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Abstract: Improving the system performance of a traffic network by dynamically controlling the routes
of connected and automated vehicles (CAVs) is an appealing profit that CAVs can bring to our society.
Considering that there may be a long way to achieve 100% CAYV penetration, we discuss in this paper the
mixed traffic flow of human driven vehicles (HDVs) and CAVs on a transportation network. We first
propose a double queue (DQ) based mixed traffic flow model to describe the link dynamics as well as the
flow transitions at junctions. Based on this mixed flow model, we develop a dynamic bi-level framework
to capture the behavior and interaction of HDVs and CAVs. This results in an optimal control problem
with equilibrium constraints (OCPEC), where HDVs’ route choice behavior is modeled at the lower level
by the instantaneous dynamic user equilibrium (IDUE) principle and the CAVs’ route choice is modelled
by the dynamic system optimal (DSO) principle at the upper level. We show how to discretize the
OCPEC to a mathematical programming with equilibrium constraints (MPEC) and discuss its properties
and solution techniques. The non-convex and non-smooth properties of the MPEC make it hard to be
efficiently solved. To overcome this disadvantage, we develop a decomposition based heuristic model
predictive control (HMPC) method by decomposing the original MPEC problem into two separate
problems: one IDUE problem for HDVs and one DSO problem for CAVs. The experiment results show
that, compared with the scenario that all vehicles are HDVss, the proposed methods can significantly
improve the network performance under the mixed traffic flow of HDVs and CAVs.

Keywords: Human driven vehicles (HDVs); Connected and autonomous vehicles (CAVs); Mixed traffic
flow; Dynamic user equilibrium (DUE); Instantaneous dynamic user equilibrium (DUE); Dynamic
system optimal (DSO); dynamic bi-level model; Model predictive control (MPC)

1. INTRODUCTION

In the last decade or so, connected and automated vehicles (CAVs) have been one of the major disruptive
mobility technologies in the transportation landscape. Recent developments on CAVs indicate that, despite
tremendous advances that have been achieved on CAVs so far, it will take a relatively long time to reach
full automation (i.e., level 5 as defined by SAE international (2016)) as well as a high market penetration
of CAVs. Thus, it is expected that in the near future, we will see both human driven vehicles (HDVs) and
CAVs on the roads. CAVs moving along with HDVs in the traffic stream will certainly bring opportunities
to improve the traffic flow (e.g., a single CAV may be used to dampen traffic shockwaves; see Cui et al.
(2017)). At the same time, it is important to develop methodologies to model the behavior and interactions
of HDVs and CAVs, and to understand the overall network-wide effect of this mixed traffic flow. Human
drivers are expected to minimize their own travel costs with little or no consideration to improve system
level performance of the network. Their behavior is often assumed to follow the dynamic user equilibrium
(DUE, see Peeta and Ziliaskopoulos (2001); Ran and Boyce (1996)) principle on a transportation network.
For CAVs, they may be modeled in the same way as HDVs to follow DUE. However, thanks to their added
communication and automation features, CAVs may be leveraged to implement certain strategies (such as
routing and dispatching by transportation system mangers or ride-sourcing companies) to improve the



system performance of the entire network (e.g., the total system travel time and/or total fuel consumption).
Such behavior can often be modeled by the dynamic system optimal (DSO) principle (Peeta and
Ziliaskopoulos, 2001; Ran and Boyce, 1996). In this paper, we aim to explore such a system level control
mechanism of CAVs to help improve the performance of a transportation network which consists of both
CAVs and HDVs.

There are two key challenges to achieve this goal: First, how to properly model the impact of CAVs on the
mixed traffic flow of HDVs and CAVs; and second, having the model of mixed traffic flow, how to model
the behavior and interaction of HDVs and CAVs on the network level, based on which to improve the
system performance by leveraging the automation and communication capabilities of CAVs. A detailed
literature review of these two topics is presented in Section 2 . The first challenge has been studied recently
in the literature, e.g., investigations on how traffic flow characteristics (e.g., capacity) are connected with
the penetration of CAVs (Levin and Boyles, 2016; Liu et al., 2018). On the other hand, research on the
second challenge has just started. Current studies have focused on static traffic assignment (Bagolee et el.,
2016; Bahrami and Roorda, 2020), assumed 100% CAV penetration (Levin, 2017), or focused on local
optimization, e.g., at traffic intersections (Levin and Boyles, 2016; Patel et al., 2016). Improving network
level performance under mixed traffic flow by dynamically controlling the routes of CAVs remains an
untapped area. This paper aims to fill this gap by designing a network level framework to model the
dynamic interaction between HDVs and CAVs, based on which to develop a dynamic CAVs route
controller under mixed traffic flow to improve the overall network performance.

We design a double queue (DQ) based mixed flow model to describe the dynamics of HDVs and CAVs.
This mixed flow model explicitly considers the impact of CAVs to the characteristics of traffic flow (such
as the flow capacity). The First-In-First-Out (FIFO) condition of the mixed-flow DQ model is also
investigated. We then model the HDVs’ behavior by the instantaneous dynamic user equilibrium (IDUE,
see Ban et al. (2012a)) principle and the CAVs’ behavior by DSO. Meanwhile, we model the interaction
between HDVs and CAVs at the network level as a leader-follower game, in which CAVs are the leader
and HDVs are the follower. Such a framework mathematically leads to a dynamic bi-level formulation. The
whole problem is then formulated as an optimal control problem with equilibrium constraints (OCPEC),
where CAVs’ routes are the decision variable, system performance is the objective, mixed traffic flow
dynamics are the constraints, and HDVs’ route choice behavior (i.e., IDUE) is the lower-level problem.
The OCPEC is hard to solve due to the non-convex and non-smooth characteristics introduced by the HDVs’
behavior. We discretize the OCPEC to a mathematical program with equilibrium constraints (MPEC) that
may be solved by certain relaxation methods. However, such a relaxation-based solution method cannot be
applied to even small-size networks with long time horizons. We then propose a decomposition based
heuristic model predictive control (HMPC) method to address this problem. HMPC decomposes the
original OCPEC problem to two sub-problems that can be solved relatively easily.

The key contributions of this paper are that we:

1) Propose a DQ based mixed traffic flow model to describe the traffic dynamics of the mixed
HDV/CAV traffic flow.

2) Develop a dynamic bi-level framework to capture the behavior and interactions of HDV's and
CAVs at the network level, based on which to formulate an OCPEC to find the system
performance oriented route for CAVs under the mixed traffic flow to improve the network
performance.

3) Develop a decomposition based HMPC method to efficiently solve the proposed OCPEC.

4) Demonstrated the challenges of modeling mixed HDV/CAYV flow on dynamic transportation
networks, including how to model the capacity of the mixed flow, the delay terms in the model
(i.e., the shockwave speed), and the FIFO conditions.



This paper is organized as follows. In Section 2, we provide a detailed review on the two challenges
mentioned earlier. Section 3 presents the proposed methodology, starting with the discussion of a general
modeling framework for DUE in Section 3.1 and the key assumptions in Section 3.2. In Section 3.3, we
propose our mixed traffic dynamic model, including the basic DQ model and the FIFO condition (Section
3.3.1), the maximum sending and receiving flows (Section 3.3.2), and the nodal model (Section 3.3.3).
We illustrate how to model the HDVs’ behavior (Section 3.4) and the CAVs’ behavior and formulate this
problem into a dynamic bi-level problem (i.e., the OCPEC) in Section 3.5. We show how to discretize the
OCPEC and discuss its properties in Section 4.1. We then introduce the HMPC method in Section 4.2. In
Section 5, we show the numerical experiments on a small network with short time duration and discuss in
detail how the proposed method can improve system performance (Section 5.1). We also test the
proposed method on the small network with a longer time horizon, and on the Sioux Falls network
(Section 5.2) to demonstrate the effectiveness of our methods. We conclude this paper in Section 6.

2. LITERATURE REVIEW

It is anticipated that the introduction of CAVs into transportation networks will impact the traffic flow
dynamics, i.e., the parameters of traffic flow (e.g., capacity, jam density, free-flow speed, and shockwave
propagation speed, etc.) and the deployment of CAVs (e.g., the market penetration and level of
automation) are potentially correlated. Existing studies have shown positive impacts associated with the
introduction of CAVs into the traffic flow. Such impacts have been found nonlinear from most of the
studies. Most studies are either analytical or simulation based since CAVs have not been widely deployed
in the real-world implementation. In this section, we discuss the literature on the impact of CAVs on the
mixed traffic flow and the network modeling techniques to assess the system impact of CAVs on a
transportation network.

2.1.Modeling the Impact of CAVs on the Mixed Traffic Flow of HDVs and CAVs

The study on the impact of CAVs on traffic flow initially rooted from the adaptive cruise control (ACC)
and cooperative adaptive cruise control (CACC) modeling. The feature of desired speed and spacing in
CACC and ACC motivated researchers to model CAVs in a similar manner. The majority of the research
(Liu et al., 2018; Li et al., 2020; Zhou et al., 2020; Zheng et al., 2018, 2020) modeled CAVs at the
microscopic level, including the intelligent driver model (IDM, Treiber et al., 2000), ACC (Milanés and
Shladover, 2014), and so on. These studies showed that one of the most important impact of CAVs on the
mixed traffic flow is that the capacity can be increased due to the introduction of CAVs. The capacity
improvements are highly dependent on the market penetration of CAVs while the trend is nonlinear, i.e.,
moving from 10% to 30% CAYV market share may not have the same impact as the transition from 60% to
80% market share (Li et al. 2020; Liu et al., 2018; Ye and Yamamoto, 2018). Ye and Yamamoto (2018)
developed a two-state safe-speed model and a two-lane cellular automaton model to describe the mixed
flow of HDVs and CAVs, and numerically investigated the impact of CAVs on the road capacity under
different market penetration. The simulation results on a two-lane road showed that the road capacity
increased almost linearly up to a CAVs penetration rate of 30%. When the penetration rate exceeded 30%,
the capacity would still increase, but the growth rate was significantly affected by the CAVs’ capability
(i.e., the desired net time gap of ACC). Liu et al. (2018) explored the impact of CAVs equipped with
CACC on multi-lane freeway traffic. They used a six-mode driver model, which combined the Newell
(2002) model, Gipps (1981) model and IDM, to mimic the behavior of HDVs, and designed a rule-based
CACC controller to model the behavior of CAVs. They also integrated lane-changing rules to make the
CACC'’s behavior more realistic at on/off ramp areas. The simulation on a 4-lane real-world freeway
showed that, for both on-ramp and off-ramp areas, the bottleneck capacity increased quadratically as the
CAYV penetration increases from 0 to 100%. Li et al. (2020) investigated the impact of CAVs on the
capacity of a two-lane road under four different Right-of-Way (RoW) reallocation strategies (i.e., two
mixed lane; one mixed lane and one CAV dedicated lane; one mixed lane and one HDV dedicated lane;
one CAV dedicated lane and one HDV dedicated lane). They used the Krauss model (Krauss, 1998) to



describe the HDVs’ behavior and used the ACC system to model the bahavior of CAVs. The simulation
results showed that the road capacity can be significantly improved with appropriate RoW reallocation
strategies at low or medium CAV penetration rates, compared with the do-nothing RoW strategy (i.e., two
mixed-flow lanes). These studies revealed that, high level penetration of CAVs, high level and high
capability automation, and exogenous technological assistance play important roles in improving the
capacity of the mixed traffic flow of HDVs and CAVs. Apart from the impact on road capacity, CAVs
may also influence the stability of the mixed traffic flow; see Wang et al. (2013), Zheng et al. (2020),
Zhou et al (2020) for further discussions.

While most mixed traffic flow models were developed in simulation, only a few studies applied link-level
methods to study the impact of CAVs on traffic flow dynamics. Levin and Boyles (2016) proposed a
multi-class cell transmission model (CTM, Daganzo, 1992) for the mixed traffic of HDVs and CAVs.
They derived the model by investigating the microscopic behavior of traffic flow (i.e., a collision
avoidance car following model) assuming different vehicle reaction times of HDVs and CAVs, which
leads to an explicit mixed HDV/CAV flow model. The model revealed that the capacity of a link could be
formulated as a reciprocal function of the penetration of CAVs. Similar capacity model was also proposed
by Lazar et al. (2017).

In summary, as reviewed in this section, although there are some commonly agreed effects of introducing
CAVs to mixed traffic flow on traffic dynamics, many remains unclear, especially there is not a
commonly agreed modeling framework to capture such effects in traffic dynamics. In this paper, we
consider the impact of CAVs on the link capacity from the macroscopic level. Based on the few current
studies on link level mixed traffic flow modeling (Bahrami and Roorda, 2020; Lazar et al., 2017; Levin,
2017; Levin and Boyles, 2016; Patel et al., 2016), we adopt the mixed flow model in Levin and Boyles
(2016) to model the flow capacity of a link as a reciprocal function of the CAVs’ penetration; see Section
3.2 for more details.

2.2.Improving Network Performance under the Mixed Traffic Flow of HDVs and CAVs

Having the model of mixed traffic flow, how to improve the system performance by leveraging the
automation and communication features of CAVs remains another challenge. For examples, Bagolee et el.
(2016) tested mixed CAVs and HDVs using static traffic assignment. They generated different CAV
penetration rates from a fixed number of vehicle fleet, then modeled HDVs to follow static user
equilibrium and CAVs to follow static system optimal. Next, they integrated these two optimization
problems as a mixed user equilibrium and system optimal problem by directly combining the objectives
and constraints, which led to a nonlinear program (NLP). Experiments on a five-node network showed
that as the CAV penetration increased, the total travel time of the whole network decreased. However, in
their study, no interaction between CAVs and HDVs was modeled. Bahrami and Roorda (2020) evaluated
different policies (i.e., exclusive CAV and HDV links) with the UE principle. They modeled the capacity
of a link as a quadratic function of the CAVs penetration and designed a non-linear complementarity
problem (NCP) to formulate the equilibrium conditions. Experiment results showed that simple policies
such as CAV exclusive links can improve network performance under the mixed traffic flow. However,
only static UE condition was applied in this study without considering traffic dynamics.

Based on the multi-class CTM, Levin and Boyles (2016) designed an intelligent intersection control
algorithm under the mixed traffic flow. They modified the conflict regions model (Levin and Boyles,
2015) for HDVs and used a tile-based reservation model (Dresner and Stone, 2004) for CAVs. Combing
the multi-class CTM and the intersection model, they studied the mixed traffic flow in a dynamic traffic
assignment (DTA) framework. Numerical results showed that, under high CAVs penetration, the
proposed intersection management method could improve the system performance compared with
traditional traffic light control. Using the same multi-class CTM and the same reservation-based
intersection control method in Levin and Boyles (2016), Patel et al. (2016) analyzed the effects of CAVs



on congested arterial and freeway networks. The experiment results showed that the reduced headway of
CAVs could significantly improve the capacity of freeway and arterial networks. Levin (2017) applied the
link transmission model (LTM, Yperman, 2007) to model the shared autonomous vehicle (SAV) routing
problem while considering congestion. They assumed that SAVs follow the system optimal principle to
build a SAV DTA model. Experiment results showed that this method could reduce SAV travel times and
determine the optimal fleet size to minimize congestion or maximize service. However, they assumed all
personal vehicle trips were replaced by SAV trips, i.e., the SAV penetration is 100%.

It can be summarized that several issues exist for current studies on developing network models to capture
the behavior and interactions of HDV's and CAVs to improve the network performance under the mixed
traffic flow. First, many of them focused on static traffic assignment (Bagolee et el., 2016; Bahrami and
Roorda, 2020), which only reflected the steady pattern of the mixed traffic flow and did not consider the
dynamic interaction between HDVs and CAVs. Second, studies that did consider dynamic traffic flow,
however, usually either assumed 100% CAV penetration (Levin, 2017) or focused on local optimization
(e.g., intelligent intersection control under mixed traffic flow, as studied in Levin and Boyles (2016) and
Patel et al. (2016)), without controlling the network-level behavior (such as routing) of CAVs.

3. METHODOLOGY

In this section, we first present a general modeling framework, called the differential complementarity
system (DCS), to model DUE of mixed traffic flow on dynamic transportation networks (Section 3.1). This
also identifies a key challenge when modeling mixed traffic flow at the network level. Next, we discuss the
key assumptions of our developed model (Section 3.2). Sections 3.3 and 3.4 introduce the mixed traffic
flow model, and mathematically formulate the behaviors of the HDVs. Finally, we present the behavior of
CAVs and propose a dynamic bi-level optimal control problem to find the routes for CAVs to improve the
system performance (Section 3.5). Appendix A lists the notation used hereafter in this paper.

3.1.DCS for Modeling DUE of Mixed HDV/CAYV Flow on Dynamic Transportation Networks

This subsection presents the DCS framework to model DUE, following the work in Ban et al. (2012a) and
Ma et al. (2018). This also helps to illustrate the challenge of balancing the mathematical rigor and capturing
realm when modeling mixed HDV/CAYV flow on dynamic transportation networks. To start, we show below
the DCS-based DUE model for a single vehicle class (e.g., HDVs) and a single destination:
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Here L indicates “perpendicular”, ie., x L y < xTy =0 for two vectors x and y. Equation (1-1)
describes the instantaneous DUE (IDUE) route choice condition in which the inflow to link (i, j) at time ¢,
p;(t), will be nonnegative (i.e., the flow may choose link (i, j)) if link (i, j) is on the minimum travel time
path from i to the destination (i.e., 7;;(¢t) + n;(t) —n;(t) = 0), with 7;;(t) denoting the link travel time
and 1;(t) the minimum travel time from node i to the destination. Otherwise, p;;(t) = 0, i.e., flow will not
choose link (i, ) if the link is not on the minimum travel time path (i.e., 7;;(¢t) +n;(t) —n;(t) > 0).



Equation (1-2) indicates flow conservation with v;;(¢) the exit flow rate from link (j, i) at time t, d;(t) the
demand generated at node i at time t, and [; and K; respectively the list of incoming nodes (with links
directly to node i) and the list of outgoing nodes (i.e., with links directly from node i) of node i. Since
n;(t) > 0 always holds, the right-hand side of (1-2) always hold as an equation, representing the flow
conservation at node i. Equations (1-3) and (1-4) define the double queue model with qg (t) and ql-Dj(t)
denoting the upstream queue and downstream queue, respectively (see Section 3.3.1 and also Ma et al.
(2014)). In these two equations, ‘L'g i =L/ vlfj and T:"’J =l /Wl-‘j-’ denote respectively the free flow travel
:
and shockwave speed of the link. C; (t) denotes the capacity of link (i, j).

time and the shockwave travel time of link (i, j). [;;, v Wi‘j-’ denote respectively the length, free flow speed,

In the above DUE model, we apply IDUE in the DUE route choice and the double queue model for traffic
flow, which will be extended later in this paper to model the DUE with mixed traffic flow of HDVs and
CAVs. Readers can refer to Section 3.3.1 and Section 3.4 for more details. The DUE model presented above
should also include certain nodal model to describe how flow is transferred at a junction node (see e.g., the
nodal model in Ma et al. (2018)). We defer the presentation of such a nodal model to Subsection 3.3.3 since
it is irrelevant to the modeling challenge that we will discuss next.

Equations (1-3) and (1-4) contain time delay terms, TB ; and Tl"‘j These two terms are constant (for a given

link) for the above DUE model, which applies to either 100% HDVs or 100% CAVs. As shown in the
literature (Ban et al., 2012a; Ma et al., 2018), DCS with constant time delays can be mathematically
analyzed for solution existence and convergence and can be readily solved by discretization and time-
stepping methods; more details on this can be seen in Ban et al. (2012a). However, as we will show in the
next subsection, for mixed flow of HDVs and CAVs, the shockwave speed may change, leading to varied
(and state-dependent) shockwave travel time. This will result in a DCS model with time-varying, state
dependent delays that are of the type of functional differential equations (rather than ordinary differential
equations as shown in Equations (1-3) and (1-4) above) and much harder to deal with mathematically for
both analysis and solution. This is a key challenge when modeling the DUE problem of mixed HDVs/CAVs
on dynamic transportation networks. It is about how to balance the mathematical rigor of the developed
model (e.g., constant or time-varying delay terms) and the model’s ability to accurately capture the
underlying physical property/process of the problem (e.g., constant or varying shockwave speed).
Nevertheless, identifying and understanding such challenge can help provide useful insights on model
development. It is often desirable to develop a model that can best balance these two aspects (i.e.,
mathematical rigor and realm), which often requires certain approximation schemes or creative modeling
techniques under specific situations. We discuss more about this aspect when presenting the third
assumption in the next subsection.

We discuss two remarks to close this subsection. First, although we use the DCS framework here to
illustrate DUE, delay terms in DUE exist in other modeling frameworks and are one of the key challenges
of modeling dynamic transportation networks (Friesz et al., 2001; Friesz and Mookherjee, 2006; Friesz et
al., 2010; Ma et al., 2015; Ma et al., 2018). Therefore, the above identified challenge is general to DUE
modeling. Second, if one has to apply time-varying, state-dependent delay terms in DUE models (e.g., the
free flow or shockwave travel times have to be considered as state-dependent), the proposed modeling
framework in this paper may still apply (Ma et al., 2018), which also requires certain approximation
techniques (Friesz and Mookherjee, 20006; Friesz et al., 2010; Ma et al., 2015) to generate and solve sub-
problems that are similar to (1) above. That is, the mixed HDV/CAYV network model proposed in this paper,
by assuming fixed shockwave speed, can be considered as the key sub-problem of the more general mixed
flow network model. We omit detailed discussions on this general model in this paper to save space, which
is summarized as one of the future research directions in Section 6.

3.2. Assumptions



We have four major assumptions: 1) Both HDVs and CAVs can access all information of the traffic network
to make their route choices; 2) HDVs select their routes based on the IDUE principle and CAVs can be
fully controlled and deployed to help improve the network performance; 3) The capacity of a link under
mixed traffic flows is modeled following the work in Levin and Boyles (2016), i.e., the capacity is a
dynamic reciprocal function of the penetration of CAVs; and 4) the shockwave speed of traffic on a link is
assumed to be constant. Next, we will discuss these assumptions in detail.

First, we assume that both HDVs and CAVs can access all information of the traffic network, e.g., the
number of vehicles and queue length of each link. In reality, CAVs may differ from HDVs in many aspects
such as the information perception, decision making, and driving operations. For examples, CAVs collect
the information of the surrounding environment by onboard sensors and V2V techniques, while HDV
drivers collect such information through human sensing; the trajectories and motions of CAVs can also be
controlled by automation algorithms, while HDVs are controlled by humans; CAVs tend to travel in
vehicular platoons while HDVs are more independently controlled and well mixed. Since this paper focuses
on network level traffic flow control (i.e., the routing of CAVs), the differences between CAVs and HDVs
in information perception and decision making are neglected. Instead, we model traffic as “flow” and do
not capture individual vehicles. Therefore, the “micro-level” vehicle dynamics (e.g., vehicle trajectory and
motion control) will not be modeled.

Second, based on the first assumption, HDVs select their routes to minimize their own travel costs (i.e.,
they are “selfish™). In this paper, we apply DUE to model HDVs’ route choice behavior. There are
essentially two modeling approaches for DUE: predictive DUE (PDUE) and instantaneous DUE (IDUE).
PDUE (Ma et al., 2018; Ran and Boyce, 1996) assumes that travelers select their routes based on the
predicted (future) traffic conditions at the beginning of their trips and stick to these routes during the entire
trips. IDUE (Ban et al., 2012a; Ran and Boyce, 1996) assumes that travelers make route choice decisions
based on the current prevailing traffic conditions and thus can change their routes during their trips. In this
paper, we use IDUE to model the route choice behavior of HDVs due to two reasons. First, PDUE requires
that one could accurately predict the future traffic conditions, which is difficult in practice. On the contrast,
IDUE only needs the current traffic information, which is more practical through various means of
intelligent transportation systems (ITS). Second, compared with PDUE that does not revise routes along a
trip, IDUE allows en-route revisions of routes, which can better capture the dynamic traffic conditions and
reflect the interactions between HDVs and CAVs. IDUE is reactive, i.e., the flow assigned to a path at a
time instant does not impact the cost (travel time) of the path at that time instant but will impact the path
travel times at later time instants. This reactive nature of IDUE also have drawbacks, noticeably that flow
is often assigned to the single minimum-cost path and in extreme situations flow may go back to the origin
and select a different route (see some discussions on this in Ban et al. (2012a)).

On the other hand, it is reasonable to assume that CAVs can be fully controlled and deployed to help resolve
traffic congestion and related problems. The routes of CAVs are thus assumed to be controllable and we
assume CAVs (are controlled to) choose their routes to improve the system performance. Thus, in this paper,
CAVs’ behavior is modeled by the DSO principle (Ma et al., 2014; Merchant and Nemhauser, 1978; Shen
and Zhang, 2018; Ziliaskopoulos, 2000) to improve (minimize) the system objective (e.g., the total system
travel time spent by all travelers). Note that here we just aim to explore the possibility of leveraging the
communication and automation capability of CA Vs to improve the transportation network performance. To
actually make this work, there can be other related issues that need to be carefully investigated, e.g., how
to make sure the routing strategies generated by the proposed model are “fair” to the passengers of CAVs.
We leave this for future research as summarized in Section 6.

Third, similar to existing studies on link level mixed traffic flow model (Lazar et al., 2017; Levin and
Boyles, 2016; Levin, 2017; Patel et al., 2016), we adopt the model in Levin and Boyles (2016) and model
the flow capacity of a link as a dynamic reciprocal function of the penetration of CAVs. Such a model is



derived from the microscopic car-following model by assuming that CAVs can reduce the reaction time
and time headway between vehicles. Specificlly, let nfff"(t) and nj 5" (t) be the number of of HDVs and
CAVs respectively on link (i, j) at time ¢, which yields the relative penetration of CAVs as p; ;(t) =
nij @©
nf’?”(t)+n{f}i”(t)
(CEY > ¢ [_lf”). The capacity of link (i, j) at time t can be calculated by (Levin and Boyles, 2016):

. Let C, i’ff” and C, ;¥ be the link flow capacities under 100% HDVs and CAVs respectively
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Notice that Equation (2) was not explicitly given in Levin and Boyles (2016), which however can be
straightforwardly derived from their model, e.g., Equation (21) in Levin and Boyles (2016). Equation (2)
above shows that, as the CAV penetration increases, the capacity C; i (t) of link (i, j) increases from C_'l-’,‘}i”
to C, f}“’. We show this capacity function under different CAV saturation headways (h;) and penetration
rates (p) in Figure 1. For illustration purposes, the time headway of HDVs is assumed to be 1.8s and the
free flow speed is assumed to be 50 mph, which indicate that the link capacity when all vehicles are HDVs
is C_i}‘ljd” = 2000 vph. Figure 1 shows that, if CAV penetration is fixed, as the CAVs’ time headway
decreases, the link capacity increases due to the reduction of time headway. Such increment is also nonlinear.
For a fixed time headway, as the CAV penetration increases, the capacity also increases.
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Figure 1. Capacity function under different CAV headways using Equation (2)

We need to point out that existing studies in the literature found (mostly using simulation data) that the
capacity of mixed HDV/CAYV flow increases quadratically with the penetration of CAVs (Liu et al.,
2018). Equation (2) here actually is consistent with this finding. To see this, we approximate the right-
hand side of (1) using its Taylor series expansions (around zero) up to the second order.
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Equation (3) indicates that a quadratic relationship approximately holds between CAV penetration and the
capacity of the mixed HDV/CAYV flow.

Fourth, as shown in Section 3.1 above, it is also imporant to model the impact of CAVs on the shockwave
speed. In most existing studies, the introduction of CAVs to the traffic flow (of HDVs) is assumed to change
the shockwave speed (that depends on the actual penetration of CAVs), which however does not change
the jam density (Levin and Boyles, 2016; Patel et al., 2016). Note here that these are largely assumptions
with limited or no field observations. It is our understanding that the introduction of CAVs may change



both the shockwave speed and the jam density (i.e. under CAVs the spacing between vehicles may be
reduced at the jammed state due to vehicle connectivity and automation). To see the latter impact, Figure 2
shows the fundamental diagrams of a link under different CAV penetrations assuming fixed shockwave
speed (and varying jam density) of a link. Note that each fundamental diagram is corresponding to a set of
fixed capacity (i.e., fixed CAV penetration), free-flow speed and shockwave speed. Here the shockwave
speed is set as 15 mph and the CAV time headway is 1.4s. Then as CAV penetration increases from 0 to
100%, the jam density increases from 174 veh/mi to 223 veh/mi. Assume the average effective vehicle
length in a typical traffic flow is 20 feet, the constant shockwave speed indicates that the average gap
between consecutive vehicles are reduced from 10.34 feet to 3.67 feet. Such reduction may be achieved by
CAYV techniques considering that traffic is at standstill when jam density is considered, which implies that
the constant shockwave speed may hold.
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Figure 2. Fundamental diagram of a link under different CAV penetrations

We notice here that assuming fixed jam density or fixed shockwave speed just represents one extreme (and
simplified) case of the general situation. As discussed in Section 3.1 above, the varying shockwave speeds
will lead to a DCS with time-varying, state-dependent delays that are much harder to analyze and solve.
For the sake of clearly presenting how to model HDVs/CAVs at the network level, in this paper, we assume
fixed shockwave speed and varying jam density (for a given link) with respect to different CAV penetration
to simplify the model analysis and solution process. This also presents an alterantive (and simplified) way
to model the impact of CAVs on jam density and shockwave speed. The fixed shockwave speed assumption
can be relaxed by using the approximations schemes proposed in Ma et al. (2015, 2018); see the discussions
in Section 3.1 and also in Section 6.

Also noteworthy is that the current findings about mixed HDV/CAV flow are either based on simulation
data (e.g. how capacity increases with CAV penetration) or largely assumptions (e.g., fixed jam density or
shockwave speed) since CAVs are not widely deployed (especially high level CAVs) and field observations
are quite limited. One should certainly keep a close eye on field testing/deployment of CAVs to properly
update the properties of mixed HDV/CAV flow and the resulting DUE models. We present more
discussions on this in the Section Section 6.

3.3. Mixed Traffic Flow Model of HDVs and CAVs

We use the LTM (Yperman, 2007) in this paper as the basis to formulate link level traffic dynamics. LTM
is similar to CTM, but only requires temporal discretization (and without spatial discretization) of a link,
which can help reduce the dimension of the problem. In particular, we apply the equivalent “double
queue” (DQ) model first proposed in Osorio et al. (2011) to simplify the link-flow dynamics. DQ
describes the dynamics of a link with two queues: an upstream queue and a downstream queue. The
downstream queue is similar to the point queue model, which can model the free-flow time delay and the
queuing process and exit flow (from the link) at the downstream of a link. The upstream queue can



capture the backward shockwave delay and the congestion propagation process and the inflow (to the
link) by a pseudo queue at the upstream of a link. In this paper, we use the continuous-time DQ model
developed in Ma et al. (2014) as the underlying traffic flow model.

3.3.1.  The basic double queue model
The DQ of a link (i, j) can be formulated as the following ODEs (Ma et al., 2014):
;i) = pi () — vy j(t — 1)
405(©) = py (£ = 7i) = vi,;(0)
where qf,] f (t) is the upstream queue, which is upper-bounded by the queue storage capacity of the link, i.c.,

0< qiL_'j (6) < Qi ;(t). qil?j (t) is the downstream queue, p; ;(t) is the inflow rate of link (i, j), v; ;(t) is the
exit flow rate of link (i, j), ‘L' ; 1s the free flow travel time, and T} ’; 1s the shockwave propagation travel time.
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Figure 3. The double queue model

As shown in Figure 3, the basic DQ model (4) can be extended to capture the dynamics of HDVs and CAVs
at the link level:

qlD]hdU(t) _ plh]dv(t _ Tl]) _ vhdv(t)
qlD]cav(t) — pfjw(t _ ‘L'”) _ vcaV(t)

We do not need to separate the upstream queue to HDVs and CAVs since the upstream queue is used to
calculate the total receiving capacity of both classes of vehicles, as indicated in Equation (13) later.
Hereafter in this paper, we use asterisk () to represent either HDVs or CAVs. So, we have p; ;(t) =
2. p;j(t) and vy ;(t) = X, v; ;(t). The dynamics of the total number of vehicles of a link (i, j) is

th(t) = PZj(t) - ij(t) (6)

The instantaneous link travel time is defined as the sum of the free-flow travel time and the instantaneous
exit time:

)

a;;(@®
l](t)

Here C, ;,j(t) is the instantaneous capacity defined in Equation (2).

7;,;(t) = 77 it (7

FIFO is an important requirement for modeling traffic flow on dynamic transportation networks. For the
DQ model presented here, we have the following proposition regarding FIFO:

Proposition 1: FIFO holds for link (i, j) if the following condition is satisfied for all ¢:
1 1 10 (t
(51, (®aP;(©) + pi (OG5 (®) (C - C-hdu> + qgilgv)
i,j ij ij
The proof of Proposition 1 can be done straightforwardly by taking the derivatives of both sides of (7) with
respect to time 7 and requiring 7; ;(t) > —1. The theorem shows that FIFO holds if the downstream queue,
the CAV penetration, and the derivatives of these two follow Equation (8).

+1>0 (8)



We can show that FIFO holds under certain situations based on Proposition 1. For example, when the length
of the downstream queue does not change much, i.e., qi?]- (t)~0, FIFO will hold if p;;(t) <

1/ [qu () (# = %)], i.e., when the increase of the CAV penetration on the link is relatively small. On
ij ij
the other hand, if the CAV penetration remains approximately constant (e.g. 100% HDVs, 100% CAVs, or

pij(®) | 1-pi;@)] .
~cav + ~hdv 5 eV
Cij Cij

relatively constant CAV penetration on the link), p; ;(t)~0, (8) implies qt () <1/

the downstream queue of the link does not change too dramatically. This is similar to the FIFO conditions
of existing DUE models (for only HDVs). In the numerical experiments in Section 5, we also show that
FIFO holds for the testing cases in this paper.

The condition in Equation (8) however may not be satisfied readily, implying that FIFO may be violated
for the DQ model presented here. Since FIFO is a basic assumption of DTA so that dynamics such as mass
balance constraints and flow propagation can be properly modeled mathematically (as ODEs or PDEs),
FIFO violation will make the formulations of those dynamics less accurate (or only hold approximately).
As aresult, errors or unpractical dynamic behaviors may be introduced if FIFO is violated. Therefore, future
research should strive to resolve this FIFO issue; see Section 6. We also note here that FIFO can normally
be guaranteed approximately even one models single-class vehicles (Blumberg and Bar-Gera, 2009), left
alone modeling multi-class vehicles as we do here. This further indicates that to model the mixed
HDV/CAV flow, additional challenges (e.g. FIFO) may be introduced, which need to be addressed properly.

The above DQ model is only at the link level. To extend it to the network level, we need to model the flow
interactions and transfers among neighboring links. We next present the maximum sending/receiving flows
of a link (Section 3.3.2) and the nodal model (Section 3.3.3) to describe how flow is transferred from a link
to its downstream links.

3.3.2.  Maximum sending flow and maximum receiving flow

The maximum sending flow of a link (i, j), denoted as S; ;(t), is the maximum flow that can exit from the
downstream queue of the link without considering the congestion of the downstream links. In LTM
(Yperman, 2007), the sending flow is:

S; j(t)At = min ((N(xl”}, t+ At — TBJ-) - N(xg}lt, t)), Eij(t)At) 9

where N(x, t) is the cumulative vehicle number on place x at time ¢, xl”} is the entrance point of the link

@), xffjl-‘t is the exit point of the link (i, j). Since we use the double queue model in this paper, we can

derive the sending flow rate for DQ as

i,j ) = .
Cij(®), if q7(t) > 0

Equations (9) and (10) are the same as shown in Lemma B.1 in Appendix B. The queueing dynamics in (7)
is similar to the point queue model (Ban et al., 2012b; Daganzo, 1995; Nie and Zhang, 2005; Vickrey, 1969).
To make the sending flow continuous, we adopt the modified point queue idea proposed in Ban et al. (2012b)
and express Equation (10) as

S;,j(t) = min (Ef,j(t), pi(t = i) + aq) (t)) "

where a > 0 is a smoothing parameter. For the class-specified sending flow, it is common to assign them
proportionally based on the downstream queue length:

(10)



qc; ()

SE() =58;:(t) (12)
v v qz?j(t)
For the maximum receiving flow, we have
min (CT;(t), v;i(t—1")), if al.(t) = 0. :(t
ko < [P (EO vy e=m)).if a0 = 0,0 w5

cli(0) if qf,’,-(t) < Qi)

Here fif ;j(t) is the capacity of receiving flow of link (i,j) at time t. Equation (13) shows that, if the
upstream queue has reached the queue storage capacity of the link (i.e., qi’,] ] (t) = Qi, (1)), the possible
maximum receiving flow is the minimum between the receiving flow capacity C, H ;(t) and the exit flow of
the link at an earlier time (i.e. T:"’J based on the upstream queue dynamics Equation (4)), so that the upstream
queue would not increase anymore. If the upstream queue is less than the queue capacity (i.e., ql-l’] (1) <
Q; j(t)), the possible maximum receiving flow is the receiving flow capacity C_{ (). Note that in the
numerical section of this paper, the sending capacity and receiving capacity are set as the same, i.c.,
C;(t) = C;(t) = C; ;(t). Having the maximum sending flow S;;(t) of the incoming links and the
maximum receiving flow R; () of the outgoing links, we need to assign the sending flow from an
incoming link to a downstream link, i.e., to determine the flow transfer G(*l-, )=k (£) for every adjacent
link pair. This will be shown in the nodal model next. Let I; be the set of the incoming nodes that are directly
linked to node j, and K; be the set of outgoing nodes that are directly linked from node j. Given
G(i,j)-(j k) (£), we can connect the nodal model with the double queue model by

Pix(t) = Z Gei,jy- a0 ()

€l

v () = Z G(*i,j)—>(j,k)(t)

kEKj

(14)

3.3.3.  Nodal model

There could be multiple incoming and outgoing links associated with node j. The nodal model determines
the flow transfer G; j)_(j k) (t) from an incoming link (i, j) to an outgoing link (j, k) where i € I; and k €
K;. We present the nodal model under different cases of node j based on the nodal model introduced in
Yperman (2007).

(i) Origin node

J' J
---------- > ———
Figure 4. Origin node

We add a pseudo origin node to the network to guarantee that there is only one outgoing link (j', j).
The free-free travel time and the shockwave propagation time of this pseudo link is 0 (i.e., T]p/, =
T]f‘,” = 0), and there is no limit on the upstream queue of the pseudo link (i.e., Q i1 (&) = +00).
Thus, the receiving capacity of the pseudo link is unlimited (i.e., Rj j(t) = +o0). The demand flow

d;, (t) gets into the network from the pseudo node j'. The flow transfer from the origin node is then



(i1) Destination node

Figure 5. Destination node

Similarly, we add a pseudo destination node to the network to guarantee that there is only one
incoming link (j,j'). The pseudo link shares the same property as discussed in (i), i.e., r;) =

Tj“’j, =0,Q it = T, R} #(t) = +oo. The flow transfer to the pseudo destination node is

P

(ii1) General multi-in and multi-out node

Figure 6. A general node

The flow transfers are usually discussed separately for a diverge node and a merge node (e.g.,
Yperman (2007), Jin and Zhang (2003)). We here combine these two types of nodes and build a
general nodal model for a multi-in and multi-out node, which is also integrated with our optimal
control based network model (see Section 3.5). The following five conditions define the rules and
constraints that the flow transfer G(*l-’ NGk (t) needs to satisfy. Since we are developing a network
model that integrates both behavior of HDVs and CAVs and the traffic flow dynamics, the actual
values of G(*i‘ i)~ ( j‘k)(t) will need to be determined jointly by solving both the traffic flow model
and the behavior model, i.e., the network wide OCPEC as presented in Section 3.5.

1)

2)

3)

As described in Section 3.2, we model the route choice behavior of HDVs by IDUE, which is
mathematically formulated in Section 3.4. Given the network information and the maximum

sending flow of incoming links S 5’]4” (t), the IDUE determines the routes for HDV and assign
S{_L]‘-i” (t) to the outgoing links that are on the shortest paths, which gives S{;_‘%’_}( 1o (6), the
maximum HDV flow that may be transferred from the incoming link (i, j) to the outgoing link
U, k).

The flow transfer from a specific incoming link should be upper-bounded by the maximum
sending flow. For HDVs, we have the maximum sending flow from (i, j) to (j, k), thus

hd hd
G(iy-Gibo ) = S(ijy-Go (D (17)
For CAVs, we only have the maximum sending flow from (i, j), thus
z Gf%ﬁ(i,k) ® =< Sf;l " (18)
kEK]'

The total flow transfer of HDVs and CAVs to a specific outgoing link should be upper-bounded
by the receiving capacity of link (j, k), thus
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Z GGG @ + Z Giij-Giao ) < Rjk() (19)
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4) The flow transfer of HDVs from each incoming link should be proportionally distributed based
on the maximum sending flow, thus

hd hd
Gip-Gi®  SEjH-G®
Yier Gﬁ%’_}(’-’k) ) e S?i‘j']);a(j,k) ®

5) According to Equation (12), the flow transfers of HDV's and CAVs from the same incoming
link should be proportionally distributed, thus

Zker; Glap-Gio®) ‘I?jcav(t)
Zkek, G- ®  ai;" (@)

(20)

21

3.4. Route Choice Behavior of HDVs

For HDVs, the objective is to minimize their individual travel cost (travel time is used in this paper). As
discussed in Section 3.1, we can formulate the route choice behavior of HDVs as IDUE by the following
complementarity conditions (Ban et al., 2012a) (denoted as P1):

(1) Route choice (at a junction node j)
0 <PV L () +mi(0) —mj(®) 2 0 (22)
(i1) Flow conservation (at a junction node ;)
0<m® LY PO - S0 0 23)
kEKj iEIj

Similar to (1-1) — (1-2) in Section 3.1, Equation (22) shows that travelers at node j will select to enter link
(J, k) G.e., ﬁ]h_ﬁ” (t) > 0) if link (j, k) is on a route with the minimum instantaneous travel time from node
j to destination s (s # j), i.e., Tj, (t) + N (t) — 1 (t) = 0. Otherwise, the traveler will not enter link (j, k)
(i.e., if 7j (t) + () —nj(t) >0, ﬁ]f-fz"(t) = 0). This follows exactly the IDUE principle. For Equation
(23), as it can be easily shown that the instantaneous route travel time 77]5- (t) > 0 for s # j, the equality
always holds for the right-hand side of (23). That is, Equation (23) indicates “flow conservation”, which
guarantees that the sum of all sending flows of HDVs exiting from upstream links of node j (represented
by Yie I S{‘Jf’l” (t)) is equal to all outgoing flows from node j to downstream links (represented by

ZREK]. D j‘,‘f” (t)). From the point of view of a specific node, all traffic flows from that node to the same

destination will be assigned to the outgoing links that are on the paths with the minimum travel time at time
t. These flows will be re-assigned based on the traffic condition at that time when they arrive other
downstream nodes.

The IDUE model above is slightly different from the “regular” IDUE models in the literature (e.g., the one
in Ban et al. (2012a)). First, instead of using the actual demands of HDVs from a node, we use S{,’Jd”(t), the

maximum sending flow from the upstream link of a node j (as defined in the mixed traffic flow model in
Section 3.3.2). Thus, the IDUE model here is to determine the “optimal” maximum sending flow that can

be assigned to a downstream link of the same node j. This is represented by the variable ﬁjf-‘_ﬁ"(t) in the
IDUE model, which also indicates which outgoing links HDV's will select as their routes. Here ﬁ]r-fﬁ”(t) is
not the actual HDV flow p}fﬁ” (t) in the DQ model (i.e., Equation (5) and (14)). The actual HDV flow have



to follow the mixed flow DQ dynamics and nodal constraints. But the two are closely related; see below
after we present Equation (24).

Given ﬁ}fﬁv(t), we can calculate 533-1)’_,( j'k)(t), the maximum sending flow of HDVs from incoming links

(i, )) to outgoing links (j, k), by

PR®

Shdv . t :S.hdv
-0 (0 = St O 7wy

(24)

Notice that S{:‘%’_)( i (£) is used in the nodal model in Section 3.3.3. We next show that ﬁjh‘,f” ®>0

implies p;’ hdv(ty > 0. 1f p]hg” (t) > 0, 1i.e., HDVs select (j, k) as the next link of their routes, by Equation
(24), the maximum sending flow should follow the proportional distribution, which yields

S(I}f}’)’_,( j_k)(t) > 0. Based on the nodal constraints Equation (17)-(20), if there is certain receiving capacity
of the outgoing link (j, k), the flow transfer of HDVs from (i, j) to (j, k) should also satisfy

Gg%’_,( 7oy (£) > 0. Thus, based on Equation (14), the actual HDV flow should satisfy pjhﬁ” (t) > 0. This

guarantees that the HDV's route ﬁ]’-l,g"(t) calculated from the IDUE principle (i.e., Equation (22) and (23))
will indeed be followed by HDVs as their route choices (as represented by p}fﬁ” (®).

3.5.Route Choice Behavior of CAVs and the Dynamic Bi-level Problem.

The route choice behavior of CAVs follows DSO and is designed to improve the performance from the
system perspective. With this objective in mind, designing the routes for CAVs is essentially an optimal
control problem (OCP), which can be cast as a dynamic bi-level problem. The CAVs are at the upper
level and the HDVs are at the lower level. Our main OCP (i.e., the upper-level problem) is to generate
routes for CAVs, of which the HDVs should follow the IDUE principle (i.e., the lower-level problem,
P1). Meanwhile, HDVs and CAVs should follow the DQ dynamics and nodal constraints as defined in
the mixed traffic flow model earlier. Together, we can formulate this dynamic bi-level problem as an
OCPEC, by considering the objective of CAVs as to minimize the total system travel time. The OCPEC
(denoted as P2) is formulated as follows.

(i) Objective

ty
I(}lc};rl}f Z N Z n; ; () dt (25)
0 (i,)) e

(1) DQ dynamics: (4)-(7),

(i1)) Maximum sending/receiving flows: (11)-(14),

(ii1) Nodal model (at node j): (15) - (21), (26)
(iv) Equilibrium constraints (i.e., the lower-level problem P1): (22)-(24)

(v) Boundary conditions: nc‘w(to) = qD C (to) = nhd”(to) = qD hdv(to) =0.

The above continuous-time OCPEC consists of non-linear constraints (i.e., the DQ dynamics and the
nodal constraints) and equilibrium constraints (i.e., the route choice of HDVs). It integrates both the
mixed traffic dynamics model and the behavior models of HDV's and CAVs, which provides a modeling
framework to study the behavior, interaction, and impact of HDVs and CAVs on the network level.
Solving this OCPEC model will jointly determine (optimally) the inflow/exit flow of each link for both
CAVs and HDVS, for which the inflows to links also represent the route choices of HDVs and CAVs.

OCPEC contains constant time delays in the DQ dynamics (i.e., p;, ]-(t — ‘L'B j) and v; ]-(t — TYV]) in
Equation (4)). In fact, the time delays will become time-varying if we assume a varying shockwave speed,
making the OCPEC framework, while still applicable, more complicated to analyze and solve. As



discussed earlier, this is one of the major reasons why we assume constant shockwave speed in Section
3.2. The nonlinearity, time delays, and especially the equilibrium constraints make the OCPEC hard to be
solved analytically. Classical methods aiming to provide the analytical optimality conditions for an OCP,
such as the Pontryagin’s maximum principle and dynamic programming, can hardly deal with such state-
constrained problems with time delays either. In addition, the complementarity constraints (i.e., the
equilibrium constraints for HDVs), even being reformulated as inequality constraints, make the classical
necessary optimality conditions for OCP with only equality and inequality constraints non-applicable
(Guo and Ye, 2016). Nevertheless, one can still numerically solve such a problem by using appropriate
time discretization to convert the continuous OCPEC to a finite-dimensional optimization problem. This
way, the OCPEC can be discretized as a non-convex and non-smooth mathematical programming with
equilibrium constraints (MPEC). In the next section, we show how to discretize the OCPEC to MPEC and
discuss the numerical solution techniques.

4. DISCRETIZATION AND SOLUTION METHODS

4.1.Discretization

The continuous OCPEC needs to be discretized by carefully selecting the discrete time step. Previous
studies (Ban et al., 2012a; Ma et al., 2018) suggested that the time step should be small enough such that
the free-flow travel times and shockwave propagation times of all regular links should be multiples of the
time step. We use a time step h > 0 to discretize the time interval [to, t¢] into N, = (tf — to)/h

(assumed to be integer) time steps, each of equal length h:
to 2ty St <<ty 2t (27)

We use the implicit backward-Euler difference method to discretize the whole problem. Ban et al.
(2012b) provided more discussions on why the implicit discretization scheme should be used. We notice
here that the implicit scheme is similar to defining the link travel time at the end of a discrete time interval
used in Ban et al. (2008) or the concept of predictive DUE in Heydecker and Verlander (1999). After
discretization, the continuous OCPEC P2 can be converted to a MPEC, denoted as P3:

(i) Objective function:
. Nh * h,1r
mlnz Z Z n;’;’ (t) (28)
r=1 (i, ))EL bmd s~

with the decision variables

{G““’"” }Nh i€l keEK,jEN (29)
@N-Gk) oy’ J jrJ

(i) DQ dynamics
e Upstream queue dynamics

w,h
Uhr Uhr—1 _ h hr hr—t;; 30
9j —4qi; = Pij ~ Y, (30)

. h,r—‘r‘-”-’h
with Vi “o=0forr =1,2, ‘L':Njh
e Downstream queue dynamics
hr—tot

D,h,r Dhr—1 __ d ij hr

QGj " ~qj =h (pi.j ~ Vi ) D

. h,r—rp'-h . .
with P “o=0forr =1,2,.. T? Jh Consider vehicle types, we have



0,h
D D hr—1 _ “hr—1;; xh,r
9ij " — i =h <pi,j ~Vij
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with p, ; U= 0forr=12,.

e Total flow dynamics

«hr _ _xhr—1 xhr xhr
gy = nyt = hpyT = vig)

e Link travel time

iy =ty +ap /G
(i11)) DQ dynamics
¢ Sending flow

hr _ hr hr-t l] Dhr
Su = min (Ci,j Py +aq;; )

e Type-specified sending flow
S*,h,r D,x,h,r

Lj _ 1ij
hr =~ _Dhr
S L]

e Receiving flow
h
hr _ . [Rhr Shr Uhr h'r_T‘itVJ:
R —mm(Cl-J-, Ql] —qy; " v
e Connection to nodal model
*hr _ *h,r * ,h,r *h,r
Pix" = 2, G-t Vij Z Gi.f)~ i)
lEI]' kEKj
(iv) Nodal model:
e Origin node
* Lhr *h,r
(} ]) d !

e Destination node
* Jhr *h,r
GGin = Si
e The upper bound of the transition flow of HDVs and CAVs

hdv,h,r hdv,h,r
< L ey
G(t N-0.k) S

cav,h,r cav,h,r

iy F1a2] ) < s 11A2]
2 , G-tk = Sij
kEKj

e The upper bound of total HDVs and CAVs flow to outgoing links

cav,h,r hdv,h,r hr
Z Gli (i) T Z Giipysiiso S Rjk

iEIj iEI]'
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(33)
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e The proportional relationship between transition flows and sending flows of HDVs

G hdv,h,r S hdv,h,r
Z' Ghdv,h,r - Z Shdv,h,r
LEL H (i, )~ k) L&l 2(,)~(.k)

e The proportional relationship between HDV's and CAVs

Z G c.ay,h,r. D B cav,h,r
keK; YD~k _ i) (44)
Z Ghdv,h,r ~  D,hdv,hr
keK; Ui -Gl i
(v) Equilibrium constraints (i.e., route choice behavior of HDVs)
e Route choice
~hdv,h,r+1 h,r s,h,r s,h,r

0=<Pjk Lz +m " —nym =20 (45)

e Flow conservation

h,r ~hdv,h,r+1 hdv,h,r+1
< S', y ! I, — navmn, >
0<ny L Z Pjk ZSL.] 20 (46)
kEKj iEIj
e Routes assignment
~hdv,h,r+1
hdv,h,r+1 _ chdvhr+1 j.k
Sn-G = S < ARavhrAl (47)
Zk’ p jk!
(vi) Boundary conditions
cav,h,0 _ _D,cav,h,0 _ _hdv,h 0 _ _D,hdv,h,0 _

N = 4 =ny; = 4y =0 (48)

The equilibrium constraints (45) and (46) violates the Magasarian-Fromovitz constraint qualification
(MFCQ) (Luo et al., 1996), implying that P3 cannot be analyzed or solved by classical methods such as
the KKT conditions that usually require certain constraint qualifications. Specific first order and second
order optimality conditions may be derived for bilevel problems (Luo et al., 1996; Ralph and Wright,
2004), which however require rather restrictive conditions and cannot be applied to the model in this
paper. Therefore, P3 cannot be solved directly as an NLP. In the literature, some relaxation ideas (Ban
and Liu, 2009; Ban et al., 2006) were applied to iteratively solve this problem. The relaxed problem has
been proven to satisfy the MFCQ (Ralph and Wright, 2004) and thus can be solved by standard NLP
solvers. Readers can refer to Ban and Liu (2009) and Ban et al. (2006) for details of the relaxation method
that are omitted here. As shown in the numerical results in Section 5, it turns out that the relaxation
method can only solve P3 on small networks with a short time horizon. Therefore, we propose a
decomposition based heuristic model predictive control (HMPC) method next to deal with larger
networks with longer time horizons.

4.2. Heuristic Model Predictive Control (HMPC) Method

The difficulty of solving P3 lies in the non-smooth and non-convex nature of the equilibrium constraints.
The key idea of the proposed HMPC method is to decompose the dynamic bi-level problem to separate
sub-problems that are solved in an iterative manner. At a specific time, the IDUE problem of HDVs is a
mixed complementarity problem (MCP) which alone can be readily solved (Ban et al., 2012b).
Considering that CAVs should follow DSO to improve the network performance, we establish such a
DSO problem in a forward time horizon. However, in this DSO problem, we do not formulate the HDVs
as equilibrium constraints for reasons discussed above; instead, we consider HDVs as CAVs, i.e., HDVs
will also follow the DSO. The DSO problem established in this way is indeed an NLP problem, which



can be solved relatively easily. The DSO reflects the system optimal routes under ideal conditions but
may conflict with the actual IDUE routes of HDVs or violate the traffic dynamics. We then design a route
adjustor that takes the IDUE routes of HDVs and the ideal DSO routes of both HDVs and CAVs as input
and generates the adjusted IDUE routes for HDVs and the system performance oriented routes for CAVs
to satisfy the DQ dynamics and nodal constraints. The overall idea of HMPC is shown in Figure 7.
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Figure 7. The framework of HMPC

Consider a specific time, given network states and the demand of HDV's from each node to the
destination, we find the routes for HDV's based on the IDUE principle. So far, the DQ nodal constraints
have not been considered. Meanwhile, given current network states and the future demands of both HDVs
and CAVs, we can formulate a DSO problem in a forward time horizon by assuming both HDVs and
CAVs will follow the DSO principle. Note that for this DSO, we use the point queue (PQ) to model the
dynamics of the network since the PQ-based DSO problem can be solved more efficiently. Having the
DSO solution in a forward time horizon, we take the DSO routes of HDVs and CAVs at the first time step
as the output, which will be used to generate the real routes for HDVs and CAVs. We then design a route
adjustor to adjust the HDVs’ routes and generate the CAVs’ routes to make it satisfy DQ dynamics. Thus,
we have three main components of the proposed HMPC: (a) the IDUE problem of HDVs, (b) the DSO
problem in a forward time horizon, and (c) the route adjustor. The IDUE principle of HDVs is the same as
P1. The next sections will discuss the rest two components.

4.2.1. PQ-based DSO in a forward time horizon

The PQ-based DSO is similar to the OCPEC P2 except two characteristics. First, in P2, HDVs follow the
IDUE condition, while CAVs follow the DSO principle. In the PQ-based DSO, both HDVs and CAVs
will follow the DSO principle. That means there is no difference between HDVs and CAVs regarding the
route choice behavior. Second, the network dynamics are described by DQ in P2. In the PQ-based DSO,
the network dynamics are modeled by PQ, which means that there are no upper queue bounds. Although
the PQ cannot capture the queue spillback, it can be solved more efficiently compared with the DQ. The
PQ-based DSO can be formulated as follows (noted as P4).

(i) Objective
t+AT
min z n; ;(t") dt’ (49
P J; W) )

(i1) Network dynamics



Q) =p Q(t—m)—v ("
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(iii) Nodal constraints (at node j):
> R = ) wff ) - e - 5 = 0 G1)
keK i€l

(iv) Initial conditions

n;; (1) = n{¥ () +nf¥ ()

(0 = aE ) + a2 2

Compared with P2, there are no equilibrium constraints since both HDVs and CAVs are considered as
controllable. P4 can be discretized as an NLP problem and can be solved by any standard NLP algorithm.

Solving P4 gives p P Q(t:t + AT) and v 9(t: t + AT), which represent the DSO routes of the mixed flows

of both HDVs and CAVs for a forward tlme horizon AT. Only the first terms p;, ,8 (t) and vi‘ i (t) are
adopted as the control variables. Considering that the DQ is used to model the real traffic dynamics, we

need to adjust the DSO routes generated from P4 and the IDUE routes generated from P1 so they can
follow the DQ dynamics.

4.2.2.  Adjusting HDV routes and generating the CAV routes

At a time t, we have the IDUE routes of HDVs (i e. ﬁjhg” (t) calculated from Equation (22) and (23)) and

the DSO routes of both HDVs and CAVs (i.e., p 9(¢) and v (t)) However, these routes and flows are

generated without considering the DQ nodal constralnts. In addltlon the routes for CAVs haven’t been
assigned yet. In this section, we design a rule-based routes adjustor to generate CAVs routes to improve
the system performance, meanwhile adjust CAVs and HDVs routes such that they satisfy the real DQ
traffic dynamics and nodal models. To make the following discussion clear, we first illustrate the inputs
and outputs of this route generator.

Input
S (*i, b () The maximum sending flow of HDVs and CAVs from the incoming
link (i, ), see Equation (12).
“Jhg” (t) The pseudo IDUE routes of HDVs, see P1.
,?(t) v; (t) PQ-based DSO routes of both CAVs and HDVs, see P4.
Rjk (t) Receiving capacity of the outgoing link (j, k), see Equation (10).
Intermediate variables
Di% () The pseudo routes for CAVs, an auxiliary variable.
§J.’ldv t) Total sending flow of HDVs related to node j.
S‘ﬁ%v 3] Total sending flow of CAVs coupled with HDVs related to node j.
Aﬁgr’ily (®) Total sending flow of CAVs not coupled with HDVs related to node j.
Output

pj (), v ;(t) Routes of HDVs and CAVs that satisfy DQ dynamics

The first step is to assign CAVs routes using a heuristic method and adjust HDV's and CAVs routes so
that they do not exceed the receiving capacity of the outgoing links. Considering that, at a specific time ¢,
the HDVs usually select one and only one outgoing link, we define this link as (j , khd”) where



“Jhg}fd,, (t) > 0. Having the HDVs routes, we fist modify these routes based on the limitation of the

receiving capacity, i.e. phg}fdv (t) = mln{ | v (), “h,‘f,'fd,, (t)}. For CAVs, there are two conditions

considering different values of p khd” (t).

(i) First, pf’?hd,, (t) > ﬁhgﬁ’dv (t), which means the solution of the DSO problem P4 requires more

vehicles than the current assigned HDVs to go to link ( j, khd”) Under this condition, we can
assign ﬁczzd,, (t) = mln{ e () — ﬁ]hg}fd,, (6), R jnav(t) — “hg}fd,, (t)} CAYV flow to link
(j, k"), and assign the rest of CAV flows exactly according to the optimal routes Dik (&) =
mln{p ik (t) R; ynav (t)} for k € K; and k # k.

(ii) Second, p hdv ) < ﬁhg}fdv (t), meaning that the current HDVs flows to link (j, khd”) has
exceeded the solution of the DSO problem P4. Under this condition, we set )SJ.C'ZZd,, =0
and assign the total CAV flows to the links (j, k) where k € K; and k # k@ proportionally

O]

Zk’EK kl¢khdvp (t)

by p]all(v(t) - mln [Zk 'eK ; p] k’(t) A]hg;l]dv(t)] Rj’khdv(t)

The second step is to modify the HDVs and CAVs routes based on the DQ dynamics and nodal
constraints. We first calculate the total sending flow of HDVs from the incoming links S hd"(t) total

sending flow of CAVs coupled with HDVs from the incoming links $ “hav(t), and total sending flow of

CAVs not coupled with HDVs from the incoming links § fg;{ly (0. If there are no HDVs sending flows

coming from a specific link, the CAVs sending flows from that link contribute to S757;,, (t). Otherwise,

the HDVs sending flows are added up as S jhd” (t) and the coupled CAVs flows are added up as § haw (@)
Then, the conditions can be categorized as two types based on whether there are HDVs flows going to the
outgoing links.

(i) First, after satisfying the receiving capacity constraint, there are still some HDVs flows going to

the outgoing links. In other words, we can find a k"®” such that ﬁhg;'fd,, (t) > 0. We calculate the

proportion p = }ng,,(t) /5‘ hav(t). Then there are also two types of conditions:

o IfXpi% (t) > pﬁh,‘f;'fdv (t), which means that the outgoing CAVs flow is greater than

the incoming CAVs flows coupled with the HDVs flows, the incoming CAVs flows
coupled with HDVs are safe. We have p khd" ) = “hg;'fd,, (t) and pj3”(t) = Pj (¢) for

all k € K;. For an incoming link (i, j), if hd”(t) > 0 (i.e., there is HDVs sending flow),
we assign the exit flows of HDVs and CAVs proportionally by vhd” (t) =
hdv geav
A t) A @
hg"’{dv (t) Shd]}(t) and vcav(t) - h;cil']l]dv (t) S:;l]dv(t)'
j

no HDVs (1 e., only CAVs) sendlng flows coming from this link, we can assign the rest
CAVs flows (i.e., X B3’ (t) — S pav(t)) proportionally by v (t) =

pcav O= _geav
PO
’ only(t)

o IfXpi% ()< pﬁh,f}fdv (t), which means that the outgoing CAVs flows are smaller than

If S{’f” (t) = 0, which means there are

the incoming CAVs flows coupled with the HDVs flows (i.e., the receiving capacity is
limited such that the outgoing HDVs and the CAVs are not proportionally to the coupled

incoming flows), we need to re-assign the HDVs flows by p}’,‘jﬁdv v =



(S5O + 5880 (0)) gramre
kK PIREEL ) SH O+ O+ 61y (O

Di% @) + ﬁ}fg” (t) — p}fg" (t). Then, we assign the exit flows of HDVs and CAVs from

and assign the CAVs by pj3”(t) =

hdv t
the incoming links based on the proportional principle, i.e. vhd"(t) = h,f,'fd,, () shd"( )
cav(t)
cav hdv
and vy () = (t )Shdv(t)

(i1) Second, there is no HDVs flow going to the outgoing links, either because there is no receiving
capacity of the outgoing links or there are no HDVs sending flows from the incoming links.
Under this condition, if there are outgoing flows, they must be CAVs. Therefore, for the outgoing
flows, we set pj” () = pjy’ (t) and p]h,‘%” (t) = 0. For the incoming flows of link (i, j), there are
two conditions

o IfS i’ff” (t) > 0, which means there are HDVs supplies but they cannot go to the outgoing
links due to the receiving capacity limitation. Since HDVs and CAVs are assumed to be
proportionally coupled, no CAVs flows can exit from this link. Therefore, we set

hdv (t) — vcav (t) =0.

o If Slhd” (t) = 0, which means there are only CAVs exiting from this link. We assign the

Scav
HDVs flows by v/ (t) = 0 and CAVs exit flows by v{”(t) = ¥, p§% (t) e (2)
only

The pseudo codes of this HDV route adjustor and CAV route generator are shown as Algorlthm 1 in
Appendix C. The overall algorithm integrating the IDUE-based HDV route generator, PQ-based DSO
route generator and the route adjustor is shown as Algorithm-2 in Appendix C.

5. NUMERICAL EXPERIMENT

We first test the relaxation-based and the HMPC solution methods on a five-node network for a short time
horizon (30 minutes). We compare the HMPC solution with the solution obtained from the relaxation
method. Then, we extend the time horizon to 300 minutes. Under such long horizon, the relaxation
method cannot be directly applied to solve the MPEC because of the increased dimension of the problem.
Thus, we only apply the HMPC method to this scenario. Finally, we test the HMPC method on the Sioux
Falls network to illustrate the proposed model and algorithm on a more general (and larger size) network.

5.1. A Five-node Network

Figure 8 shows the five-node multi-origin, single-destination network. Travelers enter the network from
node 1, 2 and 3, and exit the network from node 5. The free-flow travel time T ; (minutes), shockwave
travel time T (mlnutes) capacity when all vehicles are HDVs C fjfiv (Vehlcles/mmute), and capacity
when all Vehlcles are CAVs (; 5;11; (vehicles/minute) of each link are given in Figure 8. The demand
profile is shown in Figure 9. We first solve this problem under 0% and 100% CAV penetrations,
respectively. Under 0% CAYV penetration, the original problem is reduced to a differential
complementarity system (DCS) based IDUE problem (i.e., with no objective), since there are no CAVs
and All vehicles are HDVs (that follow the IDUE principle). Under 100% CAYV penetration, the original
problem is reduced to a DSO problem without the complementarity constraints, which is a regular NLP
after discretization. The DSO solution can serve as the ideal case, which provides a lower bound of the
system objective (i.e., the total travel time). We then test the proposed relaxation scheme (abbreviated as
“RELAX” in this section) and HMPC under different CAV penetrations ranging from 0% to 100%. The
overall performance of RELAX and HMPC under different CAV penetration rates and different travel
time functions is shown in Figure 10 (a). We then calculate the improvement of network performance of



the RELAX, HMPC and DSO solutions compared with that of the IDUE, the result of which is shown in
Figure 10 (b). The improvement of network performance is calculated as the percentage of reduction
regarding total travel times of DSO, RELAX, and HMPC compared with IDUE. Note that the total
vehicle time of IDUE (calculated when CAV penetration is zero) or DSO (calculated when CAV
penetration is 100%) in Figure 10 (a) does not depend on CAV penetration. We show them as two
extreme scenarios so that readers can easily compare the performance of different control methods.
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Figure 10. Performance of different methods

The key observation is, as the CAV penetration increases from 0% to 100%, the system performance
obtained by both RELAX and HMPC increases from 0% to 37%. At 0% CAV penetration, all vehicles
are HDVs that follow the IDUE principle, which yields a higher system cost. At 0% CAV penetration, the
performance of HMPC matches exactly as the IDUE case, while the performance of RELAX is slightly
better than the IDUE case. For HMPC, at every time step, we calculate the travel time of each link, based
on which we accurately solve the IDUE problem. Then, we solve the DSO problem in a forward time
horizon (20 minutes in this paper) and assign flows and update the mixed flow dynamics correspondingly.
For RELAX, the whole-time domain problem is solved at once, in which the IDUE is approximated by
certain relaxation scheme. Such relaxation-based approximation makes the HDVs’ behavior not exactly
following the IDUE. This can be used by RELAX to improve the system objective of MPEC, leading to
slightly better performance (i.e. smaller objective value) of RELAX compared with that of the IDUE.
Under 100% CAYV penetration, there is no equilibrium constraints in the MPEC. Thus, RELAX reduces to
the DSO problem and yields the same performance as DSO. For HMPC, we cannot guarantee that it can



achieve exactly the DSO performance since it is a heuristic decomposition method. It is observed that the
difference of the HMPC objective value and DSO objective value is very small (around 1%). Another
observation is that the relationship between performance improvement and CAV penetration is not
exactly same to the relationship between link capacity and CAV penetration, i.e., Equation (2). This is
due to the fact that performance improvement is related to not only capacity increment (with respect to
CAYV penetration) but also the route choice behavior of HDVs and CAVs. HDVs’ routes, CAVs’ routes,
and capacity are mutually dependent with each other. The relationship between capacity and CAV
penetration is not necessary the relationship between the system performance improvement and CAV
penetration. Apart from these overall analyses, in the rest of this section, we firstly validate the mixed
flow dynamics and then discuss the route choice behavior of HDVs and CAVs under different methods.

5.1.1. DQ based mixed flow dynamics

The DQ based mixed flow framework consists of link dynamics and the nodal model. We first analyze the
link dynamics under 0% CAYV penetration (i.c., the IDUE case) where the capacity and upstream queue
capacity are fixed since all vehicles are HDVs.
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Figure 11. DQ dynamics of link (1,3) in the five-node network

Figure 1lillustrates the DQ link dynamics by using link (1,3). The inflow and exit flow rates are shown
by the left axis while the upstream queue, downstream queue, and the number of vehicles on the link is
shown by the right vertical axis. At the beginning, link (1,3) is on the shortest path from node 1 to the
destination. Following the IDUE condition, HDVs are assigned to this link as many as possible.
Therefore, the inflow increases to the capacity of link (1,3), i.e., 25 veh/min. Based on the DQ link
dynamics Equation (4) and (6), the upstream queue increases since there are no exit flow at the beginning
and all inflows contribute to the upstream queue. The same condition holds for the number of vehicles on
the link. So, they share a same curve during the interval [0,2]. After that, the first inflow arrives at the end
of the link, but the exit flow rate is less than the first inflow (since the exit flow from (3’, 3) also needs to
enter the outgoing link (3,4), but the receiving capacity of link (3,4) cannot allow all exit flows from
(3',3) and (1,3) to get in), which results in a downstream queue. Meanwhile, during [2,8], the upstream
queue keeps increasing because the dissipation of the downstream queue has not arrived at the upstream
queue (Equation (4)). At t = 8, travelers select link (1,2) as their routes since link (1,3) is not on the
shortest path anymore due to the increasing travel time. Therefore, the inflow drops to 0 and the upstream
queue stops increasing. Also, the number of vehicles deceases and the downstream queue also decreases
after 2 minutes delay. After t = 8, there is no inflow, but the dissipation has arrived the upstream queue
(i.e., v (t — TLM;) > 0 in Equation (4)), the upstream queue starts to decrease. After t = 12, travelers
select link (1,3) again due to the increasing time of another path. Thereafter, the similar process happens



again. One difference is that the upper queue reaches its capacity at t = 19. Therefore, at t = 20, inflow
to link (1,3) is no longer determined by the link capacity. Instead, based on Equation (4), only

v j(20 — Tl"‘j) = v;,;(14) flow can get into link (1,3). This can be observed from Figure 11 that the
inflow at t = 20 is equal to the exit flow at t = 14. As a short summary, the numerical experiments
match our DQ-based link dynamics.

The key characteristic of the nodal model is the proportional distribution of HDVs and CAVs from
incoming links to outgoing links, i.e., Equation (20) and (21). Specifically, Equation (20) is for a merge
node and Equation (21) is for a diverge node. In this section, we show that Equation (21) holds for a
diverge node (i.e., node 1). The validation process of Equation (20) is similar (e.g., analyzing node 4) and
is omitted here for brevity. We validate Equation (21) by looking into the flow transitions at node 1. To
show this, the CAV penetration cannot be 0% or 100%. Here we use the HMPC solution with 30% CAV
penetration (randomly selected) as an example. Figure 12 (a) shows the downstream queue of HDVs and
CAVs on link (1', 1) and inflow rates of HDVs and CAVs to the outgoing links (1,2) and (1,3). Figure
12 (b) shows the proportion of CAVs to HDVs for the downstream queue as well as the total outgoing
flows. It can be shown that the proportion of CAVs to HDVs for the outgoing flows are the same as the
proportion of CAVs to HDVs in the downstream queues of the incoming link, which means Equation (21)
holds. It should be noted that the sum of inflow rates into links (1,2) and (1,3) is equal to the total
demand when the demand is less than the total receiving capacity of links (1,2) and (1,3). If the demand
is larger than the total receiving capacity, either due to the high demand or the congestion of outgoing
links, the sum of the inflow rates into the two links will be less than the demand at node 1. The remaining
demand will be queued at the origin and will be discharged at a later time. This is a typical (also realistic)
phenomenon when capacitated physical queues are applied to model traffic flow; see also Ma et al. (2014)
and Ma et al. (2018).
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Figure 12. Flows and downstream queues at node 1

In addition, we show the FIFO condition of each link (under HMPC, 30% CAYV penetration) in Figure 13.
The vertical axis of each sub-figure represents the value of the derivative of the link travel time 7; ; and -1
is marked to clearly show the threshold. As discussed in Proposition 1, FIFO will hold if ; ; > —1
holds. Although we cannot theoretically guarantee the FIFO condition holds, as shown in Figure 13, such
a condition is satisfied for the four links of the five-node network (note that the FIFO condition also holds
for link 4 to 5, which is omitted here to save space).
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Figure 13. FIFO condition of each link (under HMPC, 30% CAYV penetration)

5.1.2.  Route choice behavior under different solution methods

There are only two paths from node 1 to the destination, we can analyze the route choice behavior of
HDVs and CAVs by analyzing the outgoing flows at node 1. Figure 14 shows how the flows of HDVs
and CAVs exiting from node 1 select their routes under different solution methods. p; ; represents the

inflow to outgoing link (i, j) of different vehicle types (i.e., * is either HDV or CAV). tt;,45 and tt; 345
represent the instantaneous travel times of path1 - 2 - 4 - 5and 1 = 3 - 4 — 5, respectively. Under
IDUE, Figure 14 (a) clearly shows that HDVs follow the IDUE principle. If the travel time of path 1 —
2 > 4 - 5is less than that of 1 - 3 > 4 — 5, HDVs choose link (1,2) as the next link (i.e., p{'3” > 0).
Otherwise, HDVs select link (1,3) as the next link. The same IDUE route choice behavior of HDVs can
be observed from the HMPC by Figure 14 (b). Under RELAX, as shown in Figure 14 (¢), HDVs follow
the IDUE principle at most time. However, when the travel times of the two candidate routes are close
(e.g., t € [7,13]), HDVs may be assigned to both outgoing links (1,2) and (1,3). This is resulted by the
relaxation solution method. Such a method relaxes the complementarity equilibrium constraints to
nonlinear constraints by introducing relaxation parameters, which will cause errors, especially when the
travel times of the two paths are close. Please see Ban and Liu (2009) and Ban et al. (2006) for detailed
discussion of the relaxation method. Under DSO, all vehicles are considered as CAVs so there is no
relation between the flows and path travel times.

There are mainly two ways by which CAVs improve system performance. First, CAVs can be assigned to
paths that are not with the minimum travel time, which can however help reduce network congestion. As
shown in Figure 14 (a), under IDUE, HDVs always select the path with minimum travel time and try to
select the shortest path with maximum capacity. When CAVs are introduced into the network, as shown
in Figure 14 (b) and (c), although HDVs still follow the IDUE principle, the CAVs can be assigned to
other paths. These paths are generated based on the objective to improve the network performance.
Although the travel times of some CAVs are increased, the network wide performance is improved, as



shown in Figure 10. Second, CAVs can increase link capacity thus improve the network performance.
Two extreme conditions are the IDUE where all vehicles are HDVs and the DSO where all vehicles are
CAVs. It is shown from Figure 14 (a) and (d) that the capacities of link (1,2) and (1,3) increase when
HDVs are replaced by CAVs. As a result, the congestion of the network is reduced (which is why the
travel times of the two paths almost don’t change in Figure 14 (d)).

40 " 12 40 " 12
v hdv cav
35 —a— l’lfiz —— s 3 —8— )y —A&= Py
a8 —A—P?év —0— | 1 +P*1‘fiav —— it | 11
= 30r = = 30r —o— pfY —O— i35 g =
EE 25r ) EE 25r f 9 )
o o
> Q > \ Q
a0t £ o207 o b E
£ = g S —
SISt = g 157 Z
k) &= k) N 7 &
= 10 = 10 bda‘%)
5 5 ©060606¢ 6
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time [min] Time [min]
(a) IDUE (b) HMPC (30% CAYV penetration)
40 — - : ‘ 12 40 ‘ ‘ 12
35 —8— piy —A— Y 3 —8— pily — %= s
—A— Iy == s m —A— piy —O— s i
%30 —B— piY) —O— i3 110 = %30 i B 10 =
= g =25 g
S Q S 19 2
o £ o 20 b d £
B b B T By = T L=
3 Ml
= = = 10l 17 B
5 |deceodeoe® PeoechCOoococ00000d 6
0 N 1 B A A A A A A A A A A A A 5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time [min] Time [min]
(c) RELAX (30% CAYV penetration) (d) DSO

Figure 14. Routes of HDVs and CAVs under different methods at node 1

The first way discussed above by which CAVs improve the network performance also brings the fairness
(i.e., equity) issue between CAVs and HDVs. As shown in Figure 14 (b), during [0,10] min, CAVs are
assigned to route “1-2-4-5”, which has longer instantaneous travel time than the route “1-3-4-5”. This
indicates the CAVs “sacrifice” their instantaneous travel times to help reduce the system-wide congestion
of the network. At 11 min, CAVs are assigned to route “1-2-4-5”, which is the shortest route. Then,
during (11,15] min, CAVs are assigned to route “1-3-4-5” thus again “sacrifice” their instantaneous travel
times for improving the system performance. The difference of the actual CAV travel time and the
minimum path travel time may be considered as how “unfair” the control scheme imposes to CAVs. We
provide more discussions of this later in Section 5.2.

5.1.3.  Five-node network with long time horizon

Real world traffic is usually spanned widely at the temporal domain. Thus, we extend the time horizon to
300 minutes for the five-node network, of which the demand profile is shown in Figure 15. For this
scenario, solving the MPEC directly by the relaxation method is difficult. We apply the HMPC method to



generate routes for CAVs and compare the network performance with the IDUE and DSO cases. The
result is shown in Figure 16, which indicates similar results as those for the short time horizon scenario.
As the CAV penetration increases from 0% to 100%, the performance of HMPC increases from 0% to
75%. The difference between the performance of DSO and the HMPC under 100% CAYV penetration is
only 1.01%, which indicates that the HMPC can achieve almost the same performance as the DSO at
100% CAYV penetration. It is shown the maximum improvement of the network performance under this
long time horizon scenario is greater than that under the short time horizon scenario. Under the IDUE
case, when one path becomes congested, HDVs will not immediately change their routes. Instead, they
will stick to the congested path until the instantaneous travel time of that path becomes larger than that of
another path. Such phenomenon becomes more dominant if the free-flow travel times of different paths
differ. For example, a path with longer free-flow travel time may stay empty while the path with shorter
free-flow travel time is heavily congested, as long as the congestion-increased travel time is less than the
difference between the free-flow travel times. This lies in the nature of IDUE, since the “instantaneous”
travel time is used to calculate travel cost. In addition, the longer time horizon (with travel demand), the
heavier the congestion. On the other hand, HMPC could reduce the congestion by assigning CAVs to
paths that can help improve network system performance.
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Figure 15. Demand profile of the five-node network with a long time horizon
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Figure 16. Performance of HMPC on the five-node network

5.2.The Sioux Falls Network



We also test the HMPC on the Sioux Falls network, which is a larger network (compared with the five-
node network) with a more general network structure. The geometry of the Sioux Falls network is shown
in Appendix D. The reader can refer to Ma et al. (2018) and many other published works for the detail of
the Sioux Falls network. We set node 15 as the (single) destination and all other 23 nodes as the origins.
The demands are adopted from Lablanc (1975), which is shown in Table 1. The total simulation time is
90 minutes. We distribute the daily demand uniformly and apply such demand in the first 30 minutes.
Same as the five-node network experiment, we leave a 60-minute clearance time. Figure 17 shows the
performances of the HMPC algorithm under different CAV penetration rates, compared with both the
performances of IDUE and DSO. The figure shows similar results as that in Figure 16 except for two
aspects. First, the curves of HMPC performances in the Sioux Falls network show more “nonlinear”
trends compared with those of the five-node network. This may be caused by the different network
structure of the two scenarios. Second, the maximum improvement of the Sioux Falls network is far less
than the maximum improvement of the five-node network with long time horizon, but similar to the
maximum improvement of the five-node network with short time horizon.

Table 1. Demands to node 15 of the Sioux Falls network (thousand vehicles per day)

Node Demand Node Demand Node Demand Node Demand
1 5 7 5 13 7 19 8
2 1 8 6 14 13 20 11
3 1 9 9 15 0 21 8
4 5 10 40 16 12 22 26
5 2 11 14 17 15 23 10
6 2 12 7 18 2 24 4
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Figure 17. Performance of HMPC on Sioux Falls network

As shown in Figure 18, we illustrate the route choices behavior for Sioux Falls network by analyzing the
routes of HDVs and CAVs entering the network from node 7, since there are only two candidate routes
for this node which could make the analysis clear. Note that in Figure 18, tt;_; represents the sum of the
travel time of link (i, j) and the minimum travel time from node j to the destination. As shown in Figure
18 (a), if all vehicles are HDVs following IDUE, the HDVs select the link on the minimum travel time



path as the route. Specifically, during the first 27 minutes, link (7,18) is on the minimum travel time path,
therefore, all the HDVs flow into link (7,18). At t = 28 min, the travel time through link (7,8) is slightly
shorter than that through (7,18), thus HDVs select (7,8) as their route. After that, link (7,18) is again the
on the shortest travel time path, thus HDVs flow into link (7,18). Under HMPC, as shown in Figure 18
(b), HDVs still follow the IDUE condition, while CAVs’ routes are not related to the minimum travel
time path.
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Figure 18. Routes of HDV and CAV flows entering the network from node 7 under IDUE and HMPC
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Figure 19. FIFO condition of four randomly selected links (under HMPC, 30% CAYV penetration)



To check whether the FIFO condition is satisfied for the Sioux Falls network, Figure 19 shows the FIFO
condition of four randomly selected links (under HMPC, 30% CAYV penetration). It shows that the FIFO
conditions (i.e., T; ; > —1) are all satisfied for the selected links.

Before concluding the numerical experiments, we present more results and discussions about the equity
issues of the proposed control scheme to CAVs. First, for a given CAV penetration, for the HMPC case
(i.e., with the control of CAVs), we can calculate the total travel times of all CAVs and all HDVs
separately. Then, we assign both HDVs and CAVs to follow IDUE for the same CAV penetration (i.e.,
without the control of CAVs), for which the capacities of links will change according to the penetration of
CAVs; see Equation (2) in the manuscript. We also collect the total travel times of all CAVs and all
HDVs separately for this without-control case. Finally, we compare the performance (i.e., total travel
times) of HDVs and CAVs, respectively, under the above two cases (i.e., with control and without control
of CAVs) to analyze the equity issue. We test this for various penetration rates of CAVs. Figure 1 shows
the performance improvements of HDV's and CAVs under the control of CAVs (i.e., HMPC) compared
with the case of without control of CAVs.

For the five-node network (Figure 20 (a)), it is shown that, under any penetration rate, the performances
of CAVs and HDVs are both improved, while the improvements for HDVs are generally higher. This
indicates that there is “sacrifice” of CAVs in the control case (because their improvements are smaller
than those of HDVs), whereas the sacrifice is not that dramatic. Although CAVs may sacrifice their
instantaneous travel time at a specific time instant, the overall total travel time of CAVs can still be
reduced due to the fact that CAVs can improve the capacities of the links. The actual travel times of
CAVs might be reduced due to the increased capacities. For the Sioux Falls network (Figure 20 (b)),
although the performances of HDVs are always improved under different CAV penetration rates for the
case with CAV control, the performances of CAVs are degraded when the penetration is less than 90%.
The network structure of Sioux Falls is much more complex than the five-node network. For CAVs, the
benefits introduced by the increased capacities cannot overcome the sacrifice introduced by being
assigned to the routes with longer travel times.
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Figure 20. Performance improvements of HDVs and CAVs under HMPC compared with IDUE



The above results clearly show that, for the proposed scheme of CAV control, CAVs sacrifice themselves
in general to improve the overall network performance, and thus may need to be compensated for their
sacrifice. However, depending on the specific network structures or demand patterns of different
networks, the level of sacrifice may be different, for which different compensation and incentive schemes
may be designed to CAV passengers. This can be an important future research direction.

6. CONSLUSIONS AND FUTURE RESEARCH

This research proposed a double queue (DQ)-based mixed traffic flow model to describe the link
dynamics and nodal flow transitions of the mixed HDV/CAYV traffic flow. Based on the DQ model, we
developed a dynamic bi-level framework to capture the behavior and interaction of HDVs and CAVs at
the network level. The CAVs’ route control problem is the upper level and the HDVs’ route choice
problem is the lower level. We developed mathematical models to describe the HDVs’ and CAVs’ route
choice behavior by the IDUE principle and the DSO principle, respectively. An optimal control problem
with equilibrium constraints (OCPEC) model was formulated to find the system performance oriented
routes for CAVs in the network. We discretized the OCPEC to an MPEC and proposed the solution
techniques. The nonlinear and non-smooth properties of the MPEC make it hard to be efficiently solved
directly (e.g., by the relaxation method). To overcome this shortcoming, we developed a heuristic
decomposition based MPC (HMPC) method by decomposing the original MPEC problem into two
separate problems (i.e., the IDUE problem and the DSO problem).

Experiment results on a five-node network showed that the OCPEC model could improve the network
performance compared with the scenario where all vehicles are HDVs, and the two solution methods can
achieve similar results. Specifically, as the CAV penetration increases from 0% to 100%, the two solution
methods reduce the network-wide total travel time dramatically. The maximum gain can achieve 37%
under the studied scenario. However, for larger networks or longer time horizons, the relaxation method
does not work well, while HMPC can still apply. We then tested the HMPC method on the five-node
network with a longer time horizon and on the Sioux Falls network. The results further showed the
effectiveness of the HMPC method.

There are several limitations of the proposed model and the HMPC solution method, which merit further
investigations. First, we assume that CAVs always follow the assigned routes to improve the network
performance. Although in theory this could be done by controlling the CAVs routes directly via
communication and automation, doing so may be “unfair” to the CAV passengers. Therefore, this equity
issue needs to be further investigated so that compensation and incentive schemes for CAV passengers
can be developed to compensate the extra travel times (and/or other related costs) they may experience.
To this end, what incentives and how to implement them should be carefully studied. Second, we
assumed a constant shockwave speed for each link. Although the constant shockwave speed makes it
easier to model and solve the studied problem, both shockwave speed and jam density may change in
real-world scenarios and thus the constant shockwave speed may only represent a special (and simplified)
case. Relaxing such constant shockwave speed to varying shockwave speed is one of the future research
directions. Changing shockwave speeds will lead to a dynamic network model with time-varying, state-
dependent delays. For such models, the proposed modeling framework in this paper still apply which
however requires certain approximation schemes, e.g., those proposed in Ma et al. (2014) and Friesz and
Mookherjee (20006), to generate and solve sub-problems similar to the network model in this paper. Deep
learning and Al models may also hold great promise in developing such approximation schemes (Song et
al., 2017), which is worthwhile for future investigations. Third, the possible FIFO violation issues of the
DQ-based traffic dynamics model needs to be further studied. For this, one may need to design improved
traffic flow models that guarantee the condition in Proposition 1 directly or design the control scheme of
CAVs (e.g., by adding constraints) so that the increase of the CAV penetration on a link is not dramatic
so that the FIFO condition in Proposition 1 can be satisfied. Fourth, we assume full observability of the



network information. In real-world traffic, such an assumption may not hold, and only limited
information can be accessed. Developing models and algorithms that can work under partial observability
is an interesting topic. Fifth, this paper focuses on network level flow control, while neglecting the control
and optimization of individual vehicles such as vehicle trajectory and motion planning. It is an interesting
future research direction to integrate network level flow control and micro-level individual vehicle control
in one modeling framework. Last but not least, the proposed OCPEC model and the HMPC solution
method need to be further tested and validated on larger, real-world transportation networks. The authors
plan to work on these research topics and results may be reported in subsequent papers.
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APPENDIX A: NOTATION LIST

Network notation
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Set of nodes

Set of links

Incoming nodes that are directly linked to node j
Outgoing nodes that are directly linked from node j
Capacity of link (i, j) when all vehicles are HDV's
Capacity of link (i, j) when all vehicles are CAVs
Queue storage capacity of link (i, j)

The parameter for the modified point queue model
The free flow travel time of link (i, j)

The shockwave travel time of link (i, j)
The prediction time horizon of the predictive controller

Time-dependent variables for network dynamics (continuous-time)
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Capacity of link (i, j) at time ¢
Sending flow capacity of link (i, j) at time t
Receiving flow capacity of link (i, j) at time t

Upstream queue capacity of link (i, j) at time t

Demand of CAV from node i to destination at time t
Demand of HDV from node i to destination at time t
Number of all vehicles of link (i, j) at time t
Number of HDVs of link (i, j) at time t

Number of CAVs of link (i, j) at time ¢

Total inflow rate to ink (i, j) at time t

Inflow rate of HDVs to link (i, j) at time t

Inflow rate of CAVs to link (i, j) at time t

Pseudo inflow of HDVs to link (i, j) at time t, calculated by IDUE
Inflow rate to ink (i, j) at time t when modeled by point queue

Upstream queue length of link (i, j) at time t
Downstream queue length of link (i, j) at time t
Number of downstream HDVs on link (i, j) at time ¢t

Number of downstream CAVs on link (i, j) at time t

Total exit flow rate from link (i, j) at time ¢t
Exit flow rate of HDVs from link (i, j) at time ¢

Exit flow rate of CAVs from link (i, j) at time t
Exit flow rate from link (i, j) at time t when modeled by point queue

Travel time of link (i, j) at time t
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The instantaneous minimum travel time from link i to destination s at
time t

CAV penetration of link (j, k) at time t

The information of the whole network at time t

Total transition flow from link (i, j) to link (j, k) at time t
HDVs transition flow from link (i, j) to link (j, k) at time t
CAVs transition flow from link (i, j) to link (j, k) at time t
Receiving flow of link (i, j) at time t

Sending flow from link (i, j) at time t

Sending flow of HDVs from link (i, j) at time t

Sending flow of CAVs from link (i, j) at time t

Time-dependent variables for network dynamics (discrete-time)

Time step of the discretization
Discretized time

Capacity of link (i, ) at discrete time

Upstream queue capacity of link (i, ) at discrete time r

Demand of CAV from node i to destination at discrete time r
Demand of HDV from node i to destination at discrete time r
Number of all vehicles of link (i, j) at discrete time r
Number of HDVs of link (i, j) at discrete time

Number of CAVs of link (i, j) at discrete time r

Total inflow rate to ink (i, j) at discrete time r
Inflow rate of HDVs to link (i, j) at discrete time
Inflow rate of CAVs to link (i, j) at discrete time r

Pseudo inflow of HDVs to link (i, j) at discrete time r calculated by
IDUE

Upstream queue length of link (i, j) at discrete time r
Downstream queue length of link (i, j) at discrete time r
Number of downstream HDVs on link (i, j) at discrete time r

Number of downstream CAVs on link (i, j) at discrete time r

Total exit flow rate from link (i, j) at discrete time r
Exit flow rate of HDVs from link (i, j) at discrete time r
Exit flow rate of CAVs from link (i, j) at discrete time r

Travel time of link (i, j) at discrete time r

The instantaneous minimum travel time from link i to destination s at
discrete time r




pl.h}.r CAV penetration of link (j, k) at discrete time r

G (’x)_) G Total transition flow from link (i, j) to link (j, k) at discrete time r
G g‘i’)’_’}é ” HDV:s transition flow from link (i, j) to link (j, k) at discrete time 7
G(Cla;;ﬁ(r]k) CAVs transition flow from link (i, j) to link (j, k) at discrete time r
R lh]r Receiving flow of link (i, j) at discrete time r
Si},l]l'r Sending flow from link (i, j) at discrete time r
Si"lj?lv'h'r Sending flow of HDVs from link (i, ) at discrete time r
55}“”"'7“ Sending flow of CAVs from link (i, j) at discrete time r
APPENDIX B

Lemma B1: Equation (10) in DQ is equivalent to Equation (9) in LTM.
Proof: Here we show Equation (7) in DQ can be derived from Equation (6) in LTM.
First, divide both sides in Equation (9) by At, we have
N(x™ t + At —10;) — N(xP¥, t
$i(8) = min ( () At”) S

L j@:)) (53)

Notice that q2;(t) = N(x/%,t —0;) = N(x2}, 0). If qP;(t) = 0, i.e., N(x[ht — 70;) = N(x{¥, 1), let
At — 0, we have

N(xi” t+ At —ng) — N(xin t —ng)

. ij’ i _ 0
jim, i =put =) Y
This means
. =S .
S;j(t) = min (pi,j(t — ng), Ci;(®) ), if qu(t) =0 (55)

If ql-l,)j(t) > 0, we have

N(xB e+ At — 1)) — N(x23, 1)

lim LI Lj
At—0 At
in 0 in 0 D
_ i NGl e+ At — o) = N e — o)) + qi(0) (56)
At—0 At
D
. qi;()
= puy(t = 1)) + fim T = oo
Thus,
. =S —s . D
Si.j(t) = min (+OO, Ci,j(t)) = Ci,j(t)' lf qi,j(t) >0 (57)

This concludes the proof.

APPENDIX C

Algorithm-1: The HDV routes adjustor and CAV routes generator

Calculate the receiving capacity R; ; (t) of each outgoing link (j, k), k € K;



1 Adjust HDV routes, assign CAV routes, check receiving capacity
If ﬁh,fﬁdu (t) = Rj'khdv ()
Set ph,‘f}{d,, (£) = R, yhav(t)
pr hav ) = phg;:dv ®)
Set PCZZav ) = min{ D; yhav ®) - phg}:dv (), R jhav(t) — phg}:dv (t)}

Set i (t) = mm{p, 2, R, khdv(t)} for k € K; and k # k"@v
Else
Set ﬁCZ’,id,, =0

piR(t)

Set 55" (1) = min)|Sirere, ol (6) = Bhes (O] 5

k' # khav
Calculate total assigned flows for both HDVs and CAVs: Pjhd" = ) phdv ﬁjf’f}fdv ®), Pf* = X 955 ()

R hav(t)} for k' € K; and
Ly €K j k’;tkhdvp k,(t) J.k "( ) {

1. Calculate the proportion of HDVs and CAVs of the sending flows
Initialize S (t) = S7i5, (t) = Sfom, (t) = 0.
Fori € [;
If S3% () > 0
SP () +=8(3% (£); Sf gy (D+=SEH ()
Else
Stz SEH©
IIL. Modify HDV and CAV routes to satisfy the DQ nodal model)
If there is a k"% such that ﬁhg}fd,, >0

Calculate the proportion of CAVs to HDVs of the coupled sending flow: p = S] iil;vv((:;)
I 2B (6) > P enav (£)
For k € K;
hdv (Jt) _ ~hdv d cav _ acav
Pjk = Pjx () and pje”(t) = pji” (6)
Fori € [;
If S () > 0
th(t) — Ahdv (t) hd"() and Ucav(t) _ Ahdv (t) cav(t)
khdv Shdv(t) kth Shdv(t)
Else
~cav geav
vMY(t) = 0 and v (£) = £ (1) ka]kc(t)l (]t)hdv(t)
jonly
Else
For k € K;
If k = khdv
© = (BB55 O + %00 e and P50 =
] khdv kPjk 'j khav §}1dV(t)+5fﬁ3y(f)+5”,-C,‘,§Zly(t)

P () + prav () — pler ()
Else
p}Ev () = 0 and p§3¥ (1) = ST (D)



Fori € Ij
If SP () > 0

hdv geav
hdv _ . hdv Si.j ® cav _ . hdv ®
(t) j.k (t) S’}-ldv(t) and 'U (t) J.k ( )Shdv(t)
Else
hdv (t) _ 17cav (t) =0
Else
For k € K;
i (t) = P53’ (t) and p}a¥ () = 0
Fori € I
If 5’”“’ (t)>0
hdv (t) — 176av (t) =0
Else
cav
hdv (t) =0 and Ucav(t) - Zk pcav( )Scavl(z)
nly
End

Algorithm-2: The overall algorithm

For

End

t=1:N,do

Collect the real transition flow of HDVs and CAVs from previous step p; , (¢ — 1), v;;(t — 1)

Move the DQ link dynamics 1 step forward

Collect current network states n; ;(t), q; ]’-*(t), qu] (t),S;;(t), R; x(t) and obtain the demands of
HDVs and CAVs d; (t)

Calculate the routes of HDVs by IDUE principle (i.e., Equation (22) and (23)) and get pf‘ﬁ”(t)

Calculate the expected routes of both HDV's and CAVs by solving the PQ-based DSO (Equation (49)-
(52)) and get p (t) v (t)

Adjust HDV routes and generate CAV routes using Algorithm-1 and get p; , (t), v ;(t)




APPENDIX D: SIOUX FALLS NETWORK




