithm, makes decisions and broadcasts
its decision to the aircraft nearby. Then the next aircraft
takes the above actions repetitively until every aircraft in the
system makes decisions and moves forward to their next states
respectively.

Algorithm 1 MCTS Algorithm with Continuous Action Space
Incorporating LOCCS Formulation

1: function SEARCH(s()

2 initial node vy generated with state sq

3 while within the budget of computation do

4 v; « TREEPOLICY (vg)

5: reward < ACTIONPOLICY (s(v;))
6: BACKPROPAGATION (v, reward)
7
8
9

return a(BESTCHILD(vy, 0))

: function TREEPOLICY(v)
10: while NONTERMINAL(v) and d(v) < d do

11: if v not fully expanded then
12: return EXPAND(v)

13: else

14: v <= BESTCHILD (v, C)
15: return v

16:

17: function EXPAND(v)

18: select a € untried actions A(s(v))
19: s(v") = PROCEED (s(v),a)

20: attach the new child v’ to v

21 return v’

22:

23: function BESTCHILD(v,)

24: return argmax % +C 21]3(1;[,()”)

v’ € children of v
25:
26: function ACTIONPOLICY(s)
27: while NONTERMINAL(s) and d(v(s)) < d do

28: choose a € A(s) using GP regression
29: s + PROCEED (s, a)

30: return reward(s)

31:

32: function NONTERMINAL(S)
33: if s € LOCCS State or s € Goal State then

34: return False

35: else

36: return True

37:

38: function BACKPROPAGATION(v, reward)
39: while v is not zero do

40: N@w)+ N(w)+1

41: Q(v) + Q(v) + reward

42: v <~ parent of v

43:

44: function PROCEED(s, a)

45: s’ + next state from current s, a
46 d(v(s") «d(v(s))+1

47: return s’

V. NUMERICAL STUDY

In this section, a series of numerical cases are conducted
to demonstrate the feasibility and efficiency of our proposed
MCTS algorithm with continuous action space which incor-

porates LOCCS formulation. To be specific, first the solution
quality of our proposed algorithm is compared with another
three algorithms in terms of three different aspects. Then
several parameter sensitivity tests are performed to quantita-
tively evaluate the impact that different parameters have on the
performance of the proposed algorithm. At last, the average
flight time using the proposed algorithm with continuous
action space is compared with that of another algorithm with
discrete actions under the scenarios of different routes and
different traffic densities.

A. Test Settings

To test the solution quality of the proposed algorithm, a
simulator is built in Python where multiple aircraft can fly
freely in the two dimensional en route airspace above a city,
which is intended for future free flight operations in Urban Air
Mobility (UAM). To demonstrate the quality of this algorithm
in practice, the UAM network can be reduced by following the
generic city model presented in [56]. In this generic model,
seven vertiports are configured in a hexagonal pattern of “six
around one”. As shown in Fig. 4, one vertiport is at the center
of the hexagon and located equidistant from the other six verti-
ports at a distance of 16 km. The cruise speed of every aircraft
in the system is 190km/h [40]. The near mid-air conflict
(NMAC) is defined to be 500ft [13]. The discretized time
step for an aircraft to move forward is 2s. The covariance of
the location uncertainty of an aircraft is 3 = [0.04, 0; 0, 0.01].
In Eq. (23), i is the mean value returned from the Gaussian
process, and k is the exploration coefficient which decides
whether we should put on more weights on the actions whose
values we already know (exploitation), or the actions we
haven’t explored (exploration). In this paper, x is set to 1. In
Eq. (26), we actually didn’t use B and [(they are simply set to
1), and we list them in this paper just to make the formulation
extendable. In this section, all the tests were implemented in
Python 3.8 and were run on an Intel Xeon Silver 4210 CPU
2.20GHz desktop with 32GB RAM.

¥
¢ %
¥
*
Y
A
x
% < “®

Fig. 4. Seven vertiports overlaid with segment length of 16 km

B. Solution Quality of MCTS GP Compared with Another
Three Algorithms: MCTS Uniform, MCTS Discrete and ORCA

Based on the above test settings, we conduct the following
several tests to demonstrate the performance of our proposed
algorithm. The proposed algorithm we develop in this paper is
based on continuous action space and uses Gaussian process
regression to discretize the continuous action space (named
as MCTS GP). In addition, LOCCS formulation is employed
to perform LOS event checking. To show the solution quality
of our proposed algorithm, we compare it with another three
algorithms, which are:

1) MCTS algorithm based on discrete action space (named
as MCTS Discrete). It has three discrete options of
control actions: left, right, and straight. It uses Monte
Carlo Simulation to perform LOS event checking instead
of LOCCS formulation we established in this paper.
Further details can be found in [40];

2) MCTS algorithm based on continuous action space using
uniform sampling (named as MCTS Uniform). For
MCTS Uniform, it uses uniform sampling to discretize
the continuous action space. That is, the heading angle
is chosen uniformly from the continuous action space;

3) Optimal Reciprocal Collision Avoidance Algorithm
(ORCA) [13], [57].

For MCTS GP, its parameters are set to: confidence level
90%, search depth 2, and the number of expanded nodes
5. For MCTS Uniform, its parameter settings are the same
as MCTS GP. It is worth noting that since the number of
the expanded nodes for MCTS GP is the same as MCTS
Uniform, the fineness of the discretization of MCTS GP and
MCTS Uniform is considered the same. For MCTS Discrete,
it doesn’t take confidence level into account since it uses
Monte Carlo simulation to perform LOS event checking in
lieu of LOCCS formulation proposed in this paper; also, it
only considers three options of heading angles when taking
control actions (left, right, straight), which means the number
of expanded nodes are set to 3; its remaining parameter setting
of search depth is the same as MCTS GP. ORCA Algorithm
serves as a baseline. For all four algorithms, the number of
aircraft varies from 10 to 80 with an incremental step of 10.

The solution quality of all four different algorithms is
compared. Fig. 5 shows the solution quality of aforementioned
algorithms. All these algorithms perform similarly. As the
number of aircraft increases, the probability of NMAC and
running time both increase while probability of reaching the
goal state decreases. For all the algorithms, the aircraft can
reach the goal state with the probability beyond 90%, and the
NMAC probability is under 10%, which means that all the
algorithms are effective when it comes to potential conflicts
avoidance. Fig. 5a shows that MCTS GP performs better
than MCTS Uniform, MCTS Discrete, and ORCA in terms
of goal probability. Thus, MCTS GP has the lowest NMAC
probability, as shown in Fig. 5b. In addition, Fig. 5c shows
that MCTS GP spends limited time while achieving high goal
probability and high NMAC probability owing to the efficiency
of LOCCS formulation when it comes to LOS event checking.

MCTS GP applies to a multi-agent system of UAM which
has its own constraints and concerns like traffic density and
dynamic complexity. Even when the number of agents is
very large, the computational time is still acceptable for
UAM applications. We can also adjust the parameters to
obtain shorter computational time. This ensures that MCTS
GP can run in online fashion. Although the computational
time of MCTS GP is slightly longer than MCTS Discrete or
ORCA since Gaussian process regression requires a bit more
computational cost, the difference in terms of computational
time is not significant. In contrast, the computational time of
MCTS Discrete, which uses Monte Carlo Simulation instead
to perform LOS event checking, is much longer than using
LOCCS formulation.

C. Parameter Sensitivity Analysis of MCTS Algorithm with
Continuous Action Space (MCTS GP)

There are mainly three parameters impacting the perfor-
mance of the proposed algorithm MCTS GP: the confidence
level, the search depth, and the number of expanded nodes.
The confidence level reflects the level of location uncertainty
imposed on the aircraft. A higher confidence level indicates
more uncertainty. Search depth indicates the number of steps
to look ahead. Deeper search depth means more intensive
exploitation of the tree search. For more detailed illustration,
please refer to [13]. Typically for MCTS GP, a deeper search
tree can give rise to better quality of the algorithm but need
more expensive computational cost. The number of expanded
nodes decides how many child nodes a parent node in the
search tree should have when it is fully expanded. A larger
number of expanded nodes reflects more extensive exploration
of the tree search. In this subsection, the baseline is set to:
confidence level 90%, search depth 2, and the number of
expanded nodes 5. The number of aircraft varies from 10 to
80 with an incremental step of 10.

To explore the impact of these three different parameters on
the performance of MCTS GP, we conduct sensitivity analysis
for these three different parameters respectively.

1) Results of Varying Confidence Levels: In this simulation,
the parameter of confidence level varies while the remaining
two parameters are the same as the baseline. The parameter
of confidence level is chosen from 90%, 95% through 97%.

As shown in Fig. 6, the performance trends of MCTS
GP with respect to varying aircraft numbers are consistent
for three different confidence levels above. Fig. 6a shows
that the higher confidence level, the better goal probability.
Fig. 6b shows that the highest confidence level owns the lowest
NMAC probability. Fig. 6¢ shows that the performance of goal
probability and NMAC probability improves at the cost of
longer running time. This is because when the confidence level
increases, the risk domain becomes larger and the algorithm
needs to perform more iterations to find feasible path without
violating the risk domain. When the confidence level is too
high, we may not find a feasible solution to the trajectory
planning problem in real time.

2) Results of Varying Search Depth: In this simulation, we
discuss the performance of MCTS GP with respect to three

—e— MCTS GP

—e— MCTS Uniform

—e— MCTS Discrete
ORCA

o
=3
©

4
©
-3
o
o
N

/

o

©

&
NMAC probability

/

o
=3
=y

4
©
=

goal probability
o
o
&

o
©
w
o
=3
=

—e— MCTS GP

—e— MCTS Uniform

—e— MCTS Discrete
ORCA

/

o

©

N
o
1=}
@

°
©
o

—e— MCTS GP

—e— MCTS Uniform

—e— MCTS Discrete
ORCA

8001

\

running time (ms)
& o
o o
o o

N
=3
=3

10 20 30 40 50 60

number of aircraft

70 80 10 20 30

(a) goal probability

number of aircraft

(b) NMAC probability

70 80 10 20 30 40 50 60

number of aircraft

40 50 60 70 80

(c) running time

Fig. 5. Solution quality of different algorithms: MCTS GP, MCTS Discrete, MCTS Uniform, ORCA

0.06
0.99 —e— confidence level = 97%
—e— confidence level = 95%
0.8 0.051 —e— confidence level = 90%
> Z
3 S0.04
o
097 s
: 4
o 0.96 0 0.03
@ U. <
S =
=z
0.95{ —e— confidence level = 97% 0.02
—e— confidence level = 95%
004 —e— confidence level = 90% 0.01
10 20 30 40 50 60 70 80 10 20 30

=

—e— confidence level = 97%
—e— confidence level = 95%
—e— confidence level = 90%

8001

-3
=3
S

&
o
I

running time (ms)

N
=3
=3

number of aircraft

(a) goal probability
Fig. 6. Solution quality of MCTS GP under different confidence levels

different search depth 2, 3 and 4. The remaining parameter
settings are the same as the baseline.

From Fig. 7a and Fig. 7b we can observe that MCTS GP
with search depth 4 owns the highest goal probability, and
therefore owns the lowest NMAC probability. Fig. 7c indicates
that as the number of aircraft increases, the running time grows
and the improved performance of MCTS GP with search depth
4 comes at the cost of longer computational time.

3) Results of Varying Expanded Nodes: In this simulation,
we investigate the performance of MCTS GP with respect to
the number of expanded nodes 5, 10 and 20. The other two
parameters are set to be the same as the baseline.

From Fig. 8a and Fig. 8b we find that the goal probability
increases (NMAC probability decreases) as the number of
expanded nodes increases. Fig. 8c shows that compared with
expanded nodes of 5 and 10, the running time of MCTS
GP with expanded nodes 20 grows largely while there is
little improvement in terms of goal probability and NMAC
probability.

Above all, this proposed algorithm will only get a sub-
optimal solution because MCTS is not fully completed in every
iteration due to the computational time budget. It sacrifices
some optimality to achieve online operation in reality. The
simulation results show that our approach still works well
even it is not true optimal. In real applications, MCTS GP
algorithm, serving as a higher level design, will work together
with a lower level design of airborne collision avoidance
system (ACAS) [58] to guarantee high aviation safety. Also,
it can help us decide the density of aircraft. The setting
of different parameters in this part proposes to demonstrate

number of aircraft

(b) NMAC probability

40 50 60 70 8

o

10 20 30 40 50 60

number of aircraft

70 80

(c) running time

that there is a trade-off between safety performance (goal
probability) and computational cost (average running time).
We leave it to the users, like Air Traffic Controller (ATC), to
make their own choices of parameter setting. If ATC is more
concerned with safety, we need to sacrifice the running time,
and vice versa.

D. Average Flight Time Comparisons: MCTS GP, MCTS Uni-
form and MCTS Discrete

In Fig. 9 we draw the identified trajectories by following
the actions of MCTS GP and MCTS Discrete when there is no
other aircraft blocking the way to the destination. We can find
that compared with MCTS Discrete, aircraft utilizing MCTS
GP can fly to the destination more smoothly.

In view of the fact that without intruder aircraft MCTS GP
can help the aircraft fly more smoothly, we expect that the
performance of flight time can be also improved when it comes
to the scenarios where intruder aircraft exist. We study the
total flight time for an aircraft from the start vertiport to the
target one, with respect to different routes and different air
traffic densities. Here we classify the route options into three
types according to the distance between the start vertiport and
the target one. In Fig. 10 we tag the vertiports from Fig. 4
with different ID numbers. With this vertiport setting, Route 1
(from vertiport 1 to 2) is the route of the shortest length, Route
2 (from vertiport 3 to 7) is of the medium length, and Route
3 (from vertiport 3 to 6) is of the longest length. The three
different routes are displayed in Fig. 10. We compare the flight
time for different route options with respect to different air

0.06
—e— search depth = 4 —e— search depth = 4
0.98 —e— search depth = 3 —e— search depth = 3
: —e— search depth = 2 0.05{ —®— search depth =2
> 2
= 0.97 3
= 0.)
E 80.04
g g
20.96 3)
© < 0.03
S 2
0.95
0.02
0.94

running time (ms)

—e— search depth = 4
—e— search depth = 3
—e— search depth = 2

1200

=
o
=3
o

©
S
I}

o
=3
S

IN
o
b=}

N
=3
1=

'///

o

10 20 30 40 50 60 70 80
number of aircraft

-

0 20 30

(a) goal probability
Fig. 7. Solution quality of MCTS GP under different search depths

40 50 60 70 8
number of aircraft

(b) NMAC probability

oS

10 20 30 40 50 60 70 80
number of aircraft

(c) running time

0.06
—e— expansion = 20 —e— expansion = 20
0.98 —e— expansion = 10 —e— expansion = 10
—e— expansion =5 0.05{ —* expansion =5
g 0.97 E
- e
g o 0.04
g s
20.96 1%
© <
0.03
& E
0.95
0.02
0.94

running time (ms)

—e— expansion = 20
—e— expansion = 10
—e— expansion =5

e

10004

©
o
b=}

@
b=}
o

I
o
=3

N
=3
=3

o

10 20 30 40 50 60 70 80
number of aircraft

o

0 20 30

(a) goal probability
Fig. 8. Solution quality of MCTS GP under different expanded nodes

traffic densities using MCTS GP, MCTS Uniform and MCTS
Discrete separately, which is recorded in Table L.

From this table, we can find that the flight time ratio of
MCTS GP to MCTS Discrete ranges from 85.4% to 90.9%
and the ratio of MCTS GP to MCTS Uniform ranges from
91.6% to 95.8%, which indicates that given any route and any
air traffic density, the flight time of aircraft using MCTS GP
is always shorter than that using MCTS Discrete or MCTS
Uniform. This is because compared with MCTS Discrete or
MCTS Uniform, MCTS GP employs Gaussian process regres-
sion to guide the sampling of actions from the continuous
action space, which helps the aircraft move more smoothly to
its destination.

We can also observe that for Route 1, the flight time ratio
of MCTS GP to MCTS Discrete has decreased from 90.9%
to 88.7% and the flight time ratio of MCTS GP to MCTS
Uniform is decreased from 95.8% to 94.4%, as traffic density
increases. Similar trends of flight time ratio also apply to
Route 2 and Route 3. This means that as the traffic density
increases, the flight time difference between MCTS GP and
MCTS Discrete or MCTS Uniform becomes more significant.
Simultaneously, when the traffic density is fixed, for instance,
to be low level, the flight time ratio of MCTS GP to MCTS
Discrete varies from 90.9% to 88.9% and the flight time ratio
of MCTS GP to MCTS Uniform varies from 95.8% to 94.5%
for different routes. Similar manners also apply to middle level
traffic density and high level traffic density, which suggests
that as the length of route increases, the flight time of aircraft
using MCTS GP will be increasingly shorter than that using
MCTS Discrete or MCTS Uniform. This demonstrates that

40 50 60 70 8
number of aircraft

(b) NMAC probability

o

10 20 30 40 50 60 70 80
number of aircraft

(c) running time

MCTS GP outperforms MCTS Discrete or MCTS Uniform in
terms of flight time, since Gaussian process regression is a
guided search.

discrete action
— continuous action

"/

.
" A

Fig. 9. Trajectories generated by MCTS GP and MCTS Discrete

Fig. 10. Vertiport setting with three different routes

VI. CONCLUSIONS

In this paper, we come up with a decentralized online com-
putational guidance algorithm with the capability of separation
assurance for a multi-agent system. The MCTS algorithm pro-
posed in this paper employs LOCCS formulation to perform
LOS event checking. Numerical study illustrates the introduc-
tion of LOCCS formulation helps the MCTS algorithm run
much faster than employing Monte Carlo Simulation. This
ensures the proposed MCTS algorithm in this paper can run
in real time while assuring flying safety, which is a great
advantage especially when it comes to the applications of
UAM. Also, the MCTS algorithm proposed in this paper uses
Gaussian process regression to discretize the continuous action
space. Numerical study indicates the flight time of MCTS
using Gaussian process regression is significantly shorter than
using uniform sampling, at the cost of a bit more computa-
tional time, which justifies the benefit of the use of Gaussian
process regression.

In the future, we will take into account the non-cooperative
intruder aircraft which cannot be controlled by our com-
putational guidance algorithm. We will also consider the
scenarios where the communication network fails. The fairness
between the flights is another important issue which remains
to be explored. In addition, we are working on the location
uncertainty obeying non-Gaussian distribution through Kernel
Density Estimation and Mixed Integer Linear Programming.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grants CMMI-2138612.

REFERENCES

[1] L. Gipson, “Nasa embraces urban air mobility, calls for market study,”
https://www.nasa.gov/aero/nasa-embraces-urban-air-mobility, 2017, ac-
cessed: 2020-02-15.

[2] J. Holden and N. Goel, “Fast-forwarding to a future of on-demand urban
air transportation,” San Francisco, CA, 2016.

[3] N. Polaczyk, E. Trombino, P. Wei, and M. Mitici, “A review of current
technology and research in urban on-demand air mobility applications,”
in 8th Biennial Autonomous VTOL Technical Meeting & 6th Annual
Electric VTOL Symposium, January 2019.

[4] E.R. Mueller, P. H. Kopardekar, and K. H. Goodrich, “Enabling airspace
integration for high-density on-demand mobility operations,” in 17th
AIAA Aviation Technology, Integration, and Operations Conference,
2017, p. 3086.

[5] G.Zhu and P. Wei, “Pre-departure planning for urban air mobility flights
with dynamic airspace reservation,” in AIAA Aviation 2019 Forum, 2019,
p. 3519.

[6] J. M. Hoekstra, R. N. van Gent, and R. C. Ruigrok, “Designing for
safety: the ‘free flight’ air traffic management concept,” Reliability
Engineering & System Safety, vol. 75, no. 2, pp. 215-232, 2002.

[71 H. A. Blom and G. Bakker, “Safety evaluation of advanced self-

separation under very high en route traffic demand,” Journal of

Aerospace Information Systems, vol. 12, no. 6, pp. 413—427, 2015.
[8] S. Kahne and I. Frolow, “Air traffic management: Evolution with
technology,” IEEE Control Systems, vol. 16, no. 4, pp. 12-21, 1996.
[9] D. H. Shim and S. Sastry, “An evasive maneuvering algorithm for uavs
in see-and-avoid situations,” in American Control Conference, 2007.
ACC’07. IEEE, 2007, pp. 3886-3891.
Z. Huang, Y. Lu, H. Wen, and D. Jin, “Ground-based experiment
of capturing space debris based on artificial potential field,” Acta
Astronautica, vol. 152, pp. 235-241, 2018.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

R. Chai, A. Tsourdos, A. Savvaris, Y. Xia, and S. Chai, “Real-time
reentry trajectory planning of hypersonic vehicles: A two-step strategy
incorporating fuzzy multiobjective transcription and deep neural net-
work,” IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp.
6904-6915, 2019.

T. B. Wolf and M. J. Kochenderfer, “Aircraft collision avoidance using
monte carlo real-time belief space search,” Journal of Intelligent &
Robotic Systems, vol. 64, no. 2, pp. 277-298, 2011.

X. Yang and P. Wei, “Autonomous free flight operations in urban air
mobility with computational guidance and collision avoidance,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

E. Frazzoli, Z.-H. Mao, J.-H. Oh, and E. Feron, “Resolution of conflicts
involving many aircraft via semidefinite programming,” Journal of
Guidance, Control, and Dynamics, vol. 24, no. 1, pp. 79-86, 2001.

L. Pallottino, E. M. Feron, and A. Bicchi, “Conflict resolution problems
for air traffic management systems solved with mixed integer program-
ming,” IEEE transactions on intelligent transportation systems, vol. 3,
no. 1, pp. 3-11, 2002.

Z. Zhou, J. Chen, and Y. Liu, “Optimized landing of drones in the con-
text of congested air traffic and limited vertiports,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 9, pp. 6007-6017,
2021.

A. U. Raghunathan, V. Gopal, D. Subramanian, L. T. Biegler, and
T. Samad, “Dynamic optimization strategies for three-dimensional con-
flict resolution of multiple aircraft,” Journal of guidance, control, and
dynamics, vol. 27, no. 4, pp. 586-594, 2004.

P. Wu, H. Wen, T. Chen, and D. Jin, “Model predictive control of rigid
spacecraft with two variable speed control moment gyroscopes,” Applied
Mathematics and Mechanics, vol. 38, no. 11, pp. 1551-1564, 2017.

D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 477-483.

B. Acikmese and S. R. Ploen, “Convex programming approach to
powered descent guidance for mars landing,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 5, pp. 1353-1366, 2007.

R. Chai, A. Savvaris, A. Tsourdos, Y. Xia, and S. Chai, “Solving multi-
objective constrained trajectory optimization problem by an extended
evolutionary algorithm,” IEEE transactions on cybernetics, vol. 50,
no. 4, pp. 1630-1643, 2018.

M. Pontani and B. A. Conway, “Particle swarm optimization applied to
space trajectories,” Journal of Guidance, Control, and Dynamics, vol. 33,
no. 5, pp. 1429-1441, 2010.

R. Chai, A. Savvaris, A. Tsourdos, S. Chai, and Y. Xia, “Unified
multiobjective optimization scheme for aeroassisted vehicle trajectory
planning,” Journal of Guidance, Control, and Dynamics, vol. 41, no. 7,
pp. 1521-1530, 2018.

D. Gonzalez, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135-1145,
2015.

Y. Lin and S. Saripalli, “Sampling-based path planning for UAV collision
avoidance,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 11, pp. 3179-3192, 2017.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

L. Kavraki, P. Svestka, and M. H. Overmars, Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. Unknown
Publisher, 1994, vol. 1994.

S. Li, M. Egorov, and M. Kochenderfer, “Optimizing collision avoidance
in dense airspace using deep reinforcement learning,” arXiv preprint
arXiv:1912.10146, 2019.

V. R. Desaraju and J. P. How, “Decentralized path planning for multi-
agent teams in complex environments using rapidly-exploring random
trees,” in 2011 IEEE International Conference on Robotics and Automa-
tion. 1EEE, 2011, pp. 4956-4961.

T. Schouwenaars, J. How, and E. Feron, “Decentralized cooperative
trajectory planning of multiple aircraft with hard safety guarantees,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004,
p. 5141.

L. Cheng, H. Wen, and D. Jin, “Uncertain parameters analysis of
powered-descent guidance based on chebyshev interval method,” Acta
Astronautica, vol. 162, pp. 581-588, 2019.

J. P. Hespanha, H. H. Kizilocak, and Y. S. Ateskan, “Probabilistic
map building for aircraft-tracking radars,” in Proceedings of the 2001
American Control Conference.(Cat. No. 01CH37148), vol. 6. 1EEE,
2001, pp. 4381-4386.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]

[48]

[49]

[50]

TABLE I
AVG. FLIGHT TIME COMPARISONS IN SECONDS

Traffic Density Algorithm Route 1 Route 2 Route 3
MCTS Discrete 342.6 £7.5 610.1 £9.8 698.9 + 10.9
MCTS Uniform 323.6+ 7.1 572.7+£7.9 662.5 £+ 8.5
Low (10 aircraft) MCTS GP 309.9£6.9 545.8 £ 7.3 621.3+ 7.7
MCTS GP/MCTS Uniform | 95.8% 95.3% 94.5%
MCTS GP/MCTS Discrete | 90.9% 89.6% 88.9%
MCTS Discrete 482.4 £ 8.4 862.0 +11.2 988.3 + 12.7
MCTS Uniform 458.2 £ 8.0 812.3 £10.8 934.7 £ 12.1
Middle (20 aircraft) | MCTS GP 436.5+ 7.9 769.2 + 10.6 875.4+11.5
MCTS GP/MCTS Uniform | 95.2% 94.7% 93.6%
MCTS GP/MCTS Discrete | 90.5% 89.2% 88.6%
MCTS Discrete 1344.2 +13.1 | 2454.6 £ 16.7 | 2836.7 £ 18.5
MCTS Uniform 1263.2 +12.6 | 2273.4 £15.8 | 2643.9 £ 18.0
High (80 aircraft) MCTS GP 1192.5+12.3 | 2132.5£154 | 2421.8+17.6
MCTS GP/MCTS Uniform | 94.4% 93.8% 91.6%
MCTS GP/MCTS Discrete | 88.7% 86.9% 85.4%

X. Yang, L. Deng, J. Liu, P. Wei, and H. Li, “Multi-agent autonomous
operations in urban air mobility with communication constraints,” in
AIAA Scitech 2020 Forum, 2020, p. 1839.

L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080-1094, 2011.

B. Du, J. Chen, D. Sun, S. G. Manyam, and D. W. Casbeer, “Uav
trajectory planning with probabilistic geo-fence via iterative chance-
constrained optimization,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2021.

R. Chai, A. Tsourdos, A. Savvaris, S. Wang, Y. Xia, and S. Chai,
“Fast generation of chance-constrained flight trajectory for unmanned
vehicles,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 57, no. 2, pp. 1028-1045, 2020.

B. Luders, M. Kothari, and J. How, “Chance constrained rrt for prob-
abilistic robustness to environmental uncertainty,” in AIAA guidance,
navigation, and control conference, 2010, p. 8160.

M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

E. A. Feinberg and A. Shwartz, Handbook of Markov decision processes:
methods and applications. Springer Science & Business Media, 2012,
vol. 40.

X. Yang and P. Wei, “Scalable multi-agent computational guidance with
separation assurance for autonomous urban air mobility,” Journal of
Guidance, Control, and Dynamics, vol. 43, no. 8, pp. 1473-1486, 2020.
Y. Liu, “A progressive motion-planning algorithm and traffic flow
analysis for high-density 2d traffic,” Transportation Science, vol. 53,
no. 6, pp. 1501-1525, 2019.

P. Wu, L. Li, J. Xie, and J. Chen, “Probabilistically guaranteed path
planning for safe urban air mobility using chance constrained rrt*,” in
AIAA AVIATION 2020 FORUM, 2020, p. 2914.

P. Wu, J. Xie, and J. Chen, “Safe path planning for unmanned aerial
vehicle under location uncertainty,” in 2020 IEEE 16th International
Conference on Control & Automation (ICCA). 1EEE, 2020, pp. 342—
347.

T. A. Snijders, Multilevel analysis. Springer, 2011.

V. A. Zorich, Mathematical analysis II. Springer, 2016.

J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012, vol. 37.

C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63-71.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in games, vol. 4, no. 1, pp. 1-43,
2012.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p- 354, 2017.

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

G. Tesauro and G. R. Galperin, “On-line policy improvement using
monte-carlo search,” in Advances in Neural Information Processing
Systems, 1997, pp. 1068—-1074.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

T. Yee, V. Lisy, M. H. Bowling, and S. Kambhampati, “Monte carlo
tree search in continuous action spaces with execution uncertainty.” in
1JCAL 2016, pp. 690-697.

Y. Wang, J.-Y. Audibert, and R. Munos, “Algorithms for infinitely many-
armed bandits,” in Advances in Neural Information Processing Systems,
2009, pp. 1729-1736.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235-256, 2002.

L. W. Kohlman and M. D. Patterson, “System-level urban air mobil-
ity transportation modeling and determination of energy-related con-
straints,” in 2018 Aviation Technology, Integration, and Operations
Conference, 2018, p. 3677.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-
body collision avoidance,” in Robotics research. Springer, 2011, pp.
3-19.

M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next-
generation airborne collision avoidance system,” Massachusetts Institute
of Technology-Lincoln Laboratory Lexington United States, Tech. Rep.,
2012.

Pengcheng Wu received both Master and Bachelor
degree from Department of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics.
He is now a joint Ph.D. student with Department of
Mechanical and Aerospace Engineering, University
of California San Diego, and with Department of
Aerospace Engineering, San Diego State University.
He has extensive research interests in dynamics,
guidance and control of unmanned vehicles. Cur-
rently, he is working on the path planning and
control of multi-agent systems under uncertainty.

Xuxi Yang received the bachelor’s degree in applied
mathematics from the Harbin Institute of Technol-
ogy. He is currently pursuing the Ph.D. degree with
the Department of Aerospace Engineering, Iowa
State University. He is also working as a Research
Assistant with the Intelligent Aerospace Systems
Laboratory (IASL), under the supervision of Prof. P.
Wei. His research interests include deep reinforce-
ment learning, machine learning, decision theory,
with applications in air traffic control/management
(ATC/M), and UAS traffic management (UTM).

Peng Wei (Member, IEEE) received the Ph.D. de-
gree in aerospace engineering from Purdue Univer-
sity, in 2013. He is currently an Assistant Professor
with the Department of Mechanical and Aerospace
Engineering, George Washington University, with
courtesy appointments at the Electrical and Com-
puter Engineering Department and the Computer
Science Department. He is also leading the Intel-
ligent Aerospace Systems Laboratory (IASL). By
contributing to the intersection of control, optimiza-
tion, machine learning, and artificial intelligence, he
develops autonomy and decision support tools for aeronautics, aviation, and
aerial robotics. His current research interests include safety, efficiency and
scalability of decision making systems in complex, uncertain, and dynamic
environments. His recent applications include Air Traffic Control/Management
(ATC/M), Airline Operations, UAS Traffic Management (UTM), eVTOL
Urban Air Mobility (UAM), and Autonomous Drone Racing (ADR). He is
an Associate Editor of the AIAA Journal of Aerospace Information Systems.

Jun Chen received the B.S degree in Aeronautics
Engineering from Beihang University, China, the
M.S. and Ph.D degree in Aerospace Engineering
from Purdue University. He is currently an As-
sistant Professor of Aerospace Engineering at San
Diego State University. His research interests include
control and optimization for large-scale networked
dynamical systems, with applications in mechanical
and aerospace engineering such as air traffic control,
traffic flow management, and autonomous air/ground
vehicle systems.

