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Abstract: Improving the system performance of a traffic network by dynamically controlling the routes 

of connected and automated vehicles (CAVs) is an appealing profit that CAVs can bring to our society. 

Considering that there may be a long way to achieve 100% CAV penetration, we discuss in this paper the 

mixed traffic flow of human driven vehicles (HDVs) and CAVs on a transportation network. We first 

propose a double queue (DQ) based mixed traffic flow model to describe the link dynamics as well as the 

flow transitions at junctions. Based on this mixed flow model, we develop a dynamic bi-level framework 

to capture the behavior and interaction of HDVs and CAVs. This results in an optimal control problem 

with equilibrium constraints (OCPEC), where HDVs’ route choice behavior is modeled at the lower level 

by the instantaneous dynamic user equilibrium (IDUE) principle and the CAVs’ route choice is modelled 

by the dynamic system optimal (DSO) principle at the upper level. We show how to discretize the 

OCPEC to a mathematical programming with equilibrium constraints (MPEC) and discuss its properties 

and solution techniques. The non-convex and non-smooth properties of the MPEC make it hard to be 

efficiently solved. To overcome this disadvantage, we develop a decomposition based heuristic model 

predictive control (HMPC) method by decomposing the original MPEC problem into two separate 

problems: one IDUE problem for HDVs and one DSO problem for CAVs. The experiment results show 

that, compared with the scenario that all vehicles are HDVs, the proposed methods can significantly 

improve the network performance under the mixed traffic flow of HDVs and CAVs.  

Keywords: Human driven vehicles (HDVs); Connected and autonomous vehicles (CAVs); Mixed traffic 

flow; Dynamic user equilibrium (DUE); Instantaneous dynamic user equilibrium (DUE); Dynamic 

system optimal (DSO); dynamic bi-level model; Model predictive control (MPC) 

1. INTRODUCTION 

In the last decade or so, connected and automated vehicles (CAVs) have been one of the major disruptive 

mobility technologies in the transportation landscape. Recent developments on CAVs indicate that, despite 

tremendous advances that have been achieved on CAVs so far, it will take a relatively long time to reach 

full automation (i.e., level 5 as defined by SAE international (2016)) as well as a high market penetration 

of CAVs. Thus, it is expected that in the near future, we will see both human driven vehicles (HDVs) and 

CAVs on the roads. CAVs moving along with HDVs in the traffic stream will certainly bring opportunities 

to improve the traffic flow (e.g., a single CAV may be used to dampen traffic shockwaves; see Cui et al. 

(2017)). At the same time, it is important to develop methodologies to model the behavior and interactions 

of HDVs and CAVs, and to understand the overall network-wide effect of this mixed traffic flow. Human 

drivers are expected to minimize their own travel costs with little or no consideration to improve system 

level performance of the network. Their behavior is often assumed to follow the dynamic user equilibrium 

(DUE, see Peeta and Ziliaskopoulos (2001); Ran and Boyce (1996)) principle on a transportation network. 

For CAVs, they may be modeled in the same way as HDVs to follow DUE. However, thanks to their added 

communication and automation features, CAVs may be leveraged to implement certain strategies (such as 

routing and dispatching by transportation system mangers or ride-sourcing companies) to improve the 



system performance of the entire network (e.g., the total system travel time and/or total fuel consumption). 

Such behavior can often be modeled by the dynamic system optimal (DSO) principle (Peeta and 

Ziliaskopoulos, 2001; Ran and Boyce, 1996). In this paper, we aim to explore such a system level control 

mechanism of CAVs to help improve the performance of a transportation network which consists of both 

CAVs and HDVs.  

 

There are two key challenges to achieve this goal: First, how to properly model the impact of CAVs on the 

mixed traffic flow of HDVs and CAVs; and second, having the model of mixed traffic flow, how to model 

the behavior and interaction of HDVs and CAVs on the network level, based on which to improve the 

system performance by leveraging the automation and communication capabilities of CAVs. A detailed 

literature review of these two topics is presented in Section 2 . The first challenge has been studied recently 

in the literature, e.g., investigations on how traffic flow characteristics (e.g., capacity) are connected with 

the penetration of CAVs (Levin and Boyles, 2016; Liu et al., 2018). On the other hand, research on the 

second challenge has just started. Current studies have focused on static traffic assignment (Bagolee et el., 

2016; Bahrami and Roorda, 2020), assumed 100% CAV penetration (Levin, 2017), or focused on local 

optimization, e.g., at traffic intersections (Levin and Boyles, 2016; Patel et al., 2016). Improving network 

level performance under mixed traffic flow by dynamically controlling the routes of CAVs remains an 

untapped area. This paper aims to fill this gap by designing a network level framework to model the 

dynamic interaction between HDVs and CAVs, based on which to develop a dynamic CAVs route 

controller under mixed traffic flow to improve the overall network performance.  

 

We design a double queue (DQ) based mixed flow model to describe the dynamics of HDVs and CAVs. 

This mixed flow model explicitly considers the impact of CAVs to the characteristics of traffic flow (such 

as the flow capacity). The First-In-First-Out (FIFO) condition of the mixed-flow DQ model is also 

investigated. We then model the HDVs’ behavior by the instantaneous dynamic user equilibrium (IDUE, 

see Ban et al. (2012a)) principle and the CAVs’ behavior by DSO. Meanwhile, we model the interaction 

between HDVs and CAVs at the network level as a leader-follower game, in which CAVs are the leader 

and HDVs are the follower. Such a framework mathematically leads to a dynamic bi-level formulation. The 

whole problem is then formulated as an optimal control problem with equilibrium constraints (OCPEC), 

where CAVs’ routes are the decision variable, system performance is the objective, mixed traffic flow 

dynamics are the constraints, and HDVs’ route choice behavior (i.e., IDUE) is the lower-level problem. 

The OCPEC is hard to solve due to the non-convex and non-smooth characteristics introduced by the HDVs’ 

behavior. We discretize the OCPEC to a mathematical program with equilibrium constraints (MPEC) that 

may be solved by certain relaxation methods. However, such a relaxation-based solution method cannot be 

applied to even small-size networks with long time horizons. We then propose a decomposition based 

heuristic model predictive control (HMPC) method to address this problem. HMPC decomposes the 

original OCPEC problem to two sub-problems that can be solved relatively easily.  

 

The key contributions of this paper are that we: 

1) Propose a DQ based mixed traffic flow model to describe the traffic dynamics of the mixed 

HDV/CAV traffic flow. 

2) Develop a dynamic bi-level framework to capture the behavior and interactions of HDVs and 

CAVs at the network level, based on which to formulate an OCPEC to find the system 

performance oriented route for CAVs under the mixed traffic flow to improve the network 

performance. 

3) Develop a decomposition based HMPC method to efficiently solve the proposed OCPEC. 

4) Demonstrated the challenges of modeling mixed HDV/CAV flow on dynamic transportation 

networks, including how to model the capacity of the mixed flow, the delay terms in the model 

(i.e., the shockwave speed), and the FIFO conditions. 

 



This paper is organized as follows. In Section 2, we provide a detailed review on the two challenges 

mentioned earlier. Section 3 presents the proposed methodology, starting with the discussion of a general 

modeling framework for DUE in Section 3.1 and the key assumptions in Section 3.2. In Section 3.3, we 

propose our mixed traffic dynamic model, including the basic DQ model and the FIFO condition (Section 

3.3.1), the maximum sending and receiving flows (Section 3.3.2), and the nodal model (Section 3.3.3). 

We illustrate how to model the HDVs’ behavior (Section 3.4) and the CAVs’ behavior and formulate this 

problem into a dynamic bi-level problem (i.e., the OCPEC) in Section 3.5. We show how to discretize the 

OCPEC and discuss its properties in Section 4.1. We then introduce the HMPC method in Section 4.2. In 

Section 5, we show the numerical experiments on a small network with short time duration and discuss in 

detail how the proposed method can improve system performance (Section 5.1). We also test the 

proposed method on the small network with a longer time horizon, and on the Sioux Falls network 

(Section 5.2) to demonstrate the effectiveness of our methods. We conclude this paper in Section 6. 

2. LITERATURE REVIEW 

It is anticipated that the introduction of CAVs into transportation networks will impact the traffic flow 

dynamics, i.e., the parameters of traffic flow (e.g., capacity, jam density, free-flow speed, and shockwave 

propagation speed, etc.) and the deployment of CAVs (e.g., the market penetration and level of 

automation) are potentially correlated. Existing studies have shown positive impacts associated with the 

introduction of CAVs into the traffic flow. Such impacts have been found nonlinear from most of the 

studies. Most studies are either analytical or simulation based since CAVs have not been widely deployed 

in the real-world implementation. In this section, we discuss the literature on the impact of CAVs on the 

mixed traffic flow and the network modeling techniques to assess the system impact of CAVs on a 

transportation network. 

2.1. Modeling the Impact of CAVs on the Mixed Traffic Flow of HDVs and CAVs 

The study on the impact of CAVs on traffic flow initially rooted from the adaptive cruise control (ACC) 

and cooperative adaptive cruise control (CACC) modeling. The feature of desired speed and spacing in 

CACC and ACC motivated researchers to model CAVs in a similar manner. The majority of the research 

(Liu et al., 2018; Li et al., 2020; Zhou et al., 2020; Zheng et al., 2018, 2020) modeled CAVs at the 

microscopic level, including the intelligent driver model (IDM, Treiber et al., 2000), ACC (Milanés and 

Shladover, 2014), and so on. These studies showed that one of the most important impact of CAVs on the 

mixed traffic flow is that the capacity can be increased due to the introduction of CAVs. The capacity 

improvements are highly dependent on the market penetration of CAVs while the trend is nonlinear, i.e., 

moving from 10% to 30% CAV market share may not have the same impact as the transition from 60% to 

80% market share (Li et al. 2020; Liu et al., 2018; Ye and Yamamoto, 2018). Ye and Yamamoto (2018) 

developed a two-state safe-speed model and a two-lane cellular automaton model to describe the mixed 

flow of HDVs and CAVs, and numerically investigated the impact of CAVs on the road capacity under 

different market penetration. The simulation results on a two-lane road showed that the road capacity 

increased almost linearly up to a CAVs penetration rate of 30%. When the penetration rate exceeded 30%, 

the capacity would still increase, but the growth rate was significantly affected by the CAVs’ capability 

(i.e., the desired net time gap of ACC). Liu et al. (2018) explored the impact of CAVs equipped with 

CACC on multi-lane freeway traffic. They used a six-mode driver model, which combined the Newell 

(2002) model, Gipps (1981) model and IDM, to mimic the behavior of HDVs, and designed a rule-based 

CACC controller to model the behavior of CAVs. They also integrated lane-changing rules to make the 

CACC’s behavior more realistic at on/off ramp areas. The simulation on a 4-lane real-world freeway 

showed that, for both on-ramp and off-ramp areas, the bottleneck capacity increased quadratically as the 

CAV penetration increases from 0 to 100%. Li et al. (2020) investigated the impact of CAVs on the 

capacity of a two-lane road under four different Right-of-Way (RoW) reallocation strategies (i.e., two 

mixed lane; one mixed lane and one CAV dedicated lane; one mixed lane and one HDV dedicated lane; 

one CAV dedicated lane and one HDV dedicated lane). They used the Krauss model (Krauss, 1998) to 



describe the HDVs’ behavior and used the ACC system to model the bahavior of CAVs. The simulation 

results showed that the road capacity can be significantly improved with appropriate RoW reallocation 

strategies at low or medium CAV penetration rates, compared with the do-nothing RoW strategy (i.e., two 

mixed-flow lanes). These studies revealed that, high level penetration of CAVs, high level and high 

capability automation, and exogenous technological assistance play important roles in improving the 

capacity of the mixed traffic flow of HDVs and CAVs. Apart from the impact on road capacity, CAVs 

may also influence the stability of the mixed traffic flow; see Wang et al. (2013), Zheng et al. (2020), 

Zhou et al (2020) for further discussions. 

 

While most mixed traffic flow models were developed in simulation, only a few studies applied link-level 

methods to study the impact of CAVs on traffic flow dynamics. Levin and Boyles (2016) proposed a 

multi-class cell transmission model (CTM, Daganzo, 1992) for the mixed traffic of HDVs and CAVs. 

They derived the model by investigating the microscopic behavior of traffic flow (i.e., a collision 

avoidance car following model) assuming different vehicle reaction times of HDVs and CAVs, which 

leads to an explicit mixed HDV/CAV flow model. The model revealed that the capacity of a link could be 

formulated as a reciprocal function of the penetration of CAVs. Similar capacity model was also proposed 

by Lazar et al. (2017).  

 

In summary, as reviewed in this section, although there are some commonly agreed effects of introducing 

CAVs to mixed traffic flow on traffic dynamics, many remains unclear, especially there is not a 

commonly agreed modeling framework to capture such effects in traffic dynamics. In this paper, we 

consider the impact of CAVs on the link capacity from the macroscopic level. Based on the few current 

studies on link level mixed traffic flow modeling (Bahrami and Roorda, 2020; Lazar et al., 2017; Levin, 

2017; Levin and Boyles, 2016; Patel et al., 2016), we adopt the mixed flow model in Levin and Boyles 

(2016) to model the flow capacity of a link as a reciprocal function of the CAVs’ penetration; see Section 

3.2 for more details. 

2.2. Improving Network Performance under the Mixed Traffic Flow of HDVs and CAVs 

Having the model of mixed traffic flow, how to improve the system performance by leveraging the 

automation and communication features of CAVs remains another challenge. For examples, Bagolee et el. 

(2016) tested mixed CAVs and HDVs using static traffic assignment. They generated different CAV 

penetration rates from a fixed number of vehicle fleet, then modeled HDVs to follow static user 

equilibrium and CAVs to follow static system optimal. Next, they integrated these two optimization 

problems as a mixed user equilibrium and system optimal problem by directly combining the objectives 

and constraints, which led to a nonlinear program (NLP). Experiments on a five-node network showed 

that as the CAV penetration increased, the total travel time of the whole network decreased. However, in 

their study, no interaction between CAVs and HDVs was modeled. Bahrami and Roorda (2020) evaluated 

different policies (i.e., exclusive CAV and HDV links) with the UE principle. They modeled the capacity 

of a link as a quadratic function of the CAVs penetration and designed a non-linear complementarity 

problem (NCP) to formulate the equilibrium conditions. Experiment results showed that simple policies 

such as CAV exclusive links can improve network performance under the mixed traffic flow. However, 

only static UE condition was applied in this study without considering traffic dynamics. 

 

Based on the multi-class CTM, Levin and Boyles (2016) designed an intelligent intersection control 

algorithm under the mixed traffic flow. They modified the conflict regions model (Levin and Boyles, 

2015) for HDVs and used a tile-based reservation model (Dresner and Stone, 2004) for CAVs. Combing 

the multi-class CTM and the intersection model, they studied the mixed traffic flow in a dynamic traffic 

assignment (DTA) framework. Numerical results showed that, under high CAVs penetration, the 

proposed intersection management method could improve the system performance compared with 

traditional traffic light control. Using the same multi-class CTM and the same reservation-based 

intersection control method in Levin and Boyles (2016), Patel et al. (2016) analyzed the effects of CAVs 



on congested arterial and freeway networks. The experiment results showed that the reduced headway of 

CAVs could significantly improve the capacity of freeway and arterial networks. Levin (2017) applied the 

link transmission model (LTM, Yperman, 2007) to model the shared autonomous vehicle (SAV) routing 

problem while considering congestion. They assumed that SAVs follow the system optimal principle to 

build a SAV DTA model. Experiment results showed that this method could reduce SAV travel times and 

determine the optimal fleet size to minimize congestion or maximize service. However, they assumed all 

personal vehicle trips were replaced by SAV trips, i.e., the SAV penetration is 100%.  

 

It can be summarized that several issues exist for current studies on developing network models to capture 

the behavior and interactions of HDVs and CAVs to improve the network performance under the mixed 

traffic flow. First, many of them focused on static traffic assignment (Bagolee et el., 2016; Bahrami and 

Roorda, 2020), which only reflected the steady pattern of the mixed traffic flow and did not consider the 

dynamic interaction between HDVs and CAVs. Second, studies that did consider dynamic traffic flow, 

however, usually either assumed 100% CAV penetration (Levin, 2017) or focused on local optimization 

(e.g., intelligent intersection control under mixed traffic flow, as studied in Levin and Boyles (2016) and 

Patel et al. (2016)), without controlling the network-level behavior (such as routing) of CAVs.  

3. METHODOLOGY 

In this section, we first present a general modeling framework, called the differential complementarity 

system (DCS), to model DUE of mixed traffic flow on dynamic transportation networks (Section 3.1). This 

also identifies a key challenge when modeling mixed traffic flow at the network level. Next, we discuss the 

key assumptions of our developed model (Section 3.2). Sections 3.3 and 3.4 introduce the mixed traffic 

flow model, and mathematically formulate the behaviors of the HDVs. Finally, we present the behavior of 

CAVs and propose a dynamic bi-level optimal control problem to find the routes for CAVs to improve the 

system performance (Section 3.5). Appendix A lists the notation used hereafter in this paper. 

 

3.1. DCS for Modeling DUE of Mixed HDV/CAV Flow on Dynamic Transportation Networks 

This subsection presents the DCS framework to model DUE, following the work in Ban et al. (2012a) and 

Ma et al. (2018). This also helps to illustrate the challenge of balancing the mathematical rigor and capturing 

realm when modeling mixed HDV/CAV flow on dynamic transportation networks. To start, we show below 

the DCS-based DUE model for a single vehicle class (e.g., HDVs) and a single destination: 

 

0 ≤ 𝑝𝑖𝑗(𝑡) ⊥ 𝜏𝑖𝑗(𝑡) + 𝜂𝑗(𝑡) + 𝜂𝑖(𝑡) ≥ 0                                      (1 − 1) 

0 ≤ 𝜂𝑖(𝑡) ⊥ ∑ 𝑝𝑖𝑗(𝑡)

𝑗:𝑗∈𝐾𝑖

− ∑ 𝑣𝑗𝑖(𝑡)

𝑗:𝑗∈𝐼𝑖

− 𝑑𝑖(𝑡) ≥ 0                  (1 − 2) 

𝑞̇𝑖,𝑗
𝑈 (𝑡) = 𝑝𝑖,𝑗(𝑡) − 𝑣𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

𝑤 )                                                      (1 − 3) 

𝑞̇𝑖,𝑗
𝐷 (𝑡) = 𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑣𝑖,𝑗(𝑡)                                                       (1 − 4) 

𝜏𝑖𝑗(𝑡) = 𝜏𝑖𝑗
0 +

𝑞𝑖𝑗
𝐷(𝑡)

𝐶𝑖̅𝑗(𝑡)
                                                                          (1 − 5) 

(1) 

Here ⊥  indicates “perpendicular”, i.e., 𝑥 ⊥ 𝑦 ⟺ 𝑥𝑇𝑦 = 0  for two vectors 𝑥  and 𝑦 . Equation (1-1) 

describes the instantaneous DUE (IDUE) route choice condition in which the inflow to link (𝑖, 𝑗) at time 𝑡, 

𝑝𝑖𝑗(𝑡), will be nonnegative (i.e., the flow may choose link (𝑖, 𝑗)) if link (𝑖, 𝑗) is on the minimum travel time 

path from 𝑖 to the destination (i.e.,  𝜏𝑖𝑗(𝑡) + 𝜂𝑗(𝑡) − 𝜂𝑖(𝑡) = 0), with 𝜏𝑖𝑗(𝑡) denoting the link travel time 

and 𝜂𝑖(𝑡) the minimum travel time from node 𝑖 to the destination. Otherwise, 𝑝𝑖𝑗(𝑡) = 0, i.e., flow will not 

choose link (𝑖, 𝑗) if the link is not on the minimum travel time path (i.e.,  𝜏𝑖𝑗(𝑡) + 𝜂𝑗(𝑡) − 𝜂𝑖(𝑡) > 0). 



Equation (1-2) indicates flow conservation with 𝑣𝑗𝑖(𝑡) the exit flow rate from link (𝑗, 𝑖) at time 𝑡, 𝑑𝑖(𝑡) the 

demand generated at node 𝑖 at time 𝑡, and 𝐼𝑖  and 𝐾𝑖  respectively the list of incoming nodes (with links 

directly to node 𝑖) and the list of outgoing nodes (i.e., with links directly from node 𝑖) of node 𝑖. Since 

𝜂𝑖(𝑡) > 0 always holds, the right-hand side of (1-2) always hold as an equation, representing the flow 

conservation at node 𝑖. Equations (1-3) and (1-4) define the double queue model with 𝑞𝑖𝑗
𝑈(𝑡) and 𝑞𝑖𝑗

𝐷(𝑡) 

denoting the upstream queue and downstream queue, respectively (see Section 3.3.1 and also Ma et al. 

(2014)). In these two equations, 𝜏𝑖,𝑗
0 = 𝑙𝑖𝑗/𝑣𝑖𝑗

𝑓
 and 𝜏𝑖,𝑗

𝑤 = 𝑙𝑖𝑗/𝑤𝑖𝑗
𝑤 denote respectively the free flow travel 

time and the shockwave travel time of link (𝑖, 𝑗). 𝑙𝑖𝑗 , 𝑣𝑖𝑗
𝑓

, 𝑤𝑖𝑗
𝑤 denote respectively the length, free flow speed, 

and shockwave speed of the link. 𝐶𝑖̅𝑗(𝑡) denotes the capacity of link (𝑖, 𝑗).  

 

In the above DUE model, we apply IDUE in the DUE route choice and the double queue model for traffic 

flow, which will be extended later in this paper to model the DUE with mixed traffic flow of HDVs and 

CAVs. Readers can refer to Section 3.3.1 and Section 3.4 for more details. The DUE model presented above 

should also include certain nodal model to describe how flow is transferred at a junction node (see e.g., the 

nodal model in Ma et al. (2018)). We defer the presentation of such a nodal model to Subsection 3.3.3 since 

it is irrelevant to the modeling challenge that we will discuss next. 

 

Equations (1-3) and (1-4) contain time delay terms, 𝜏𝑖,𝑗
0  and 𝜏𝑖,𝑗

𝑤 . These two terms are constant (for a given 

link) for the above DUE model, which applies to either 100% HDVs or 100% CAVs. As shown in the 

literature (Ban et al., 2012a; Ma et al., 2018), DCS with constant time delays can be mathematically 

analyzed for solution existence and convergence and can be readily solved by discretization and time-

stepping methods; more details on this can be seen in Ban et al. (2012a). However, as we will show in the 

next subsection, for mixed flow of HDVs and CAVs, the shockwave speed may change, leading to varied 

(and state-dependent) shockwave travel time. This will result in a DCS model with time-varying, state 

dependent delays that are of the type of functional differential equations (rather than ordinary differential 

equations as shown in Equations (1-3) and (1-4) above) and much harder to deal with mathematically for 

both analysis and solution. This is a key challenge when modeling the DUE problem of mixed HDVs/CAVs 

on dynamic transportation networks. It is about how to balance the mathematical rigor of the developed 

model (e.g., constant or time-varying delay terms) and the model’s ability to accurately capture the 

underlying physical property/process of the problem (e.g., constant or varying shockwave speed). 

Nevertheless, identifying and understanding such challenge can help provide useful insights on model 

development. It is often desirable to develop a model that can best balance these two aspects (i.e., 

mathematical rigor and realm), which often requires certain approximation schemes or creative modeling 

techniques under specific situations. We discuss more about this aspect when presenting the third 

assumption in the next subsection. 

 

We discuss two remarks to close this subsection. First, although we use the DCS framework here to 

illustrate DUE, delay terms in DUE exist in other modeling frameworks and are one of the key challenges 

of modeling dynamic transportation networks (Friesz et al., 2001; Friesz and Mookherjee, 2006; Friesz et 

al., 2010; Ma et al., 2015; Ma et al., 2018). Therefore, the above identified challenge is general to DUE 

modeling. Second, if one has to apply time-varying, state-dependent delay terms in DUE models (e.g., the 

free flow or shockwave travel times have to be considered as state-dependent), the proposed modeling 

framework in this paper may still apply (Ma et al., 2018), which also requires certain approximation 

techniques (Friesz and Mookherjee, 2006; Friesz et al., 2010; Ma et al., 2015) to generate and solve sub-

problems that are similar to (1) above. That is, the mixed HDV/CAV network model proposed in this paper, 

by assuming fixed shockwave speed, can be considered as the key sub-problem of the more general mixed 

flow network model. We omit detailed discussions on this general model in this paper to save space, which 

is summarized as one of the future research directions in Section 6. 

3.2. Assumptions 



We have four major assumptions: 1) Both HDVs and CAVs can access all information of the traffic network 

to make their route choices; 2) HDVs select their routes based on the IDUE principle and CAVs can be 

fully controlled and deployed to help improve the network performance; 3) The capacity of a link under 

mixed traffic flows is modeled following the work in Levin and Boyles (2016), i.e., the capacity is a 

dynamic reciprocal function of the penetration of CAVs; and 4) the shockwave speed of traffic on a link is 

assumed to be constant. Next, we will discuss these assumptions in detail. 

 

First, we assume that both HDVs and CAVs can access all information of the traffic network, e.g., the 

number of vehicles and queue length of each link. In reality, CAVs may differ from HDVs in many aspects 

such as the information perception, decision making, and driving operations. For examples, CAVs collect 

the information of the surrounding environment by onboard sensors and V2V techniques, while HDV 

drivers collect such information through human sensing; the trajectories and motions of CAVs can also be 

controlled by automation algorithms, while HDVs are controlled by humans; CAVs tend to travel in 

vehicular platoons while HDVs are more independently controlled and well mixed. Since this paper focuses 

on network level traffic flow control (i.e., the routing of CAVs), the differences between CAVs and HDVs 

in information perception and decision making are neglected. Instead, we model traffic as “flow” and do 

not capture individual vehicles. Therefore, the “micro-level” vehicle dynamics (e.g., vehicle trajectory and 

motion control) will not be modeled.   

 

Second, based on the first assumption, HDVs select their routes to minimize their own travel costs (i.e., 

they are “selfish”). In this paper, we apply DUE to model HDVs’ route choice behavior. There are 

essentially two modeling approaches for DUE: predictive DUE (PDUE) and instantaneous DUE (IDUE). 

PDUE (Ma et al., 2018; Ran and Boyce, 1996) assumes that travelers select their routes based on the 

predicted (future) traffic conditions at the beginning of their trips and stick to these routes during the entire 

trips. IDUE (Ban et al., 2012a; Ran and Boyce, 1996) assumes that travelers make route choice decisions 

based on the current prevailing traffic conditions and thus can change their routes during their trips. In this 

paper, we use IDUE to model the route choice behavior of HDVs due to two reasons. First, PDUE requires 

that one could accurately predict the future traffic conditions, which is difficult in practice. On the contrast, 

IDUE only needs the current traffic information, which is more practical through various means of 

intelligent transportation systems (ITS). Second, compared with PDUE that does not revise routes along a 

trip, IDUE allows en-route revisions of routes, which can better capture the dynamic traffic conditions and 

reflect the interactions between HDVs and CAVs. IDUE is reactive, i.e., the flow assigned to a path at a 

time instant does not impact the cost (travel time) of the path at that time instant but will impact the path 

travel times at later time instants. This reactive nature of IDUE also have drawbacks, noticeably that flow 

is often assigned to the single minimum-cost path and in extreme situations flow may go back to the origin 

and select a different route (see some discussions on this in Ban et al. (2012a)). 

 

On the other hand, it is reasonable to assume that CAVs can be fully controlled and deployed to help resolve 

traffic congestion and related problems. The routes of CAVs are thus assumed to be controllable and we 

assume CAVs (are controlled to) choose their routes to improve the system performance. Thus, in this paper, 

CAVs’ behavior is modeled by the DSO principle (Ma et al., 2014; Merchant and Nemhauser, 1978; Shen 

and Zhang, 2018; Ziliaskopoulos, 2000) to improve (minimize) the system objective (e.g., the total system 

travel time spent by all travelers). Note that here we just aim to explore the possibility of leveraging the 

communication and automation capability of CAVs to improve the transportation network performance. To 

actually make this work, there can be other related issues that need to be carefully investigated, e.g., how 

to make sure the routing strategies generated by the proposed model are “fair” to the passengers of CAVs. 

We leave this for future research as summarized in Section 6. 

 

Third, similar to existing studies on link level mixed traffic flow model (Lazar et al., 2017; Levin and 

Boyles, 2016; Levin, 2017; Patel et al., 2016), we adopt the model in Levin and Boyles (2016) and model 

the flow capacity of a link as a dynamic reciprocal function of the penetration of CAVs. Such a model is 



derived from the microscopic car-following model by assuming that CAVs can reduce the reaction time 

and time headway between vehicles. Specificlly, let 𝑛𝑖,𝑗
ℎ𝑑𝑣(𝑡) and 𝑛𝑖,𝑗

𝑐𝑎𝑣(𝑡) be the number of of HDVs and 

CAVs respectively on link (𝑖, 𝑗) at time 𝑡, which yields the relative penetration of CAVs as 𝜌𝑖,𝑗(𝑡) =
𝑛𝑖,𝑗

𝑐𝑎𝑣(𝑡) 

𝑛𝑖,𝑗
𝑐𝑎𝑣(𝑡)+𝑛𝑖,𝑗

ℎ𝑑𝑣(𝑡) 
. Let 𝐶𝑖̅,𝑗

ℎ𝑑𝑣 and 𝐶𝑖̅,𝑗
𝑐𝑎𝑣 be the link flow capacities under 100%  HDVs and CAVs respectively 

(𝐶𝑖̅,𝑗
𝑐𝑎𝑣 > 𝐶𝑖̅,𝑗

ℎ𝑑𝑣). The capacity of link (𝑖, 𝑗) at time 𝑡 can be calculated by (Levin and Boyles, 2016): 

𝐶𝑖̅,𝑗(𝑡) =
𝐶𝑖̅,𝑗

ℎ𝑑𝑣𝐶𝑖̅,𝑗
𝑐𝑎𝑣

𝐶𝑖̅,𝑗
𝑐𝑎𝑣 + 𝜌𝑖,𝑗(𝑡)(𝐶𝑖̅,𝑗

ℎ𝑑𝑣 − 𝐶𝑖̅,𝑗
𝑐𝑎𝑣)

 (2) 

Notice that Equation (2) was not explicitly given in Levin and Boyles (2016), which however can be 

straightforwardly derived from their model, e.g., Equation (21) in Levin and Boyles (2016). Equation (2) 

above shows that, as the CAV penetration increases, the capacity 𝐶𝑖̅,𝑗(𝑡) of  link (𝑖, 𝑗) increases from 𝐶𝑖̅,𝑗
ℎ𝑑𝑣 

to  𝐶𝑖̅,𝑗
𝑐𝑎𝑣. We show this capacity function under different CAV saturation headways (ℎ𝑡) and penetration 

rates (𝜌) in Figure 1. For illustration purposes, the time headway of HDVs is assumed to be 1.8s and the 

free flow speed is assumed to be 50 mph, which indicate that the link capacity when all vehicles are HDVs 

is 𝐶𝑖̅,𝑗
ℎ𝑑𝑣 = 2000 vph. Figure 1 shows that, if CAV penetration is fixed, as the CAVs’ time headway 

decreases, the link capacity increases due to the reduction of time headway. Such increment is also nonlinear. 

For a fixed time headway, as the CAV penetration increases, the capacity also increases. 

 

Figure 1. Capacity function under different CAV headways using Equation (2) 

 

We need to point out that existing studies in the literature found (mostly using simulation data) that the 

capacity of mixed HDV/CAV flow increases quadratically with the penetration of CAVs (Liu et al., 

2018). Equation (2) here actually is consistent with this finding. To see this, we approximate the right-

hand side of (1) using its Taylor series expansions (around zero) up to the second order. 

𝐶𝑖̅,𝑗(𝑡) = 𝐶𝑖̅,𝑗
ℎ𝑑𝑣 [1 + 𝜌𝑖,𝑗(𝑡) (1 −

𝐶𝑖̅,𝑗
ℎ𝑑𝑣

𝐶𝑖̅,𝑗
𝑐𝑎𝑣 ) + 𝜌𝑖,𝑗

2 (𝑡) (1 −
𝐶𝑖̅,𝑗

ℎ𝑑𝑣

𝐶𝑖̅,𝑗
𝑐𝑎𝑣 )

2

+ 𝑂[𝜌𝑖,𝑗
3 (𝑡)]] (3) 

Equation (3) indicates that a quadratic relationship approximately holds between CAV penetration and the 

capacity of the mixed HDV/CAV flow. 

 

Fourth, as shown in Section 3.1 above, it is also imporant to model the impact of CAVs on the shockwave 

speed. In most existing studies, the introduction of CAVs to the traffic flow (of HDVs) is assumed to change 

the shockwave speed (that depends on the actual penetration of CAVs), which however does not change 

the jam density (Levin and Boyles, 2016; Patel et al., 2016). Note here that these are largely assumptions 

with limited or no field observations. It is our understanding that the introduction of CAVs may change 
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both the shockwave speed and the jam density (i.e. under CAVs the spacing between vehicles may be 

reduced at the jammed state due to vehicle connectivity and automation). To see the latter impact, Figure 2 

shows the fundamental diagrams of a link under different CAV penetrations assuming fixed shockwave 

speed (and varying jam density) of a link. Note that each fundamental diagram is corresponding to a set of 

fixed capacity (i.e., fixed CAV penetration), free-flow speed and shockwave speed. Here the shockwave 

speed is set as 15 mph and the CAV time headway is 1.4s. Then as CAV penetration increases from 0 to 

100%, the jam density increases from 174 veh/mi to 223 veh/mi. Assume the average effective vehicle 

length in a typical traffic flow is 20 feet, the constant shockwave speed indicates that the average gap 

between consecutive vehicles are reduced from 10.34 feet to 3.67 feet. Such reduction may be achieved by 

CAV techniques considering that traffic is at standstill when jam density is considered, which implies that 

the constant shockwave speed may hold.  

 

 

Figure 2. Fundamental diagram of a link under different CAV penetrations 

We notice here that assuming fixed jam density or fixed shockwave speed just represents one extreme (and 

simplified) case of the general situation. As discussed in Section 3.1 above, the varying shockwave speeds 

will lead to a DCS with time-varying, state-dependent delays that are much harder to analyze and solve. 

For the sake of clearly presenting how to model HDVs/CAVs at the network level, in this paper, we assume 

fixed shockwave speed and varying jam density (for a given link) with respect to different CAV penetration 

to simplify the model analysis and solution process. This also presents an alterantive (and simplified) way 

to model the impact of CAVs on jam density and shockwave speed. The fixed shockwave speed assumption 

can be relaxed by using the approximations schemes proposed in Ma et al. (2015, 2018); see the discussions 

in Section 3.1 and also in Section 6. 

 

Also noteworthy is that the current findings about mixed HDV/CAV flow are either based on simulation 

data (e.g. how capacity increases with CAV penetration) or largely assumptions (e.g., fixed jam density or 

shockwave speed) since CAVs are not widely deployed (especially high level CAVs) and field observations 

are quite limited. One should certainly keep a close eye on field testing/deployment of CAVs to properly 

update the properties of mixed HDV/CAV flow and the resulting DUE models. We present more 

discussions on this in the Section Section 6. 

 

3.3. Mixed Traffic Flow Model of HDVs and CAVs 

We use the LTM (Yperman, 2007) in this paper as the basis to formulate link level traffic dynamics. LTM 

is similar to CTM, but only requires temporal discretization (and without spatial discretization) of a link, 

which can help reduce the dimension of the problem. In particular, we apply the equivalent “double 

queue” (DQ) model first proposed in Osorio et al. (2011) to simplify the link-flow dynamics. DQ 

describes the dynamics of a link with two queues: an upstream queue and a downstream queue. The 

downstream queue is similar to the point queue model, which can model the free-flow time delay and the 

queuing process and exit flow (from the link) at the downstream of a link. The upstream queue can 
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capture the backward shockwave delay and the congestion propagation process and the inflow (to the 

link) by a pseudo queue at the upstream of a link. In this paper, we use the continuous-time DQ model 

developed in Ma et al. (2014) as the underlying traffic flow model. 

3.3.1. The basic double queue model 

The DQ of a link (𝑖, 𝑗) can be formulated as the following ODEs (Ma et al., 2014): 

𝑞̇𝑖,𝑗
𝑈 (𝑡) = 𝑝𝑖,𝑗(𝑡) − 𝑣𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

𝑤 ) 

𝑞̇𝑖,𝑗
𝐷 (𝑡) = 𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑣𝑖,𝑗(𝑡) 
(4) 

where 𝑞𝑖,𝑗
𝑈 (𝑡) is the upstream queue, which is upper-bounded by the queue storage capacity of the link, i.e., 

0 ≤ 𝑞𝑖,𝑗
𝑈 (𝑡) ≤ 𝑄̅𝑖,𝑗(𝑡). 𝑞𝑖,𝑗

𝐷 (𝑡) is the downstream queue, 𝑝𝑖,𝑗(𝑡) is the inflow rate of link (𝑖, 𝑗), 𝑣𝑖,𝑗(𝑡) is the 

exit flow rate of link (𝑖, 𝑗), 𝜏𝑖,𝑗
0  is the free flow travel time, and 𝜏𝑖,𝑗

𝑤  is the shockwave propagation travel time.  

 

Figure 3. The double queue model 

As shown in Figure 3, the basic DQ model (4) can be extended to capture the dynamics of HDVs and CAVs 

at the link level: 

𝑞̇𝑖,𝑗
𝐷,ℎ𝑑𝑣(𝑡) = 𝑝𝑖,𝑗

ℎ𝑑𝑣(𝑡 − 𝜏𝑖,𝑗
0 ) − 𝑣𝑖,𝑗

ℎ𝑑𝑣(𝑡) 

𝑞̇𝑖,𝑗
𝐷,𝑐𝑎𝑣(𝑡) = 𝑝𝑖,𝑗

𝑐𝑎𝑣(𝑡 − 𝜏𝑖,𝑗
0 ) − 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) 
(5) 

We do not need to separate the upstream queue to HDVs and CAVs since the upstream queue is used to 

calculate the total receiving capacity of both classes of vehicles, as indicated in Equation (13) later. 

Hereafter in this paper, we use asterisk (∗) to represent either HDVs or CAVs. So, we have 𝑝𝑖,𝑗(𝑡) =
∑ 𝑝𝑖,𝑗

∗ (𝑡)∗  and 𝑣𝑖,𝑗(𝑡) = ∑ 𝑣𝑖,𝑗
∗ (𝑡)∗ . The dynamics of the total number of vehicles of a link (𝑖, 𝑗) is  

𝑛̇𝑖,𝑗
∗ (𝑡) = 𝑝𝑖,𝑗

∗ (𝑡) − 𝑣𝑖,𝑗
∗ (𝑡) (6) 

The instantaneous link travel time is defined as the sum of the free-flow travel time and the instantaneous 

exit time: 

𝜏𝑖,𝑗(𝑡) = 𝜏𝑖,𝑗
0 +

𝑞𝑖,𝑗
𝐷 (𝑡)

𝐶𝑖̅,𝑗(𝑡)
 (7) 

Here 𝐶𝑖̅,𝑗(𝑡) is the instantaneous capacity defined in Equation (2).  
 

FIFO is an important requirement for modeling traffic flow on dynamic transportation networks. For the 

DQ model presented here, we have the following proposition regarding FIFO: 

 

Proposition 1: FIFO holds for link (𝑖, 𝑗) if the following condition is satisfied for all 𝑡: 

(𝜌̇𝑖,𝑗(𝑡)𝑞𝑖,𝑗
𝐷 (𝑡) + 𝜌𝑖,𝑗(𝑡)𝑞̇𝑖,𝑗

𝐷 (𝑡)) (
1

𝐶𝑖̅,𝑗
𝑐𝑎𝑣 −

1

𝐶𝑖̅,𝑗
ℎ𝑑𝑣) +

𝑞̇𝑖,𝑗
𝐷 (𝑡)

𝐶𝑖̅,𝑗
ℎ𝑑𝑣 + 1 > 0 (8) 

The proof of Proposition 1 can be done straightforwardly by taking the derivatives of both sides of (7) with 

respect to time t and requiring 𝜏̇𝑖,𝑗(𝑡) > −1. The theorem shows that FIFO holds if the downstream queue, 

the CAV penetration, and the derivatives of these two follow Equation (8).  



 

We can show that FIFO holds under certain situations based on Proposition 1. For example, when the length 

of the downstream queue does not change much, i.e., 𝑞̇𝑖,𝑗
𝐷 (𝑡)~0 , FIFO will hold if 𝜌̇𝑖,𝑗(𝑡) <

1/ [𝑞𝑖,𝑗
𝐷 (𝑡) (

1

𝐶𝑖̅,𝑗
ℎ𝑑𝑣 −

1

𝐶𝑖̅,𝑗
𝑐𝑎𝑣)], i.e., when the increase of the CAV penetration on the link is relatively small. On 

the other hand, if the CAV penetration remains approximately constant (e.g. 100% HDVs, 100% CAVs, or 

relatively constant CAV penetration on the link),  𝜌̇𝑖,𝑗(𝑡)~0, (8) implies 𝑞̇𝑖,𝑗
𝐷 (𝑡) < 1/ [

𝜌𝑖,𝑗(𝑡)

𝐶𝑖̅,𝑗
𝑐𝑎𝑣 +

1−𝜌𝑖,𝑗(𝑡)

𝐶𝑖̅,𝑗
ℎ𝑑𝑣 ], i.e., 

the downstream queue of the link does not change too dramatically. This is similar to the FIFO conditions 

of existing DUE models (for only HDVs). In the numerical experiments in Section 5, we also show that 

FIFO holds for the testing cases in this paper. 

 

The condition in Equation (8) however may not be satisfied readily, implying that FIFO may be violated 

for the DQ model presented here. Since FIFO is a basic assumption of DTA so that dynamics such as mass 

balance constraints and flow propagation can be properly modeled mathematically (as ODEs or PDEs), 

FIFO violation will make the formulations of those dynamics less accurate (or only hold approximately). 

As a result, errors or unpractical dynamic behaviors may be introduced if FIFO is violated. Therefore, future 

research should strive to resolve this FIFO issue; see Section 6. We also note here that FIFO can normally 

be guaranteed approximately even one models single-class vehicles (Blumberg and Bar-Gera, 2009), left 

alone modeling multi-class vehicles as we do here. This further indicates that to model the mixed 

HDV/CAV flow, additional challenges (e.g. FIFO) may be introduced, which need to be addressed properly.  

 

The above DQ model is only at the link level. To extend it to the network level, we need to model the flow 

interactions and transfers among neighboring links. We next present the maximum sending/receiving flows 

of a link (Section 3.3.2) and the nodal model (Section 3.3.3) to describe how flow is transferred from a link 

to its downstream links. 

3.3.2. Maximum sending flow and maximum receiving flow 

The maximum sending flow of a link (𝑖, 𝑗), denoted as 𝑆𝑖,𝑗(𝑡), is the maximum flow that can exit from the 

downstream queue of the link without considering the congestion of the downstream links. In LTM 

(Yperman, 2007), the sending flow is: 

𝑆𝑖,𝑗(𝑡)∆𝑡 = min ((𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 + ∆𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑁(𝑥𝑖,𝑗
𝑜𝑢𝑡, 𝑡)),     𝐶̅𝑖,𝑗

𝑠
(𝑡)∆𝑡 ) (9) 

where 𝑁(𝑥, 𝑡) is the cumulative vehicle number on place 𝑥 at time 𝑡, 𝑥𝑖,𝑗
𝑖𝑛 is the entrance point of the link 

(𝑖, 𝑗), 𝑥𝑖,𝑗
𝑜𝑢𝑡 is the exit point of the link (𝑖, 𝑗). Since we use the double queue model in this paper, we can 

derive the sending flow rate for DQ as 

𝑆𝑖,𝑗(𝑡) = {
min (𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

0 ),     𝐶̅𝑖,𝑗
𝑠

(𝑡) ) ,     𝑖𝑓 𝑞𝑖,𝑗
𝐷 (𝑡) = 0

𝐶̅𝑖,𝑗
𝑠

(𝑡),                                                𝑖𝑓 𝑞𝑖,𝑗
𝐷 (𝑡) > 0

 (10) 

Equations (9) and (10) are the same as shown in Lemma B.1 in Appendix B. The queueing dynamics in (7) 

is similar to the point queue model (Ban et al., 2012b; Daganzo, 1995; Nie and Zhang, 2005; Vickrey, 1969). 

To make the sending flow continuous, we adopt the modified point queue idea proposed in Ban et al. (2012b) 

and express Equation (10) as  

𝑆𝑖,𝑗(𝑡) = min (𝐶̅𝑖,𝑗
𝑠

(𝑡),    𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
0 ) + 𝛼𝑞𝑖,𝑗

𝐷 (𝑡)) (11) 

where 𝛼 > 0 is a smoothing parameter. For the class-specified sending flow, it is common to assign them 

proportionally based on the downstream queue length: 



𝑆𝑖,𝑗
∗ (𝑡) = 𝑆𝑖,𝑗(𝑡)

𝑞𝑖,𝑗
𝐷,∗(𝑡)

𝑞𝑖,𝑗
𝐷 (𝑡)

 (12) 

For the maximum receiving flow, we have 

𝑅𝑖,𝑗(𝑡) = {
min (𝐶𝑖̅,𝑗

𝑟 (𝑡),    𝑣𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
𝑤 )) ,             𝑖𝑓 𝑞𝑖,𝑗

𝑈 (𝑡) = 𝑄̅𝑖,𝑗(𝑡)

𝐶𝑖̅,𝑗
𝑟 (𝑡)                                                        𝑖𝑓 𝑞𝑖,𝑗

𝑈 (𝑡) < 𝑄̅𝑖,𝑗(𝑡)
 (13) 

Here 𝐶𝑖̅,𝑗
𝑟 (𝑡) is the capacity of receiving flow of link (𝑖, 𝑗) at time 𝑡 . Equation (13) shows that, if the 

upstream queue has reached the queue storage capacity of the link (i.e., 𝑞𝑖,𝑗
𝑈 (𝑡) = 𝑄̅𝑖,𝑗(𝑡)), the possible 

maximum receiving flow is the minimum between the receiving flow capacity 𝐶𝑖̅,𝑗
𝑟 (𝑡) and the exit flow of 

the link at an earlier time (i.e. 𝜏𝑖,𝑗
𝑤  based on the upstream queue dynamics Equation (4)), so that the upstream 

queue would not increase anymore. If the upstream queue is less than the queue capacity (i.e., 𝑞𝑖,𝑗
𝑈 (𝑡) <

𝑄̅𝑖,𝑗(𝑡)), the possible maximum receiving flow is the receiving flow capacity 𝐶𝑖̅,𝑗
𝑟 (𝑡). Note that in the 

numerical section of this paper, the sending capacity and receiving capacity are set as the same, i.e., 

𝐶𝑖̅,𝑗
𝑠 (𝑡) = 𝐶𝑖̅,𝑗

𝑟 (𝑡) = 𝐶𝑖̅,𝑗(𝑡) . Having the maximum sending flow 𝑆𝑖,𝑗
∗ (𝑡)  of the incoming links and the 

maximum receiving flow 𝑅𝑗,𝑘(𝑡)  of the outgoing links, we need to assign the sending flow from an 

incoming link to a downstream link, i.e., to determine the flow transfer 𝐺(𝑖,𝑗)→(𝑗,𝑘)
∗ (𝑡) for every adjacent 

link pair. This will be shown in the nodal model next. Let 𝐼𝑗 be the set of the incoming nodes that are directly 

linked to node 𝑗 , and 𝐾𝑗  be the set of outgoing nodes that are directly linked from node 𝑗 . Given 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
∗ (𝑡), we can connect the nodal model with the double queue model by 

𝑝𝑗,𝑘
∗ (𝑡) = ∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)

∗ (𝑡)

𝑖∈𝐼𝑗

 

𝑣𝑖,𝑗
∗ (𝑡) = ∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)

∗ (𝑡)

𝑘∈𝐾𝑗

 

(14) 

3.3.3. Nodal model 

There could be multiple incoming and outgoing links associated with node 𝑗. The nodal model determines 

the flow transfer 𝐺(𝑖,𝑗)→(𝑗,𝑘)(𝑡) from an incoming link (𝑖, 𝑗) to an outgoing link (𝑗, 𝑘) where 𝑖 ∈ 𝐼𝑗 and 𝑘 ∈

𝐾𝑗. We present the nodal model under different cases of node j based on the nodal model introduced in 

Yperman (2007). 

(i) Origin node 

 

Figure 4. Origin node 

We add a pseudo origin node to the network to guarantee that there is only one outgoing link (𝑗′, 𝑗). 

The free-free travel time and the shockwave propagation time of this pseudo link is 0 (i.e., 𝜏𝑗′,𝑗
0 =

𝜏𝑗′,𝑗
𝜔 = 0), and there is no limit on the upstream queue of the pseudo link (i.e., 𝑄̅𝑗′,𝑗(𝑡) = +∞). 

Thus, the receiving capacity of the pseudo link is unlimited (i.e., 𝑅𝑗′,𝑗(𝑡) = +∞). The demand flow 

𝑑𝑗′
∗ (𝑡) gets into the network from the pseudo node 𝑗′. The flow transfer from the origin node is then  

𝑮(𝒋′,𝒋)
∗ (𝒕) = 𝒅𝒋′

∗ (𝒕) (15) 



(ii) Destination node 

 

Figure 5. Destination node 

Similarly, we add a pseudo destination node to the network to guarantee that there is only one 

incoming link (𝑗, 𝑗′). The pseudo link shares the same property as discussed in (i), i.e., 𝜏𝑗,𝑗′
0 =

𝜏𝑗,𝑗′
𝜔 = 0, 𝑄̅𝑗,𝑗′ = +∞, 𝑅𝑗,𝑗′(𝑡) = +∞. The flow transfer to the pseudo destination node is 

𝑮(𝒋,𝒋′)
∗ (𝒕) = 𝑺𝒋,𝒋′

∗ (𝒕) (16) 

(iii) General multi-in and multi-out node 

 

Figure 6. A general node 

The flow transfers are usually discussed separately for a diverge node and a merge node (e.g., 

Yperman (2007), Jin and Zhang (2003)). We here combine these two types of nodes and build a 

general nodal model for a multi-in and multi-out node, which is also integrated with our optimal 

control based network model (see Section 3.5). The following five conditions define the rules and 

constraints that the flow transfer 𝐺(𝑖,𝑗)→(𝑗,𝑘)
∗ (𝑡) needs to satisfy. Since we are developing a network 

model that integrates both behavior of HDVs and CAVs and the traffic flow dynamics, the actual 

values of 𝐺(𝑖,𝑗)→(𝑗,𝑘)
∗ (𝑡) will need to be determined jointly by solving both the traffic flow model 

and the behavior model, i.e., the network wide OCPEC as presented in Section 3.5.  

1) As described in Section 3.2, we model the route choice behavior of HDVs by IDUE, which is 

mathematically formulated in Section 3.4. Given the network information and the maximum 

sending flow of incoming links 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡), the IDUE determines the routes for HDV and assign 

𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) to the outgoing links that are on the shortest paths, which gives 𝑆(𝑖,𝑗)→(𝑗,𝑘)

ℎ𝑑𝑣 (𝑡), the 

maximum HDV flow that may be transferred from the incoming link (𝑖, 𝑗) to the outgoing link 

(𝑗, 𝑘). 

2) The flow transfer from a specific incoming link should be upper-bounded by the maximum 

sending flow. For HDVs, we have the maximum sending flow from (𝑖, 𝑗) to (𝑗, 𝑘), thus 

𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗 (𝒕) ≤ 𝑺(𝒊,𝒋)→(𝒋,𝒌)

𝒉𝒅𝒗 (𝒕) (17) 

For CAVs, we only have the maximum sending flow from (𝑖, 𝑗), thus 

∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒄𝒂𝒗

𝒌∈𝑲𝒋

(𝒕) ≤ 𝑺𝒊,𝒋
𝒄𝒂𝒗(𝒕) (18) 

3) The total flow transfer of HDVs and CAVs to a specific outgoing link should be upper-bounded 

by the receiving capacity of link (𝑗, 𝑘), thus 



∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒄𝒂𝒗

𝒊∈𝑰𝒋

(𝒕) + ∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗

𝒊∈𝑰𝒋

(𝒕) ≤ 𝑹𝒋,𝒌(𝒕) (19) 

4) The flow transfer of HDVs from each incoming link should be proportionally distributed based 

on the maximum sending flow, thus 

𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗 (𝒕)

∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗

𝒊∈𝑰𝒋
(𝒕)

=
𝑺(𝒊,𝒋)→(𝒋,𝒌)

𝒉𝒅𝒗 (𝒕)

∑ 𝑺(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗

𝒊∈𝑰𝒋
(𝒕)

 (20) 

5) According to Equation (12), the flow transfers of HDVs and CAVs from the same incoming 

link should be proportionally distributed, thus 

∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒄𝒂𝒗 (𝒕)𝒌∈𝑲𝒋

∑ 𝑮(𝒊,𝒋)→(𝒋,𝒌)
𝒉𝒅𝒗 (𝒕)𝒌∈𝑲𝒋

=
𝒒𝒊,𝒋

𝑫,𝒄𝒂𝒗(𝒕)

𝒒𝒊,𝒋
𝑫,𝒉𝒅𝒗(𝒕)

 (21) 

3.4. Route Choice Behavior of HDVs 

For HDVs, the objective is to minimize their individual travel cost (travel time is used in this paper). As 

discussed in Section 3.1, we can formulate the route choice behavior of HDVs as IDUE by the following 

complementarity conditions (Ban et al., 2012a) (denoted as P1): 

(i) Route choice (at a junction node j) 

0 ≤ 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) ⊥ 𝜏𝑗,𝑘(𝑡) + 𝜂𝑘

𝑠 (𝑡) − 𝜂𝑗
𝑠(𝑡) ≥ 0 (22) 

(ii) Flow conservation (at a junction node j) 

0 ≤ 𝜂𝑗
𝑠(𝑡) ⊥ ∑ 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡)

𝑘∈𝐾𝑗

− ∑ 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡)

𝑖∈𝐼𝑗

≥ 0 (23) 

Similar to (1-1) – (1-2) in Section 3.1, Equation (22) shows that travelers at node 𝑗 will select to enter link 

(𝑗, 𝑘) (i.e., 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) > 0) if link (𝑗, 𝑘) is on a route with the minimum instantaneous travel time from node 

𝑗 to destination 𝑠 (𝑠 ≠ 𝑗), i.e., 𝜏𝑗,𝑘(𝑡) + 𝜂𝑘
𝑠 (𝑡) − 𝜂𝑗

𝑠(𝑡) = 0. Otherwise, the traveler will not enter link (𝑗, 𝑘) 

(i.e., if 𝜏𝑗,𝑘(𝑡) + 𝜂𝑘
𝑠 (𝑡) − 𝜂𝑗

𝑠(𝑡) > 0, 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) = 0). This follows exactly the IDUE principle. For Equation 

(23), as it can be easily shown that the instantaneous route travel time 𝜂𝑗
𝑠(𝑡) > 0 for 𝑠 ≠ 𝑗, the equality 

always holds for the right-hand side of (23). That is, Equation (23) indicates “flow conservation”, which 

guarantees that the sum of all sending flows of HDVs exiting from upstream links of node 𝑗 (represented 

by ∑ 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡)𝑖∈𝐼𝑗

) is equal to all outgoing flows from node 𝑗  to downstream links (represented by 

∑ 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡)𝑘∈𝐾𝑗

). From the point of view of a specific node, all traffic flows from that node to the same 

destination will be assigned to the outgoing links that are on the paths with the minimum travel time at time 

𝑡. These flows will be re-assigned based on the traffic condition at that time when they arrive other 

downstream nodes. 

 

The IDUE model above is slightly different from the “regular” IDUE models in the literature (e.g., the one 

in Ban et al. (2012a)). First, instead of using the actual demands of HDVs from a node, we use 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡), the 

maximum sending flow from the upstream link of a node 𝑗 (as defined in the mixed traffic flow model in 

Section 3.3.2). Thus, the IDUE model here is to determine the “optimal” maximum sending flow that can 

be assigned to a downstream link of the same node 𝑗. This is represented by the variable 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) in the 

IDUE model, which also indicates which outgoing links HDVs will select as their routes. Here 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) is 

not the actual HDV flow 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) in the DQ model (i.e., Equation (5) and (14)). The actual HDV flow have 



to follow the mixed flow DQ dynamics and nodal constraints. But the two are closely related; see below 

after we present Equation (24).  

 

Given 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡), we can calculate 𝑆(𝑖,𝑗)→(𝑗,𝑘)

ℎ𝑑𝑣 (𝑡), the maximum sending flow of HDVs from incoming links 

(𝑖, 𝑗) to outgoing links (𝑗, 𝑘), by 

𝑆(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣 (𝑡) = 𝑆𝑖,𝑗

ℎ𝑑𝑣(𝑡)
𝑝𝑗,𝑘

ℎ𝑑𝑣(𝑡)

∑ 𝑝
𝑗,𝑘′
ℎ𝑑𝑣(𝑡)𝑘′

. (24) 

Notice that 𝑆(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣 (𝑡) is used in the nodal model in Section 3.3.3. We next show that 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡) > 0 

implies 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) > 0. If 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡) > 0, i.e., HDVs select (𝑗, 𝑘) as the next link of their routes, by Equation 

(24), the maximum sending flow should follow the proportional distribution, which yields 

𝑆(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣 (𝑡) > 0. Based on the nodal constraints Equation (17)-(20), if there is certain receiving capacity 

of the outgoing link (𝑗, 𝑘), the flow transfer of HDVs from (𝑖, 𝑗) to (𝑗, 𝑘) should also satisfy 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣 (𝑡) > 0. Thus, based on Equation (14), the actual HDV flow should satisfy 𝑝𝑗,𝑘

ℎ𝑑𝑣(𝑡) > 0. This 

guarantees that the HDVs route 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) calculated from the IDUE principle (i.e., Equation (22) and (23)) 

will indeed be followed by HDVs as their route choices (as represented by 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡)). 

3.5. Route Choice Behavior of CAVs and the Dynamic Bi-level Problem. 

The route choice behavior of CAVs follows DSO and is designed to improve the performance from the 

system perspective. With this objective in mind, designing the routes for CAVs is essentially an optimal 

control problem (OCP), which can be cast as a dynamic bi-level problem. The CAVs are at the upper 

level and the HDVs are at the lower level. Our main OCP (i.e., the upper-level problem) is to generate 

routes for CAVs, of which the HDVs should follow the IDUE principle (i.e., the lower-level problem, 

P1). Meanwhile, HDVs and CAVs should follow the DQ dynamics and nodal constraints as defined in 

the mixed traffic flow model earlier. Together, we can formulate this dynamic bi-level problem as an 

OCPEC, by considering the objective of CAVs as to minimize the total system travel time. The OCPEC 

(denoted as P2) is formulated as follows.  

 

(i) Objective 

min
𝐺𝑐𝑎𝑣

∫ ∑ ∑ 𝑛𝑖,𝑗
∗ (𝑡)

∗(𝑖,𝑗)

𝑡𝑓

0

𝑑𝑡 (25) 

(i) DQ dynamics: (4)-(7), 

(ii) Maximum sending/receiving flows: (11)-(14), 

(iii) Nodal model (at node 𝑗): (15) - (21), 

(iv) Equilibrium constraints (i.e., the lower-level problem P1): (22)-(24)  

(v) Boundary conditions: 𝑛𝑖,𝑗
𝑐𝑎𝑣(𝑡0) =  𝑞𝑖,𝑗

𝐷,𝑐𝑎𝑣(𝑡0) = 𝑛𝑖,𝑗
ℎ𝑑𝑣(𝑡0) =  𝑞𝑖,𝑗

𝐷,ℎ𝑑𝑣(𝑡0) = 0. 

(26) 

 

The above continuous-time OCPEC consists of non-linear constraints (i.e., the DQ dynamics and the 

nodal constraints) and equilibrium constraints (i.e., the route choice of HDVs). It integrates both the 

mixed traffic dynamics model and the behavior models of HDVs and CAVs, which provides a modeling 

framework to study the behavior, interaction, and impact of HDVs and CAVs on the network level. 

Solving this OCPEC model will jointly determine (optimally) the inflow/exit flow of each link for both 

CAVs and HDVS, for which the inflows to links also represent the route choices of HDVs and CAVs.  

 

OCPEC contains constant time delays in the DQ dynamics (i.e., 𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
0 ) and 𝑣𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

𝑤 ) in 

Equation (4)). In fact, the time delays will become time-varying if we assume a varying shockwave speed, 

making the OCPEC framework, while still applicable, more complicated to analyze and solve. As 



discussed earlier, this is one of the major reasons why we assume constant shockwave speed in Section 

3.2. The nonlinearity, time delays, and especially the equilibrium constraints make the OCPEC hard to be 

solved analytically. Classical methods aiming to provide the analytical optimality conditions for an OCP, 

such as the Pontryagin’s maximum principle and dynamic programming, can hardly deal with such state-

constrained problems with time delays either. In addition, the complementarity constraints (i.e., the 

equilibrium constraints for HDVs), even being reformulated as inequality constraints, make the classical 

necessary optimality conditions for OCP with only equality and inequality constraints non-applicable 

(Guo and Ye, 2016). Nevertheless, one can still numerically solve such a problem by using appropriate 

time discretization to convert the continuous OCPEC to a finite-dimensional optimization problem. This 

way, the OCPEC can be discretized as a non-convex and non-smooth mathematical programming with 

equilibrium constraints (MPEC). In the next section, we show how to discretize the OCPEC to MPEC and 

discuss the numerical solution techniques. 

4. DISCRETIZATION AND SOLUTION METHODS 

4.1. Discretization 

The continuous OCPEC needs to be discretized by carefully selecting the discrete time step. Previous 

studies (Ban et al., 2012a; Ma et al., 2018) suggested that the time step should be small enough such that 

the free-flow travel times and shockwave propagation times of all regular links should be multiples of the 

time step. We use a time step ℎ > 0 to discretize the time interval [𝑡0, 𝑡𝑓] into 𝑁ℎ = (𝑡𝑓 − 𝑡0)/ℎ 

(assumed to be integer) time steps, each of equal length ℎ: 

𝑡0 ≜ 𝑡0
ℎ ≤ 𝑡1

ℎ ≤ ⋯ ≤ 𝑡𝑁ℎ

ℎ ≜ 𝑡𝑓 (27) 

We use the implicit backward-Euler difference method to discretize the whole problem. Ban et al. 

(2012b) provided more discussions on why the implicit discretization scheme should be used.  We notice 

here that the implicit scheme is similar to defining the link travel time at the end of a discrete time interval 

used in Ban et al. (2008) or the concept of predictive DUE in Heydecker and Verlander (1999). After 

discretization, the continuous OCPEC P2 can be converted to a MPEC, denoted as P3: 

(i) Objective function: 

min ∑ ∑ ∑ 𝑛𝑖,𝑗
∗,ℎ,𝑟(𝑡)

∗(𝑖,𝑗)∈ℒ

𝑁ℎ

𝑟=1
 (28) 

with the decision variables 

{𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣,ℎ,𝑟 }

𝑟=1

𝑁ℎ
,    𝑖 ∈ 𝐼𝑗, 𝑘 ∈ 𝐾𝑗, 𝑗 ∈ 𝒩 (29) 

(ii) DQ dynamics 

 Upstream queue dynamics 

𝑞𝑖,𝑗
𝑈,ℎ,𝑟 − 𝑞𝑖,𝑗

𝑈,ℎ,𝑟−1 = ℎ (𝑝𝑖,𝑗
ℎ,𝑟 − 𝑣

𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
𝑤,ℎ

) (30) 

with 𝑣
𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
𝑤,ℎ

= 0 for 𝑟 = 1,2, … 𝜏𝑖,𝑗
𝑤,ℎ

. 

 Downstream queue dynamics 

𝑞𝑖,𝑗
𝐷,ℎ,𝑟 − 𝑞𝑖,𝑗

𝐷,ℎ,𝑟−1 = ℎ (𝑝
𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
0,ℎ

− 𝑣𝑖,𝑗
ℎ,𝑟) (31) 

with 𝑝
𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
0,ℎ

= 0 for 𝑟 = 1,2, … 𝜏𝑖,𝑗
0,ℎ

. Consider vehicle types, we have 



𝑞𝑖,𝑗
𝐷,∗,ℎ,𝑟 − 𝑞𝑖,𝑗

𝐷,∗,ℎ,𝑟−1 = ℎ (𝑝
𝑖,𝑗

∗,ℎ,𝑟−𝜏𝑖,𝑗
0,ℎ

− 𝑣𝑖,𝑗
∗,ℎ,𝑟) (32) 

with 𝑝
𝑖,𝑗

∗,ℎ,𝑟−𝜏𝑖,𝑗
0,ℎ

= 0 for 𝑟 = 1,2, … 𝜏𝑖,𝑗
0,ℎ

. 

 Total flow dynamics 

𝑛𝑖,𝑗
∗,ℎ,𝑟 − 𝑛𝑖,𝑗

∗,ℎ,𝑟−1 = ℎ(𝑝𝑖,𝑗
∗,ℎ,𝑟 − 𝑣𝑖,𝑗

∗,ℎ,𝑟) (33) 

 Link travel time 

𝜏𝑖,𝑗
ℎ,𝑟 = 𝜏𝑖,𝑗

0,ℎ + 𝑞𝑖,𝑗
𝐷,ℎ,𝑟/𝐶𝑖̅,𝑗

ℎ,𝑟
 (34) 

(iii) DQ dynamics 
 

 Sending flow 

𝑆𝑖,𝑗
ℎ,𝑟 = min (𝐶̅𝑖,𝑗

ℎ,𝑟
,    𝑝

𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
0,ℎ

+ 𝛼𝑞𝑖,𝑗
𝐷,ℎ,𝑟) (35) 

 Type-specified sending flow 

𝑆𝑖,𝑗
∗,ℎ,𝑟

𝑆𝑖,𝑗
ℎ,𝑟

=
𝑞𝑖,𝑗

𝐷,∗,ℎ,𝑟

𝑞𝑖,𝑗
𝐷,ℎ,𝑟

 (36) 

 Receiving flow 

𝑅𝑖,𝑗
ℎ,𝑟 = min (𝐶̅𝑖,𝑗

ℎ,𝑟
,   𝑄̅𝑖,𝑗

ℎ,𝑟
− 𝑞𝑖,𝑗

𝑈,ℎ,𝑟 + 𝑣
𝑖,𝑗

ℎ,𝑟−𝜏𝑖,𝑗
𝑤,ℎ

) (37) 

 Connection to nodal model 

𝑝𝑗,𝑘
∗,ℎ,𝑟 = ∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)

∗,ℎ,𝑟

𝑖∈𝐼𝑗

,    𝑣𝑖,𝑗
∗,ℎ,𝑟 = ∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)

∗,ℎ,𝑟

𝑘∈𝐾𝑗

 (38) 

(iv) Nodal model: 

 Origin node 

𝐺
(𝑗′,𝑗)
∗,ℎ,𝑟 = 𝑑

𝑗′
∗,ℎ,𝑟

 (39) 

 Destination node 

𝐺
(𝑗,𝑗′)
∗,ℎ,𝑟 = 𝑆

𝑗,𝑗′
∗,ℎ,𝑟

 (40) 

 The upper bound of the transition flow of HDVs and CAVs 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟 ≤ 𝑆𝑖,𝑗

ℎ𝑑𝑣,ℎ,𝑟
 

∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣,ℎ,𝑟

𝑘∈𝐾𝑗

≤ 𝑆𝑖,𝑗
𝑐𝑎𝑣,ℎ,𝑟

 
(41) 

 The upper bound of total HDVs and CAVs flow to outgoing links 

∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣,ℎ,𝑟

𝑖∈𝐼𝑗

+ ∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟

𝑖∈𝐼𝑗

≤ 𝑅𝑗,𝑘
ℎ,𝑟

 (42) 



 The proportional relationship between transition flows and sending flows of HDVs 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟

∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟

𝑖∈𝐼𝑗

=
𝑆(𝑖,𝑗)→(𝑗,𝑘)

ℎ𝑑𝑣,ℎ,𝑟

∑ 𝑆(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟

𝑖∈𝐼𝑗

 (43) 

 The proportional relationship between HDVs and CAVs 

∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣,ℎ,𝑟

𝑘∈𝐾𝑗

∑ 𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟

𝑘∈𝐾𝑗

=
𝑞𝑖,𝑗

𝐷,𝑐𝑎𝑣,ℎ,𝑟

𝑞𝑖,𝑗
𝐷,ℎ𝑑𝑣,ℎ,𝑟

 (44) 

(v) Equilibrium constraints (i.e., route choice behavior of HDVs) 

 Route choice 

0 ≤ 𝑝̂𝑗,𝑘
ℎ𝑑𝑣,ℎ,𝑟+1 ⊥ 𝜏𝑗,𝑘

ℎ,𝑟 + 𝜂𝑘
𝑠,ℎ,𝑟 − 𝜂𝑗

𝑠,ℎ,𝑟 ≥ 0 (45) 

 Flow conservation 

0 ≤ 𝜂𝑗
𝑠,ℎ,𝑟 ⊥ ∑ 𝑝̂𝑗,𝑘

ℎ𝑑𝑣,ℎ,𝑟+1

𝑘∈𝐾𝑗

− ∑ 𝑆𝑖,𝑗
ℎ𝑑𝑣,ℎ,𝑟+1

𝑖∈𝐼𝑗

≥ 0 (46) 

 Routes assignment 

𝑆(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟+1 = 𝑆(𝑖,𝑗)

ℎ𝑑𝑣,ℎ,𝑟+1
𝑝̂𝑗,𝑘

ℎ𝑑𝑣,ℎ,𝑟+1

∑ 𝑝̂𝑗,𝑘′
ℎ𝑑𝑣,ℎ,𝑟+1

𝑘′

 (47) 

(vi) Boundary conditions 

𝑛𝑖,𝑗
𝑐𝑎𝑣,ℎ,0 =  𝑞𝑖,𝑗

𝐷,𝑐𝑎𝑣,ℎ,0 = 𝑛𝑖,𝑗
ℎ𝑑𝑣,ℎ,0 =  𝑞𝑖,𝑗

𝐷,ℎ𝑑𝑣,ℎ,0 = 0 (48) 

 

The equilibrium constraints (45) and (46) violates the Magasarian-Fromovitz constraint qualification 

(MFCQ) (Luo et al., 1996), implying that P3 cannot be analyzed or solved by classical methods such as 

the KKT conditions that usually require certain constraint qualifications. Specific first order and second 

order optimality conditions may be derived for bilevel problems (Luo et al., 1996; Ralph and Wright, 

2004), which however require rather restrictive conditions and cannot be applied to the model in this 

paper. Therefore, P3 cannot be solved directly as an NLP.  In the literature, some relaxation ideas (Ban 

and Liu, 2009; Ban et al., 2006) were applied to iteratively solve this problem. The relaxed problem has 

been proven to satisfy the MFCQ (Ralph and Wright, 2004) and thus can be solved by standard NLP 

solvers. Readers can refer to Ban and Liu (2009) and Ban et al. (2006) for details of the relaxation method 

that are omitted here. As shown in the numerical results in Section 5, it turns out that the relaxation 

method can only solve P3 on small networks with a short time horizon. Therefore, we propose a 

decomposition based heuristic model predictive control (HMPC) method next to deal with larger 

networks with longer time horizons.  

4.2.  Heuristic Model Predictive Control (HMPC) Method  

The difficulty of solving P3 lies in the non-smooth and non-convex nature of the equilibrium constraints. 

The key idea of the proposed HMPC method is to decompose the dynamic bi-level problem to separate 

sub-problems that are solved in an iterative manner. At a specific time, the IDUE problem of HDVs is a 

mixed complementarity problem (MCP) which alone can be readily solved (Ban et al., 2012b). 

Considering that CAVs should follow DSO to improve the network performance, we establish such a 

DSO problem in a forward time horizon. However, in this DSO problem, we do not formulate the HDVs 

as equilibrium constraints for reasons discussed above; instead, we consider HDVs as CAVs, i.e., HDVs 

will also follow the DSO. The DSO problem established in this way is indeed an NLP problem, which 



can be solved relatively easily. The DSO reflects the system optimal routes under ideal conditions but 

may conflict with the actual IDUE routes of HDVs or violate the traffic dynamics. We then design a route 

adjustor that takes the IDUE routes of HDVs and the ideal DSO routes of both HDVs and CAVs as input 

and generates the adjusted IDUE routes for HDVs and the system performance oriented routes for CAVs 

to satisfy the DQ dynamics and nodal constraints. The overall idea of HMPC is shown in Figure 7. 

 

 

Figure 7. The framework of HMPC 

 

Consider a specific time, given network states and the demand of HDVs from each node to the 

destination, we find the routes for HDVs based on the IDUE principle. So far, the DQ nodal constraints 

have not been considered. Meanwhile, given current network states and the future demands of both HDVs 

and CAVs, we can formulate a DSO problem in a forward time horizon by assuming both HDVs and 

CAVs will follow the DSO principle. Note that for this DSO, we use the point queue (PQ) to model the 

dynamics of the network since the PQ-based DSO problem can be solved more efficiently. Having the 

DSO solution in a forward time horizon, we take the DSO routes of HDVs and CAVs at the first time step 

as the output, which will be used to generate the real routes for HDVs and CAVs. We then design a route 

adjustor to adjust the HDVs’ routes and generate the CAVs’ routes to make it satisfy DQ dynamics. Thus, 

we have three main components of the proposed HMPC: (a) the IDUE problem of HDVs, (b) the DSO 

problem in a forward time horizon, and (c) the route adjustor. The IDUE principle of HDVs is the same as 

P1. The next sections will discuss the rest two components. 

4.2.1. PQ-based DSO in a forward time horizon 

The PQ-based DSO is similar to the OCPEC P2 except two characteristics. First, in P2, HDVs follow the 

IDUE condition, while CAVs follow the DSO principle. In the PQ-based DSO, both HDVs and CAVs 

will follow the DSO principle. That means there is no difference between HDVs and CAVs regarding the 

route choice behavior. Second, the network dynamics are described by DQ in P2. In the PQ-based DSO, 

the network dynamics are modeled by PQ, which means that there are no upper queue bounds. Although 

the PQ cannot capture the queue spillback, it can be solved more efficiently compared with the DQ. The 

PQ-based DSO can be formulated as follows (noted as P4). 

 

(i) Objective 

min
𝑝𝑖,𝑗

𝑃𝑄
∫ ∑ 𝑛𝑖,𝑗(𝑡′)

(𝑖,𝑗)

𝑡+∆𝑇

𝑡

𝑑𝑡′ (49) 

(ii) Network dynamics 



𝑞̇𝑖,𝑗
𝐷 (𝑡′) = 𝑝𝑖,𝑗

𝑃𝑄
(𝑡′ − 𝜏𝑖,𝑗

0 ) − 𝑣𝑖,𝑗
𝑃𝑄(𝑡′) 

𝑛̇𝑖,𝑗(𝑡′) = 𝑝𝑖,𝑗
𝑃𝑄(𝑡′) − 𝑣𝑖,𝑗

𝑃𝑄(𝑡′) 

𝑣𝑖,𝑗
𝑃𝑄(𝑡′) = min (𝐶̅𝑖,𝑗

𝑠
(𝑡′),    𝑝𝑖,𝑗

𝑃𝑄
(𝑡′ − 𝜏𝑖,𝑗

0 ) + 𝛼𝑞𝑖,𝑗
𝐷 (𝑡′)) 

(50) 

(iii) Nodal constraints (at node 𝑗): 

∑ 𝑝𝑗,𝑘
𝑃𝑄(𝑡′)

𝑘∈𝐾𝑗

− ∑ 𝑣𝑖,𝑗
𝑃𝑄(𝑡′)

𝑖∈𝐼𝑗

− 𝑑𝑗
ℎ𝑑𝑣(𝑡′) − 𝑑𝑗

𝑐𝑎𝑣(𝑡′) = 0 (51) 

(iv) Initial conditions 

𝑛𝑖,𝑗(𝑡) =  𝑛𝑖,𝑗
𝑐𝑎𝑣(𝑡) + 𝑛𝑖,𝑗

ℎ𝑑𝑣(𝑡) 

𝑞𝑖,𝑗
𝐷 (𝑡) =  𝑞𝑖,𝑗

𝐷,𝑐𝑎𝑣(𝑡) + 𝑞𝑖,𝑗
𝐷,ℎ𝑑𝑣(𝑡) 

(52) 

 

Compared with P2, there are no equilibrium constraints since both HDVs and CAVs are considered as 

controllable. P4 can be discretized as an NLP problem and can be solved by any standard NLP algorithm. 

Solving P4 gives 𝑝𝑗,𝑘
𝑃𝑄(𝑡: 𝑡 + ∆𝑇) and 𝑣𝑖,𝑗

𝑃𝑄(𝑡: 𝑡 + ∆𝑇), which represent the DSO routes of the mixed flows 

of both HDVs and CAVs for a forward time horizon ∆𝑇. Only the first terms 𝑝𝑗,𝑘
𝑃𝑄(𝑡) and 𝑣𝑖,𝑗

𝑃𝑄(𝑡) are 

adopted as the control variables. Considering that the DQ is used to model the real traffic dynamics, we 

need to adjust the DSO routes generated from P4 and the IDUE routes generated from P1 so they can 

follow the DQ dynamics. 

4.2.2. Adjusting HDV routes and generating the CAV routes 

At a time 𝑡, we have the IDUE routes of HDVs (i.e., 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) calculated from Equation (22) and (23)) and 

the DSO routes of both HDVs and CAVs (i.e., 𝑝𝑗,𝑘
𝑃𝑄(𝑡) and 𝑣𝑖,𝑗

𝑃𝑄(𝑡)). However, these routes and flows are 

generated without considering the DQ nodal constraints. In addition, the routes for CAVs haven’t been 

assigned yet. In this section, we design a rule-based routes adjustor to generate CAVs routes to improve 

the system performance, meanwhile adjust CAVs and HDVs routes such that they satisfy the real DQ 

traffic dynamics and nodal models. To make the following discussion clear, we first illustrate the inputs 

and outputs of this route generator. 

 

Input  

𝑆(𝑖,𝑗)
∗ (𝑡) The maximum sending flow of HDVs and CAVs from the incoming 

link (𝑖, 𝑗), see Equation (12). 

𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) The pseudo IDUE routes of HDVs, see P1. 

𝑝𝑗,𝑘
𝑃𝑄(𝑡), 𝑣𝑖,𝑗

𝑃𝑄(𝑡) PQ-based DSO routes of both CAVs and HDVs, see P4. 

𝑅𝑗,𝑘(𝑡) Receiving capacity of the outgoing link (𝑗, 𝑘), see Equation (10). 

Intermediate variables 

𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) The pseudo routes for CAVs, an auxiliary variable. 

𝑆̂𝑗
ℎ𝑑𝑣(𝑡) Total sending flow of HDVs related to node 𝑗. 

𝑆̂𝑗,ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡) Total sending flow of CAVs coupled with HDVs related to node 𝑗. 

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡) Total sending flow of CAVs not coupled with HDVs related to node 𝑗. 

Output 

𝑝𝑗,𝑘
∗ (𝑡), 𝑣𝑖,𝑗

∗ (𝑡) Routes of HDVs and CAVs that satisfy DQ dynamics 

 

The first step is to assign CAVs routes using a heuristic method and adjust HDVs and CAVs routes so 

that they do not exceed the receiving capacity of the outgoing links. Considering that, at a specific time 𝑡, 

the HDVs usually select one and only one outgoing link, we define this link as (𝑗, 𝑘ℎ𝑑𝑣) where 



𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) > 0. Having the HDVs routes, we fist modify these routes based on the limitation of the 

receiving capacity, i.e., 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) = min {𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡), 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)}. For CAVs, there are two conditions 

considering different values of 𝑝
𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡).  

(i) First, 𝑝
𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡) > 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡), which means the solution of the DSO problem P4 requires more 

vehicles than the current assigned HDVs to go to link (𝑗, 𝑘ℎ𝑑𝑣). Under this condition, we can 

assign 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡) = min {𝑝

𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡) − 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡),     𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡) − 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)} CAV flow to link 

(𝑗, 𝑘ℎ𝑑𝑣), and assign the rest of CAV flows exactly according to the optimal routes 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) =

min{𝑝𝑗,𝑘
𝑃𝑄(𝑡),    𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡)} for 𝑘 ∈ 𝐾𝑗 and 𝑘 ≠ 𝑘ℎ𝑑𝑣.  

(ii) Second, 𝑝
𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡) ≤ 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡), meaning that the current HDVs flows to link (𝑗, 𝑘ℎ𝑑𝑣) has 

exceeded the solution of the DSO problem P4. Under this condition, we set 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡) = 0, 

and assign the total CAV flows to the links (𝑗, 𝑘) where 𝑘 ∈ 𝐾𝑗 and 𝑘 ≠ 𝑘ℎ𝑑𝑣 proportionally 

by 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) = min {[∑ 𝑝

𝑗,𝑘′
𝑃𝑄 (𝑡)𝑘′∈𝐾𝑗

− 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)]

𝑝𝑗,𝑘
𝑃𝑄(𝑡)

∑ 𝑝
𝑗,𝑘′
𝑃𝑄 (𝑡)

𝑘′∈𝐾𝑗,𝑘′≠𝑘ℎ𝑑𝑣
,    𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡)} 

 

The second step is to modify the HDVs and CAVs routes based on the DQ dynamics and nodal 

constraints. We first calculate the total sending flow of HDVs from the incoming links 𝑆̂𝑗
ℎ𝑑𝑣(𝑡), total 

sending flow of CAVs coupled with HDVs from the incoming links 𝑆̂𝑗,ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡), and total sending flow of 

CAVs not coupled with HDVs from the incoming links 𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡). If there are no HDVs sending flows 

coming from a specific link, the CAVs sending flows from that link contribute to 𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡). Otherwise, 

the HDVs sending flows are added up as 𝑆̂𝑗
ℎ𝑑𝑣(𝑡) and the coupled CAVs flows are added up as 𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡). 

Then, the conditions can be categorized as two types based on whether there are HDVs flows going to the 

outgoing links.  

(i) First, after satisfying the receiving capacity constraint, there are still some HDVs flows going to 

the outgoing links. In other words, we can find a 𝑘ℎ𝑑𝑣 such that 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) > 0. We calculate the 

proportion 𝜌 = 𝑆̂𝑗,ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡)/𝑆̂𝑗

ℎ𝑑𝑣(𝑡). Then there are also two types of conditions: 

 If ∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 > 𝜌𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡), which means that the outgoing CAVs flow is greater than 

the incoming CAVs flows coupled with the HDVs flows, the incoming CAVs flows 

coupled with HDVs are safe. We have 𝑝
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) = 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) and 𝑝𝑗,𝑘

𝑐𝑎𝑣(𝑡) = 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) for 

all 𝑘 ∈ 𝐾𝑗. For an incoming link (𝑖, 𝑗), if 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) > 0 (i.e., there is HDVs sending flow), 

we assign the exit flows of HDVs and CAVs proportionally by 𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) =

𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)

𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

 and 𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) = 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

. If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 0, which means there are 

no HDVs (i.e., only CAVs) sending flows coming from this link, we can assign the rest 

CAVs flows (i.e., ∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 − 𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)) proportionally by 𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) =

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

∑ 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 −𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

. 

 If ∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 ≤ 𝜌𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡), which means that the outgoing CAVs flows are smaller than 

the incoming CAVs flows coupled with the HDVs flows (i.e., the receiving capacity is 

limited such that the outgoing HDVs and the CAVs are not proportionally to the coupled 

incoming flows), we need to re-assign the HDVs flows by 𝑝
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) =



(∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 + 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡))

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)+𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)+𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

 and assign the CAVs by 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡) =

𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) + 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡) − 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡). Then, we assign the exit flows of HDVs and CAVs from 

the incoming links based on the  proportional principle, i.e., 𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑝

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)

𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

  

and 𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) = 𝑝𝑗,𝑘

ℎ𝑑𝑣(𝑡)
𝑆𝑖,𝑗

𝑐𝑎𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

. 

(ii) Second, there is no HDVs flow going to the outgoing links, either because there is no receiving 

capacity of the outgoing links or there are no HDVs sending flows from the incoming links. 

Under this condition, if there are outgoing flows, they must be CAVs. Therefore, for the outgoing 

flows, we set 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡) = 𝑝̂𝑗,𝑘

𝑐𝑎𝑣(𝑡) and 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) = 0. For the incoming flows of link (𝑖, 𝑗), there are 

two conditions 

 If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) > 0, which means there are HDVs supplies but they cannot go to the outgoing 

links due to the receiving capacity limitation. Since HDVs and CAVs are assumed to be 

proportionally coupled, no CAVs flows can exit from this link. Therefore, we set 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) = 0. 

 If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 0, which means there are only CAVs exiting from this link. We assign the 

HDVs flows by 𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 0 and CAVs exit flows by 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) = ∑ 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

. 

The pseudo codes of this HDV route adjustor and CAV route generator are shown as Algorithm-1 in 

Appendix C. The overall algorithm integrating the IDUE-based HDV route generator, PQ-based DSO 

route generator and the route adjustor is shown as Algorithm-2 in Appendix C. 

 

5. NUMERICAL EXPERIMENT 

We first test the relaxation-based and the HMPC solution methods on a five-node network for a short time 

horizon (30 minutes). We compare the HMPC solution with the solution obtained from the relaxation 

method. Then, we extend the time horizon to 300 minutes. Under such long horizon, the relaxation 

method cannot be directly applied to solve the MPEC because of the increased dimension of the problem. 

Thus, we only apply the HMPC method to this scenario. Finally, we test the HMPC method on the Sioux 

Falls network to illustrate the proposed model and algorithm on a more general (and larger size) network. 

5.1. A Five-node Network  

 

Figure 8 shows the five-node multi-origin, single-destination network. Travelers enter the network from 

node 1, 2 and 3, and exit the network from node 5. The free-flow travel time 𝜏𝑖,𝑗
0  (minutes), shockwave 

travel time 𝜏𝑖,𝑗
𝑤  (minutes), capacity when all vehicles are HDVs 𝐶𝑖̅,𝑗

ℎ𝑑𝑣 (vehicles/minute), and capacity 

when all vehicles are CAVs 𝐶𝑖̅,𝑗
𝑐𝑎𝑣 (vehicles/minute) of each link are given in Figure 8. The demand 

profile is shown in Figure 9. We first solve this problem under 0% and 100% CAV penetrations, 

respectively. Under 0% CAV penetration, the original problem is reduced to a differential 

complementarity system (DCS) based IDUE problem (i.e., with no objective), since there are no CAVs 

and All vehicles are HDVs (that follow the IDUE principle). Under 100% CAV penetration, the original 

problem is reduced to a DSO problem without the complementarity constraints, which is a regular NLP 

after discretization. The DSO solution can serve as the ideal case, which provides a lower bound of the 

system objective (i.e., the total travel time). We then test the proposed relaxation scheme (abbreviated as 

“RELAX” in this section) and HMPC under different CAV penetrations ranging from 0% to 100%. The 

overall performance of RELAX and HMPC under different CAV penetration rates and different travel 

time functions is shown in Figure 10 (a). We then calculate the improvement of network performance of 



the RELAX, HMPC and DSO solutions compared with that of the IDUE, the result of which is shown in 

Figure 10 (b). The improvement of network performance is calculated as the percentage of reduction 

regarding total travel times of DSO, RELAX, and HMPC compared with IDUE. Note that the total 

vehicle time of IDUE (calculated when CAV penetration is zero) or DSO (calculated when CAV 

penetration is 100%) in Figure 10 (a) does not depend on CAV penetration. We show them as two 

extreme scenarios so that readers can easily compare the performance of different control methods. 

 

 
 

Figure 8. A five-node network (more explanation of the 

items in the figure needed) 

Figure 9. Demand profile 

  

(a) Network performance (b) Improvement 

Figure 10. Performance of different methods 

The key observation is, as the CAV penetration increases from 0% to 100%, the system performance 

obtained by both RELAX and HMPC increases from 0% to 37%. At 0% CAV penetration, all vehicles 

are HDVs that follow the IDUE principle, which yields a higher system cost. At 0% CAV penetration, the 

performance of HMPC matches exactly as the IDUE case, while the performance of RELAX is slightly 

better than the IDUE case. For HMPC, at every time step, we calculate the travel time of each link, based 

on which we accurately solve the IDUE problem. Then, we solve the DSO problem in a forward time 

horizon (20 minutes in this paper) and assign flows and update the mixed flow dynamics correspondingly. 

For RELAX, the whole-time domain problem is solved at once, in which the IDUE is approximated by 

certain relaxation scheme. Such relaxation-based approximation makes the HDVs’ behavior not exactly 

following the IDUE. This can be used by RELAX to improve the system objective of MPEC, leading to 

slightly better performance (i.e. smaller objective value) of RELAX compared with that of the IDUE. 

Under 100% CAV penetration, there is no equilibrium constraints in the MPEC. Thus, RELAX reduces to 

the DSO problem and yields the same performance as DSO. For HMPC, we cannot guarantee that it can 
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achieve exactly the DSO performance since it is a heuristic decomposition method.  It is observed that the 

difference of the HMPC objective value and DSO objective value is very small (around 1%). Another 

observation is that the relationship between performance improvement and CAV penetration is not 

exactly same to the relationship between link capacity and CAV penetration, i.e., Equation (2). This is 

due to the fact that performance improvement is related to not only capacity increment (with respect to 

CAV penetration) but also the route choice behavior of HDVs and CAVs. HDVs’ routes, CAVs’ routes, 

and capacity are mutually dependent with each other. The relationship between capacity and CAV 

penetration is not necessary the relationship between the system performance improvement and CAV 

penetration. Apart from these overall analyses, in the rest of this section, we firstly validate the mixed 

flow dynamics and then discuss the route choice behavior of HDVs and CAVs under different methods. 

5.1.1. DQ based mixed flow dynamics 

The DQ based mixed flow framework consists of link dynamics and the nodal model. We first analyze the 

link dynamics under 0% CAV penetration (i.e., the IDUE case) where the capacity and upstream queue 

capacity are fixed since all vehicles are HDVs.  

 

Figure 11. DQ dynamics of link (1,3) in the five-node network 

Figure 11illustrates the DQ link dynamics by using link (1,3). The inflow and exit flow rates are shown 

by the left axis while the upstream queue, downstream queue, and the number of vehicles on the link is 

shown by the right vertical axis. At the beginning, link (1,3) is on the shortest path from node 1 to the 

destination. Following the IDUE condition, HDVs are assigned to this link as many as possible. 

Therefore, the inflow increases to the capacity of link (1,3), i.e., 25 veh/min. Based on the DQ link 

dynamics Equation (4) and (6), the upstream queue increases since there are no exit flow at the beginning 

and all inflows contribute to the upstream queue. The same condition holds for the number of vehicles on 

the link. So, they share a same curve during the interval [0,2]. After that, the first inflow arrives at the end 

of the link, but the exit flow rate is less than the first inflow (since the exit flow from (3′, 3) also needs to 

enter the outgoing link (3,4), but the receiving capacity of link (3,4) cannot allow all exit flows from 

(3′, 3) and (1,3) to get in), which results in a downstream queue. Meanwhile, during [2,8], the upstream 

queue keeps increasing because the dissipation of the downstream queue has not arrived at the upstream 

queue (Equation (4)). At 𝑡 = 8, travelers select link (1,2) as their routes since link (1,3) is not on the 

shortest path anymore due to the increasing travel time. Therefore, the inflow drops to 0 and the upstream 

queue stops increasing. Also, the number of vehicles deceases and the downstream queue also decreases 

after 2 minutes delay. After 𝑡 = 8, there is no inflow, but the dissipation has arrived the upstream queue 

(i.e., 𝑣𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
𝑤 ) > 0 in Equation (4)), the upstream queue starts to decrease. After 𝑡 = 12, travelers 

select link (1,3) again due to the increasing time of another path. Thereafter, the similar process happens 
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again. One difference is that the upper queue reaches its capacity at 𝑡 = 19. Therefore, at 𝑡 = 20, inflow 

to link (1,3) is no longer determined by the link capacity. Instead, based on Equation (4), only 

𝑣𝑖,𝑗(20 − 𝜏𝑖,𝑗
𝑤 ) = 𝑣𝑖,𝑗(14) flow can get into link (1,3). This can be observed from Figure 11 that the 

inflow at 𝑡 = 20 is equal to the exit flow at 𝑡 = 14. As a short summary, the numerical experiments 

match our DQ-based link dynamics. 

 

The key characteristic of the nodal model is the proportional distribution of HDVs and CAVs from 

incoming links to outgoing links, i.e., Equation (20) and (21). Specifically, Equation (20) is for a merge 

node and Equation (21) is for a diverge node. In this section, we show that Equation (21) holds for a 

diverge node (i.e., node 1). The validation process of Equation (20) is similar (e.g., analyzing node 4) and 

is omitted here for brevity. We validate Equation (21) by looking into the flow transitions at node 1. To 

show this, the CAV penetration cannot be 0% or 100%. Here we use the HMPC solution with 30% CAV 

penetration (randomly selected) as an example. Figure 12 (a) shows the downstream queue of HDVs and 

CAVs on link (1′, 1) and inflow rates of HDVs and CAVs to the outgoing links (1,2) and (1,3). Figure 

12 (b) shows the proportion of CAVs to HDVs for the downstream queue as well as the total outgoing 

flows. It can be shown that the proportion of CAVs to HDVs for the outgoing flows are the same as the 

proportion of CAVs to HDVs in the downstream queues of the incoming link, which means Equation (21) 

holds. It should be noted that the sum of inflow rates into links (1,2) and (1,3) is equal to the total 

demand when the demand is less than the total receiving capacity of links (1,2) and (1,3). If the demand 

is larger than the total receiving capacity, either due to the high demand or the congestion of outgoing 

links, the sum of the inflow rates into the two links will be less than the demand at node 1. The remaining 

demand will be queued at the origin and will be discharged at a later time. This is a typical (also realistic) 

phenomenon when capacitated physical queues are applied to model traffic flow; see also Ma et al. (2014) 

and Ma et al. (2018). 

 

In addition, we show the FIFO condition of each link (under HMPC, 30% CAV penetration) in Figure 13. 

The vertical axis of each sub-figure represents the value of the derivative of the link travel time 𝜏̇𝑖,𝑗 and -1 

is marked to clearly show the threshold. As discussed in Proposition 1, FIFO will hold if 𝜏̇𝑖,𝑗 > −1 

holds. Although we cannot theoretically guarantee the FIFO condition holds, as shown in Figure 13, such 

a condition is satisfied for the four links of the five-node network (note that the FIFO condition also holds 

for link 4 to 5, which is omitted here to save space). 

  

(a) Flows and queues at node 1 (b) Proportion of CAVs to HDVs at node 1 

Figure 12. Flows and downstream queues at node 1 
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Figure 13. FIFO condition of each link (under HMPC, 30% CAV penetration) 

5.1.2. Route choice behavior under different solution methods 

There are only two paths from node 1 to the destination, we can analyze the route choice behavior of 

HDVs and CAVs by analyzing the outgoing flows at node 1. Figure 14 shows how the flows of HDVs 

and CAVs exiting from node 1 select their routes under different solution methods. 𝑝𝑖,𝑗
∗  represents the 

inflow to outgoing link (𝑖, 𝑗) of different vehicle types (i.e., ∗ is either HDV or CAV). 𝑡𝑡1245 and 𝑡𝑡1345 

represent the instantaneous travel times of path 1 → 2 → 4 → 5 and 1 → 3 → 4 → 5, respectively. Under 

IDUE, Figure 14 (a) clearly shows that HDVs follow the IDUE principle. If the travel time of path 1 →
2 → 4 → 5 is less than that of 1 → 3 → 4 → 5, HDVs choose link (1,2) as the next link (i.e., 𝑝1,2

ℎ𝑑𝑣 > 0). 

Otherwise, HDVs select link (1,3) as the next link. The same IDUE route choice behavior of HDVs can 

be observed from the HMPC by Figure 14 (b). Under RELAX, as shown in Figure 14 (c), HDVs follow 

the IDUE principle at most time. However, when the travel times of the two candidate routes are close 

(e.g., 𝑡 ∈ [7,13]), HDVs may be assigned to both outgoing links (1,2) and (1,3). This is resulted by the 

relaxation solution method. Such a method relaxes the complementarity equilibrium constraints to 

nonlinear constraints by introducing relaxation parameters, which will cause errors, especially when the 

travel times of the two paths are close. Please see Ban and Liu (2009) and Ban et al. (2006) for detailed 

discussion of the relaxation method. Under DSO, all vehicles are considered as CAVs so there is no 

relation between the flows and path travel times. 

 

There are mainly two ways by which CAVs improve system performance. First, CAVs can be assigned to 

paths that are not with the minimum travel time, which can however help reduce network congestion. As 

shown in Figure 14 (a), under IDUE, HDVs always select the path with minimum travel time and try to 

select the shortest path with maximum capacity. When CAVs are introduced into the network, as shown 

in Figure 14 (b) and (c), although HDVs still follow the IDUE principle, the CAVs can be assigned to 

other paths. These paths are generated based on the objective to improve the network performance. 

Although the travel times of some CAVs are increased, the network wide performance is improved, as 
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shown in Figure 10. Second, CAVs can increase link capacity thus improve the network performance. 

Two extreme conditions are the IDUE where all vehicles are HDVs and the DSO where all vehicles are 

CAVs. It is shown from Figure 14 (a) and (d) that the capacities of link (1,2) and (1,3) increase when 

HDVs are replaced by CAVs. As a result, the congestion of the network is reduced (which is why the 

travel times of the two paths almost don’t change in Figure 14 (d)). 

The first way discussed above by which CAVs improve the network performance also brings the fairness 

(i.e., equity) issue between CAVs and HDVs. As shown in Figure 14 (b), during [0,10] min, CAVs are 

assigned to route “1-2-4-5”, which has longer instantaneous travel time than the route “1-3-4-5”. This 

indicates the CAVs “sacrifice” their instantaneous travel times to help reduce the system-wide congestion 

of the network. At 11 min, CAVs are assigned to route “1-2-4-5”, which is the shortest route. Then, 

during (11,15] min, CAVs are assigned to route “1-3-4-5” thus again “sacrifice” their instantaneous travel 

times for improving the system performance. The difference of the actual CAV travel time and the 

minimum path travel time may be considered as how “unfair” the control scheme imposes to CAVs. We 

provide more discussions of this later in Section 5.2.  

5.1.3. Five-node network with long time horizon 

Real world traffic is usually spanned widely at the temporal domain. Thus, we extend the time horizon to 

300 minutes for the five-node network, of which the demand profile is shown in Figure 15. For this 

scenario, solving the MPEC directly by the relaxation method is difficult. We apply the HMPC method to 

  

(a) IDUE (b) HMPC (30% CAV penetration) 

  

(c) RELAX (30% CAV penetration) (d) DSO 

Figure 14. Routes of HDVs and CAVs under different methods at node 1 
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generate routes for CAVs and compare the network performance with the IDUE and DSO cases. The 

result is shown in Figure 16, which indicates similar results as those for the short time horizon scenario. 

As the CAV penetration increases from 0% to 100%, the performance of HMPC increases from 0% to 

75%. The difference between the performance of DSO and the HMPC under 100% CAV penetration is 

only 1.01%, which indicates that the HMPC can achieve almost the same performance as the DSO at 

100% CAV penetration. It is shown the maximum improvement of the network performance under this 

long time horizon scenario is greater than that under the short time horizon scenario. Under the IDUE 

case, when one path becomes congested, HDVs will not immediately change their routes. Instead, they 

will stick to the congested path until the instantaneous travel time of that path becomes larger than that of 

another path. Such phenomenon becomes more dominant if the free-flow travel times of different paths 

differ. For example, a path with longer free-flow travel time may stay empty while the path with shorter 

free-flow travel time is heavily congested, as long as the congestion-increased travel time is less than the 

difference between the free-flow travel times. This lies in the nature of IDUE, since the “instantaneous” 

travel time is used to calculate travel cost. In addition, the longer time horizon (with travel demand), the 

heavier the congestion. On the other hand, HMPC could reduce the congestion by assigning CAVs to 

paths that can help improve network system performance.  

 

Figure 15. Demand profile of the five-node network with a long time horizon 

 

5.2. The Sioux Falls Network 
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Figure 16. Performance of HMPC on the five-node network 
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We also test the HMPC on the Sioux Falls network, which is a larger network (compared with the five-

node network) with a more general network structure. The geometry of the Sioux Falls network is shown 

in Appendix D. The reader can refer to Ma et al. (2018) and many other published works for the detail of 

the Sioux Falls network. We set node 15 as the (single) destination and all other 23 nodes as the origins. 

The demands are adopted from Lablanc (1975), which is shown in Table 1. The total simulation time is 

90 minutes. We distribute the daily demand uniformly and apply such demand in the first 30 minutes. 

Same as the five-node network experiment, we leave a 60-minute clearance time. Figure 17 shows the 

performances of the HMPC algorithm under different CAV penetration rates, compared with both the 

performances of IDUE and DSO. The figure shows similar results as that in Figure 16 except for two 

aspects. First, the curves of HMPC performances in the Sioux Falls network show more “nonlinear” 

trends compared with those of the five-node network. This may be caused by the different network 

structure of the two scenarios. Second, the maximum improvement of the Sioux Falls network is far less 

than the maximum improvement of the five-node network with long time horizon, but similar to the 

maximum improvement of the five-node network with short time horizon.  

 

Table 1. Demands to node 15 of the Sioux Falls network (thousand vehicles per day) 

Node Demand Node Demand Node Demand Node Demand 

1 5 7 5 13 7 19 8 

2 1 8 6 14 13 20 11 

3 1 9 9 15 0 21 8 

4 5 10 40 16 12 22 26 

5 2 11 14 17 15 23 10 

6 2 12 7 18 2 24 4 

 

As shown in Figure 18, we illustrate the route choices behavior for Sioux Falls network by analyzing the 

routes of HDVs and CAVs entering the network from node 7, since there are only two candidate routes 

for this node which could make the analysis clear. Note that in Figure 18, 𝑡𝑡𝑖−𝑗 represents the sum of the 

travel time of link (𝑖, 𝑗) and the minimum travel time from node 𝑗 to the destination. As shown in Figure 

18 (a), if all vehicles are HDVs following IDUE, the HDVs select the link on the minimum travel time 

  

(a) Performance (b) Improvement 

Figure 17. Performance of HMPC on Sioux Falls network 
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path as the route. Specifically, during the first 27 minutes, link (7,18) is on the minimum travel time path, 

therefore, all the HDVs flow into link (7,18). At 𝑡 = 28 min, the travel time through link (7,8) is slightly 

shorter than that through (7,18), thus HDVs select (7,8) as their route. After that, link (7,18) is again the 

on the shortest travel time path, thus HDVs flow into link (7,18). Under HMPC, as shown in Figure 18 

(b), HDVs still follow the IDUE condition, while CAVs’ routes are not related to the minimum travel 

time path.  

 

 

Figure 19. FIFO condition of four randomly selected links (under HMPC, 30% CAV penetration) 
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(a) IDUE (b) HMPC 

Figure 18. Routes of HDV and CAV flows entering the network from node 7 under IDUE and HMPC 
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To check whether the FIFO condition is satisfied for the Sioux Falls network, Figure 19 shows the FIFO 

condition of four randomly selected links (under HMPC, 30% CAV penetration). It shows that the FIFO 

conditions (i.e., 𝜏̇𝑖,𝑗 > −1) are all satisfied for the selected links. 

 
Before concluding the numerical experiments, we present more results and discussions about the equity 

issues of the proposed control scheme to CAVs. First, for a given CAV penetration, for the HMPC case 

(i.e., with the control of CAVs), we can calculate the total travel times of all CAVs and all HDVs 

separately. Then, we assign both HDVs and CAVs to follow IDUE for the same CAV penetration (i.e., 

without the control of CAVs), for which the capacities of links will change according to the penetration of 

CAVs; see Equation (2) in the manuscript. We also collect the total travel times of all CAVs and all 

HDVs separately for this without-control case. Finally, we compare the performance (i.e., total travel 

times) of HDVs and CAVs, respectively, under the above two cases (i.e., with control and without control 

of CAVs) to analyze the equity issue. We test this for various penetration rates of CAVs. Figure 1 shows 

the performance improvements of HDVs and CAVs under the control of CAVs (i.e., HMPC) compared 

with the case of without control of CAVs. 

 

For the five-node network (Figure 20 (a)), it is shown that, under any penetration rate, the performances 

of CAVs and HDVs are both improved, while the improvements for HDVs are generally higher. This 

indicates that there is “sacrifice” of CAVs in the control case (because their improvements are smaller 

than those of HDVs), whereas the sacrifice is not that dramatic. Although CAVs may sacrifice their 

instantaneous travel time at a specific time instant, the overall total travel time of CAVs can still be 

reduced due to the fact that CAVs can improve the capacities of the links. The actual travel times of 

CAVs might be reduced due to the increased capacities. For the Sioux Falls network (Figure 20 (b)), 

although the performances of HDVs are always improved under different CAV penetration rates for the 

case with CAV control, the performances of CAVs are degraded when the penetration is less than 90%. 

The network structure of Sioux Falls is much more complex than the five-node network. For CAVs, the 

benefits introduced by the increased capacities cannot overcome the sacrifice introduced by being 

assigned to the routes with longer travel times. 

 

 
 

(a) Five-node Network (b) Sioux Falls Network 

Figure 20.  Performance improvements of HDVs and CAVs under HMPC compared with IDUE 
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The above results clearly show that, for the proposed scheme of CAV control, CAVs sacrifice themselves 

in general to improve the overall network performance, and thus may need to be compensated for their 

sacrifice. However, depending on the specific network structures or demand patterns of different 

networks, the level of sacrifice may be different, for which different compensation and incentive schemes 

may be designed to CAV passengers. This can be an important future research direction. 

6. CONSLUSIONS AND FUTURE RESEARCH 

This research proposed a double queue (DQ)-based mixed traffic flow model to describe the link 

dynamics and nodal flow transitions of the mixed HDV/CAV traffic flow. Based on the DQ model, we 

developed a dynamic bi-level framework to capture the behavior and interaction of HDVs and CAVs at 

the network level. The CAVs’ route control problem is the upper level and the HDVs’ route choice 

problem is the lower level. We developed mathematical models to describe the HDVs’ and CAVs’ route 

choice behavior by the IDUE principle and the DSO principle, respectively. An optimal control problem 

with equilibrium constraints (OCPEC) model was formulated to find the system performance oriented 

routes for CAVs in the network. We discretized the OCPEC to an MPEC and proposed the solution 

techniques. The nonlinear and non-smooth properties of the MPEC make it hard to be efficiently solved 

directly (e.g., by the relaxation method). To overcome this shortcoming, we developed a heuristic 

decomposition based MPC (HMPC) method by decomposing the original MPEC problem into two 

separate problems (i.e., the IDUE problem and the DSO problem).  

 

Experiment results on a five-node network showed that the OCPEC model could improve the network 

performance compared with the scenario where all vehicles are HDVs, and the two solution methods can 

achieve similar results. Specifically, as the CAV penetration increases from 0% to 100%, the two solution 

methods reduce the network-wide total travel time dramatically. The maximum gain can achieve 37% 

under the studied scenario. However, for larger networks or longer time horizons, the relaxation method 

does not work well, while HMPC can still apply. We then tested the HMPC method on the five-node 

network with a longer time horizon and on the Sioux Falls network. The results further showed the 

effectiveness of the HMPC method.  

 

There are several limitations of the proposed model and the HMPC solution method, which merit further 

investigations. First, we assume that CAVs always follow the assigned routes to improve the network 

performance. Although in theory this could be done by controlling the CAVs routes directly via 

communication and automation, doing so may be “unfair” to the CAV passengers. Therefore, this equity 

issue needs to be further investigated so that compensation and incentive schemes for CAV passengers 

can be developed to compensate the extra travel times (and/or other related costs) they may experience. 

To this end, what incentives and how to implement them should be carefully studied. Second, we 

assumed a constant shockwave speed for each link. Although the constant shockwave speed makes it 

easier to model and solve the studied problem, both shockwave speed and jam density may change in 

real-world scenarios and thus the constant shockwave speed may only represent a special (and simplified) 

case. Relaxing such constant shockwave speed to varying shockwave speed is one of the future research 

directions. Changing shockwave speeds will lead to a dynamic network model with time-varying, state-

dependent delays. For such models, the proposed modeling framework in this paper still apply which 

however requires certain approximation schemes, e.g., those proposed in Ma et al. (2014) and Friesz and 

Mookherjee (2006), to generate and solve sub-problems similar to the network model in this paper. Deep 

learning and AI models may also hold great promise in developing such approximation schemes (Song et 

al., 2017), which is worthwhile for future investigations. Third, the possible FIFO violation issues of the 

DQ-based traffic dynamics model needs to be further studied. For this, one may need to design improved 

traffic flow models that guarantee the condition in Proposition 1 directly or design the control scheme of 

CAVs (e.g., by adding constraints) so that the increase of the CAV penetration on a link is not dramatic 

so that the FIFO condition in Proposition 1 can be satisfied. Fourth, we assume full observability of the 



network information. In real-world traffic, such an assumption may not hold, and only limited 

information can be accessed. Developing models and algorithms that can work under partial observability 

is an interesting topic. Fifth, this paper focuses on network level flow control, while neglecting the control 

and optimization of individual vehicles such as vehicle trajectory and motion planning. It is an interesting 

future research direction to integrate network level flow control and micro-level individual vehicle control 

in one modeling framework. Last but not least, the proposed OCPEC model and the HMPC solution 

method need to be further tested and validated on larger, real-world transportation networks. The authors 

plan to work on these research topics and results may be reported in subsequent papers. 
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APPENDIX A: NOTATION LIST 

Network notation  

𝒩 Set of nodes 

ℒ Set of links 

𝐼𝑗 Incoming nodes that are directly linked to node 𝑗 

𝐾𝑗 Outgoing nodes that are directly linked from node 𝑗 

𝐶𝑖̅,𝑗
ℎ𝑑𝑣  Capacity of link (𝑖, 𝑗) when all vehicles are HDVs 

𝐶𝑖̅,𝑗
𝑐𝑎𝑣  Capacity of link (𝑖, 𝑗) when all vehicles are CAVs 

𝑄̅𝑖,𝑗 Queue storage capacity of link (𝑖, 𝑗) 

𝛼, 𝛽 The parameter for the modified point queue model 

𝜏𝑖,𝑗
0  The free flow travel time of link (𝑖, 𝑗) 

𝜏𝑖,𝑗
𝑤  The shockwave travel time of link (𝑖, 𝑗) 

∆𝑇 The prediction time horizon of the predictive controller 

Time-dependent variables for network dynamics (continuous-time) 

𝐶𝑖̅,𝑗(𝑡) Capacity of link (𝑖, 𝑗) at time 𝑡 

𝐶𝑖̅,𝑗
𝑠 (𝑡) Sending flow capacity of link (𝑖, 𝑗) at time 𝑡 

𝐶𝑖̅,𝑗
𝑟 (𝑡) Receiving flow capacity of link (𝑖, 𝑗) at time 𝑡 

𝑄𝑖,𝑗(𝑡) Upstream queue capacity of link (𝑖, 𝑗) at time 𝑡 

  

𝑑𝑖
𝑐𝑎𝑣(𝑡) Demand of CAV from node 𝑖 to destination at time 𝑡 

𝑑𝑖
ℎ𝑐𝑣(𝑡) Demand of HDV from node 𝑖 to destination at time 𝑡 

𝑛𝑖,𝑗(𝑡) Number of all vehicles of link (𝑖, 𝑗) at time 𝑡 

𝑛𝑖,𝑗
ℎ𝑑𝑣(𝑡) Number of HDVs of link (𝑖, 𝑗) at time 𝑡 

𝑛𝑖,𝑗
𝑐𝑎𝑣(𝑡) Number of CAVs of link (𝑖, 𝑗) at time 𝑡 

  

𝑝𝑖,𝑗(𝑡) Total inflow rate to ink (𝑖, 𝑗) at time 𝑡 

𝑝𝑖,𝑗
ℎ𝑑𝑣(𝑡) Inflow rate of HDVs to link (𝑖, 𝑗) at time 𝑡 

𝑝𝑖,𝑗
𝑐𝑎𝑣(𝑡) Inflow rate of CAVs to link (𝑖, 𝑗) at time 𝑡 

𝑝̂𝑖,𝑗
ℎ𝑑𝑣(𝑡) Pseudo inflow of HDVs to link (𝑖, 𝑗) at time 𝑡, calculated by IDUE 

𝑝𝑗,𝑘
𝑃𝑄

(𝑡) Inflow rate to ink (𝑖, 𝑗) at time 𝑡 when modeled by point queue 

  

𝑞𝑖,𝑗
𝑈 (𝑡) Upstream queue length of link (𝑖, 𝑗) at time 𝑡 

𝑞𝑖,𝑗
𝐷 (𝑡) Downstream queue length of link (𝑖, 𝑗) at time 𝑡 

𝑞𝑖,𝑗
𝐷,ℎ𝑑𝑣(𝑡) Number of downstream HDVs on link (𝑖, 𝑗) at time 𝑡 

𝑞𝑖,𝑗
𝐷,𝑐𝑎𝑣(𝑡) Number of downstream CAVs on link (𝑖, 𝑗) at time 𝑡 

  

𝑣𝑖,𝑗(𝑡) Total exit flow rate from link (𝑖, 𝑗) at time 𝑡 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) Exit flow rate of HDVs from link (𝑖, 𝑗) at time 𝑡 

𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) Exit flow rate of CAVs from link (𝑖, 𝑗) at time 𝑡 

𝑣𝑗,𝑘
𝑃𝑄(𝑡) Exit flow rate from link (𝑖, 𝑗) at time 𝑡 when modeled by point queue 

  
𝜏𝑖,𝑗(𝑡) Travel time of link (𝑖, 𝑗) at time 𝑡 



𝜂𝑖
𝑠(𝑡) The instantaneous minimum travel time from link 𝑖 to destination 𝑠 at 

time 𝑡 

𝜌𝑖,𝑗(𝑡) CAV penetration of link (𝑗, 𝑘) at time 𝑡 

Ω(𝑡) The information of the whole network at time 𝑡 

  

𝐺(𝑖,𝑗)→(𝑗,𝑘)(𝑡) Total transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at time 𝑡 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣 (𝑡) HDVs transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at time 𝑡 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣 (𝑡) CAVs transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at time 𝑡 

𝑅𝑖,𝑗(𝑡) Receiving flow of link (𝑖, 𝑗) at time 𝑡 

𝑆𝑖,𝑗(𝑡) Sending flow from link (𝑖, 𝑗) at time 𝑡 

𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) Sending flow of HDVs from link (𝑖, 𝑗) at time 𝑡 

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡) Sending flow of CAVs from link (𝑖, 𝑗) at time 𝑡 

Time-dependent variables for network dynamics (discrete-time) 

ℎ Time step of the discretization 

𝑡𝑖
ℎ , 𝑖 = 0,1,2 … 𝑁ℎ  Discretized time  

𝐶𝑖̅,𝑗
ℎ,𝑟 Capacity of link (𝑖, 𝑗) at discrete time 𝑟  

𝑄̅𝑖,𝑗
ℎ,𝑟

 Upstream queue capacity of link (𝑖, 𝑗) at discrete time 𝑟 

  

𝑑𝑖
𝑐𝑎𝑣,ℎ,𝑟 Demand of CAV from node 𝑖 to destination at discrete time 𝑟 

𝑑𝑖
ℎ𝑑𝑣,ℎ,𝑟 Demand of HDV from node 𝑖 to destination at discrete time 𝑟 

𝑛𝑖,𝑗
ℎ,𝑟 Number of all vehicles of link (𝑖, 𝑗) at discrete time 𝑟 

𝑛𝑖,𝑗
ℎ𝑑𝑣,ℎ,𝑟 Number of HDVs of link (𝑖, 𝑗) at discrete time 𝑟 

𝑛𝑖,𝑗
𝑐𝑎𝑣,ℎ,𝑟 Number of CAVs of link (𝑖, 𝑗) at discrete time 𝑟 

  

𝑝𝑖,𝑗
ℎ,𝑟 Total inflow rate to ink (𝑖, 𝑗) at discrete time 𝑟 

𝑝𝑖,𝑗
ℎ𝑑𝑣,ℎ,𝑟 Inflow rate of HDVs to link (𝑖, 𝑗) at discrete time 𝑟 

𝑝𝑖,𝑗
𝑐𝑎𝑣,ℎ,𝑟 Inflow rate of CAVs to link (𝑖, 𝑗) at discrete time 𝑟 

𝑝̂𝑗,𝑘
ℎ𝑑𝑣,ℎ,𝑟 Pseudo inflow of HDVs to link (𝑖, 𝑗) at discrete time 𝑟 calculated by 

IDUE 

  

𝑞𝑖,𝑗
𝑈,ℎ,𝑟 Upstream queue length of link (𝑖, 𝑗) at discrete time 𝑟 

𝑞𝑖,𝑗
𝐷,ℎ,𝑟 Downstream queue length of link (𝑖, 𝑗) at discrete time 𝑟 

𝑞𝑖,𝑗
𝐷,ℎ𝑑𝑣,ℎ,𝑟 Number of downstream HDVs on link (𝑖, 𝑗) at discrete time 𝑟 

𝑞𝑖,𝑗
𝐷,𝑐𝑎𝑣,ℎ,𝑟 Number of downstream CAVs on link (𝑖, 𝑗) at discrete time 𝑟 

  

𝑣𝑖,𝑗
ℎ,𝑟 Total exit flow rate from link (𝑖, 𝑗) at discrete time 𝑟 

𝑣𝑖,𝑗
ℎ𝑑𝑣,ℎ,𝑟 Exit flow rate of HDVs from link (𝑖, 𝑗) at discrete time 𝑟 

𝑝𝑖,𝑗
𝑐𝑎𝑣,ℎ,𝑟 Exit flow rate of CAVs from link (𝑖, 𝑗) at discrete time 𝑟 

  

𝜏𝑖,𝑗
ℎ,𝑟 Travel time of link (𝑖, 𝑗) at discrete time 𝑟 

𝜂𝑖
𝑠,ℎ,𝑟 The instantaneous minimum travel time from link 𝑖 to destination 𝑠 at 

discrete time 𝑟 



𝜌𝑖,𝑗
ℎ,𝑟 CAV penetration of link (𝑗, 𝑘) at discrete time 𝑟 

  

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ,𝑟  Total transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at discrete time 𝑟 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
ℎ𝑑𝑣,ℎ,𝑟  HDVs transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at discrete time 𝑟 

𝐺(𝑖,𝑗)→(𝑗,𝑘)
𝑐𝑎𝑣,ℎ,𝑟  CAVs transition flow from link (𝑖, 𝑗) to link (𝑗, 𝑘) at discrete time 𝑟 

𝑅𝑖,𝑗
ℎ,𝑟 Receiving flow of link (𝑖, 𝑗) at discrete time 𝑟 

𝑆𝑖,𝑗
ℎ,𝑟 Sending flow from link (𝑖, 𝑗) at discrete time 𝑟 

𝑆𝑖,𝑗
ℎ𝑑𝑣,ℎ,𝑟 Sending flow of HDVs from link (𝑖, 𝑗) at discrete time 𝑟 

𝑆𝑖,𝑗
𝑐𝑎𝑣,ℎ,𝑟 Sending flow of CAVs from link (𝑖, 𝑗) at discrete time 𝑟 

APPENDIX B 

Lemma B1: Equation (10) in DQ is equivalent to Equation (9) in LTM. 

Proof: Here we show Equation (7) in DQ can be derived from Equation (6) in LTM. 

First, divide both sides in Equation (9) by ∆𝑡, we have 

𝑆𝑖,𝑗(𝑡) = min (
𝑁(𝑥𝑖,𝑗

𝑖𝑛, 𝑡 + ∆𝑡 − 𝜏𝑖,𝑗
0 ) − 𝑁(𝑥𝑖,𝑗

𝑜𝑢𝑡, 𝑡)

∆𝑡
,     𝐶̅𝑖,𝑗

𝑠
(𝑡) ) (53) 

Notice that 𝑞𝑖,𝑗
𝐷 (𝑡) = 𝑁(𝑥𝑖,𝑗

𝑖𝑛, 𝑡 − 𝜏𝑖,𝑗
0 ) − 𝑁(𝑥𝑖,𝑗

𝑜𝑢𝑡, 𝑡). If 𝑞𝑖,𝑗
𝐷 (𝑡) = 0, i.e., 𝑁(𝑥𝑖,𝑗

𝑖𝑛, 𝑡 − 𝜏𝑖,𝑗
0 ) = 𝑁(𝑥𝑖,𝑗

𝑜𝑢𝑡, 𝑡), let 

∆𝑡 → 0, we have 

lim
∆𝑡→0

𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 + ∆𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 − 𝜏𝑖,𝑗

0 )

∆𝑡
= 𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗

0 ) (54) 

This means 

𝑆𝑖,𝑗(𝑡) = min (𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
0 ),     𝐶̅𝑖,𝑗

𝑠
(𝑡) ) ,     𝑖𝑓 𝑞𝑖,𝑗

𝐷 (𝑡) = 0 (55) 

If 𝑞𝑖,𝑗
𝐷 (𝑡) > 0, we have  

lim
∆𝑡→0

𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 + ∆𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑁(𝑥𝑖,𝑗
𝑜𝑢𝑡 , 𝑡)

∆𝑡

= lim
∆𝑡→0

𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 + ∆𝑡 − 𝜏𝑖,𝑗

0 ) − 𝑁(𝑥𝑖,𝑗
𝑖𝑛, 𝑡 − 𝜏𝑖,𝑗

0 ) + 𝑞𝑖,𝑗
𝐷 (𝑡)

∆𝑡

= 𝑝𝑖,𝑗(𝑡 − 𝜏𝑖,𝑗
0 ) + lim

∆𝑡→0

𝑞𝑖,𝑗
𝐷 (𝑡)

∆𝑡
= +∞ 

(56) 

Thus, 

𝑆𝑖,𝑗(𝑡) = min (+∞,     𝐶̅𝑖,𝑗
𝑠

(𝑡) ) = 𝐶̅𝑖,𝑗
𝑠

(𝑡),     𝑖𝑓 𝑞𝑖,𝑗
𝐷 (𝑡) > 0 (57) 

This concludes the proof. 

APPENDIX C 

Algorithm-1: The HDV routes adjustor and CAV routes generator 

Calculate the receiving capacity 𝑅𝑗,𝑘(𝑡) of each outgoing link (𝑗, 𝑘),  𝑘 ∈ 𝐾𝑗 

 



I. Adjust HDV routes, assign CAV routes, check receiving capacity 

If 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) ≥ 𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡) 

Set 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) = 𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡) 

If 𝑝
𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡) ≥ 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) 

Set 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡) = min {𝑝

𝑗,𝑘ℎ𝑑𝑣
𝑃𝑄 (𝑡) − 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡),     𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡) − 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)} 

Set 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) = min{𝑝𝑗,𝑘

𝑃𝑄(𝑡),    𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡)} for 𝑘 ∈ 𝐾𝑗 and 𝑘 ≠ 𝑘ℎ𝑑𝑣 

Else 

Set 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡) = 0 

Set 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) = min {[∑ 𝑝

𝑗,𝑘′
𝑃𝑄 (𝑡)𝑘′∈𝐾𝑗

− 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)]

𝑝𝑗,𝑘
𝑃𝑄(𝑡)

∑ 𝑝
𝑗,𝑘′
𝑃𝑄 (𝑡)

𝑘′∈𝐾𝑗,𝑘′≠𝑘ℎ𝑑𝑣
,    𝑅𝑗,𝑘ℎ𝑑𝑣(𝑡)} for 𝑘′ ∈ 𝐾𝑗 and 

𝑘′ ≠ 𝑘ℎ𝑑𝑣 

Calculate total assigned flows for both HDVs and CAVs: 𝑃𝑗
ℎ𝑑𝑣 = ∑ 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)𝑘ℎ𝑑𝑣 , 𝑃𝑗

𝑐𝑎𝑣 = ∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘  

 

II. Calculate the proportion of HDVs and CAVs of the sending flows 

Initialize 𝑆̂𝑗
ℎ𝑑𝑣(𝑡) = 𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡) = 𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡) = 0. 

For 𝑖 ∈ 𝐼𝑗 

If 𝑆̂(𝑖,𝑗)
ℎ𝑑𝑣(𝑡) > 0 

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)+=𝑆̂(𝑖,𝑗)

ℎ𝑑𝑣(𝑡); 𝑆̂𝑗,ℎ𝑑𝑣
𝑐𝑎𝑣 (𝑡)+=𝑆̂(𝑖,𝑗)

𝑐𝑎𝑣 (𝑡) 

Else 

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 +=𝑆̂(𝑖,𝑗)

𝑐𝑎𝑣 (𝑡) 

 

III. Modify HDV and CAV routes to satisfy the DQ nodal model) 

If there is a 𝑘ℎ𝑑𝑣 such that 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) > 0 

Calculate the proportion of CAVs to HDVs of the coupled sending flow: 𝜌 =
𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

 

If ∑ 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 > 𝜌𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) 

For 𝑘 ∈ 𝐾𝑗 

𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡)  = 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡) and 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡)  = 𝑝̂𝑗,𝑘

𝑐𝑎𝑣(𝑡) 

For 𝑖 ∈ 𝐼𝑗 

If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) > 0 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)

𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

  and 𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) = 𝑝̂

𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡)

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

 

Else 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 0  and 𝑣(𝑖,𝑗)

𝑐𝑎𝑣 (𝑡) = 𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

∑ 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘 −𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

 

Else 

For 𝑘 ∈ 𝐾𝑗 

If 𝑘 = 𝑘ℎ𝑑𝑣 

𝑝
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡) = (∑ 𝑝̂𝑗,𝑘

𝑐𝑎𝑣(𝑡)𝑘 + 𝑝̂
𝑗,𝑘ℎ𝑑𝑣
ℎ𝑑𝑣 (𝑡))

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)+𝑆̂𝑗,ℎ𝑑𝑣

𝑐𝑎𝑣 (𝑡)+𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

 and 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡) =

𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) + 𝑝̂𝑗,𝑘

ℎ𝑑𝑣(𝑡) − 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) 

Else 

𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) = 0 and 𝑝𝑗,𝑘

𝑐𝑎𝑣(𝑡) = 𝑝̂𝑗,𝑘
𝑐𝑎𝑣(𝑡) 



For 𝑖 ∈ 𝐼𝑗 

If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) > 0 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑝𝑗,𝑘

ℎ𝑑𝑣(𝑡)
𝑆𝑖,𝑗

ℎ𝑑𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

  and 𝑣𝑖,𝑗
𝑐𝑎𝑣(𝑡) = 𝑝𝑗,𝑘

ℎ𝑑𝑣(𝑡)
𝑆𝑖,𝑗

𝑐𝑎𝑣(𝑡)

𝑆̂𝑗
ℎ𝑑𝑣(𝑡)

 

Else 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) = 0  

Else 

For 𝑘 ∈ 𝐾𝑗 

𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡) = 𝑝̂𝑗,𝑘

𝑐𝑎𝑣(𝑡) and 𝑝𝑗,𝑘
ℎ𝑑𝑣(𝑡) = 0 

For 𝑖 ∈ 𝐼𝑗 

If 𝑆𝑖,𝑗
ℎ𝑑𝑣(𝑡) > 0 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) = 0  

Else 

𝑣𝑖,𝑗
ℎ𝑑𝑣(𝑡) = 0 and 𝑣𝑖,𝑗

𝑐𝑎𝑣(𝑡) = ∑ 𝑝𝑗,𝑘
𝑐𝑎𝑣(𝑡)𝑘

𝑆𝑖,𝑗
𝑐𝑎𝑣(𝑡)

𝑆̂𝑗,𝑜𝑛𝑙𝑦
𝑐𝑎𝑣 (𝑡)

  

End  

 

 

Algorithm-2: The overall algorithm 

For 𝑡 = 1: 𝑁, do 

Collect the real transition flow of HDVs and CAVs from previous step 𝑝𝑗,𝑘
∗ (𝑡 − 1), 𝑣𝑖,𝑗

∗ (𝑡 − 1) 

Move the DQ link dynamics 1 step forward 

Collect current network states 𝑛𝑖,𝑗
∗ (𝑡),  𝑞𝑖,𝑗

𝐷,∗(𝑡), 𝑞𝑖,𝑗
𝑈 (𝑡), 𝑆𝑖,𝑗

∗ (𝑡), 𝑅𝑗,𝑘(𝑡) and obtain the demands of 

HDVs and CAVs 𝑑𝑗
∗(𝑡) 

Calculate the routes of HDVs by IDUE principle (i.e., Equation (22) and (23)) and get 𝑝̂𝑗,𝑘
ℎ𝑑𝑣(𝑡) 

Calculate the expected routes of both HDVs and CAVs by solving the PQ-based DSO (Equation (49)-

(52)) and get 𝑝𝑗,𝑘
𝑃𝑄(𝑡), 𝑣𝑖,𝑗

𝑃𝑄(𝑡) 

Adjust HDV routes and generate CAV routes using Algorithm-1 and get 𝑝𝑗,𝑘
∗ (𝑡), 𝑣𝑖,𝑗

∗ (𝑡) 

End  

  



APPENDIX D: SIOUX FALLS NETWORK 

 


