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ABSTRACT
Taxonomies are fundamental to many real-world applications in
various domains, serving as structural representations of knowl-
edge. To deal with the increasing volume of new concepts needed to
be organized as taxonomies, researchers turn to automatically com-
pletion of an existing taxonomy with new concepts. In this paper,
we propose TaxoEnrich, a new taxonomy completion framework,
which effectively leverages both semantic features and structural
information in the existing taxonomy and offers a better represen-
tation of candidate position to boost the performance of taxonomy
completion. Specifically, TaxoEnrich consists of four components:
(1) taxonomy-contextualized embedding which incorporates both
semantic meanings of concept and taxonomic relations based on
powerful pretrained language models; (2) a taxonomy-aware se-
quential encoderwhich learns candidate position representations by
encoding the structural information of taxonomy; (3) a query-aware
sibling encoder which adaptively aggregates candidate siblings to
augment candidate position representations based on their impor-
tance to the query-positionmatching; (4) a query-positionmatching
model which extends existingworkwith our new candidate position
representations. Extensive experiments on four large real-world
datasets from different domains show that TaxoEnrich achieves the
best performance among all evaluation metrics and outperforms
previous state-of-the-art methods by a large margin.
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1 INTRODUCTION
Taxonomies have been widely used for organizing concepts struc-
turally [14, 20, 21, 25, 28]. Specifically, to capture the “is-a” relation-
ship between concept pairs, people often formulate the taxonomy
into tree or directed acyclic graph (DAG) structure. Example appli-
cations could be found in e-commerce, where Amazon leverages
product taxonomies for personalized recommendations and prod-
uct navigation, and fine-grained named entity recognition where
people rely on concept taxonomies (e.g., MeSH) [9] to extract and
label useful information from massive corpus.

However, the construction of taxonomies usually requires a sub-
stantial amount of human curation. Such process is time-consuming
and labor-intensive. Thus, it is extremely hard to handle the large
number of emerging new concepts in downstream tasks, which is
fairly common nowadays with the rising tide of big data. To tackle
this issue, recent work [12, 19, 23, 30, 31, 34] turns to the tasks of
the automatic expansion and completion of the existing taxonomy.

Figure 1: An example of inserting new concepts into an ex-
isting taxonomy of computer science terms. For each new
concept, we aim to find the relatedness between the concept
and each candidate position.
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Previous taxonomy construction methods [3, 4, 10, 13, 26, 32]
construct taxonomies from scratch, and highly rely on annotated
hypernym pairs, which are expensive and sometimes inaccessible
in practice. Therefore, automatic taxonomy expansion based on
existing taxonomies is in great need and has gained increasing
attention.

The recent studies on taxonomy expansion and completion
achieved noticeable progress, which mainly contribute from two
directions. (1) extract hierarchical information from the existing
taxonomy, and utilize different ways to model the structural infor-
mation in the existing taxonomy, such as local egonet [19], parent-
query-child triplet [34], and mini-paths [30]. (2) leverage the sup-
porting corpus to generate the embeddings of concepts directly.
They either only used implicit relational semantics [12], or only
relied on corpus to construct limited seed-guided taxonomy [5].
Very recently, [31] combines the representations from semantic
sentences and local-subgraph encoding as the features of concepts.
However, they only utilized light-weight multi-layer perceptron
(MLP) for matching, which suffers from the limited representation
power. In this paper, we follow [34] to focus on taxonomy com-
pletion, which aims to predict the most likely ⟨query, hypernym,
hyponym⟩ triplet for a given query concept. For example, in Figure
1, when considering the query “Integrated Circuit”, we aim to find
its true parent “Hardware” and child “GPU ”.

To effectively leverage both semantic and structural informa-
tion for better taxonomy completion performance, in this work,
we propose TaxoEnrich, which aims to learn better representations
for each candidate position and render new state-of-the-art taxon-
omy completion performance. Specifically, TaxoEnrich consists of
four carefully-designed components. First, we propose a taxonomy-
contextualized embedding generation process based on pseudo
sentences extracted from existing taxonomy. The two types of
pseudo sentences, i.e., ancestral and descendant pseudo sentences,
capture taxonomic relations from two directions respectively. Then,
the powerful pretrained language models are utilized to produce
the taxonomy-contextualized embedding based on the extracted
sentences. Secondly, to encode the structural information of the
existing taxonomy in both vertical and horizontal views, we de-
velop two novel encoders: a sequential feature encoder based on the
pseudo sentences and a query-aware sibling encoder base on the
importance of candidate siblings to the matching task. The former
aims to learn a taxonomy-aware candidate position representations,
while the latter further augments the position representations with
adaptively aggregated candidate siblings information. Finally, we
develop an effective query-position matching model by extending
previous work [34] to incorporate our novel candidate position
representations. Specifically, it takes into consideration both fine-
grained (query to candidate parent) and coarse-grained (query to
candidate position) relatedness for better taxonomy completion
performance.

We conducted extensive experiments on four real-world tax-
onomies from different domains to test the performance of Tax-
oEnrich framework. Further more, we designed two variations of
the framework, TaxoEnrich and TaxoEnrich-S to conduct ablation
experiments to explore the utilization of different information un-
der different datasets, along with studies to examine the effective-
ness of each sub-module of the framework. Our results show that
TaxoEnrich can more accurately capture the correct positions of

query nodes than previous methods and achieve state-of-the-art
performance on both taxonomy completion and expansion tasks.

To summarize, our major contributions include:

• We propose an effective embedding generation approach
which can be applied generally for learning contextualized
embedding for each concept node in a given taxonomy.

• We introduce the sequential feature encoders to capture
vertical structural information of candidate positions in the
taxonomy.

• We design an effective query-aware sibling encoder to incor-
porate horizontal structural information in the taxonomy.

• Extensive experiments demonstrate that our developed frame-
work enhances the performance on both taxonomy comple-
tion and expansion task by a large margin over the previous
works.

2 PROBLEM DEFINITION
In this section, we formally define the taxonomy completion task
studied in the paper.
Taxonomy. Follow [19], we formulate a taxonomy T 0 = {N0, E0}
as a directed acyclic graph where each node n ∈ N0 represents a
concept and each directed edge ⟨np ,nc ⟩ ∈ E0 represents a taxo-
nomic relationship between two concepts.
Taxonomy Completion. The taxonomy completion task [34] is
defined as following: given an existing taxonomy T 0 and a set
of new concepts C, assuming that each concept in C is in the
same semantic domain as T 0, we aim to automatically find the
most possible ⟨ hypernym, hyponym⟩ pairs for each new concept
to complete the taxonomy. The output is T = {N , E ′} where
N = N0 ∪ C and E ′ is the updated edges set after inserting new
concepts.
Candidate Positions. In the taxonomy completion task, we define
a valid candidate position as a pair of concept nodes in the existing
taxonomy ⟨np ,nc ⟩ where np is a parent of nc . Note that one of np
and nc could be a pseudo placeholder node in case that the concepts
needed to be inserted as root or leaf nodes.

The goal of taxonomy completion is to enrich the existing taxon-
omy by inserting new concepts. These new concepts are generally
extracted from text corpus using entity extraction tools. Since this
process is not the focus of the paper, we assume that the set of new
concepts C is given, as well as their embedding, which is denoted
by eq for new concept nq .

3 THE TAXOENRICH FRAMEWORK
In this section, we introduce the TaxoEnrich framework in details.
We first introduce the taxonomy-contextualized embedding gener-
ation for each concept node in the existing taxonomy. Then, given
the extracted taxonomy-contextualized embedding, we develop two
encoders to learn the representation of candidate positions from
vertical and horizontal views of the taxonomy respectively. Finally,
we propose a query-to-position matching model which leverages
various structural information and takes into consideration both
fine- and coarse-grained relatedness to boost the matching perfor-
mance. The overall framework of TaxoEnrich is in Figure 2.
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Figure 2: The complete architecture of TaxoEnrich . The figure describes theworkflowof TaxoEnrich, and the details are discussed
in the corresponding section.

3.1 Taxonomy-Contextualized Embedding
Here, we describe the generation process of taxonomy-contextualized
embedding for each node in the taxonomy. Different from prior
work which leverages static word embedding, such as Word2Vec
and FastText [19, 34], or contextualized embedding solely based on
an additional text corpus [30], we generate taxonomy-contextualized
embedding based on taxonomy structure and concept surface name.
The reason is that neighboring concepts in taxonomy are likely
to share similar semantic meaning and it is hard to distinguish
them based on predefined general-purpose embedding. With simi-
lar spirit, [31] also leverage pretrained language models to produce
contextualized embedding based on limited number of taxonomy
neighbor and the surface names is implicitly utilized in fine-tuning
the pretrained language models. In contrast, we aim to fuse the
information of all the descendant/ancestral concepts of the given
concept, without fine-tuning a huge pretrained language model.
Specifically, given a concept node, we build pseudo sentences based
on Hearst patterns [18] to represent both the positional and seman-
tic information. We separately consider the descendant/ancestral
information by constructing descendant/ancestral pseudo sentences
respectively as shown in Figure 3.

Figure 3: The visualization of taxonomy-contextualized gen-
eration process. In this example, we aim to extract the em-
bedding of the concept node “Disk”.

Formally, given a taxonomy T0 = (V0, E0) and the candidate
concept node v , we extract the following two types of pseudo
sentences that represent taxonomic relationships:

(1) Ancestral Pseudo Sentences: We first extract paths connect-
ing root and the candidate node v without duplicate nodes.
In the extracted path (p1,p2, . . . ,pl ), p1 is the root node and
pl = v . We denote the i-th extracted path for node v as
Pa (v)i = (p1,p2, . . . ,pl−1). Along each path, we generate
the ancestral pseudo sentence as below:

"p1,p2, . . . ,pl−1 is a superclass of v"
or "p1,p2, . . . ,pl−1 is an ascendant of v"

All such words like "superclass" or "ascendant" that can rep-
resent the hierarchical relationship between the path and
candidate nodes can be used for sentence generation. We
denote the collection of such ancestral paths as Pa (v) and
the generated sentences as Sa (v)

(2) Descendant Pseudo Sentences: Similarly, the paths without
duplicated nodes starting from the candidate node v to leaf
nodes are extracted, denoted as (p1,p2, . . . ,pl ) where p1 =
v and pl is a leaf node. In this case, along each path, we
generate the sentence as below

"p2,p3, . . . ,pl is a subclass of v"
or "p2,p3, . . . ,pl is a descendant of v"

We denote the collection of such descendants paths as Pd (v)
and the generated sentences as Sd (v)

Then, the set of all the generated pseudo sentences is S(v) =
Sd (v) ∪ Sa (v). As visualized in Figure 3, aiming to generate embed-
dings of the concept node “Disk”, we only consider the ancestral and
descendant paths, such as “Electronic Devices, Smart Phone is a super-
class of Disk”. Note that if the candidate node is leaf node or root, we
will only consider one side pseudo sentences. Given the generated
pseudo sentences, we apply a pretrained language models to gener-
ate taxonomy-contextualized embedding for each node. Specifically,
we feed the pseudo sentences to the pretrained language model and
collect the last hidden state representations of the concept node v ,
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which is averaged as the final taxonomy-contextualized embedding
xv ∈ Rd . In our preliminary experiments, we found that SciBERT
is better than other models in representing concept representations.
Hence, in this paper, we choose SciBERT [2] following [31]. And
the comparison between different pre-trained language models in
terms of performance are discussed in 7. Note that the taxonomy-
contextualized embeddings are pre-computed and fixed for the
following modules, which means we do not fine-tune the large
pretrained language model.

3.2 Sequential Feature Encoder
Given the taxonomy-contextualized embedding xv for existing
node v , we develop a learnable sequential feature encoder д(v)
to encode the structural information of candidate positions in a
vertical view of taxonomy. For a candidate position ⟨p, c⟩ consist-
ing of candidate parent p and child c , we produce parent embed-
ding д(p) and child embedding д(c) respectively. Specifically, for
candidate parent p and its corresponding ancestral paths Pa (p),
we randomly sample a path pp from Pa (p) and apply a LSTM se-
quential encoder which inputs the sampled pseudo sentence and
the taxonomy-contextualized embedding. Then, we concatenate
the final hidden state of the LSTM encoder and the taxonomy-
contextualized embedding xp as parent embedding. Formally,

д(p) = xp ⊕ LSTM(pp ;Θ1) (1)
where Θ1 is the learnable parameters of the LSTM encoder and ⊕

represents the concatenation operation. Similarly, we generate the
child embedding д(c) based on taxonomy-contextualized embed-
ding xc and descendant paths pc from Pd (c):

д(c) = xc ⊕ LSTM(pc ;Θ2) (2)
where,Θ2 represents the learnable parameters of the LSTM encoder.
The output д(u),д(v) ∈ Rh will be used as the embedding for
candidate position nodes.

Through this sequential feature encoder, we are able to fuse
the structural information of candidate position in a vertical view.
This allows the candidate position representations to be aware of
the “depth" information of the candidate position, i.e., whether the
candidate position is in the top-level of taxonomy close to the root
or in the bottom-level close to leave.

3.3 Query-Aware Siblings Encoder
The aforementioned sequential feature encoder incorporates the
taxonomy structural information in a vertical view, however, it is
of great importance to also encode the horizontal local information
of the candidate position. Thus, we develop another encoder to
incorporate the structural information in a horizontal view. Specif-
ically, in addition to the candidate parent and child, we consider
the candidate siblings, i.e., the children of candidate parent, of the
query node.

However, incorporating candidate siblings is challenging than
candidate parent and child. The reasons are twofold. First, compared
to the candidate parent and child which compose the candidate
position, candidate siblings could introduce noisy information and
thus lead to sub-optimal results. For example, for the top-level of
taxonomy, the candidate siblings could have quite diverse semantic
meanings, which hinder good matching between candidate position
and query node. Secondly, since some candidate parent could have

substantial amount of children (candidate siblings), it is infeasible
to incorporate all the candidate siblings without strategic selection.

To tackle these issues, we develop a query-aware siblings en-
coder, which adaptively selects part of the candidate siblings. Specif-
ically, we measure the relatedness of a given query embedding
eq and each candidate sibling condition on the representation
of candidate parent-child pair. Such relatedness is in turn used
to aggregate the sibling information into a single siblings em-
bedding. Mathematically, given candidate position ⟨np ,nc ⟩ with
corresponding embedding д(p),д(c) and the set of candidate sib-
lings C(np ) = {s1, s2, . . . , st }, we use a learnable bilinear matrix
WSib ∈ Rd×(2h+d ) to calculate the relatedness of query and candi-
date sibling si as

ϕsi = eTqWSib
[
д(p),д(c), xsi

]
(3)

Then the relatedness score ϕsi is normalized over the set of
candidate siblings by a softmax function:

αsi = σsoftmax(ϕsi ) =
exp(ϕsi )∑

sj ∈C(np ) exp(ϕsj )
(4)

The normalized score αsi captures the importance of candidate
sibling si for the specific query-position matching. In other words,
it highlights the siblings relevant to the query condition on the can-
didate position while lessen the effect of irrelevant siblings. Finally,
the sibling embeddings are aggregate based on the normalized score
as

a(p) =
∑

si ∈C(np )

αsi xsi (5)

where a(p) ∈ Rd . During experiments, we found that such a
query-aware siblings encoder renders good performance when
only a subset of siblings are considered, which alleviates the heavy
burden of aggregate over the potentially large amount of candidate
siblings.

3.4 Query-Position Matching Model
Finally, given the representation of candidate parent д(p), child
д(c) and siblings a(p) as well as the given query embedding eq , we
are ready to present our final matching module, which outputs
the matching score of query and candidate position for taxonomy
completion task. In particular, we seek to learn a matching model s
that outputs the desired relatedness score:

s(nq , ⟨np ,nc ⟩) = f (eq ,д(p),д(c),a(p)) (6)
where f is a parametrized scoring function.

The previous study [34] showed that the simple matching model
that learns one-to-one relatedness between the query node and
the position pair ignores fine-grained relatedness between query
and position component, i.e., the relatedness between ⟨nq ,np ⟩ and
⟨nq ,nc ⟩. Therefore, inspired by [34], we propose a new matching
model which incorporates the additional siblings embedding and
learn more precise matching based on both fine-grained (query
to candidate parent/child/siblings) and coarse-grained relatedness
(query to position).

To learn both the fine-grained and coarse-grained relatedness
between the query node and the candidate positions, we construct
multiple auxiliary scorers that separately focus on the relationship
between the query node and the candidate parent, the candidate
child, the candidate siblings and the candidate position, respectively.
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We adopt the Neural Tensor Network (NTN) [22] as the base models.
Given vectors u ∈ Rdu ,v ∈ Rdv , an NTN can be defined as

NTN(u,v) = wT σtanh(h(u,v)) (7)

h(u,v) = uTW[1:k ]v + V
[
u
v

]
+ b (8)

where σtanh is a tanh function and w ∈ Rk , W[1:k ] ∈ Rdu×dv×k ,
V ∈ Rk×(du+dv ) and b ∈ Rk are learnable parameters. Note that k
is a hyperparameter in NTN.

Then our multiple scorer can be defined as
S1(nq ,np ) = wT

1 σtanh(h1(eq ,д(p))) (9)

S2(nq ,nc ) = wT
2 σtanh(h2(eq ,д(c))) (10)

S3(nq ,C(np )) = wT
3 σtanh(h3(eq ,a(p))) (11)

S4(nq , ⟨np ,nc ⟩) = wT
4 σtanh(h4(eq ,

[
д(p),д(c),a(p)

]
)) (12)

We omit the learnable parameters inside each h for notation conve-
nience. In this formulation, S1, S2, S3 aim to learn the fine-grained
relatedness for ⟨nq ,np ⟩, ⟨nq ,nc ⟩, ⟨nq ,C(np )⟩ separately by predict-
ing whether the np , nc , and C(np ) is the reasonable parent, child,
and siblings, respectively. Differently, S4 is designed for coarse-
grained relatedness between the query node and the candidate
position. Eventually we construct a primal scorer which incorpo-
rates the all the auxiliary scorers.

Sp (nq , ⟨np ,nc ⟩) = uTp σtanh(
[
h1,h2,h3,h4

]
)) (13)

We omit the input of each function h for simplicity. In this case,
even though Sp and S4 share the same supervision signal, the con-
catenation of internal representations of other auxiliary scorers in
Sp will allow it to capture accurate matching information based on
S1, S2, S3 when S4 cannot learn correct coarse-grained relatedness.

3.4.1 Learning Objectives. For each auxiliary scorers, since the
model is trained for binary classification task to calculate the relat-
edness between the query node and the target objective, we adopt
the binary cross-entropy loss. Thus, the learning objective for each
scorer can be formulated as

Lk = −
1
|D|

∑
(Xi ,yi )∈D

yi · log(Si (Xi ))+(1−yi ) · log(1−Si (Xi )) (14)

whereD is the dataset formulated by the self-supervised generation
following similar methods proposed in [19, 34], and (Xi ,yi ) is the
generated data pair in the dataset, and k ∈ {p, 1, 2, 3, 4} represents
each scorer. In this case, the final learning objective L(Θ) that
focuses on the primal task will naturally be defined as

L(Θ) = Lp + λ1L1 + λ2L2 + λ3L3 + λ4L4 (15)

4 EXPERIMENTS
4.1 Experiment Setup
Dataset.We evaluate the performance of TaxoEnrich framework
on the following four real-world large-scale datasets. The statistics
of each dataset are listed in Table 1.

• Microsoft Academic Graph (MAG): This public Field-of-
Study (FoS) taxonomy contains over 660 thousand scientific
concepts and more than 700 thousand taxonomic relations.
We follow the data preprocessing in [19] to only select par-
tial taxonomies under the computer science (MAG-CS) and
psychology (MAG-PSY) domain [21].

Table 1: Dataset Statistics. |N | represents the number of
nodes in the taxonomy and |E | represents the number of
edges in the taxonomy. |D| indicates the taxonomy depth.
# of Sentences denotes the number of pseudo sentences gen-
erated by the embedding generation module in each taxon-
omy.

Dataset |N | |E | |D| # of Sentences
MAG-CS 24,754 42,329 6 227,609
MAG-PSY 23,187 30,041 6 111,194

WordNet-Noun 83,073 76,812 20 236,454
WordNet-Verb 13,936 13,403 13 34,654

• WordNet: We collect the concepts and taxonomic relations
from verbs and nouns sub-taxonomies based onWordNet 3.0
(WordNet-Noun, WordNet-Verb). These two sub-fields
are the only parts that have fully-developed taxonomies
in WordNet. In practice, due to the scarcity in the dataset, i.e.
there are many disconnected components in the both tax-
onomies, we added a pseudo root named “Noun” and “Verb”
and connect this root to the head of each connected com-
ponents in the taxonomies for generate a more complete
taxonomic structure.

Follow the dataset splitting settings used in [19, 34], we sample
1000 nodes for validation and test respectively in each dataset. Then
we use the remaining nodes to construct the initial taxonomy.

4.2 Compared Methods
To fully understand the performance of our framework, we compare
our model with the following methods.

• Bilinear Model [24] incorporates the interaction of two
concept embeddings, i.e., ⟨parent, child⟩ entity pair embed-
dings, through a simple bilinear form. This method serves
as a baseline result to check the comparable performance of
each framework.

• TaxoExpan [19] is a state-of-the-art taxonomy expansion
framework, which leverages the positional-enhanced graph
neural network to capture the relationship between query
nodes and local egonet, along with InfoNCE loss [16] to
increase the robustness of the model.

• ARBORIST [12] is a state-of-the-art taxonomy expansion
framework which aims for taxonomies with heterogeneous
edge semantics and optimizes a large margin ranking loss
with a dynamic margin function.

• TMN [34] is a state-of-the-art taxonomy completion frame-
work and also the first framework that proposed the com-
pletion task, and computed the matching score between the
query concept and ⟨ hypernym, hyponym⟩ pairs.

• GenTaxo [31] is a state-of-the-art taxonomy completion
framework using both sentence-based and subgraph-based
encodings of the nodes to perform the matching. Since part
of the framework concentrates on concept name generation
tasks, which is not the focus of this paper, we adopt the
GenTaxo++ assuming the newly added nodes are given. 1

1Note that since the implementation code of GenTaxo [31] is not released, we imple-
mented the framework based on the description in the paper.
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Table 2: Overall results of Taxonomy Completion task on the four large-scale datasets. ** indicates the results are from [34].

Method MAG-CS
MR MRR Recall@1 Recall@5 Recall@10 Precision@1 Precision@5 Precision@10

Bilinear 3360.343 ± 6.126 0.026 ± 0.000 0.000 ± 0.000 0.003 ± 0.000 0.006 ± 0.000 0.001± 0.000 0.002± 0.000 0.003± 0.000
TaxoExpan 823.075 ± 114.638 0.193 ± 0.007 0.030 ± 0.002 0.095 ± 0.004 0.137 ± 0.007 0.132 ± 0.010 0.083 ± 0.003 0.059 ± 0.003
ARBORIST** 1142.335 ± 19.249 0.133 ± 0.004 0.008 ± 0.001 0.044 ± 0.003 0.075 ± 0.003 0.037 ± 0.004 0.038 ± 0.003 0.033 ± 0.001

TMN 436.319 ± 13.128 0.243 ± 0.005 0.056 ± 0.001 0.145 ± 0.004 0.189 ± 0.005 0.245 ± 0.006 0.126 ± 0.003 0.082 ± 0.002
GenTaxo 13213.731 ± 662.688 0.239 ± 0.006 0.082 ± 0.002 0.185 ± 0.008 0.218 ± 0.008 0.254 ± 0.010 0.131 ± 0.007 0.085 ± 0.003

TaxoEnrich-S 73.680 ± 1.346 0.545 ± 0.002 0.154 ± 0.006 0.396 ± 0.003 0.534 ± 0.002 0.251 ± 0.016 0.129 ± 0.002 0.087 ± 0.001
TaxoEnrich 87.798 ± 1.512 0.578 ± 0.001 0.162 ± 0.004 0.434 ± 0.005 0.574 ± 0.003 0.274 ± 0.017 0.141 ± 0.002 0.093 ± 0.002

Method MAG-PSY
MR MRR Recall@1 Recall@5 Recall@10 Precision@1 Precision@5 Precision@10

Bilinear 2118.204 ± 4.152 0.032 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.003 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
TaxoExpan 345.679 ± 24.306 0.441 ± 0.005 0.122 ± 0.003 0.287 ± 0.007 0.364 ± 0.009 0.249 ± 0.007 0.117 ± 0.003 0.074 ± 0.002
ARBORIST** 547.723 ± 20.165 0.344 ± 0.012 0.062 ± 0.009 0.185 ± 0.011 0.256 ± 0.013 0.126 ± 0.018 0.076 ± 0.004 0.052 ± 0.003

TMN 159.550 ± 5.290 0.531 ± 0.007 0.175 ± 0.002 0.369 ± 0.005 0.446 ± 0.009 0.358 ± 0.004 0.150 ± 0.002 0.091 ± 0.002
GenTaxo 7482.516 ± 2600.713 0.464 ± 0.022 0.183 ± 0.116 0.402 ± 0.066 0.440 ± 0.039 0.376 ± 0.119 0.164 ± 0.027 0.090 ± 0.008

TaxoEnrich-S 149.660 ± 3.430 0.561 ± 0.005 0.221 ± 0.010 0.420 ± 0.007 0.480 ± 0.007 0.365 ± 0.020 0.178 ± 0.003 0.117 ± 0.001
TaxoEnrich 122.247 ± 3.241 0.583 ± 0.010 0.234 ± 0.009 0.424 ± 0.013 0.510 ± 0.018 0.374 ± 0.021 0.186 ± 0.002 0.124 ± 0.002

Method WordNet-Noun
MR MRR Recall@1 Recall@5 Recall@10 Precision@1 Precision@5 Precision@10

Bilinear 3290.858 ± 14.668 0.196 ± 0.000 0.013 ± 0.000 0.063 ± 0.000 0.109 ± 0.000 0.023 ± 0.001 0.022 ± 0.000 0.019 ± 0.000
TaxoExpan 970.858 ± 50.995 0.390 ± 0.004 0.066 ± 0.002 0.186 ± 0.003 0.269 ± 0.007 0.114 ± 0.003 0.065 ± 0.001 0.047 ± 0.001
ARBORIST** 2993.341 ± 114.749 0.217 ± 0.005 0.021 ± 0.001 0.073 ± 0.002 0.125 ± 0.002 0.036 ± 0.021 0.025 ± 0.001 0.022 ± 0.000

TMN 827.371 ± 24.310 0.367 ± 0.006 0.054 ± 0.002 0.169 ± 0.002 0.256 ± 0.004 0.095 ± 0.002 0.058 ± 0.000 0.044 ± 0.001
GenTaxo 57871.589 ± 89.230 0.286 ± 0.162 0.025 ± 0.007 0.169 ± 0.049 0.268 ± 0.118 0.109 ± 0.013 0.024 ± 0.007 0.029 ± 0.001

TaxoEnrich-S 230.576 ± 6.472 0.426 ± 0.018 0.125 ± 0.019 0.212 ± 0.012 0.321 ± 0.018 0.216 ± 0.024 0.108 ± 0.004 0.078 ± 0.003
TaxoEnrich 227.839 ± 12.247 0.442 ± 0.018 0.123 ± 0.012 0.248 ± 0.011 0.351 ± 0.019 0.226 ± 0.023 0.115 ± 0.002 0.098 ± 0.002

Method WordNet-Verb
MR MRR Recall@1 Recall@5 Recall@10 Precision@1 Precision@5 Precision@10

Bilinear 1866.736 ± 5.020 0.174 ± 0.000 0.012 ± 0.001 0.054 ± 0.000 0.095 ± 0.000 0.017 ± 0.001 0.016 ± 0.000 0.014 ± 0.000
TaxoExpan 853.308 ± 18.302 0.325 ± 0.007 0.069 ± 0.001 0.169 ± 0.003 0.228 ± 0.008 0.104 ± 0.002 0.051 ± 0.001 0.034 ± 0.001
ARBORIST** 2993.341 ± 4.950 0.206 ± 0.011 0.016 ± 0.004 0.073 ± 0.011 0.016 ± 0.011 0.024 ± 0.006 0.022 ± 0.003 0.018 ± 0.002

TMN 832.541 ± 29.589 0.354 ± 0.010 0.081 ± 0.007 0.194 ± 0.013 0.259 ± 0.014 0.121 ± 0.011 0.059 ± 0.004 0.039 ± 0.002
GenTaxo 2765.745 ± 262.631 0.428 ± 0.117 0.118 ± 0.069 0.208 ± 0.104 0.239 ± 0.112 0.235 ± 0.152 0.122 ± 0.038 0.066 ± 0.016

TaxoEnrich-S 304.565 ± 3.628 0.442 ± 0.004 0.128 ± 0.003 0.256 ± 0.012 0.350 ± 0.009 0.242 ± 0.005 0.121 ± 0.004 0.074 ± 0.001
TaxoEnrich 320.064 ± 14.153 0.452 ± 0.005 0.143 ± 0.002 0.252 ± 0.014 0.347 ± 0.006 0.276 ± 0.004 0.126 ± 0.001 0.081 ± 0.002

We also include two variants of TaxoEnrich in experiments for
ablation study:

• TaxoEnrich-S: In this version, we exclude the sibling infor-
mation from the matching model, since in sparse taxonomies,
such as WordNet, the siblings cannot represent the precise
candidate positions, and might still introduce noisy infor-
mation when computing the relateness between query node
and candidate position.

• TaxoEnrich: In this version, we adopt the full framework
of TaxoEnrich as described above. We will examine the dif-
ference between two variants through further experiments.

4.3 Evaluation Metrics
Since the result from the model’s output is a ranking list of can-
didate positions for each query node, following the guidelines in
[19, 34], we utilize the following rank-based metrics to evaluate the
performance our framework and the comparison methods.

• Mean Rank (MR). This metric measures the average rank
position of a query concept’s true position among all candi-
date positions. For queries with multiple correct positions,

we first calculate the rank position of each individual triplet
and then take the average of all rank positions. Smaller value
in this metric indicates the better performance of the model.

• MeanReciprocal Rank (MRR). We follow [29] to compute
the reciprocal rank of a query concept’s true positions using
a scaled MRR. In the evaluation, we scale the MRR by 10 to
enlarge the difference between different models clearly.

• Recall@k measures the number of query concepts’ true
positions ranked in the top k , divided by the total number
of true positions of all query concepts.

• Precision@k measures the number of query concepts’ true
positions ranked in the top k , divided by the total number
of queries times k .

For all the evaluation metrics listed above except for MR, the larger
value indicates better performance of the model. During the evalu-
ation, since MR and MRR are the only metrics that concentrates on
the performance of all predictions in the taxonomy in general, we
consider them as the most important metric for evaluation.
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5 EXPERIMENTAL RESULTS
In this section we will first discuss the experiment results on both
taxonomy completion and expansion tasks which demonstrated the
superiority of our TaxoEnrich method. Then to further understand
the contributions from each of our model design, we conduct abla-
tion studies. Finally we performed case studies to further illustrate
the effectiveness of TaxoEnrich.

5.1 Performance on Taxonomy Completion
The overall performance of compared methods and the proposed
framework is indicated in Table 2. First, we can see that the perfor-
mance of the framework tends to become better when the complex-
ity of local structure increases, from the one-to-one matching in
TaxoExpan to triplet in TMN , and the neighboring paths and sub-
graph encoding in GenTaxo. Second, we can generally observe the
power of pre-trained language models in the representations of con-
cept nodes in the taxonomy. The frameworks including GenTaxo
and TaxoEnrich utilizing language models have generally better
performance in the precision@k and recall@k metrics.

In terms of MR , we can see that TaxoEnrich obtained most per-
formance improvement in MAG-CS dataset since the computer
science taxonomy has the most complete taxonomic structure com-
pared with other datasets, allowing for more accurate taxonomy-
contextualized embeddings generated by Section 3.1. And in Word-
Net datasets the performance in MR metric is improved by a rela-
tively large margin while all frameworks do not perform as well
as in MAG datasets. In terms of precision@k and recall@k , our
method also shows noticeable improvement over baseline models.
In the previous methods, the static embedding method failed to
capture the similar semantic meaning between different concept
nodes. And we can see GenTaxo renders competing performance
on these two metrics, but tends to be unstable and perform not well
in ranking metrics. The primary reason for this observation is that
while the language-based embeddings can provide pretty accurate
positional information, its light-weight MLP matching module pre-
vents it from capturing useful relatedness between query node and
candidate position.

For two WordNet datasets, we can see that other frameworks
are inclined to have similarly poor performance due to the scarcity
of taxonomies. The non-connectivity causes the matching module
difficult to extract the relations during the training. Therefore, the
manually added pseudo root for sentence generation would main-
tain the taxonomic structure information in the representations of
concept node and candidate positions, allowing the framework to
capture both the structure and semantic information of each node.

In the comparison between TaxoEnrich-S and TaxoEnrich, we
can observe that, in two MAG datasets, the incorporation of sibling
information in TaxoEnrich would have better performance. How-
ever, it will also cause a drop in MR metric except for MAG-PSY and
WordNet-Noun datasets since the randomly extracted siblings will
still introduce noisy information in the matching module. In the
WordNet datasets, the performance of two methods are very similar.
This is because with the scarcity in the taxonomies, i.e., the lack of
siblings, will mislead the model to incorporate inaccurate sibling
information, causing a clear difference for MR metric. On the other
hand, the precision in TaxoEnrich is still better than TaxoEnrich-S,
which illustrates the effectiveness of siblings in representing the
positional information.

5.2 Performance on Taxonomy Expansion
Taxonomy expansion is a special case of the taxonomy completion
task where new concepts are all leaf nodes. In this case, we would
like to further explore the performance of TaxoEnrich on taxonomy
expansion task on MAG-CS and WordNet-Verb dataset, compared
with TaxoExpan, TMN, and GenTaxo framework. As indicated in
Table 3, we can also observe that TaxoEnrich outperforms other
methods by a large margin in all metrics.

Table 3: Results of Taxonomy Expansion task on the MAG-
CS and WordNet-Verb datasets.

Method MAG-CS
MR MRR Recall@1 Precision@1

TaxoExpan 197.776 ± 16.038 0.562 ± 0.023 0.100 ± 0.011 0.163 ± 0.018
TMN 118.963 ± 6.307 0.689 ± 0.005 0.174 ± 0.002 0.283 ± 0.004

GenTaxo 140.262 ± 40.398 0.634 ± 0.044 0.149 ± 0.020 0.294 ± 0.096
TaxoEnrich-S 67.947 ± 1.121 0.721 ± 0.008 0.182 ± 0.005 0.304 ± 0.008

Method WordNet-Verb
MR MRR Recall@1 Precision@1

TaxoExpan 665.409 ± 137.250 0.406 ± 0.056 0.085 ± 0.018 0.095 ± 0.004
TMN 615.021 ± 166.375 0.423 ± 0.056 0.110 ± 0.021 0.124 ± 0.009

GenTaxo 6046.363 ± 439.305 0.155 ± 0.010 0.094 ± 0.019 0.141 ± 0.079
TaxoEnrich-S 217.842 ± 5.230 0.481 ± 0.071 0.162 ± 0.082 0.294 ± 0.031

Table 4: Ablation studies on the incorporation of siblings in
embeddings on MAG-CS dataset. The framework that ran-
domly incorporates sibling information in embedding gen-
eration module is denoted as TaxoEnrich-Sib for simplicity.

Method MAG-CS
MR MRR Recall@1 Precision@1

TaxoEnrich-Sib 122.144 ± 3.219 0.513 ± 0.006 0.138 ± 0.000 0.224 ± 0.001
TaxoEnrich-S 73.680 ± 1.346 0.545 ± 0.002 0.154 ± 0.006 0.251 ± 0.016

5.3 Ablation Studies
In this section, we conduct the ablation studies on the major compo-
nents of TaxoEnrich framework: 1) Incorporation of sibling informa-
tion separated from embedding generation; 2) The implementations
of different feature encoder models to capture different structural
information. Note that, in the ablation study experiment, we used
TaxoEnrich-S model for more direct and simpler comparison be-
tween the embeddings and modules. Additional ablation studies
about hyperparameters are presented in appendix.

Table 5: Ablation studies on MAG-CS dataset with different
feature encoders. Some results are from the main table.

Method Distribution Model MAG-CS
MR Recall@1 Precision@1

TaxoExpan Raw Embedding 3360.343 ± 6.126 0.000 ± 0.000 0.001 ± 0.001
TaxoExpan Raw + PGAT 823.075 ± 114.638 0.030 ± 0.002 0.132 ± 0.010

TMN Raw Embedding 636.254 ± 36.465 0.036 ± 0.005 0.156 ± 0.008
TMN Raw + LSTM + PGAT 436.319 ± 13.128 0.056 ± 0.001 0.245 ± 0.006

TaxoEnrich-S Raw Embedding 103.016 ± 6.589 0.145 ± 0.004 0.236 ± 0.010
TaxoEnrich-S Raw + LSTM 73.680 ± 1.346 0.154 ± 0.006 0.251 ± 0.024
TaxoEnrich-S Raw + LSTM + PGAT 100.188 ± 2.214 0.150 ± 0.004 0.244 ± 0.001
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Table 6: Case Studies of predicted positions on MAG-CS with both leaf and internal query concepts

Method
MAG-CS

Query Top 5 Predicted Positions
(hypernym
hyponym

)
, True Positions in Red Ranking of True Positions

TaxoEnrich
heap

(programming language
heaps law

)
,
(programming language

pseudo leaf
)
,
( algorithm
pseudo leaf

)
,
(programming language

heap overflow
)
,
( algorithm
heap overflow

)
1,4,5

TMN
(reference counting

pseudo leaf
)
,
(garbage collection

pseudo leaf
)
,
(programming language

pseudo leaf
)
,
( algorithm
pseudo leaf

)
,
(binary heap
collection

)
530, 634, 4884

TaxoEnrich
perl

(programming language
pseudo leaf

)
,
(operating system

pseudo leaf
)
,
(programming language

perl critic
)
,
(programming language

perl 6
)
,
(programming language

heap lustre
)

2,3

TMN
(programming language

pseudo leaf
)
,
( software
pseudo leaf

)
,
(operating system

pseudo leaf
)
,
( database
pseudo leaf

)
,
(scripting language

perl critic
)

12, 345

TaxoEnrich
all pairs testing

( test suite
pseudo leaf

)
,
(model based testing

pseudo leaf
)
,
(metamorphic testing

pseudo leaf
)
,
(test driven development

pseudo leaf
)
,
(redundant code

perl critic
)

1, 2

TMN
(metamorphic testing

pseudo leaf
)
,
(random testing

pseudo leaf
)
,
(artificial intelligence

pseudo leaf
)
,
( algorithm
pseudo leaf

)
,
(machine learning

pseudo leaf
)

6, 133

TaxoEnrich
sensor hub

(embedded system
pseudo leaf

)
,
(operating system

pseudo leaf
)
,
(computer network

pseudo leaf
)
,
(computer hardware

pseudo leaf
)
,
(embedded system
virtual metrology

)
1, 3, 4

TMN
(embedded system

pseudo leaf
)
,
(operating system

pseudo leaf
)
,
(computer hardware

pseudo leaf
)
,
( software
pseudo leaf

)
,
(wearable computer

pseudo leaf
)

1, 78, 3

5.3.1 The Effectiveness of Query-Aware Sibling Encoder. In this
section, we further discuss the effectiveness of approaches of in-
corporating sibling information in our framework. We argue that
simple including sibling information in embeddings would actu-
ally introduce noisy information to the framework. In many cases,
some high-level concepts, such as “Artificial Intelligence” or “Ma-
chine Learning” in MAG-CS taxonomy, have thousands of children.
Therefore, it is unrealistic to consider all siblings, or unreasonable
to randomly consider some of them. Thus, we conduct experiments
to verify this assumption by randomly selecting at most 5 siblings in
the process of embedding generation. However, as shown in Table
4, such operation would not only prevent the framework from rec-
ognizing correct positions, but increase the embedding generation
time to the three times of the original in the implementation.

5.3.2 Different Feature Encoders in TaxoEnrich . We will continue
to examine the superior performance of TaxoEnrich with different
feature encoders and the effectiveness of such methods on other
frameworks. The techniques of encoding features before matching
have been experimented by previous methods [19, 30], showing
that the neighboring terms of the candidate position would better
utilize the structural information. We implement different feature
encoding: the raw embeddings, LSTM encoding, PGAT encoding,
and the combinations of these three, i.e., concatenating the output
of encoders as input for matching module, for comparison in this
section. Through experiments in Table 5, we can see that, the en-
coded features will improve the performance of all frameworks by
a large margin, and TaxoEnrich can still outperform other methods
regardless of encoded embeddings of concept nodes.

5.4 Case Studies
We demonstrate the effectiveness of TaxoEnrich framework by pre-
dicting true positions of several query concepts in MAG-CS datasets
in Table 6. For high-level concepts like “heap”, TaxoEnrich ranks
all the true positions at top 5, while TMN can only identify part of
the true positions’ information, like (“algorithm, leaf ”) for “heap”.
And for those leaf nodes, such as “all pairs testing” and “sensor
hub”, we can observe that TMN will have much better performance.
However, it will include some coarse high-level concepts such as
“machine learning” and “artificial intelligence”. In general, we can

see TaxoEnrich works better than baselines for recovering true
positions, and the top predictions by TaxoEnrich generally follow
reasonable consistency.

6 RELATEDWORK
Automatic taxonomy construction is a long-standing task in the
literature. Existing taxonomy construction methods leverage lex-
ical features from the resource corpus such as lexical-patterns
[1, 4, 6, 15] or distributional representations [7, 11, 13, 17, 27, 33] to
construct a taxonomy from scratch. However, in many real-world
applications, some existing taxonomies may have already been
laboriously curated and are deployed in online systems, which
calls for solutions to the taxonomy expansion problem. To this
end, multitudinous methods have been proposed recently to solve
the taxonomy expansion problem [12, 14, 19, 30]. For example,
ARBORIST [12] studies expanding taxonomies by jointly learn-
ing latent representations for edge semantics and taxonomy con-
cepts; TaxoExpan [19] proposes position-enhanced graph neural
networks to encode the relative position of terms and a robust
InfoNCE loss [16]; STEAM [30] re-formulates the taxonomy expan-
sion task as a mini-path-based prediction task and proposes to solve
it through a multi-view co-training objective. Some other methods
were proposed for taxonomy completion, such as TMN [34] focuses
on taxonomy completion task with channel-gating mechanism and
triplet matching network; and GenTaxo [31] collects information
from complex local-structure information and learns to generate
concept’s full name from corpus.

7 CONCLUSION
In this paper, we proposed TaxoEnrich to enhance taxonomy com-
pletion task with self-supervision. It captures the hierarchical and
semantic information of concept nodes based on the taxonomic
relations in the existing taxonomy. Additionally, the selective query-
aware attention module and elaborately designed matching module
further improves the performance of learning relatedness between
query node and candidate position. Extensive experimental results
elucidated the effectiveness of TaxoEnrich by showing that it largely
outperforms the previous methods achieving state-of-the-art per-
formance on both taxonomy completion and expansion tasks.
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A IMPLEMENTATION DETAILS
A.1 Baseline Models
TaxoExpan, ARBORIST [12, 19] were designed for taxonomy ex-
pansion task. We follow the implementations in [34] to calculate
the ranking of candidate positions from the single score output of
their matching model, so that we can have similar output for eval-
uations. For TaxoExpan [19], we implemented the full framework
with PGAT propagation method and InfoNCE Loss [16]. In com-
parison experiments in [34], all methods only leveraged the initial
embeddings without any distribution models for matching model
comparison. For TMN , we implemented with Raw embedding +
LSTM and PGAT encoders for the full comparison, based on the
original triplet matching network. And for GenTaxo, we used the
same distribution model as in TaxoEnrich.

Note that in the previous methods, such as TaxoExpan, AR-
BORIST and TMN , the generation of the initial embeddings was
from the static word embedding method. In MAG datasets, the
embeddings of each concept node is computed using Word2Vec
method to generate a 250-dimensional vectors. And in WordNet
datasets, the embeddings were generated using FastText as a 300-
dimensional vector.

A.2 Hyperparameter Settings
In the implementation of TaxoEnrich, we use Adam optimizer [8]
with learning rate 0.001. We applied a scheduler which multiplies
the learning rate by a factor of 0.5 after 10 epochs of non-improving
metrics. The hidden dimension for LSTM encoders is set as 500
and the number of bilinear models k in the matching module is 10.
The number of siblings selected in the attention module t is set as
5 for training and 20 for testing. The model is then trained with
200 epochs with early stop if the MR metric has not improved for
more than 10 epochs on validation dataset. For other hyperparam-
eters, we set l1, l2, l3, l4 = 1.0, 1.0, 1.0, 0.2 in all datasets to avoid
heavy parameter tuning, batch size as 16 for both TaxoEnrich and
TaxoEnrich-S .
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B ADDITIONAL ABLATION STUDIES
B.1 Hyperparameter Tuning
We conduct additional ablation studies on hyperparameter search-
ing.We examine the influence of batch size of TaxoEnrich-S framework.
It turns out that the batch size with 16 tends to be better than others.

Experiments on the learning rate of the newly incorporated sibling
loss is also explored. We can observe that l4 = 0.2 and 0.5will result
in slightly better performance for MAG-CS datasets, as the infor-
mation in siblings will still introduce noises if we treat is equally
with parent and children relatedness.

B.2 Sentence Encoder Studies
The comparison between different pretrained language models for
sentence encoders is also studied under settings described above.
And the results are shown in Table 7. We can see that SciBERT
achieves the best performance among all language models, and
Transformer has very similar results. And BERT has relatively poor
performance. The reason may be that BERT is pretrained on general

domain, making it less accurate in representing scientific domain-
specific concepts in MAG-CS datasets.

Table 7: Ablation studies of TaxoEnrich-S on MAG-CS for the
comparison between different pseudo sentence encoders.

Method MAG-CS
MR Recall@1 Precision@1

Transformer 74.132 0.149 0.248
SciBERT 73.680 0.154 0.251
BERT 253.221 0.082 0.173
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