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Abstract The drag due to breaking atmospheric gravity waves plays a leading order role in driving the
middle atmosphere circulation, but as their horizontal wavelength range from tens to thousands of kilometers,
part of their spectrum must be parameterized in climate models. Gravity wave parameterizations prescribe

a source spectrum of waves in the lower atmosphere and allow these to propagate upwards until they either
dissipate or break, where they deposit drag on the large-scale flow. These parameterizations are a source of
uncertainty in climate modeling which is generally not quantified. Here, we explore the uncertainty associated
with a non-orographic gravity wave parameterization given an assumed parameterization structure within a
global climate model of intermediate complexity, using the Calibrate, Emulate and Sample (CES) method.
We first calibrate the uncertain parameters that define the gravity wave source spectrum in the tropics, to
obtain climate model settings that are consistent with properties of the primary mode of tropical stratospheric
variability, the Quasi-Biennial Oscillation (QBO). Then we use a Gaussian process emulator to sample the
calibrated distribution of parameters and quantify the uncertainty of these parameter choices. We find that the
resulting parametric uncertainties on the QBO period and amplitude are of a similar magnitude to the internal
variability under a 2xCO, forcing.

Plain Language Summary Atmospheric gravity waves are excited in the lower atmosphere by
disturbances such as mountains, convection and fronts. They travel upwards and break in the upper atmosphere,
thus modifying the mean flow. This has large effects on the circulation, including driving a tropical oscillation.
Gravity waves have a wide range of spatial scales and a large portion of these are smaller than the grid size of
a climate model. This means they cannot be resolved and instead, they are represented through approximations
called “parameterizations”, which introduce a source of uncertainty in climate model output. In this study,

we tune a parameterization so that the model produces an oscillation in the tropical middle atmosphere, with

a defined period and amplitude, which is one of the main features of the climate driven primarily by gravity
waves. We also explore uncertainties associated with the parameterization.

1. Introduction
1.1. Atmospheric Gravity Waves

Atmospheric gravity waves or buoyancy waves, which owe their existence to the restoring force of gravity in
a stratified flow, play a substantial role in the exchange of momentum between the Earth's surface and the free
atmosphere. They are forced by a range of processes including flow over orography, convection and frontogenesis
in the lower atmosphere. Gravity waves propagate primarily upwards and grow in amplitude until they break and
deposit their momentum. This influences the large-scale flow, and affects the circulation, temperature, structure,
chemistry and composition of the middle and upper atmosphere (Alexander & Dunkerton, 1999).

The horizontal length scale of gravity waves ranges from tens to thousands of kilometers. While the larger scale
gravity waves are resolved explicitly by the numerical scheme in climate models, waves smaller than 2x the hori-
zontal resolution cannot be resolved, leading to an underestimate of gravity wave drag from the dynamical core.
At this time, current climate models designed for CMIP6 have resolutions of 1°-2.8°, equivalent to ~100-300 km
spacing at the equator (Priestley et al., 2020; Richter & Tokinaga, 2020). At these resolutions, the majority of
gravity wave drag is not resolved and is instead represented through both orographic and non-orographic gravity
wave parameterizations (e.g., Alexander & Dunkerton, 1999; Scinocca, 2003; Warner & Mclntyre, 1999). These
aim to describe the large-scale effect that subgrid-scale gravity waves have on the flow and are often necessary to
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obtain realistic circulation patterns, for example, to reduce model biases (e.g., Palmer et al., 1986) and to induce
a spontaneous Quasi-Biennial Oscillation (QBO) (Bushell et al., 2020). Parameterized gravity waves are required
even at the higher resolution end of the spectrum of models, for instance, HighResMIP, which have resolutions
higher than 50 km but typically still include some parameterized subgrid-scale gravity waves (e.g., Kodama
et al., 2021). Subgrid-scale parameterizations make several assumptions about the nature of gravity waves which
become a source of uncertainty in climate projections. Several recent studies harness machine learning methods
to learn data-driven gravity wave parameterizations, which may be faster and/or more accurate (e.g., Chantry
etal., 2021; Espinosa et al., 2022; Matsuoka et al., 2020). This study makes use of machine learning methods, but
rather than replacing traditional parameterizations, we leverage statistical methods to systematically calibrate an
existing gravity wave parameterization and quantify uncertainties associated with it.

1.2. Gravity Wave Parameterizations and Associated Uncertainties

A common type of parameterization is the Lindzen-type parameterization, based on Lindzen (1981), which
assumes gravity waves are launched at a fixed source level in the troposphere and propagate in the vertical
column until they reach saturation. At this point, it is assumed that breaking occurs, depositing gravity wave drag.
These have been further developed into spectral parameterizations, in which a spectrum of waves is launched,
leading to a spectrum of breaking levels rather than a single level (Alexander & Dunkerton, 1999). In this type of
parameterization, there are several parameter choices to be made, for instance, the phase speeds, amplitudes and
location of launched gravity waves. These all influence the magnitude and spatial structure of gravity wave drag
deposited by the parameterization.

The parameters should ideally be chosen so that the parameterization output (here the unresolved gravity wave
drag) is consistent with observations. However, obtaining observations of gravity wave drag caused by unre-
solved gravity wave breaking is not trivial (Alexander et al., 2010). Observations from stratospheric superpres-
sure balloon and aircraft flights provide estimates of gravity wave properties, such as their phase speeds and
momentum fluxes of individual gravity wave packets (Alexander & Pfister, 1995; Alexander & Rosenlof, 2003;
Boccara et al., 2008; Hertzog et al., 2008). Satellite measurements can be used to estimate large scale averages
of absolute gravity wave momentum fluxes in the stratosphere (Geller et al., 2013). However, all methods of
estimating momentum fluxes are limited by resolution and we cannot easily extract momentum fluxes due to
subgrid-scale gravity waves (Alexander et al., 2010), nor can we easily decouple convective gravity waves from
orographic gravity waves (Corcos et al., 2021; Grimsdell et al., 2010; Jewtoukoff et al., 2015). Importantly, the
main goal of parameterizations is to obtain climate model output consistent with the macrophysical climate state
(i.e., large-scale circulation and variability), rather than the microphysical (i.e., gravity wave drag). Therefore,
the typical approach is to tune the parameterization to obtain a consistent climate state (e.g., Barton et al., 2019;
Couvreux et al., 2021; Donner et al., 2011; Dunbar et al., 2021; Scaife et al., 2002).

Calibration of parameters traditionally involves manual tuning of parameter values until a reasonable output is
obtained (e.g., Donner et al., 2011; Kodama et al., 2021), but in recent years has been automated with statisti-
cal methods such as Bayesian optimization (Kennedy & O’Hagan, 2001), iterative refocusing/history matching
(Williamson et al., 2013) and ensemble Kalman methods (Cleary et al., 2021). These methods typically calibrate
the parameters by minimizing a loss function that describes the difference between the climate model output and
the observations.

Even after calibration, subgrid-scale parameterizations are a substantial source of uncertainty in climate model
output that is generally not considered in model analysis. Uncertainty quantification is a growing field for param-
eterizations including clouds (Pathak et al., 2021), convection (Dunbar et al., 2021), aerosol microphysics (Lee
et al., 2012), and ocean processes (Souza et al., 2020), but has not yet been applied to gravity wave parameteri-
zations. In this paper, we combine calibration and uncertainty quantification methods to explore the importance
of parameter choices in a non-orographic gravity wave parameterization within an idealized moist atmospheric
model. Specifically, we use the Calibrate-Emulate-Sample framework developed in Cleary et al. (2021) to first
estimate the optimal parameters that give model output consistent with observed properties of stratospheric
phenomena and to further assess the uncertainty of the output associated with the derived distribution of gravity
wave parameters.
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Figure 1. Zonal mean zonal winds at 5°S—5°N over a 10-year segment from (a) global radiosonde observations (Freie Universitéit Berlin, 2007) and (b) the model used
in this study (MiMAZ2.0 (Garfinkel et al., 2020; Jucker & Gerber, 2017),). In the bottom right corner are the period and amplitude, shown as the mean and 1 standard
deviation estimated from (a) the 68 year period of observations and (b) a 50-year control simulation of MiMA.

In the remainder of this section, we describe the QBO, a large-scale oscillation in the tropical stratosphere,
realistic simulation of which has depended critically on the choices made in the gravity wave parameterization.
Section 2 describes the model and gravity wave parameterization used and Section 3 outlines the CES framework.
The results of this are discussed in Section 4, in which we explore CES under the perfect model setting, assuming
the “truth” to be a long integration of our model with the parameterization scheme. In Section 4.2, we explore the
sensitivity of the QBO to gravity wave parameters and in Section 4.3, we quantify uncertainties of the QBO due
to the parameter choices for a control climate and 2xCO, scenario. Section 5 contains a summary and discussion
of the work.

1.3. Quasi-Biennial Oscillation

The Quasi-Biennial Oscillation (QBO) is the dominant mode of variability in the equatorial stratosphere, occur-
ring in the vertical range of 5-100 hPa (Gray, 2010). The QBO consists of alternating westerly and easterly winds
with a period of ~28 months, descending at ~1 km/month, as shown in Figure 1a, which shows a cross-section
of the zonal mean zonal winds at 5°S—5°N from global radiosonde observations (Freie Universitét Berlin, 2007).

The QBO is driven by a broad spectrum of waves, including large-scale Kelvin and Rossby-gravity waves, mesos-
cale inertia-gravity and high frequency small-scale gravity waves (Baldwin et al., 2001; Lindzen & Holton, 1968).
The latter are the gravity waves with zonal wavenumber >40, corresponding to zonal wavelengths between 10 and
1,000 km, that is, mostly subgrid-scale in climate models. Drag due to these contribute significant forcing to the
QBO, without which climate models cannot produce a spontaneous QBO. Specifically, only 10 out of 47 CMIP5
models included a non-orographic gravity wave parameterization and of these, only five displayed a QBO-like
signal (Schenzinger et al., 2017). Based on more recent models that obtain a spontaneous QBO, at least half of
the forcing required is contributed from non-orographic gravity wave parameterizations (Holt et al., 2020). This
makes the QBO a useful phenomenon to consider when calibrating the gravity wave parameterization (Anstey
et al., 2016; Barton et al., 2019; Scaife et al., 2002).

Simulating a realistic QBO in climate models is important not just for accurately reproducing the tropical strat-
osphere, but also for tropical convection (Rao et al., 2020), the subtropical jet (Garfinkel & Hartmann, 2011)
and the stratospheric polar vortices. The westerly (easterly) QBO phase is associated with a stronger (weaker)
polar vortex and fewer (more) sudden stratospheric warmings (the Holton-Tan relationship, Holton & Tan, 1980).

MANSFIELD AND SHESHADRI

30f 19

d ‘11 ‘TTOT ‘99vTTH61

:sdny woiy papeoy;

ASUL0IT SuOWIo)) 2ANEa1)) d[qearjdde ayy £q pauIaA0S a1k SA[ANIE V() (AN JO SI[NI 10§ ATRIQIT AUIUQ A[IA UO (SUONIPUOI-PUB-SULID) WO AA[IM ATeIqI[out[uo//:sd1y) suonIpuo)) pue swd , a1 338 [770z/11/#1] uo Areiqr aurjuQ Ad[1p “ANSIOATUN PIOJURIS AQ SHTEO0SINTTOT/6TOT 01/10p/W0d" AS[IM"



Aol |

AIV Journal of Advances in Modeling Earth Systems 10.1029/2022MS003245

ADVANCING EARTH
AND SPACE SCIENCE

Studies also indicate the QBO influences the transport of aerosols and other atmospheric constituents into and out
of the polar vortex (Strahan et al., 2015).

The QBO is defined by a variety of metrics. The first order properties are the period and amplitude of the QBO,
which are usually defined in terms of the equatorial zonal mean zonal winds, often at a fixed reference level in
the atmosphere. Throughout this paper, we will follow the transition time definition (e.g., Bushell et al., 2020;
Richter et al., 2020; Schenzinger et al., 2017) and consider the reference level 10 hPa, where the QBO amplitude is
generally a maximum (Bushell et al., 2020). The zonal mean zonal winds between 5°S and 5°N at 10 hPa, u,,, are
first smoothed using a 5-month binomial filter to remove fast fluctuations. Following Schenzinger et al. (2017), a
single QBO cycle is determined based on the times at which u,, transitions from westward to eastward. The period
is defined as the time between subsequent transitions and the amplitude is defined as the maximum amplitude of
the zonal mean zonal winds, that is, max|u.,|. This gives a period and amplitude for each cycle of the QBO, from
which the mean and standard deviation can be estimated.

2. Model Setup
2.1. Model

In this study, we explore the uncertainty of a climate model with respect to the Lindzen-type spectral param-
eterization introduced in Alexander and Dunkerton (1999), hereafter AD99. We explore uncertainties related
to 99 CE parameters that describe the spectrum of gravity waves at the source level. For the climate model, we
use the Model of an idealized Moist Atmosphere version 2.0 (MiMAZ2.0; see Garfinkel et al., 2020; Jucker &
Gerber, 2017). This is chosen because it is of intermediate complexity and results in reasonable atmospheric
variability, including obtaining a realistic QBO and stratospheric polar vortex but at a lower computational cost
than more complex coupled GCMs. We run MiMA at 2.8° resolution (or ~300 km at equator), which corre-
sponds to T42 spectral resolution, that is, resolving waves only with wavenumber smaller than 42. This leaves
the small-scale gravity waves noted as influential for the formation of the QBO (wavenumber >40 (Baldwin
et al., 2001)) to be parameterized. These gravity waves are instead captured by the AD99 parameterization,
described below.

2.2. Gravity Wave Parameterization

AD99 is a gravity wave parameterization that does not separate the source of gravity waves and treats both
orographic and non-orographic gravity waves in the same way. Instead, it launches gravity waves with a fixed
phase speed for orographic waves and a spectrum of gravity waves for non-orographic gravity waves. We focus
on the non-orographic gravity waves for this study.

2.2.1. Gravity Wave Source

The non-orographic component of AD99 assumes a spectrum of gravity waves with discretized phase speeds
centered at cp = 0 m/s from the source level (315 hPa). The width of this spectrum is defined by the half-width,
¢w, Which is chosen to be 35 m/s in the default setting, but is not easily constrained by observations. The spectrum
of wave momentum flux at phase speed c is given by

2
Bo(c) = FP_O(C) = sign(c —Eo) B,.exp [— (ﬂ> an} (1)

Po Cw

where Fpo(c) is the gravity wave stress and p, is the mean flow density at the source level. B,, is the momentum
flux amplitude of waves with phase speed ¢y and can be constrained by observations of local wave events (e.g.,
fluctuations in observed wind speed, (v, v', w’) and gravity wave phase speeds estimated from superpressure
balloon measurements can be used with the polarization relations to derive momentum fluxes (pu' W', pv'w’)
locally (Alexander et al., 2010)). By(c) is the momentum flux amplitude in active times and determines when the
wave will break, along with the mean flow profile.

The total momentum flux depends not just on By(c), but also on the intermittency of the gravity waves. With time,
the intermittency reduces the total momentum flux compared to By(c) (the momentum flux in active times) and
is modeled in AD99 with an intermittency scaling factor,
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where Fsy is the total gravity wave stress at the source level, Ac is the phase speed resolution of the spectrum
and p, is the mean density at the source level. This equation describes the ratio between the total time-averaged
momentum flux to the total momentum flux averaged over all phase speeds of the spectrum.

Although long-term averages of observed «’w’ and v'w’, for example, from superpressure balloons can be used to
estimate the observed total momentum flux (Geller et al., 2013; Jewtoukoff et al., 2015), climate models typically
require the total momentum flux to be smaller than observed values by a factor of 3-5 in order to obtain realistic
large-scale flow (Plougonven et al., 2020). Furthermore, gravity wave momentum fluxes are generally estimated
in the stratosphere, rather than the source level at 315 hPa (Alexander et al., 2010). This means Fsy is not easily
constrained by observations and must instead by calibrated to obtain a realistic macrophysical climate state. This
gives two uncertain parameters to be calibrated in this study: ¢, and F'g, (highlighted in bold in Equations 1 and 2
respectively).

2.2.2. Gravity Wave Breaking

Given these properties of gravity waves at the source level, AD99 allows gravity waves to propagate upwards
(Alexander & Dunkerton, 1999). At each level, the parameterization checks if the intrinsic frequency magnitude
is less than the reflection frequency, and if so, the waves undergo total internal reflection and are eliminated. A
stability criterion is also checked at each level, for all phase speeds. The portion of the wave spectrum with phase
speeds that do not satisfy the stability criteria undergo breaking and are removed from the spectrum. On breaking,
the mean-flow forcing and eddy diffusion coefficients are estimated and fed back into the large-scale flow. For
waves that break, indexed by j, between level z,_; and z,, the forcing on the mean flow is:

X(zo1n) = —— Y Fpo(c;
(20-172) 5(z,,71/2)Az; Po(c;)

and the eddy diffusion coefficient is assumed to be:

1 —
LR P rer e DACRL SR

where N is the Brunt-Viisild frequency and Fpo(c)) is the discretized momentum flux carried by waves with
phase speed c; at the source level (Alexander & Dunkerton, 1999). Note this relates to Fso, the total momentum

flux at the source level, as Fso = Zl‘l Fpo(c;). The parameters that define the source spectrum affect the forc-
ing and eddy diffusion coefficient through the intermittency scaling factor (Equation 2) and any uncertainty in
parameters such as c¢,, and Fs, propagate through to affect the mean flow.

2.2.3. Latitude Dependence of Source Terms

Alexander and Dunkerton (1999) introduced this parameterization for a single vertical column with the inten-
tion that it could be applied to global climate models with one-dimensional calculations based on the wind and
stability profiles at each geographic point in the model, that is, for each longitude and latitude. Alexander and
Rosenlof (2003) find that gravity wave sources in the tropics can differ significantly from those in the extratropics
in observations. This can be included in the parameterization by providing latitude-dependent source parameters
for Cw and Fso.

The AD99 implementation in MiMA allows ¢, to be defined in the tropics (10°S to 10°N) independently of its
value outside this region. This means tropical values of ¢,, can be varied, for example, to explore its effects on
the QBO (Garfinkel et al., 2022), while keeping the extratropical value of ¢, fixed in order to maintain the strat-
ospheric polar vortices. In this study, we only consider ¢, in the tropics, with ¢, in the extratropics kept fixed at
35 mf/s.

Fy is also latitude dependent. It is typical for GCMs to prescribe a peak in Fso in the tropics due to tropical
precipitation (e.g., the Canadian Middle Atmosphere Model (CMAM, Anstey et al. (2016) and MERRA reanal-
ysis/Fortuna version of the Goddard Earth Observing System Mode (GEOS-5) (Molod et al., 2012))) and/or
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Table 1
Description of the Two Parameters Calibrated in This Study
Parameter Description Control value
c Half-width of phase speed in tropics (10°S to 10°N) 35 m/s
Bt,, Total gravity wave stress in tropics (10°S to 10°N) 0.0043 Pa

additional stress in extratropical storm track regions, in some cases with a larger value of Fso in the northern
hemisphere compared to the southern hemisphere to improve the simulation of the stratospheric polar vortices
(e.g., AM3/4, the atmospheric components of the global model from Geophysical Fluid Dynamics Laboratory;
see Donner et al., 2011; Zhao et al., 2018). We include the latter, by setting a base of 0.0043 Pa in the extratropics,
with an additional 0.0035 Pa in the northern hemisphere that appears to provide roughly the correct number of
sudden stratospheric warmings (Equation A3 of Garfinkel et al., 2022). In the tropics (10°S to 10°N), we define
Fso = Bt., as the parameter of interest, responsible for modulating properties of the QBO. Table 1 shows the two
parameters calibrated and assessed in this study and their values chosen for the control run setting.

Garfinkel et al. (2022) assessed the sensitivity of the QBO in MiMA to c,, and Bt.,. They found that the QBO
amplitude is significantly more sensitive than the period. Increasing Bt., leads to a faster and stronger QBO.
While increasing c,, also leads to a faster and stronger QBO, the period is not affected significantly when c,, is
increased beyond 25 m/s.

3. Calibrate, Emulate, and Sample Method

The goal of uncertainty quantification is to obtain a distribution of model outputs, given a distribution of model
parameters. To do this, we need samples from the optimal distribution of model parameters that produce model
outputs in agreement with an observed dataset. We employ the Calibrate, Emulate and Sample (CES) method
(Cleary et al., 2021; Dunbar et al., 2021; Howland et al., 2022). This involves (a) calibration of model parameters
so that the model output agrees with the observed dataset, (b) emulation of the expensive model given model
parameters to allow for quick evaluations and (c) sampling from the calibrated distribution of model parameters
with the emulator.

3.1. Calibration

The first step of CES is the calibration, for which we use Ensemble Kalman Inversion (EKI). Following Cleary
et al. (2021), we define the problem as

y=00)+n 3

where 6 are the unknown model parameters (in this case, parameters that define the gravity wave spectrum
at the source level, ¢, and Bt.,); G(0) is the forward model (in this case, MiMA with the AD99 gravity wave
parameterization); y is the observable (in this case, long-term averages of stratospheric phenomena); and # is the
internal noise in the system. For simplicity, this noise is assumed to be Gaussian with variance I', which we write
asn ~ N(0,I') (Cleary et al., 2021). Calibration is concerned with solving the inverse problem, to learn optimal
model parameter values 0 that produce desired values of y.

We take a probabilistic approach to calibration, where the goal is to learn probability distributions of @ rather
than point estimates and we use Bayesian statistics to do this. Here, p(-) indicates probability distributions, for
example, p(0) is the prior probability distribution that represents our prior knowledge of values 0 may take. In
calibration, we seek the optimal probability distribution of 8 given the observed data, denoted p(8|y). This is
linked to the likelihood, which describes the probability of the data given a parameter value 0, that is, p(y|6), and
the prior through Bayes' theorem:

p(0ly) «x p(y|0)p(6) “
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From this, we can see that that one can learn the optimal p(0|y) by optimizing p(y|0), that is, maximum like-
lihood. It is standard to choose a Gaussian likelihood (e.g., Cleary et al., 2021; Dunbar et al., 2021; Howland
et al., 2022):

p910) = —=exp (-3 - GO Ty = G(6) ).

2r

Where superscript T denotes the transpose. This equation is the probability that the data y originates from G(6),
allowing for the Gaussian noise with variance I" as described by Equation 3. Maximizing this is equivalent to
minimizing a misfit function which describes a distance between the data, y, and the forward model, G(6):

@0,y) = %(y - G(O) T (y - G(O)). &)

This is the Mahalanobis distance. Various optimization methods can be used to minimize ®(0, y). Here, we use
EKI (Iglesias et al., 2013), a derivative-free optimization method based on Ensemble Kalman filtering which is
extensively used in numerical weather prediction to estimate a model state of atmospheric variables given obser-
vations. EKI uses the same concepts to solve the inverse problem (Equation 3), but with two fundamental differ-
ences to Ensemble Kalman filtering used in data assimilation: (a) rather than finding atmospheric state variables,
EKI aims to find the model parameters € given observations y, removing dependence on the atmospheric state
variables by integrating these out with long simulations and (b) the inversion is done offline, without updating
the data at each iteration (i.e., no time dependence).

In EKI, we take an ensemble of model parameters, denoted by subscript m = 1, ---, M, initially drawn from the
prior, denoted by 69 ~ p©(.). At each iteration, denoted by superscript (n), the forward model gives Q(GE,',”)
which is used to update each ensemble member at the next iteration with

01 =00 + cr+ ) (v-oler)

where C/ is the covariance matrix of the ensemble output and Cyg is the cross-covariance matrix between the
ensemble parameters and ensemble outputs. Note that Cy(I" + Cg'g))_l is the Kalman gain where (I" + Cg) ) is the
innovation covariance, describing the covariance matrix of the differences between y and Q(Bf,:') )
3.1.1. Parameters and Priors
In this study, the model parameters are
0 = (cw, Bteg)

with units [m/s, Pa], described in Table 1, and the model outputs are

¥ = (Toso, Aggo)
where Topo is the QBO period in months at 10 hPa and Ao is the QBO amplitude in m/s at 10 hPa.

When defining the priors on the model parameters, we first consider physical constraints that total gravity wave
stress and the half-width of the phase speeds must be positive everywhere, that is, Bt., > 0 and ¢,, > 0.

We enforce these hard constraints by imposing log-normal priors on all parameters, which equates to transform-
ing the parameters to

0= (exp(cw) , exp(Bteq))

and carrying out the calibration on & with normal priors. We use domain knowledge to inform the choice of
the mean and variance of these prior distributions. Observations from stratospheric balloon flights show that
gravity waves can have phase speeds generally around 20 m/s, with values up to around 120 m/s (e.g., Boccara
et al., 2008; Hertzog et al., 2008) and the half-width of phase speeds in the tropics, c,, in Equation 1, could range
from 5 to 80 m/s (Alexander & Rosenlof, 2003). Measurements of gravity wave stress imposed at the source
level are not readily available, although models with various non-orographic parameterizations have established
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values between 0.001 and 0.01 mPa give realistic gravity wave momentum fluxes in the stratosphere (Geller
et al., 2013). Previous studies using 99 CE within MiMA assume values of ¢,, between 20 and 60 m/s and of Bt.,
between 0.003 and 0.005 Pa (Alexander & Dunkerton, 1999; Garfinkel et al., 2022; Jucker & Gerber, 2017).
Based on these ranges, we calculate the mean and variance on 8 by transforming a normal distribution with means

u = (35,0.0043) and variances 62 = (102, 0.0012) through the exponential map.

3.2. Emulation

The calibration step allows us to learn the distribution of optimal parameters given the observations. For uncer-
tainty quantification of the model output, we would next sample from this distribution, for example, with a Monte
Carlo method such as Markov chain Monte Carlo (MCMC). However, since this requires many expensive model
evaluations (e.g., 0(105 ) (Geyer, 2011)), we build an emulator that can be evaluated cheaply. The emulator can
be trained with the samples obtained through the EKI calibration step above. These are ideal as the later iterations
of EKI sample the posterior distribution, which is ultimately the region of interest for the emulator, and also the
early iterations include samples from the prior distribution which helps constrain the emulator at the edges of the
posterior distribution.

3.2.1. Gaussian Processes

The emulator we use here is a Gaussian process (GP) emulator, which is a popular Bayesian emulation tool in the
calibration and uncertainty quantification community (e.g., Couvreux et al., 2021; Kennedy & O’Hagan, 2001;
Williamson et al., 2017). These are used because they model the distribution of functions that satisfies a given
dataset, meaning they can produce a mean function and a measure of uncertainty around this (e.g., the standard
deviation or confidence intervals). A GP is a type of stochastic process, which is defined as a collection of random
variables (i.e., observations) indexed by an index set, x, such as space or time. A “Gaussian” process refers to the
case where any finite number of these random variables has a multivariate normal distribution (Rasmussen &
Williams, 2006). GPs are specified by a mean function, m(x), and covariance function (also known as a kernel),
C (x,x"), and are denoted

f(x) ~GP(m(x),C(x,x')).

A GP can be viewed as a probability distribution over a function f(x), where the index set represents the x-axis
of the function, m(x) are the mean values over the function and C(x, x") describes the correlation between f(x")
and f(x), given two values x and x’.

In Section 3.1, we showed how Bayes' theorem relates the posterior distribution to the prior distribution and
the likelihood of the data (Equation 4). Bayes' theorem can also be applied to GPs, where the user defines a
prior GP which is combined with the data in Bayes' theorem to derive a posterior GP. To define the prior GP,
the user specifies m(x) and C(x, x’). It is typical to assume m(x) = 0 and define the GP's structure through
C(x, x) entirely (Rasmussen & Williams, 2006). Domain knowledge can be used to inform C(x, x’) (e.g., to
include known lengthscales or periodicity) and covariance functions can be combined through linear operations
to include multiple features. For more information on covariance function choices, see Chapter 4 of Rasmussen
and Williams (2006).

If we denote the prior GP as f(x), the posterior GP can be denoted f(x)| Dy where Dy is the data in the form of
N input-output pairs obtained from the expensive model (Gramacy, 2020). Using Bayes theorem, one can derive
the posterior GP

f&IDy ~ GP(m*(x),C*(x,x))

where m*(x) and C*(x, x") are the new mean and covariance functions respectively, which can be written in
terms of m(x) and C(x, x") entirely. The derivation for this is involved (see e.g., Rasmussen & Williams, 2006)
but tractable because the definition of a GP states that any finite number of random variables have a multivariate
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normal distribution. f(x)|Dy is also called the GP predictive distribution, since it can be used to predict the
probability distribution function at new, unseen values of x (Gramacy, 2020).

3.2.2. Gaussian Process Emulator of QBO Properties Given Gravity Wave Parameters

In this study, the index set is the gravity wave parameters, 8, which is a two-dimensional (2d) vector containing ¢,
and Bt,,. The Gaussian process f(0) emulates the climate model output G(0), which is also a 2d vector containing
the properties of the QBO, (Tppo, Agpo). For each dimension, we define a prior GP as

f(6) ~GP(m(6).C(6.6)).

We choose m(0) = 0 and for the covariance function, we use a squared exponential kernel (also called a radial
basis function). This is a popular choice when little domain knowledge is available, as it provides a smooth covar-
iance that falls exponentially as the distance between points increases (Rasmussen & Williams, 2006):

0-0)
CSE(G, 9/) = azexp <%> .

o and I are both length scale hyperparameters, where ¢ describes the distance between f(0) and f (9' ) and 1

describes the distance in 0 needed for the c(6, 0') to fall by 1/e. Note that [ is also a 2d vector with independent
lengthscales for each parameter dimension (this is called automatic relevance determination). This choice of
covariance function leads to a smooth f(0) which will become beneficial in the sample step of CES, since a
smooth function has better convergence properties for sampling methods such as MCMC (Cleary et al., 2021).

We also include a white noise covariance function which represents the internal variability in the output,
CWN(Q’ 9/) = Uafzv

2
WN

we are approximating properties of the system, defined on an infinite time horizon, with finite time averages

where o7 is the internal noise assumed to be consistent across all values of 0. This choice is made because
following Dunbar et al. (2021). We assume that finite time averaged data is a noisy approximation of the infinite
time average, where the noise is assumed to be Gaussian given large enough timescales, due to the central limit
theorem.

Including both the squared exponential and white noise covariance functions gives us the covariance function
0-¢)’
c(0.0) = exp <(2—1)> o

where o, I, and owy are hyperparameters that are learned to ensure the posterior GP gives the best fit to the data
(Bishop, 2006). Here they are optimized with type II maximum likelihood using Scikit-learn, a collection of
machine learning software in Python (Pedregosa et al., 2011).

Since we are emulating a 2d vector, (Togo, Agso), we define two prior GPs with two sets of hyperparameters to
optimize, independent of each other. However, we do not necessarily expect the white noise variance ow n for
each dimension to be uncorrelated (in fact, here they are positively correlated in observations, i.e., a QBO cycle
with a longer period is likely to have also have a larger amplitude (Freie Universitit Berlin, 2007)). To avoid this
issue, before we build the GP emulator, we transform the outputs to the decorrelated space by performing Singu-
lar Value Decomposition (SVD, also called Principal Component Analysis; PCA). Note, this is an optional mode-
ling choice, but is important when the output G(0) is likely to contain correlations between output dimensions,
which is often the case in climate modeling applications. SVD is also a useful dimension reduction technique for
high dimensional G(0), as one can emulate only the singular vectors that explain most (e.g., 95%) of the variance
in the output (e.g., Howland et al., 2022).
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3.3. Sample

Ultimately, we want to know the posterior distribution p(€|y), which we can approximate with a large sample of
values of 0, where the larger the sample, the better the estimation (Kruschke, 2015). To do this, we use a sampling
method built on Bayesian principles, called Markov chain Monte Carlo (MCMC). MCMC is an iterative method
that uses a proposal distribution to propose new samples that are accepted with a probability relating to the poste-
rior probability distribution, that is, if they are deemed to be a sample from the posterior distribution. Here, we
use a Metropolis random walk MCMC (Metropolis et al., 1953), meaning the proposal distribution is simply a
random walk.

We start the MCMC with an initial sample, 09, drawn from the prior distribution, p(0) defined in Section 3.1.

We propose a new sample 6% ~ p(9*|6(0)) =N (0(0) , Az) where A? is a matrix containing the step sizes of the
random walk along the diagonal. We must then decide whether to replace the current sample @ with 6%, by
comparing their relative posterior probabilities. To do this, we evaluate the probability that 8" could be a posterior
sample, using Bayes theorem (Equation 4), where we assume the likelihood is Gaussian that is,

Ao0) = s (- (- 10T - 10)) ©

where f(6") is an evaluation of the GP emulator, to approximate G(6*). 6" is accepted with probability

p(6°ly) p(616%) p(6°)p(yl6*) p(6©16%)

o(6°16%) p(6”ly)  p(0'167)  p(67) p(yl6™)

known as the acceptance probability. The right-hand side is derived using Bayes' theorem (Equation 4) where the
p(6*1y)

p(6%16)

ratio of the posterior probability to the proposal probability and the acceptance probability compares this ratio to

the same ratio for 8, to effectively decide on whether to replace sample 8 with proposed sample 8. Details on
why this acceptance probability ensures samples are from the posterior probability distribution can be found in,
for example, Robert and Casella (2004).

is the

constant of proportionality is the same for p(9(0>|y) and p(Q* Iy) and therefore cancels out. Here,

If accepted, we set 0= 6, otherwise, we set 8= 60©. We repeat these steps, that is, by proposing a new sample

through the random walk 8* ~ N (0“), Az), evaluating the acceptance probability and deciding whether or not the
new sample is accepted. This is repeated until we have a chain of N samples, 8©, 8, ..., 8. The first portion of
samples are close to the prior distribution, p(0) and so we discard these as “burn-in”. The number of samples to be
discarded depends on the specific task and requires some user judgment as to when the samples have converged
to a stationary state, but can require O( 10° ) iterations (e.g., Geyer, 2011). This is where we see the benefit of the
GP emulator as all instances of f (9*) in Equation 6 are used to rapidly approximate Q(Q*).

‘We run the Metropolis random walk MCMC for 10° iterations (after 10* burn-in iterations) to obtain the posterior
distribution. The random walk step sizes (A?) are determined to ensure an acceptance rate close to 25%, deemed
to be optimal in Roberts and Rosenthal (2004). Here, one can choose to carry out the MCMC in either the orig-
inal space or in the decorrelated space, after performing SVD. We run the MCMC in the decorrelated space, to
improve efficiency (since we use a random walk with independent step sizes in both directions, i.e., A% is a diag-
onal matrix). All results are presented after transforming back into the original parameter space.

4. Results
4.1. Calibrate, Emulate and Sample in the Perfect Model Setting

We explore the results of CES with the “perfect model” setting, as done in Dunbar et al. (2021), where we define
the “truth” to be a long 50-year integration of MiMA, with known model parameters, here c,, = 35 m/s and
Bt,, = 0.0043 Pa. Figure 1b shows 10 years of this simulation. Note compared to the observed QBO (Figure 1a),
MiMA produces a QBO with westerly phases that are too long and strong relative to the easterly phases. Also,
the QBO exists slightly too high up in the stratosphere, as the pattern of alternating winds appear to vanish at
around 60 hPa, unlike the observed winds in Figure 1a. For the purpose of demonstrating the CES method, we
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Figure 2. (a—b) Parameter and (c—d) model output values for all iterations of EKI for the perfect model setting, where iteration 1 consists of parameter values drawn
from the prior. Each line/marker represents a single ensemble member. The red line denotes in (a-b) the “truth” that is, the known parameter values (Table 1) and
in (c—d) the model output obtained in one long MiMA simulation with these parameter values, with the dashed red line showing 1 standard deviation across the

simulation.

focus only on the first order properties of the QBO, namely the period and amplitude in the upper stratosphere,
at 10 hPa. This means we can only validate the method on these properties. Ultimately, for operational purposes,
one may wish to calibrate more properties of the QBO (e.g., period and amplitude in easterly/westerly phase) at
all pressure levels, which would provide additional constraints on the gravity wave parameters. For a given GCM
with a limited number of tuning parameters, it is possible that there does not exist a solution to @ in the inverse
problem (Equation 3), where G(0) = y is satisfied exactly. However, in this case, EKI remains a suitable tool as it
produces the optimal values by minimizing |y — G(0)|.

At 10 hPa, MiMA produces a QBO period of 23.9 + 1.7 years and amplitude 27.3 + 2.2 m/s where the uncertain-
ties here are 1 standard deviation across all QBO cycles in the 50-year integration. The calibration step learns the
posterior distribution of parameter values that gives a QBO consistent with this. It allows us to test the method on
a simpler problem while developing an understanding of how the model parameters relate to each other.

The first step of CES is to calibrate ¢,, and Bt,, to the QBO metrics for period and amplitude. EKI is run with
an M = 20 ensemble. Figure 2 shows the EKI for 10 iterations, where the top two panels show the gravity wave
parameters ¢, and Bt,, and the bottom two panels show the model output. The parameters move toward conver-
gence after around 6-8 iterations.

Considering each ensemble member at each iteration, EKI gives a total of 200 input-output pairs. These data
are used to train the GP emulator in the emulation stage of CES. First, the validity of the emulator is tested by
training the GP emulator on 170 input-output pairs, which include all data from the first three iterations and the
rest selected at random from the last seven iterations. This leaves aside 30 samples for testing, randomly selected
from the last seven iterations. We do this to test the emulator while keeping in mind that the goal is to predict
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Figure 3. Plots of emulator performance on example test data points, selected at random from the last seven iterations of
EKI for (a) period and (b) amplitude of the QBO. The test data values are plotted on the x-axis (y) and the Gaussian process
emulator predictions are plotted on the y-axis (§), where the error bars indicate the Gaussian process 1o levels. The red line
shows where y = y, indicating a perfect prediction.

regions of the parameter space close to the posterior distribution, avoiding extrapolation to other regions of the

parameter space (including the prior). Figure 3 shows these test data, y, against the GP prediction J, where a

perfect prediction would be these points lying on the § = y line shown in red. The error bars indicate the 1 ¢
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Figure 4. Gaussian process emulator predictions over a sweep across
parameter values (¢,, = 10 — 70 m/s, Bt.; = 0.002 — 0.007 Pa) learned

from the EKI in the perfect model setting for (a) QBO period and (b)

QBO amplitude. The scatter points indicate the training data from MiMA
simulations obtained through EKI. The 1 ¢ uncertainty associated with these
predictions is shown in (c) for the period and (d) for the amplitude.

uncertainty predicted by the GP emulator. The § = y line falls within 1 o
of the GP prediction for the majority of test data points, as required for an
accurate emulator. We test the emulator repeatedly with different test sets in
Figure S1 in Supporting Information S1 and find the emulator performance to
be fairly consistent, with RMSEs between 0.7 and 1.0 months for the period
and between 0.8 and 1.4 m/s for the amplitude, both of which are within the
average 1 o levels predicted by the emulator. Table S1 in Supporting Infor-
mation S1 also confirms the emulator outperforms linear regression, albeit
only slightly for the QBO period, indicating a linear relationship describes
most of the relationship between the period and the gravity wave parameters.

To maximize accuracy, the final emulator used is trained on all 200 samples.
A sweep across the parameter space is carried out by varying ¢, from 10 to
70 m/s and Bt,, from 0.002 to 0.007 Pa. Figure 4 shows contour plots of a)
the QBO period and b) the QBO amplitude for this parameter sweep across ¢,
and Bt.,. The points indicate the training data values, showing an agreement
with the GP emulator. Note that the training points are fairly crowded within
the region where the misfit function is minimized (25 < ¢, <40 m/s and
0.004 < Bt.; < 0.005Pa). Outside this region, the GP emulator is extrapolat-
ing to new regions of the parameter space and therefore is less trustworthy.
The 1 o level predicted by the GP emulator also highlights this in Figures 4c
and 4d for the period and amplitude respectively.

The contour plot in Figure 4a estimates a maximum in QBO period for
relatively high ¢, (50-70 m/s) when Bt., is chosen to be relatively low
(0.002-0.003 Pa). Increasing Bt,., and decreasing ¢, leads to a faster QBO.
This is expected for Bt., following the idealized models of Holton and
Lindzen (1972) and Plumb (1977), since increased gravity wave stress leads
to increased deceleration of winds and therefore more rapidly descending
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westerly/easterly shear zones (Dunkerton, 1997; Schirber et al., 2015). The
emulator predicts a faster period with decreasing c,,, consistent with Garfinkel
et al. (2022), possibly due to the weaker QBO present under slower phase

0.007 speeds. However, the period is fairly stable to changes in Bt,., and c,, in the
1Y p y g q
region of the posterior distribution. Note the breakdown in a reasonable QBO
0.006 at Bt,, < 0.003 and ¢,, < 30, with estimated periods of less than 5 months
. and with Figure 3c showing large uncertainties exceeding this, highlighting
D‘f 0.005 where the emulator predictions are not trustworthy.
g Figure 4b shows a peak in QBO amplitude when both ¢,, and Bt,, are rela-
+~o
Q Lt tively high. Increasing ¢, increases the QBO amplitude since the higher
phase speeds contribute to the faster westerlies and easterlies in the QBO
0.003 (Holton & Lindzen, 1972; Plumb, 1977; Schirber et al., 2015) but only up
until ¢,, reaches around 30 m/s. Beyond this, increasing c,, has minimal effect,
0.002 also seen in Garfinkel et al. (2022). This could be because waves with suffi-
10 20 30 40 50 60 70 . . . .
" (m /s) ciently large ¢ do not reach breaking levels in the stratosphere and instead
w

Figure 5. Samples from the posterior distribution of ¢,, and Bt,, generated by

continue propagating upwards, without depositing momentum until reaching
the sponge layer. For c,, 2 30 m/s, the amplitude is more sensitive to B,

the MCMC in the final stage of CES. The marginal distributions are shown where increasing the gravity wave stress will increase the drag deposited and
on the corresponding axis, with the prior distributions shown in blue and the therefore lead to a stronger QBO.

known “truth” in green.

In the last stage of CES, we sample from the posterior distribution using

an MCMC (see Movie S1 in Supporting Information S1). After removing

10,000 iterations for burn-in, 80,000 samples from the posterior distribution
are shown in Figure 5, where the 2D histogram is shown in the center with the marginal posterior distributions for
¢ and Bt., shown on the corresponding axis. The prior distribution is also shown in blue, with the known truth in
green. The 2D histogram shows a correlation between ¢, and Bt., when ¢,, < 35, indicating that a sample with a
larger value of ¢, can still produce a QBO with a realistic period and amplitude if Bt., is decreased appropriately.
The narrower posterior distribution for Bt., indicates this is more crucial for obtaining a correct QBO, while the
posterior distribution for c,, more closely follows the prior distribution chosen. Sampling the parameters from this
histogram gives a QBO consistent with the “truth” selected here.

The prior distribution should always be chosen to be wider than we expect the posterior distribution to be, since
by definition the MCMC cannot sample points outside of the prior. Here, the posterior distribution extends to
high phase speeds, following the prior distribution. A wider prior on c¢,, may produce a posterior distribution
with extended tails at high phase speeds. This highlights the importance of choosing a suitable prior that is suffi-
ciently wide, particularly when there is little domain knowledge available to influence the choice. Here, we used
domain knowledge to constrain the prior to physical values observed of gravity wave phase speeds (Alexander
& Rosenlof, 2003; Boccara et al., 2008; Hertzog et al., 2008), consistent with values used in previous AD99
studies (Alexander & Dunkerton, 1999; Garfinkel et al., 2022; Jucker & Gerber, 2017). This acts as an additional
constraint on parameter values when the outputs are less sensitive to the parameter values, for example, Figure 4
shows the QBO is less sensitive to ¢, beyond 50 m/s, once Bt,, is constrained to 0.004—0.005 Pa. In general, we
expect phase speeds <60 m/s to be of main importance in the stratosphere, while higher phase speed gravity
waves continue propagating and break at higher altitudes (Alexander & Rosenlof, 2003). This example shows
how the choice of prior matters and how we can leverage both physical understanding and statistical relationships
to constrain parameter values.

4.2. Global Sensitivity Analysis

We carry out Global Sensitivity Analysis (GSA) to measure the sensitivity of the climate model output to the
gravity wave parameters through variance-based sensitivity indices that describe how much of the variance in the
output can be attributed to the variance in each input parameter for a given input parameter distribution (Saltelli
et al., 2007). This method averages over all possible values for all other parameters (“global” sensitivity analysis)
rather than keeping them fixed at the default values (“local” sensitivity analysis). This requires a large number of
samples of the model, so the availability of the emulator to obtain inexpensive samples is crucial for this analysis.
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Sensitivity to parameters after calibration The first order sensitivity index describes the variance in an output variable,

Period

Amplitude |

Y, due to a single parameter, 6;, and is given by

7

16

5- P 05 (Eo(Y16))
Var(Y)

where Y'|6; denotes the estimated output due to parameter 6; and Eg_,(-)

indicates the average over all other parameters except for 6;,. The Sobol'
_ method (Sobol', 2001) approximates this by estimating Var (6;) (see Saltelli

— et al., 2010). Higher order sensitivity indices can be estimated to attribute the
— B;:Z X Cy interaction between multiple parameter values.
Cyp
H H : H We estimate first order sensitivity indices in the decorrelated space (applying
25 50 5 100 SVD to remove correlations between c,, and Bt.,). After transforming these
Percent attributed to back into the real space, the sensitivity indices in percentages of the QBO

period and amplitude are shown in.

Figure 6. Sensitivity indices as a percentage, describing the proportion of

variance in the QBO period and amplitude attributed to the variance in the The QBO period is most sensitive to ¢,, while the QBO amplitude is most
parameters, ¢, and Bt,,.

sensitive to Bt,,. This is in agreement with the contour plots in Figure 4 in the

region of the calibration. We expect that, before calibration, the QBO period

is primarily controlled by Bt,, and therefore after calibration, the remaining
uncertainties are due to uncertainties in c,,. Similarly, before calibration, the QBO amplitude is mostly governed
by cw, which pushes QBO wind speeds toward the phase speeds. During the calibration stage, c,, is constrained so
that remaining uncertainties in the QBO amplitude are caused mostly by Bt,,. Note that the interaction terms are
small, since the analysis is carried out in the decorrelated space (Figure 6).

4.3. Uncertainty Quantification in New Scenario

Understanding the uncertainty in climate model output due to the gravity wave parameterization is one of the
main motivations for this analysis. In this section, we explore the parametric uncertainty in a climate change
projection, meaning the uncertainty in model output that is due to the possible values that ¢,, and Bt,., could take.
This can be assessed through a perturbed parameter ensemble, where an ensemble of simulations is run with
parameter values sampled from their distribution in Figure 5 (Murphy et al., 2014). Here we run a perturbed
parameter ensemble for a 2xCO, integration. We use this ensemble of simulations to quantify parametric uncer-
tainty for both scenarios.

We run a perturbed parameter ensemble of 50 simulations for 10 years each, initialized with a spun-up climate
(Wan et al., 2014), obtained through a 200 years 2xCO, integration with fixed model parameters. Each 10-year
simulation provides around 4-5 QBO cycles per ensemble member, after allowing 1 year for spin-up (a total of
140 QBO cycles). The QBO periods and amplitudes are plotted in red in Figure 7 and compared against a single
long simulation in blue, which was run for 300 years to give roughly the same number of QBO cycles (142
cycles). Note that several QBO disruptions occurred in both the long simulation (3 disruptions) and the ensem-
bles (4 disruptions). These were removed manually from the dataset before the analysis, as they resulted in QBO
periods that were either unusually short (<10 months) or unusually long (>38 months). All QBO cycles for both
the long simulation and the ensemble members are shown in Figures S2-3 in Supporting Information S1.

The larger variance in the ensembles (red) in Figure 7 compared to the long simulation (blue) is due to the uncer-
tainty in parameter values. The internal variability can be estimated as the standard deviation across the 300-year
simulation, denoted o, in Figure 7. The difference between the standard deviation in the ensemble, o.,, and the
internal variability can be used to estimate the parametric uncertainty, oy, by assuming a Gaussian distribution of

. . 2 _ 2 2
QBO periods and amplitudes across all cycles so that ¢;,, = o}, + 0.

This gives parametric uncertainty estimates in the period of 1.53 months and in the amplitude of 2.14 m/s
under 2xCO, forcing, when the parameter values are sampled from the distribution in Figure 5. Here we have
tuned the parameters to a long integration of a present-day climate, but the natural extension would be to cali-
brate parameters to observations, which would introduce further uncertainties. Therefore we may expect the
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Figure 7. Range of values of QBO (a) period and (b) amplitude for a 2xCO, scenario for a long simulation of 300 years
in blue, where parameter values are fixed at ¢,, = 35 m/s, Bt,, = 0.0043 Pa, compared against an ensemble in red (50
simulations, each of 10 years) where parameter values are drawn from the distribution in Figure 5. The large markers show
the mean across the long simulation/ensemble and the error bars show 1 standard deviation. The smaller markers show the
period and amplitude for all QBO cycles. Note that QBO disruptions are removed before analysis. The internal variability
estimated from the long simulation is shown as o;,, the ensemble variability is o.,, and the parametric uncertainty is oy.

parametric uncertainties presented here to be a lower bound on uncertainties associated with the gravity wave
parameterization.

5. Discussion

This study demonstrates how the Calibrate, Emulate and Sample (CES) method can be applied to tune parameters
and quantify uncertainties associated with a gravity wave parameterization within an intermediate complexity
climate model. We have explored the application of CES under the perfect model setting, where we prescribe the
“truth” as a long model simulation with known parameter values. However, in future studies this will be extended
to a more realistic setting, using observational data from global radiosonde measurements as the “truth” (Freie
Universitit Berlin, 2007).

The CES method allows us to learn the optimal distribution of parameter values for the half-width of the phase
speeds, c., and the total gravity wave stress, Bt,,, both of which define the gravity wave spectrum at the source
level. We find that these parameters have an anti-correlated distribution, that is, a higher value of Bt., can be
compensated with a lower value of ¢, to achieve the same QBO period and amplitude.

A global sensitivity analysis highlighted that after calibration the QBO period is most sensitive to ¢, since it has
been constrained mainly by Bt.,, which directly influences the deceleration of easterly/westerly winds. Similarly,
the QBO amplitude is more sensitive to Bt.,, as wind speeds are constrained predominantly by gravity wave phase
speeds ¢, (Dunkerton, 1997; Lindzen & Holton, 1968).

We have quantified parametric uncertainties in MiMA associated with the gravity wave parameterization under
a 2xCO, forcing as 1.53 months for the QBO period and 2.14 m/s for the amplitude. We expect these to be a
lower bound on the parametric uncertainty, since we calibrated the parameters to a long model integration, in
the absence of realistic QBO variability and measurement error. These are of a similar order of magnitude to the
internal variability, highlighting their relevance to climate change projections. Note that parametric uncertainty
does not account for uncertainty in the structure of the parameterization itself, rather the uncertainty in the
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parameter values of ¢,, and Bt,, alone. Here, the parameter values are tuned based on the QBO in the present day
climate, isolating the effect of the gravity wave parameters from any changes in the source, such as convection,
which is likely to change under a warming climate.

The results presented here rely on the Gaussian process emulator. We find the emulator to provide an accurate
approximation to the period and amplitude of the QBO within MiMA, as shown in Figure 3 and Figure S1 in
Supporting Information S1. However, the limitation here is the presence of internal variability, which manifests
as noise in the relationship between gravity wave parameters and the simulated QBO. This noise would be pres-
ent even if full MiMA runs were used in place of the emulator and has long been known to present difficulties
in climate model analyses (e.g., Deser et al., 2012; Tebaldi & Knutti, 2018), including in emulation studies
(Castruccio et al., 2019; Watson-Parris, 2021; Williamson et al., 2017). This should be considered when design-
ing emulators for climate model output, for instance, by including a white noise kernel to model the internal
noise, as done here (Dunbar et al., 2021; Williamson & Blaker, 2014). Note that this example is fairly simple with
only two input parameters and with outputs that can be modeled reasonably with a linear regression (Table S1 in
Supporting Information S1). More complicated problems may find that more training simulations are required to
emulate the outputs to the desired accuracy, so as not to impact the reliability of the conclusions.

In this study, we calibrated to the QBO period and amplitude at 10 hPa, since these are the first order properties
of the QBO. Further extensions of this would be to explore other properties of the QBO such as the period and
amplitude at different (or all) levels of the stratosphere or the westerly and easterly amplitudes (e.g., to reduce the
westerly bias in MiMA in Figure 1b). This may be more complicated as Giorgetta et al. (2006) find that both the
QBO in the lower stratosphere and the westerly phase of the QBO are controlled more by resolved waves, rather
than subgrid-scale parameterizations.

Calibrating the gravity wave parameterization in the tropics aims to produce a realistic QBO, but does not
directly address model errors at higher latitudes (Anstey et al., 2016; Garcia & Richter, 2019). It is known that
non-orographic gravity waves contribute to the breakdown of the polar vortices, influencing the frequency and
properties of sudden stratospheric warmings (Siskind et al., 2007, 2010; Wright et al., 2010) and the timing of
the stratospheric final warming (Gupta et al., 2021). The effect of varying extratropical gravity wave parameters
has not yet been explored in MiMA. Calibrating extratropical gravity wave parameters to properties of the strat-
ospheric polar vortex in both hemispheres is a topic of future research.

Ultimately, one may wish to carry out CES on more than two parameters for gravity wave parameterizations
and/or other subgrid-scale processes. Scaling this up introduces challenges for all three steps of CES. For the
calibration stage, optimizing the posterior distribution in a higher dimensional setting increases the chance that
the parameters cannot be constrained to produce model output consistent with the observations. This is by defi-
nition if the number of parameters exceeds the number of observed outputs. Regularization methods can be
used to remedy this (e.g., Iglesias, 2016; Iglesias et al., 2013). Aside from this, ensemble Kalman methods scale
fairly well with dimension when O(100) ensemble members are used (Dunbar et al., 2021; Kalnay, 2002; Ott
et al., 2004). The GP emulator, however, does not scale well with an increasing number of input parameters.
The number of simulations required for training is generally assumed to be around 10 times the number of input
parameters (Loeppky et al., 2009) which further leads to poor scaling. GP emulators are generally suitable for
0(10) parameters, but Dunbar et al. (2021) suggest that alternative emulators that do scale well, such as neural
networks, could be used in place of the GP emulator for higher dimensional problems. In the sampling stage
of CES, MCMC scales reasonably well with high dimensional problems. Although increasing dimensions can
increase the chance of the chain becoming “stuck” in local minima, we can run multiple MCMC simulations in
parallel, initialized independently to mitigate this (Brooks et al., 2011). Overall, we can expect the version of
CES described here to deal well with calibration and uncertainty quantification of O(10) parameters, and higher
dimensional problems can be approached with variations on the emulator.

Overall, the introduction of automated methods such as Ensemble Kalman Inversion allows us to calibrate
subgrid-scale parameterizations in GCMs, as far fewer climate model integrations are required (O(100) compared
to 0(105). However, for high complexity GCMs, even running 100 model integrations is highly costly, which

is why these are typically tuned crudely (e.g., Kodama et al., 2021). Applying EKI to intermediate complex-
ity climate models, such as MiMA, provides useful insights into how EKI can be best leveraged for higher

MANSFIELD AND SHESHADRI

16 of 19

[umod ‘11 ‘T20T ‘99¥TTH61

:sdny woy pap

2SO SuoWWo)) aANea1) d[qesrjdde ay) Aq pauIa0S are SI[ITIE V() 98N JO SI[NI 10§ AIRIGIT AUIUQ A3[IAL UO (SUONIPUOI-PUB-SULIA) WO K3[1m"AIRIqI[auI[U0//:sd)Y) SUONIPUOY) pue SWia [ 3y 23S “[7z07/11/#1] uo Areiquy suruQ Ad[ip “AnsIoatun piojuels £q SHZE00SINTZ0T/6201 01/10p/wod Aafim°Arelqrjauy



A7 |
MI,
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems

10.1029/2022MS003245

Acknowledgments

This research was made possible by
Schmidt Futures, a philanthropic initiative
founded by Eric and Wendy Schmidt, as
part of the Virtual Earth System Research
Institute (VESRI). AS acknowledges
support from the National Science Foun-
dation through grant OAC-2004492. We
thank Oliver Dunbar and Tapio Schneider
for useful discussions. We are grateful

to the two anonymous reviewers whose
insightful comments have improved the
manuscript.

complexity climate models, for example, by building a more informed prior probability distribution, in order to
reduce the total number of expensive EKI iterations.

Conflict of Interest

The authors have no conflicts of interest.

Data Availability Statement

The code used in this analysis, including scripts to run MiMA and reproduce all results presented here can be
found at https://doi.org/10.5281/zenodo.6629730. The codebase for Calibrate, Emulate, Sample and Ensemble
Kalman Inversion are both maintained by the Climate Modeling Alliance (Clima) group and can be found at
https://github.com/CliMA/CalibrateEmulateSample.jl and https://github.com/CliMA/EnsembleKalmanPro-
cesses.jl. The Model of an idealized Moist Atmosphere (MiMA) (Garfinkel et al., 2020; Jucker & Gerber, 2017)
is available at https://github.com/mjucker/MiMA.

References

Alexander, M. J., & Dunkerton, T. J. (1999). A spectral parameterization of mean-flow forcing due to breaking gravity waves. Journal of the
Atmospheric Sciences, 56(24), 4167-4182. https://doi.org/10.1175/1520-0469(1999)056<4167:aspomf>2.0.co;2

Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., et al. (2010). Recent developments in gravity-wave effects
in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quarterly Journal of the Royal
Meteorological Society, 136(650), 1103—1124. https://doi.org/10.1002/qj.637

Alexander, M. J., & Pfister, L. (1995). Gravity wave momentum flux in the lower stratosphere over convection. Geophysical Research Letters,
22(15), 2029-2032. https://doi.org/10.1029/95GL01984

Alexander, M. J., & Rosenlof, K. H. (2003). Gravity-wave forcing in the stratosphere: Observational constraints from the upper atmosphere
research satellite and implications for parameterization in global models. Journal of Geophysical Research (Atmospheres), 108, 4597. https://
doi.org/10.1029/2003JD003373

Anstey, J. A., Scinocca, J. F., & Keller, M. (2016). Simulating the QBO in an atmospheric general circulation model: Sensitivity to resolved and
parameterized forcing. Journal of the Atmospheric Sciences, 73(4), 1649-1665. https://doi.org/10.1175/JAS-D-15-0099.1

Baldwin, M. P, Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., et al. (2001). The quasi-biennial oscillation. Reviews of
Geophysics, 39(2), 179-229. https://doi.org/10.1029/1999RG000073

Barton, C. A., McCormack, J. P., Eckermann, S. D., & Hoppel, K. W. (2019). Optimization of gravity wave source parameters for improved
seasonal prediction of the quasi-biennial oscillation. Journal of the Atmospheric Sciences, 76(9), 2941-2962. https://doi.org/10.1175/
JAS-D-19-0077.1

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Boccara, G., Hertzog, A., Vincent, R. A., & Vial, F. (2008). Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian
stratospheric balloon flights. Part I: Theory and simulations. Journal of the Atmospheric Sciences, 65(10), 3042-3055. https:/doi.
org/10.1175/2008JAS2709.1

Brooks, S., Gelman, A., Jones, G. L., & Meng, X.-L. (2011). Handbook of Markov chain Monte Carlo (3rd ed.). Chapman & Hall/CRC. Retrieved
from https://www.mcmchandbook.net/

Bushell, A. C., Anstey, J. A., Butchart, N., Kawatani, Y., Osprey, S. M., Richter, J. H., et al. (2020). Evaluation of the Quasi-Biennial oscillation in
global climate models for the SPARC QBO-initiative. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3765

Castruccio, S., Hu, Z., Sanderson, B., Karspeck, A., & Hammerling, D. (2019). Reproducing internal variability with few ensemble runs. Journal
of Climate, 32(24), 8511-8522. https://doi.org/10.1175/JCLI-D-19-0280.1

Chantry, M., Hatfield, S., Dueben, P., Polichtchouk, I., & Palmer, T. (2021). Machine learning emulation of gravity wave drag in numerical
weather forecasting. Journal of Advances in Modeling Earth Systems, 13(7), e2021MS002477. https://doi.org/10.1029/2021MS002477

Cleary, E., Garbuno-Inigo, A., Lan, S., Schneider, T., & Stuart, A. M. (2021). Calibrate, emulate, sample. Journal of Computational Physics, 424,
109716. https://doi.org/10.1016/j.jcp.2020.109716

Corcos, M., Hertzog, A., Plougonven, R., & Podglajen, A. (2021). Observation of gravity waves at the tropical tropopause using superpressure
balloons. Journal of Geophysical Research: Atmospheres, 126(15), €2021JD035165. https://doi.org/10.1029/2021JD035165

Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., et al. (2021). Process-based climate model development
harnessing machine learning: I. A calibration tool for parameterization improvement. Journal of Advances in Modeling Earth Systems, 13(3),
€2020MS002217. https://doi.org/10.1029/2020MS002217

Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate
Dynamics, 38(34), 527-546. https://doi.org/10.1007/s00382-010-0977-x

Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., et al. (2011). The dynamical core, physical parameterizations,
and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24,
3484-3519. https://doi.org/10.1175/2011JCLI3955.1

Dunbar, O. R. A., Garbuno-Inigo, A., Schneider, T., & Stuart, A. M. (2021). Calibration and uncertainty quantification of convective parameters
in an idealized GCM. Journal of Advances in Modeling Earth Systems, 13(9), e2020MS002454. https://doi.org/10.1029/2020MS002454

Dunkerton, T. J. (1997). The role of gravity waves in the quasi-biennial oscillation. Journal of Geophysical Research, 102(D22), 26053-26076.
https://doi.org/10.1029/96JD02999

Espinosa, Z. L., Sheshadri, A., Cain, G. R., Gerber, E. P., & DallaSanta, K. J. (2022). Machine learning gravity wave parameterization generalizes to
capture the QBO and response to increased CO,. Geophysical Research Letters, 49(8),e2022GL098174. https://doi.org/10.1029/2022GL098174

MANSFIELD AND SHESHADRI

17 of 19

d ‘11 ‘TTOT ‘99vTTH61

:sdny woiy papeoy;

9SULOIT suowntuio)) aAneal) ajqestjdde ayy £q pautaA03 a1e sa[O1R Y (asn JO SA[NI 10] AIRIqIT AUIUQ AS[IA\ UO (SUOHIPUOI-PUB-SULIA)/WOD" AA[IM ATRIQI[UI[UO//:sdNY) SUOnIpuo) pue swIa ] oy 23S [7z07/11/+1] uo A1eiqry auruQ A[ip ‘ANsIoatun piojuels £q sHz€00SINTZ0T/6201 01/10p/Wod Aa[Im”


https://doi.org/10.5281/zenodo.6629730
https://github.com/CliMA/CalibrateEmulateSample.jl
https://github.com/CliMA/EnsembleKalmanProcesses.jl
https://github.com/CliMA/EnsembleKalmanProcesses.jl
https://github.com/mjucker/MiMA
https://doi.org/10.1175/1520-0469(1999)056%3C4167:aspomf%3E2.0.co;2
https://doi.org/10.1002/qj.637
https://doi.org/10.1029/95GL01984
https://doi.org/10.1029/2003JD003373
https://doi.org/10.1029/2003JD003373
https://doi.org/10.1175/JAS-D-15-0099.1
https://doi.org/10.1029/1999RG000073
https://doi.org/10.1175/JAS-D-19-0077.1
https://doi.org/10.1175/JAS-D-19-0077.1
https://doi.org/10.1175/2008JAS2709.1
https://doi.org/10.1175/2008JAS2709.1
https://www.mcmchandbook.net/
https://doi.org/10.1002/qj.3765
https://doi.org/10.1175/JCLI-D-19-0280.1
https://doi.org/10.1029/2021MS002477
https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.1029/2021JD035165
https://doi.org/10.1029/2020MS002217
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1175/2011JCLI3955.1
https://doi.org/10.1029/2020MS002454
https://doi.org/10.1029/96JD02999
https://doi.org/10.1029/2022GL098174

V Y ond N | . .
AIV Journal of Advances in Modeling Earth Systems 10.1029/2022MS003245

ADVANCING EARTH
AND SPACE SCIENCE

Freie Universitit Berlin. (2007). The quasi-biennial-oscillation (QBO) data serie. The Quasi-Biennial-Oscillation (QBO) Data Serie. Retrieved
from https://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html

Garcia, R. R., & Richter, J. H. (2019). On the momentum budget of the Quasi-biennial oscillation in the whole atmosphere community climate
model. Journal of the Atmospheric Sciences, 76(1), 69-87. https://doi.org/10.1175/JAS-D-18-0088.1

Garfinkel, C. I, Gerber, E. P., Shamir, O., Rao, J., Jucker, M., White, 1., & Paldor, N. (2022). A QBO cookbook: Sensitivity of the quasi-biennial
oscillation to resolution, resolved waves, and parameterized gravity waves. Journal of Advances in Modeling Earth Systems, 14(3),
€2021MS002568. https://doi.org/10.1029/2021MS002568

Garfinkel, C. I., & Hartmann, D. L. (2011). The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models.
Part I: Simplified dry GCMS. Journal of the Atmospheric Sciences, 68(6), 1273-1289. https://doi.org/10.1175/2011JAS3665.1

Garfinkel, C. I., White, I., Gerber, E. P., Jucker, M., & Erez, M. (2020). The building Blocks of northern hemisphere wintertime stationary waves.
Journal of Climate, 33(13), 5611-5633. https://doi.org/10.1175/JCLI-D-19-0181.1

Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog, A., et al. (2013). A comparison between gravity wave momentum
fluxes in observations and climate models. Journal of Climate, 26(17), 6383—6405. https://doi.org/10.1175/JCLI-D-12-00545.1

Geyer, C. (2011). Introduction to Markov chain Monte Carlo. In S. Brooks, A. Gelman, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov
chain Monte Carlo (Vol. 20116022). Chapman and Hall/CRC. https://doi.org/10.1201/b10905

Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the
MAECHAMS5 model. Journal of Climate, 19(16), 3882-3901. https://doi.org/10.1175/JCLI3830.1

Gramacy, R. B. (2020). Surrogates: Gaussian process modeling, design and optimization for the applied sciences. Chapman Hall/CRC.

Gray, L. J. (2010). Stratospheric equatorial dynamics. In The stratosphere: Dynamics, transport, and chemistry (pp. 93—-107). American Geophys-
ical Union (AGU). https://doi.org/10.1029/2009gm000868

Grimsdell, A. W., Alexander, M. J., May, P. T., & Hoffmann, L. (2010). Model study of waves generated by convection with direct validation via
satellite. Journal of the Atmospheric Sciences, 67(5), 1617-1631. https://doi.org/10.1175/2009JAS3197.1

Gupta, A., Birner, T., Dornbrack, A., & Polichtchouk, 1. (2021). Importance of gravity wave forcing for springtime southern polar vortex break-
down as revealed by ERAS. Geophysical Research Letters, 48(10), €2021GL092762. https://doi.org/10.1029/2021GL092762

Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., & Cocquerez, P. (2008). Estimation of gravity wave momentum flux and phase speeds from
quasi-Lagrangian stratospheric balloon flights. Part II: Results from the vorcore campaign in Antarctica. Journal of the Atmospheric Sciences,
65(10), 3056-3070. https://doi.org/10.1175/2008JAS2710.1

Holt, L. A, Lott, F., Garcia, R. R., Kiladis, G. N., Cheng, Y.-M., Anstey, J. A., et al. (2020). An evaluation of tropical waves and wave forcing of
the QBO in the QBOi models. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.3827

Holton, J. R., & Lindzen, R. S. (1972). An updated theory for the quasi-biennial cycle of the tropical stratosphere. Journal of the Atmospheric
Sciences, 29(6), 1076-1080. https://doi.org/10.1175/1520-0469(1972)029<1076:autftq>2.0.co;2

Holton, J. R., & Tan, H.-C. (1980). The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. Journal of the
Atmospheric Sciences, 37(10), 2200-2208. https://doi.org/10.1175/1520-0469(1980)037<2200:tioteq>2.0.co;2

Howland, M. F.,, Dunbar, O. R. A., & Schneider, T. (2022). Parameter uncertainty quantification in an idealized GCM with a seasonal cycle.
Journal of Advances in Modeling Earth Systems, 14(3), €2021MS002735. https://doi.org/10.1029/2021MS002735

Iglesias, M. A. (2016). A regularizing iterative ensemble Kalman method for PDE-constrained inverse problems. Inverse Problems, 32(2),
025002. https://doi.org/10.1088/0266-5611/32/2/025002

Iglesias, M. A., Law, K. J. H., & Stuart, A. M. (2013). Ensemble Kalman methods for inverse problems. Inverse Problems, 29(4), 045001. https://
doi.org/10.1088/0266-5611/29/4/045001

Jewtoukoff, V., Hertzog, A., Plougonven, R., De la Camara, A., & Lott, F. (2015). Comparison of gravity waves in the southern hemisphere
derived from balloon observations and the ECMWF analyses. Journal of the Atmospheric Sciences, 72(9), 3449-3468. https://doi.org/10.1175/
JAS-D-14-0324.1

Jucker, M., & Gerber, E. P. (2017). Untangling the annual cycle of the tropical tropopause layer with an idealized moist model. Journal of Climate,
30(18), 7339-7358. https://doi.org/10.1175/JCLI-D-17-0127.1

Kalnay, E. (2002). Atmospheric modeling, data assimilation and predictability. Higher Education from Cambridge University Press; Cambridge
University Press. https://doi.org/10.1017/CB0O9780511802270

Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B, 63(3),
425-464. https://doi.org/10.1111/1467-9868.00294

Kodama, C., Ohno, T., Seiki, T., Yashiro, H., Noda, A. T., Nakano, M., et al. (2021). The Nonhydrostatic ICosahedral Atmospheric Model for
CMIP6 HighResMIP simulations (NICAM16-S): Experimental design, model description, and impacts of model updates. Geoscientific Model
Development, 14(2), 795-820. https://doi.org/10.5194/gmd-14-795-2021

Kruschke, J. K. (2015). Chapter 7—Markov chain Monte Carlo. In J. K. Kruschke (Ed.), Doing Bayesian data analysis (2nd ed., pp. 143-191).
Academic Press. https://doi.org/10.1016/B978-0-12-405888-0.00007-6

Lee, L. A., Carslaw, K. S., Pringle, K. J., & Mann, G. W. (2012). Mapping the uncertainty in global CCN using emulation. Atmospheric Chemistry
and Physics, 12(20), 9739-9751. https://doi.org/10.5194/acp-12-9739-2012

Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research, 86(C10), 9707.
https://doi.org/10.1029/JC086iC10p09707

Lindzen, R. S., & Holton, J. R. (1968). A theory of the quasi-biennial oscillation. Journal of the Atmospheric Sciences, 25(6), 1095-1107. https://
doi.org/10.1175/1520-0469(1968)025<1095:atotqb>2.0.co;2

Loeppky, J. L., Sacks, J., & Welch, W. J. (2009). Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51(4),
366-376. https://doi.org/10.1198/TECH.2009.08040

Matsuoka, D., Watanabe, S., Sato, K., Kawazoe, S., Yu, W., & Easterbrook, S. (2020). Application of deep learning to estimate atmospheric grav-
ity wave parameters in reanalysis data sets. Geophysical Research Letters, 47(19), e2020GL089436. https://doi.org/10.1029/2020GL089436

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114

Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., & Eichmann, A. (2012). The GEOS-5 atmospheric general circulation model:
Mean climate and development from MERRA to fortuna. (GSFC.TM.01153.2012). Retrieved from https://ntrs.nasa.gov/citations/20120011790

Murphy, J. M., Booth, B. B. B., Boulton, C. A., Clark, R. T., Harris, G. R., Lowe, J. A., & Sexton, D. M. H. (2014). Transient climate changes
in a perturbed parameter ensemble of emissions-driven Earth system model simulations. Climate Dynamics, 43(9), 2855-2885. https://doi.
org/10.1007/s00382-014-2097-5

Ott, E., Hunt, B. R., Szunyogh, I., Zimin, A. V., Kostelich, E. J., Corazza, M., et al. (2004). A local ensemble Kalman filter for atmospheric data
assimilation. Tellus A: Dynamic Meteorology and Oceanography, 56, 415-428. https://doi.org/10.3402/tellusa.v56i5.14462

MANSFIELD AND SHESHADRI

18 of 19

d ‘11 ‘TTOT ‘99vTTH61

:sdny woiy papeoy;

9SULOIT suowntuio)) aAneal) ajqestjdde ayy £q pautaA03 a1e sa[O1R Y (asn JO SA[NI 10] AIRIqIT AUIUQ AS[IA\ UO (SUOHIPUOI-PUB-SULIA)/WOD" AA[IM ATRIQI[UI[UO//:sdNY) SUOnIpuo) pue swIa ] oy 23S [7z07/11/+1] uo A1eiqry auruQ A[ip ‘ANsIoatun piojuels £q sHz€00SINTZ0T/6201 01/10p/Wod Aa[Im”


https://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
https://doi.org/10.1175/JAS-D-18-0088.1
https://doi.org/10.1029/2021MS002568
https://doi.org/10.1175/2011JAS3665.1
https://doi.org/10.1175/JCLI-D-19-0181.1
https://doi.org/10.1175/JCLI-D-12-00545.1
https://doi.org/10.1201/b10905
https://doi.org/10.1175/JCLI3830.1
https://doi.org/10.1029/2009gm000868
https://doi.org/10.1175/2009JAS3197.1
https://doi.org/10.1029/2021GL092762
https://doi.org/10.1175/2008JAS2710.1
https://doi.org/10.1002/qj.3827
https://doi.org/10.1175/1520-0469(1972)029%3C1076:autftq%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1980)037%3C2200:tioteq%3E2.0.co;2
https://doi.org/10.1029/2021MS002735
https://doi.org/10.1088/0266-5611/32/2/025002
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1175/JAS-D-14-0324.1
https://doi.org/10.1175/JAS-D-14-0324.1
https://doi.org/10.1175/JCLI-D-17-0127.1
https://doi.org/10.1017/CBO9780511802270
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.5194/gmd-14-795-2021
https://doi.org/10.1016/B978-0-12-405888-0.00007-6
https://doi.org/10.5194/acp-12-9739-2012
https://doi.org/10.1029/JC086iC10p09707
https://doi.org/10.1175/1520-0469(1968)025%3C1095:atotqb%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1968)025%3C1095:atotqb%3E2.0.co;2
https://doi.org/10.1198/TECH.2009.08040
https://doi.org/10.1029/2020GL089436
https://doi.org/10.1063/1.1699114
https://ntrs.nasa.gov/citations/20120011790
https://doi.org/10.1007/s00382-014-2097-5
https://doi.org/10.1007/s00382-014-2097-5
https://doi.org/10.3402/tellusa.v56i5.14462

V Y ond N | . .
AIV Journal of Advances in Modeling Earth Systems 10.1029/2022MS003245

ADVANCING EARTH
AND SPACE SCIENCE

Palmer, T. N., Shutts, G. J., & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather predic-
tion models through an orographic gravity wave drag parametrization. Quarterly Journal of the Royal Meteorological Society, 112, 1001-1039.
https://doi.org/10.1002/qj.49711247406

Pathak, R., Dasari, H. P., El-Mohtar, S., Subramanian, A. C., Sahany, S., Mishra, S. K., et al. (2021). Uncertainty quantification and Bayesian
inference of cloud parameterization in the NCAR single column community atmosphere model (SCAMO). Frontiers in Climate, 3. https://doi.
org/10.3389/fclim.2021.670740. Retrieved from https://www.frontiersin.org/article/10.3389/fclim.2021.670740

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. The Jour-
nal of Machine Learning Research, 12, 2825-2830.

Plougonven, R., De la Camara, A., Hertzog, A., & Lott, F. (2020). How does knowledge of atmospheric gravity waves guide their parameteriza-
tions? Quarterly Journal of the Royal Meteorological Society, 146(728), 1529-1543. https://doi.org/10.1002/qj.3732

Plumb, R. A. (1977). The interaction of two internal waves with the mean flow: Implications for the theory of the Quasi-Biennial Oscillation.
Journal of the Atmospheric Sciences, 34(12), 1847-1858. https://doi.org/10.1175/1520-0469(1977)034<1847:tiotiw>2.0.co;2

Priestley, M. D. K., Ackerley, D., Catto, J. L., Hodges, K. I., McDonald, R. E., & Lee, R. W. (2020). An overview of the extratropical storm tracks
in CMIP6 historical simulations. Journal of Climate, 33(15), 6315-6343. https://doi.org/10.1175/JCLI-D-19-0928.1

Rao, J., Garfinkel, C. 1., & White, I. P. (2020). How does the Quasi-Biennial Oscillation affect the boreal winter tropospheric circulation in
CMIP5/6 Models? Journal of Climate, 33(20), 8975-8996. https://doi.org/10.1175/JCLI-D-20-0024.1

Rasmussen, C. E., & Williams, C. K. L. (2006). Gaussian processes for machine learning. MIT Press.

Richter, I., & Tokinaga, H. (2020). An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote
impacts. Climate Dynamics, 55(9), 2579-2601. https://doi.org/10.1007/s00382-020-05409-w

Richter, J. H., Anstey, J. A., Butchart, N., Kawatani, Y., Meehl, G. A., Osprey, S., & Simpson, I. R. (2020). Progress in simulating the quasi-biennial
oscillation in CMIP models. Journal of Geophysical Research: Atmospheres, 125(8), €2019JD032362. https://doi.org/10.1029/2019JD032362

Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods. Springer. https://doi.org/10.1007/978-1-4757-4145-2

Roberts, G. O., & Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probability Surveys, 1, 20-71. https://doi.
org/10.1214/154957804100000024

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design
and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259-270. https://doi.org/10.1016/j.cpc.2009.09.018

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al. (2007). Global sensitivity analysis. The primer. John Wiley &
Sons, Ltd. https://doi.org/10.1002/9780470725184

Scaife, A. A., Butchart, N., Warner, C. D., & Swinbank, R. (2002). Impact of a spectral gravity wave parameterization on the stratosphere in
the Met office unified model. Journal of the Atmospheric Sciences, 59(9), 1473-1489. https://doi.org/10.1175/1520-0469(2002)059<147
3:ioasgw>2.0.c0;2

Schenzinger, V., Osprey, S., Gray, L., & Butchart, N. (2017). Defining metrics of the Quasi-Biennial Oscillation in global climate models. Geosci-
entific Model Development, 10(6), 2157-2168. https://doi.org/10.5194/gmd-10-2157-2017

Schirber, S., Manzini, E., Krismer, T., & Giorgetta, M. (2015). The quasi-biennial oscillation in a warmer climate: Sensitivity to different gravity
wave parameterizations. Climate Dynamics, 45(3), 825-836. https://doi.org/10.1007/s00382-014-2314-2

Scinocca, J. F. (2003). An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. Journal of the
Atmospheric Sciences, 60(4), 667-682. https://doi.org/10.1175/1520-0469(2003)060<0667:aasngw>2.0.co;2

Siskind, D., Eckermann, S., McCormack, J., Coy, L., Hoppel, K., & Baker, N. (2010). Case studies of the mesospheric response to recent minor,
major, and extended stratospheric warmings. Journal of Geophysical Research, 115, 0-3. https://doi.org/10.1029/2010JD014114

Siskind, D., Eckermann, S. D., Coy, L., McCormack, J. P., & Randall, C. E. (2007). On recent interannual variability of the Arctic winter
mesosphere: Implications for tracer descent: Mesospheric interannual variability. Geophysical Research Letters, 34(9). https://doi.
0rg/10.1029/2007GL029293

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers
in Simulation, 55(1), 271-280. https://doi.org/10.1016/S0378-4754(00)00270-6

Souza, A. N., Wagner, G. L., Ramadhan, A., Allen, B., Churavy, V., Schloss, J., et al. (2020). Uncertainty quantification of ocean parame-
terizations: Application to the K-profile-parameterization for penetrative convection. Journal of Advances in Modeling Earth Systems, 12,
€2020MS002108. https://doi.org/10.1029/2020MS002108

Strahan, S. E., Oman, L. D., Douglass, A. R., & Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation.
Geophysical Research Letters, 42(10), 4216-4223. https://doi.org/10.1002/2015GL063759

Tebaldi, C., & Knutti, R. (2018). Evaluating the accuracy of climate change pattern emulation for low warming targets. Environmental Research
Letters, 13(5), 055006. https://doi.org/10.1088/1748-9326/aabef2

Wan, H., Rasch, P. J., Zhang, K., Qian, Y., Yan, H., & Zhao, C. (2014). Short ensembles: An efficient method for discerning climate-relevant
sensitivities in atmospheric general circulation models. Geoscientific Model Development, 7(5), 1961-1977. https://doi.org/10.5194/
gmd-7-1961-2014

Warner, C. D., & Mclntyre, M. E. (1999). Toward an ultra-simple spectral gravity wave parameterization for general circulation models. Earth
Planets and Space, 51(7), 475-484. https://doi.org/10.1186/BF03353209

Watson-Parris, D. (2021). Machine learning for weather and climate are worlds apart. Philosophical Transactions. Series A, Mathematical, Phys-
ical, and Engineering Sciences, 379(2194), 20200098. https://doi.org/10.1098/rsta.2020.0098

Williamson, D., & Blaker, A. T. (2014). Evolving Bayesian emulators for structured chaotic time series, with application to large climate models.
SIAM/ASA Journal on Uncertainty Quantification, 2(1), 1-28. https://doi.org/10.1137/120900915

Williamson, D., Blaker, A. T., & Sinha, B. (2017). Tuning without over-tuning: Parametric uncertainty quantification for the NEMO ocean model.
Geoscientific Model Development, 10, 1789-1816. https://doi.org/10.5194/gmd-10-1789-2017

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., & Yamazaki, K. (2013). History matching for exploring and
reducing climate model parameter space using observations and a large perturbed physics ensemble. Climate Dynamics, 41(7), 1703-1729.
https://doi.org/10.1007/s00382-013-1896-4

Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., & Gille, J. C. (2010). High resolution dynamics Limb sounder measurements of gravity
wave activity in the 2006 Arctic stratosphere. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009ID011858

Zhao, M., Golaz, J.-C., Held, 1. M., Guo, H., Balaji, V., Benson, R., et al. (2018). The GFDL global atmosphere and land model AM4.0/LM4.0:
2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10(3), 735-769. https://doi.
org/10.1002/2017MS001209

MANSFIELD AND SHESHADRI

19 of 19

d ‘11 ‘TTOT ‘99vTTH61

:sdny woiy papeoy;

9SULOIT suowntuio)) aAneal) ajqestjdde ayy £q pautaA03 a1e sa[O1R Y (asn JO SA[NI 10] AIRIqIT AUIUQ AS[IA\ UO (SUOHIPUOI-PUB-SULIA)/WOD" AA[IM ATRIQI[UI[UO//:sdNY) SUOnIpuo) pue swIa ] oy 23S [7z07/11/+1] uo A1eiqry auruQ A[ip ‘ANsIoatun piojuels £q sHz€00SINTZ0T/6201 01/10p/Wod Aa[Im”


https://doi.org/10.1002/qj.49711247406
https://doi.org/10.3389/fclim.2021.670740
https://doi.org/10.3389/fclim.2021.670740
https://www.frontiersin.org/article/10.3389/fclim.2021.670740
https://doi.org/10.1002/qj.3732
https://doi.org/10.1175/1520-0469(1977)034%3C1847:tiotiw%3E2.0.co;2
https://doi.org/10.1175/JCLI-D-19-0928.1
https://doi.org/10.1175/JCLI-D-20-0024.1
https://doi.org/10.1007/s00382-020-05409-w
https://doi.org/10.1029/2019JD032362
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1214/154957804100000024
https://doi.org/10.1214/154957804100000024
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1002/9780470725184
https://doi.org/10.1175/1520-0469(2002)059%3C1473:ioasgw%3E2.0.co;2
https://doi.org/10.1175/1520-0469(2002)059%3C1473:ioasgw%3E2.0.co;2
https://doi.org/10.5194/gmd-10-2157-2017
https://doi.org/10.1007/s00382-014-2314-2
https://doi.org/10.1175/1520-0469(2003)060%3C0667:aasngw%3E2.0.co;2
https://doi.org/10.1029/2010JD014114
https://doi.org/10.1029/2007GL029293
https://doi.org/10.1029/2007GL029293
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1029/2020MS002108
https://doi.org/10.1002/2015GL063759
https://doi.org/10.1088/1748-9326/aabef2
https://doi.org/10.5194/gmd-7-1961-2014
https://doi.org/10.5194/gmd-7-1961-2014
https://doi.org/10.1186/BF03353209
https://doi.org/10.1098/rsta.2020.0098
https://doi.org/10.1137/120900915
https://doi.org/10.5194/gmd-10-1789-2017
https://doi.org/10.1007/s00382-013-1896-4
https://doi.org/10.1029/2009JD011858
https://doi.org/10.1002/2017MS001209
https://doi.org/10.1002/2017MS001209

	Calibration and Uncertainty Quantification of a Gravity Wave Parameterization: A Case Study of the Quasi-Biennial Oscillation in an Intermediate Complexity Climate Model
	Abstract
	Plain Language Summary
	1. Introduction
	1.1. Atmospheric Gravity Waves
	1.2. Gravity Wave Parameterizations and Associated Uncertainties
	1.3. 
          Quasi-Biennial Oscillation

	2. Model Setup
	2.1. Model
	2.2. Gravity Wave Parameterization
	2.2.1. Gravity Wave Source
	2.2.2. Gravity Wave Breaking
	2.2.3. Latitude Dependence of Source Terms


	3. Calibrate, Emulate, and Sample Method
	3.1. Calibration
	3.1.1. Parameters and Priors

	3.2. Emulation
	3.2.1. Gaussian Processes
	3.2.2. Gaussian Process Emulator of QBO Properties Given Gravity Wave Parameters

	3.3. Sample

	4. Results
	4.1. Calibrate, Emulate and Sample in the Perfect Model Setting
	4.2. Global Sensitivity Analysis
	4.3. Uncertainty Quantification in New Scenario

	5. Discussion
	Conflict of Interest
	Data Availability Statement
	References


