

A Diamidocarbene-Supported Aminoborylene: Characterization and Discussion of the Elusive Crystal Structure

Anthony D. Ledet¹ · Eric W. Reinheimer² · Todd W. Hudnall¹

Received: 5 April 2022 / Accepted: 20 May 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Five years after we published the synthesis of the first diamidocarbene (DAC)-supported amino borylene **4**, we now report the elusive single crystal X-ray structure. The X-ray structure of **4** was found to corroborate our previous computational studies which indicated that the borylene adopted a heterocumulenic geometry with a near linear $C_{(\text{carbene})}=\text{B}=\text{N}$ unit ($175.88(18)^\circ$) as well as short $\text{C}=\text{B}$ and $\text{B}=\text{N}$ distances of $1.416(3)$ and $1.344(3)$ Å, respectively. Additionally, we further provide a qualitative and quantitative discourse on said structure with respect to the precursor compounds used to prepare **4** as well as to the known cyclic (alkyl) amino carbene (CAAC) analog **2**.

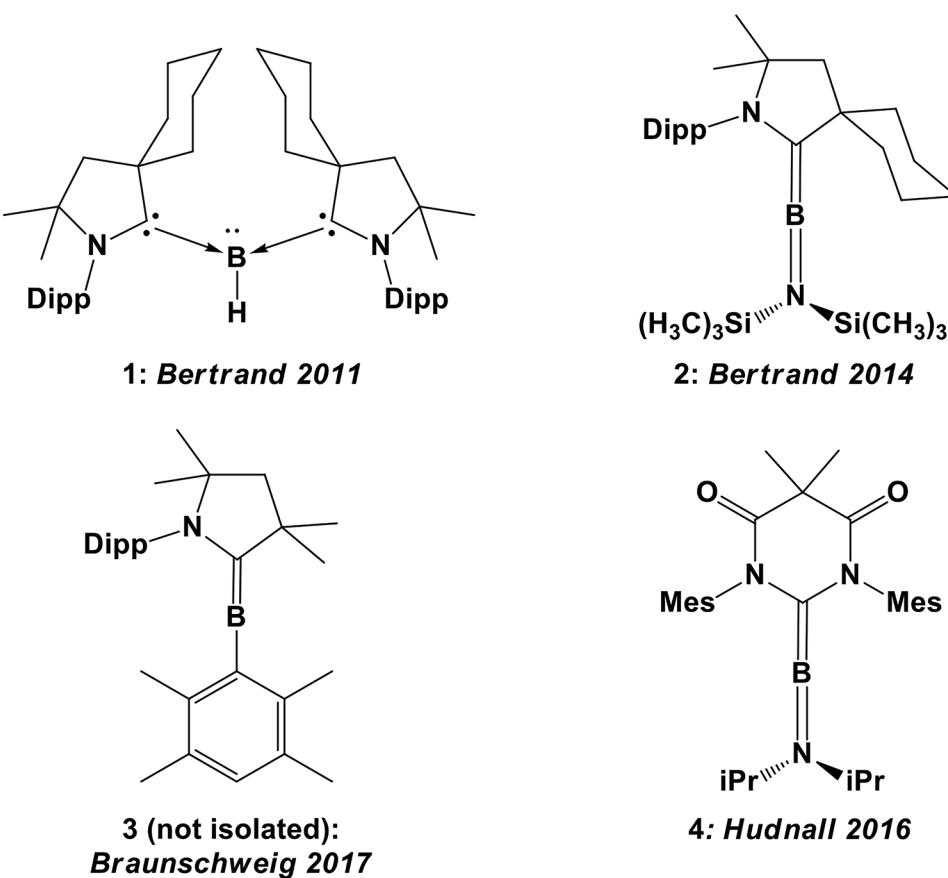
Keywords Borylene · Diamidocarbenes · Main group chemistry · Low valent

Introduction

The isolation of the first carbene stabilized borylene (**1**, Fig. 1) by Bertrand in 2011 was a landmark achievement in the area of low valent boron chemistry [1]. Compound **1** represented the first example of a three-coordinated boron atom that was isoelectronic with simple Lewis bases such as amines. Like simple Lewis bases, **1** was found to undergo 1-electron oxidation to give rise to stable radical cations, and was also protonated using triflic acid [1]. Since that seminal report, several groups including our own have actively explored the isolation of increasingly lower coordinate carbene-stabilized borylene compounds including the dicoordinated analogues **2**, **3** and **4** from the groups of Bertrand [2], Braunschweig [3], and Hudnall [4], respectively. In 2014, it was shown that compound **2** could be viewed as both a carbene-stabilized aminoborylene (based on reactivity) and a heteroallene (based on the solid state structure)

[2]. Remarkably, **2** was capable of splitting dihydrogen across the $\text{C}=\text{B}$ unit and even coordination of carbon monoxide to the boron atom [2]. Similarly, Braunschweig demonstrated that **3** could be generated *in situ* and trapped with carbon monoxide [3a]. But, what is perhaps most impressive was the ability of borylene **3** to trap and even couple dinitrogen under appropriate conditions [3b, 3c]. In 2016, we followed up on Bertrand's report of **2** and isolated the diamidocarbene (DAC)-supported aminoborylene **4** [4]. However, single crystals suitable for an X-ray diffraction analysis were elusive at that time. In lieu of crystals, we optimized the structure of **4** and computed the ^{11}B NMR chemical shift for the compound using DFT methods and found that the predicted structure was the heterocumulene as described in Fig. 1 [4]. Herein we now report the single crystal X-ray structure of **4** which corroborates our computational findings; we further provide a qualitative and quantitative discourse on said structure with respect to precursor compounds and the known analog **2**.

Single Crystal X-ray Crystallography

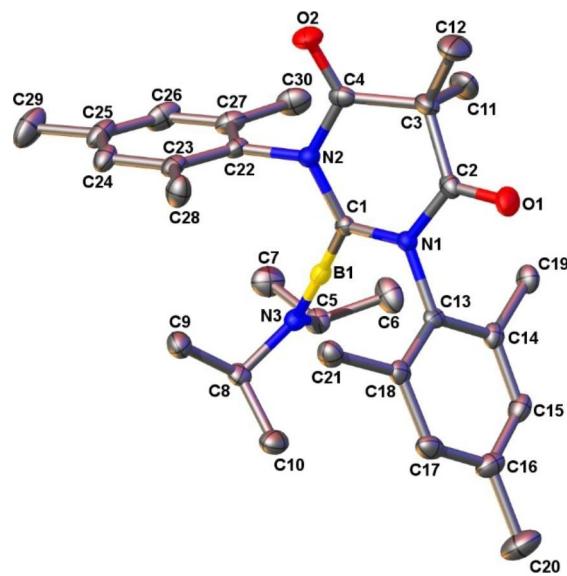

An orange block-like crystal of **4** with dimensions $0.37 \times 0.24 \times 0.20$ mm³ was secured to a Mitegen mount using Paratone oil and its single crystal X-ray diffraction

✉ Dr. Todd W. Hudnall
hudnall@txstate.edu

¹ Chemistry and Biochemistry, Texas State University, 601 University Drive, 78666 San Marcos, TX, USA

² Rigaku Americas Corporation, 9009 New Trails Dr, 77381 The Woodlands, TX, USA

Fig. 1 Known examples of dico-ordinated carbene-supported borylenes



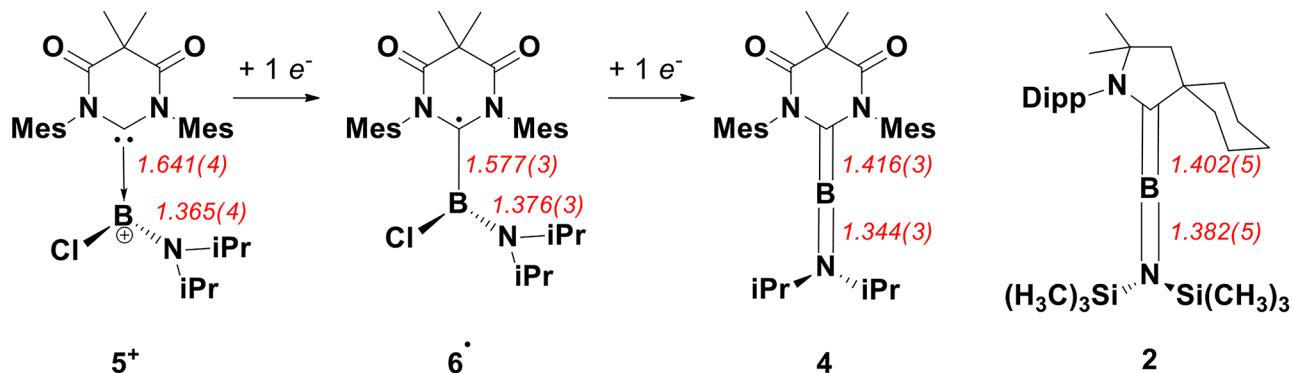
data was collected at 100 K using a Rigaku AFC Kappa diffractometer equipped with a Saturn 724 CCD detector and graphite-monochromated Mo K_{α1} ($\lambda=0.71073\text{ \AA}$) radiation. A data collection strategy to ensure maximum data redundancy and percent completeness was determined via CrystalClear. Unit cell determination, initial indexing, data collection, frame integration, Lorentz-polarization corrections, and final cell parameter calculations were carried out using CrystalClear. Multi-scan absorption corrections were performed using REQAB [5]. The crystal structure was solved via intrinsic phasing methods using ShelXT and refined using ShelXL in the Olex2 graphical user interface [6]. The space group was unambiguously verified by PLATON [7]. The final structural refinement included anisotropic temperature factors on all constituent non-hydrogen atoms. Hydrogen atoms were attached via the riding model at calculated positions using suitable HFIX commands. The crystallographic and refinement data for **4** is listed in Table 1.

Results and Discussion

In our original submission on the synthesis of the amidoborylene **4**, we were unable to obtain single crystals of this compound suitable for a single crystal X-ray diffraction analysis. This was primarily due to the instability of **4** in solution over time (even at low temperature). Interestingly, the neutral radical **6** (*vide infra*), which is a synthetic precursor to **4**, was found to be much more stable than the borylene. We ultimately decided to publish the synthesis of **4** without the X-ray structure. Over the past few years, we continued to attempt to grow single crystals of **4**, and were finally successful by rapidly crystallizing the molecule out at low temperature (-35 °C) from a 3:1 THF:hexanes mixed solvent system inside the freezer of our glove box. The crystals were separated from the solvent and suspended in a dry mixture of mineral and Paratone oils inside the box for transfer to the diffractometer.

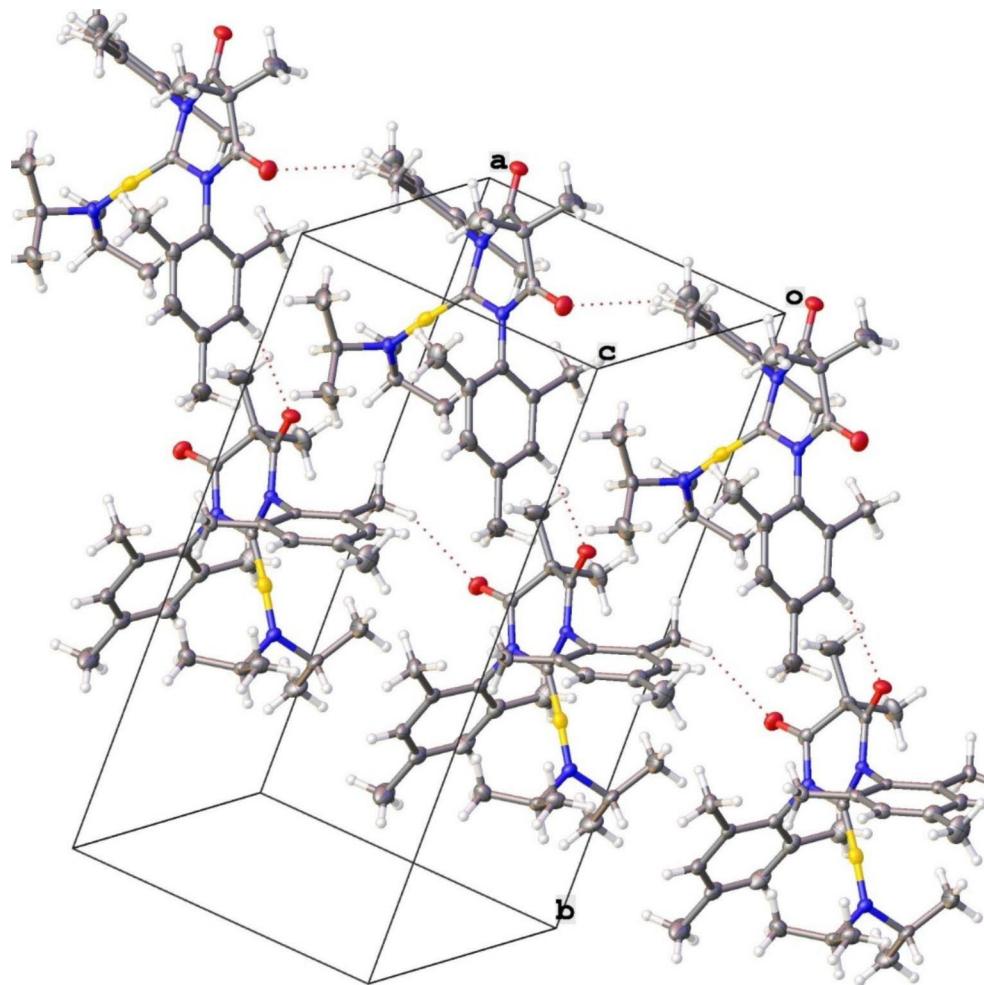
The solid structure of **4** (Fig. 2) crystallized in the centrosymmetric monoclinic space group *P*2₁/*c* and contained one molecule as the contents of the asymmetric unit. Within **4**, the coordination environment around the carbene carbon (C1) is distorted trigonal as evidenced by the angles of 113.37(13)°, 123.38(15)°, and 123.20(15)° which

Fig. 2 Anisotropic displacement ellipsoid plot of **4** with ellipsoids set to the 50% probability level. Hydrogen atoms have been removed for the sake of clarity


correspond to the N1-C1-N2, N2-C1-B1, and N1-C1-B1 angles respectively.

To further investigate the structure of aminoborylene **4**, we compared the metrical parameters to those previously reported by our group for **5⁺** (the DAC-supported borenium cation) and **6[·]** (the DAC-supported boryl radical) which were used to prepare the borylene via two sequential 1-electron reductions (Fig. 3) [4]. Upon each reduction, it was proposed that increased π -bonding character would build up between the C1 and B1 atoms. Consistent with this notion, the C1-B1 bond distance in **4** (1.416(3) Å) was found to be less than that observed in the structures for both **5⁺** (1.641(4) Å) and radical **6[·]** (1.577(3) Å) (Fig. 3) and is consistent with multiple bond character between C1 and B1 [4]. Within **4**, the B1-N3 bond was measured to be 1.344(3) Å and is

Table 1 Crystallographic and refinement data for compound **4**


CCDC deposition number	2162278
Empirical formula	C ₃₀ H ₄₂ BN ₃ O ₂
Formula weight/g·mol ⁻¹	487.47
Temperature/K	100(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	9.2660(7)
b/Å	17.7938(12)
c/Å	17.2473(13)
$\alpha/^\circ$	90
$\beta/^\circ$	97.036(4)
$\gamma/^\circ$	90
Volume/Å ³	2822.3(4)
Z	4
$\rho_{\text{calc}}/\text{g} \cdot \text{cm}^{-3}$	1.147
μ/mm^1	0.071
$F(000)$	1056
Crystal size/mm ³	0.37 × 0.24 × 0.20
Radiation	MoK α ($\lambda = 0.71073$)
2 θ range for data collection/°	5.286 to 52.744
Index ranges	-11 ≤ h ≤ 10, -22 ≤ k ≤ 22, -20 ≤ l ≤ 21
Reflections collected	37606
Independent reflections	4250 [$R_{\text{int}} = 0.0735$, $R_{\text{sigma}} = 0.0488$]
Data/restraints/parameters	5759/216/337
Goodness-of-fit on F^2	1.032
Final R indices [$I \geq 2\sigma(I)$]	$R_1 = 0.0494$ $wR_2 = 0.1198$
R indices (all data)	$R_1 = 0.0727$ $wR_2 = 0.1307$
Largest diff. peak/hole/e·Å ⁻³	0.63/-0.23

shorter than that from the borenium salt **5⁺** (1.365(4) Å) and the radical **6[·]** (1.376(3) Å) [4] and is also consistent with some degree of π -bonding. The C1-B1-N3 angle within **4** was measured at 175.88(18) $^\circ$, which clearly revealed the linear dicoordinated nature of the boron atom when compared to the three coordinated, trigonal planar boron atoms in the

Fig. 3 Comparison of metrical parameters for compounds **5⁺**, **6[·]**, **4**, and **2** obtained from their respective single crystal X-ray diffraction data

Fig. 4 Packing diagram of **4** with ellipsoids set to the 50% probability level. C-H \cdots O contacts furnishing supramolecular stability between the neighboring molecules and helices are denoted by dashed lines

borenium **5**⁺ and the neutral radical **6**[·] (C1-B1-N3 angles of 125.8(2) $^{\circ}$ and 127.7(2) $^{\circ}$ respectively) [4].

This dramatic structural change around the boron atom can be attributed to a change in its coordination environment upon the sequential two electron reduction. The linear C1-B1-N3 linkage within **4** is consistent with a pseudo allenic structure (double bonds between the boron atom and both the carbene carbon and nitrogen) [4]. This allenic structure was further confirmed by examining the dihedral angle between two planes defined as plane 1 (N1-B1-N2) and plane 2 (C5-B1-C8). The dihedral angle between the centroids of planes 1 and 2 was found to be (92.61(11) $^{\circ}$) which clearly illustrates that the isopropyl substituents on the N3 atom are orthogonal to the N1-C1-N2 π -system in the DAC ligand. Structural parameters (i.e. bond distances and angles) for the DAC within **4** are similar to those for the DAC in both the borenium **5**⁺ and the neutral radical **6** [4]. Consistent with the crystallographic data, the multinuclear NMR spectroscopic data obtained for borylene **4** are also indicative of a hetero allenic structure. For example, the ¹H NMR of **4** is highly symmetric with only a single aromatic CH resonance (6.66 ppm), a single C(CH₃)₂ resonance from

the DAC backbone methyl groups (1.99 ppm), and a single set of signals for equivalent isopropyl substituents on the amino nitrogen (a septet at 2.48 ppm and a doublet at 0.43 ppm). The ¹¹B NMR signal observed for borylene **4** at 62 ppm was also significantly deshielded when compared to precursor **5**⁺ (23.4 ppm) which can be rationalized on the basis of a change in hybridization at the boron center from pseudo sp^2 to sp .

Next, the structural features for **4** were compared to those from the CAAC-supported borylene (**2**) reported by the Bertrand group in 2014 [2] (Fig. 3, far right). In the case of compound **2**, the B-C and C-N bond distances were found to be 1.402(5) Å and 1.382(5) Å, respectively compared to 1.416(3) Å and 1.344(3) within **4** [2]. The C-B-N bond angle within the CAAC-aminoborylene **2** was measured at a slightly-less linear value of 174.7(3) $^{\circ}$ when compared to that of **4** (175.88(18) $^{\circ}$) [2]. The differences in bond angles and distances between the **2** and **4** complexes can be rationalized on the basis of increased π -acidity in going from CAAC to DAC.

Finally, it was observed that the solid state integrity between neighboring, symmetry-equivalent molecules

within the crystal is maintained by an array of C-H \cdots O contacts. Relative to the crystallographic *c*-axis, molecules are related to one another by the 2_1 screw axis forming helices. Neighboring helices are related to one another via translations parallel to the *a*-axis. Within the helices, integrity is maintained by C-H \cdots O ($d(\text{C24}\cdots\text{O1})\sim 3.35\text{ \AA}$; $\theta(\text{C24-H24-O1})\sim 153^\circ$) contacts between neighboring molecules. C-H \cdots O ($d(\text{C19}\cdots\text{O2})\sim 3.48\text{ \AA}$; $\theta(\text{C19-H19C-O2})\sim 153^\circ$) contacts along the *a*-axis furnish stability between neighboring helices (Fig. 4).

Conclusions

Herein we reported the elusive single crystal X-ray structure of the DAC-supported aminoborylene, **4**, which our lab synthesized in 2016. Gratifyingly, the solid state structure of **4** was in agreement with the calculated structure that we previously disseminated, i.e. the C1-B1-N3 unit adopts a heterocumulene structure with a near linear C1-B1-N3 linkage ($175.88(18)^\circ$) and orthogonal C1-B1 and N3-B1 π -systems (dihedral angle = $92.61(11)^\circ$). The metrical parameters of **4** were also compared with those obtained on precursor molecules **5⁺** and **6[·]** as well as a CAAC-supported aminoborylene (**2**) reported previously.

Acknowledgements The authors are grateful to funding from the following sources, the Robert A. Welch Foundation (award No. AI-1993-20190330 to TWH) and the National Science Foundation (award No. CHE-1955396 to TWH).

Data Availability The CCDC file 2,162,278 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Declarations

Statements and Declarations The authors declare no competing financial interest.

References

1. Kinjo R, Donnadieu B, Celik MA, Frenking G, Bertrand G (2011) Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines. *Science* 333:610–613. <https://doi.org/10.1126/science.1207573>
2. Dahcheh F, Martin D, Stephan DW, Bertrand G (2014) Synthesis and Reactivity of a CAAC–Aminoborylene Adduct: A Hetero-Allene or an Organoboron Isoelectronic with Singlet Carbenes. *Angew Chem Int Ed* 53:13159–13163. <https://doi.org/10.1002/anie.201408371>
3. (a) Braunschweig H, Krummenacher I, Légaré M-A, Matler A, Radacki K, Ye Q Main-Group Metallomimetics: Transition Metal-like Photolytic CO Substitution at Boron. *J Am Chem Soc* 139:1802–1805. [https://doi.org/10.1021/jacs.6b13047.;](https://doi.org/10.1021/jacs.6b13047.) (b) Légaré M-A, Bélanger-Chabot G, Dewhurst RD, Welz E, Krummenacher I, Engels B, Braunschweig H, Rang M, Bélanger-Chabot G, Schweizer JI, Krummenacher I, Bertermann R, Arrowsmith M, Holthausen MC, Braunschweig H (2017) (2019) The reductive coupling of dinitrogen. *Science* 363:1329–1332. doi:10.1126/science.aav9593
4. Ledet AD, Hudnall TW (2016) Reduction of a diamidocarbene-supported boreonium cation: isolation of a neutral boryl-substituted radical and a carbene-stabilized aminoborylene. *Dalton Trans* 45:9820–9826. <https://doi.org/10.1039/c6dt00300a>
5. Pflugrath J (1999) The finer things in X-ray diffraction data collection. *Acta Crystallogr D* 55:1718–1725. doi:<https://doi.org/10.1107/S090744499900935X>
6. (a) Sheldrick GM Crystal structure refinement with SHELXL. *Acta Crystallogr C* 71:3–8. [https://doi.org/10.1107/S2053229614024218.;](https://doi.org/10.1107/S2053229614024218.) (b) Sheldrick G (2015) (2015) SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr A* 71:3–8. doi:10.1107/S2053273314026370.; (c) Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. *J Appl Cryst* 42:339–341. doi:10.1107/S0021889808042726
7. Spek A (2009) Structure validation in chemical crystallography. *Acta Crystallogr D* 65:148–155. doi:<https://doi.org/10.1107/S090744490804362X>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.