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Abstract. False information and true information fact checking it, often
co-exist in social networks, each competing to influence people in their
spread paths. An efficient strategy here to contain false information is to
proactively identify if nodes in the spread path are likely to endorse false
information (i.e. further spread it) or refutation information (thereby
help contain false information spreading). In this paper, we propose
SCARLET (truSt andCredibility bAsed gRaph neuralLnEtwork model
using aTtention) to predict likely action of nodes in the spread path.
We aggregate trust and credibility features from a node’s neighborhood
using historical behavioral data and network structure and explain how
features of a spreader’s neighborhood vary. Using real world Twitter
datasets, we show that the model is able to predict false information
spreaders with an accuracy of over 87%.

1 Introduction

Social network platforms like Twitter, Facebook and Whatsapp are used by mil-
lions around the world to share information and opinions. Often, the veracity of
content shared on these platforms is not confirmed. This gives rise to scenarios
where information having conflicting veracity, i.e. false information and its refu-
tation, co-exist. Refutation can be defined as true information which fact checks
claims made by a false information. A typical scenario is that false information
originates at time ¢1, and starts propagating. Once it is identified, its refutation
information is created at time t5 (t; < t2). Both pieces of information propagate
simultaneously, with many nodes lying in their common spreading paths.
While detecting false information is an important and widely researched
problem, an equally important problem is that of preventing the impact of
false information spreading. Techniques involve containment /suppression of false
information, as well as accelerating the spread of its refutation. Being able to
predict the likely action of such users before they are exposed to false informa-
tion is an important aspect of such a strategy. Nodes identified as vulnerable to
believing false information can thus 1) be cautioned about the presence of the
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false information so that they do not propagate it, and 2) be urged to propa-
gate its refutation. While optimization models based on information diffusion
theories have been proposed in the past for misinformation containment, recent
advancements in deep learning on graphs serve as the motivation to explore
false information control models which use components that exist even before
false information starts spreading, namely the underlying network structure and
people’s historical behavioral data.

Trust and Credibility are important psychological and sociological concepts
respectively, that have subtle differences in their meanings. While trust repre-
sents the confidence one person has in another person, credibility represents gen-
eralized confidence in a person based on their perceived performance record [14].
Thus, in a graph representation of a social network, trust is a property of a
(directed) edge, while credibility is a property of an individual node. Metzger
et al. [7] showed that the interpretation of a neighbor’s credibility by a node
relies on its perception of the neighbor based on their trust dynamics. Motivated
with this idea, we propose a graph neural network model that integrates peo-
ple’s credibility and interpersonal trust features in a social network to predict
whether a node is likely to spread false information or not. We make the following
contributions in this paper:

1) We propose SCARLET, a novel user-centric model using graph neural net-
work with attention mechanism to predict whether a node will most likely
spread false information, its refutation or be a non-spreader.

2) We demonstrate that a person’s decision to spread a false information is
sensitive to its perception of neighbor’s credibility, and this perception is a
function of trust dynamics with the neighbor.

3) To the best of our knowledge, this is the first model being evaluated on real
world Twitter datasets of co-existing false and refutation information.

Related Work: Social science research in the past has explored the aspects of
people’s behavior that cause false information spreading. Jaeger et al. [5] was one
of the first to study what makes rumors believable when told by peers instead
of authority figures. While it focused on modelling people’s anxiety, it served as
motivation to explore other sociological features that are relevant to informa-
tion spreading. Petty and Cacioppo [10] found credibility perception to be an
important factor for believing false information. Rosnow et al. [15] proposed that
interpersonal trust also played an important role in rumor transmission. The idea
was further enforced by Morris et al. [8] where they claimed that people assess
credibility based on trust relationships with their neighbors in a social network.
Motivated by these ideas, there has been much interest in computational models
for false information spreader detection using trust, which has shown promis-
ing results [12,13]. Many computational techniques to combat false information
spreading have been explored over the past decade, as summarized by Sharma
et al. [17]. Most models rely on generating relevant features from the information
that help distinguish false information from true. Our proposed model is based
on recent advances in graph neural networks [22]. In addition, our work pro-
poses an explainable attention based model, inspired from recent work [23,24].
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Qui et al. [11] focuses on influence in general, while our model integrates people’s
psychological and sociological features to identify false information spreaders.

Models inspired by information diffusion models for false information mitiga-
tion have also been proposed. Budak et al. [1] proposed an optimization strategy
to identify false information spreaders in a network who, when convinced by its
refutation, would minimize the number of people receiving the false information.
Nguyen et al. [9] proposed greedy approaches to a similar problem of limiting
the spread of false information in social networks. More recently, Tong et al. [19]
studied the problem as a multiple cascade diffusion problem.

2 Interpersonal Trust and User Credibility Features

2.1 Trust-Based Features

1. Global Trust (7r%): Global trust are trust scores that are computed
on the directed follower-followee network around information spreaders. It
is called global because an individual’s trust score is sensitive to changes
in the network structure. Using the Trust in Social Media (TSM) algo-
rithm [16], we quantify the likelihood of trusting others and being trusted by
others. The TSM algorithm uses a directed graph G(V, ) as input, together
with a specified convergence criteria, and computes trustingness and trust-

worthiness scores using the equations: ti(v) = > v, coui(w) (%) and

tw(u) = X vrcin(u) (%) where u, v,z € V are nodes, ti(v) and tw(u)
are the trustingness and trustworthiness scores of v and wu, respectively,
w(v,z) is the weight of edge from v to x, out(v) is the set of out-edges of
v, in(u) is the set of in-edges of u, and s is the involvement score of the
network. The involvement score is basically the potential risk an actor takes
when creating a link in the network. Details of the algorithm are excluded
due to space constraints and can be found in [16].

2. Local Trust (771): Local trust is computed based on the retweeting behav-
ior of an individual. It is termed local because the trust score depends on
node’s behavior, and not on the network structure. We consider the proxy for
trusting others as the fraction of tweets of  that are retweets (RT),) denoted
by > vici {1l if i = RT, else 0}/n(t). Meanwhile, we consider the proxy for
trusted by others as the average number of times x’s tweets are retweeted
(n(RT)) denoted by » v,c; in(rT,)/n(t). (t represents the most recent tweets
posted in z’s timeline).

2.2 Credibility-Based Features

Credibility of users is generalized based on features extracted from information
posted on their timeline and are obtained from [2]. We generate relevant credi-
bility features for nodes in the network, which can be categorized into two types:
user-based and content-based.
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1. User-based Credibility (CrY): User credibility features are extracted from
user metadata of nodes in the network. Features used in our model are sum-

marized below:

A. Registration age (U1): Registration age denotes the time that has tran-
spired since a user created their account. Older accounts tend to be asso-
ciated with more credible users.

B. Overall activity count (U2): Activity or statuses count is the number of
tweets issued by a user. Low credibility is associated with users who have
less activity on their timeline.

C. Is verified (U3): This label suggests whether a user account is marked
as authentic or not by Twitter. Verified accounts are more likely to be

credible.

2. Content-based Credibility (Cr¢): These features are obtained by aggre-
gating a user’s timeline activity. It is important to note that, unlike Castillo’s
assumption, we do not make a distinction between information that is specifi-
cally related to news or not, as that process would require manually assessing
newsworthiness of the tweets. The following relevant features are extracted:
A. Emotions conveyed by user (M1): Emotions represent positive or negative

sentiments associated with a tweet. Content with negative sentiments is
usually associated with non-credible users [2].

B. Level of uncertainty (M2): Level of uncertainty is quantified as the frac-
tion of user’s tweets that are questioning in nature. Tweets with a high
level of uncertainty tend to be less credible.

C. External source citation (M3): External source citation is quantified as
the fraction of user’s tweets that cite an external URL. tweets which do
not include URLs tend to be related to non-credible news [2].

3 Proposed Approach

This section explains how we integrate both credibility and trust features in an
attention based graph neural network model to predict whether a person would
likely be a spreader of false information or its refutation. The problem formula-
tion is as follows:
Problem formulation: Let G(V, &) be a directed social network containing
false information spreaders (V), refutation information spreaders (Vr) and non-
spreaders (Vg,) at a time instance ¢ ({VpUVrUVg } C V). By assigning impor-
tance score using global (T7%) and local (Trl) trust features (Tr = Tr%||Trk),
and aggregating user-based (CrY) and content-based (Cr¢) credibility features
(Cr = CrY||Cr®) of node i and its neighborhood nodes (N;¥) sampled till
depth K, we predict whether ¢ is more likely to spread false information, refuta-
tion information or be non-spreader at future time ¢t + At.

The proposed graph neural network framework can be broadly divided into
two steps:

1. We assign an importance score to neighborhood nodes (N;%X) sampled till
depth K based on trust (7'r) features. This is done using an attention mech-
anism.
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2. We learn representations using Graph Convolutional Networks by aggregating
credibility (Cr) features proportional to the importance scores assigned for
the neighborhood nodes based on step 1.

An overview of the proposed model architecture is shown in Fig. 1. The fol-
lowing subsections explain the framework in detail.

3.1 Importance Score Using Attention:

We apply a graph attention mechanism [21] which attends over the neighborhood
of i and, based on their trust features, assigns an importance score to every j (j €
N;). First, every node is assigned a parameterized weight matrix (W) to perform
linear transformation. Then, self-attention is performed using a shared attention
mechanism a (a single layer feed-forward neural network) which computes trust-
based importance scores. The unnormalized trust score between 4,j is represented

as:
Cij = a(WTTwWTTj) (1>

where e;; quantifies j’s importance to ¢ in the context of interpersonal trust.
We perform masked attention by only considering nodes in A;. This way we
aggregate features based only on the neighborhood’s structure. To make the
importance scores comparable across all neighbors we normalize them using the
softmax function:

exp(e;;) @)

a;; = softmazx(e;;) = S cap(en)
keN; T
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Fig. 1. Architecture overview. Importance score e is assigned to neighbors based on
trust features (Tr). Credibility (Cr) features are aggregated proportional to neighbors’
importance scores using graph convolution networks for node classification.
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The attention layer a is parameterized by weight vector a and applied using
LeakyReLU nonlinearity. Normalized neighborhood edge weights can be repre-

sented as:
exp(LeakyReLU (a” [Wr,, [|[Wry,])) 3)
Y ren, erp(LeakyReLU (T Wy, [[Wry, )

«;; thus represents trust between ¢ and j with respect to all nodes in N;. Each
o obtained for the edges is used to create an attention-based adjacency matrix

Otij =

Agin = [@ij]jv)x|v| which is later used to aggregate credibility features.

3.2 Feature Aggregation

The Graph Convolution Network [6] is a graph neural network model that effi-
ciently aggregates features from a node’s neighborhood. It consists of multiple
neural network layers where the information propagation between layers can be
generalized by Eq.4. Here, H represents the hidden layer and A represents the
adjacency matrix representation of the subgraph (A = Aatn) HO = Cr and
HW®) = Z where Z denotes node-level output during transformation.

HO = (O, 4) (4)

We implement a Graph Convolution Network with two hidden layers using a
propagation rule as explained in [6].

HWY = o(D~Y2AD~ 2 HOWw D) (5)

Here, A=A+ I, where I is the identity matrix of the neighborhood subgraph.
This operation ensures that we include self-features during aggregation of neigh-
bor s credibility features. D is the diagonal matrix of node degrees for A, where

=>. j Aw- WO is the layer weight matrix, and ¢ denotes the activation
function. Symmetric normalization of D ensures our model is not sensitive to
varying scale of the features being aggregated.

3.3 Node Classification

Using credibility features and network structure for nodes in i’s neighborhood,
node representations are learned from the graph using a symmetric adjacency
matrix with attention-based edge weights (A = D~Y/2A,, D~'/2). Following
forward propagation model is applied:

Z = f(X, Agin) = softmaz(AReLU (AXW Oy () (6)

X represents the credibility features. W(® and W) are input-to-hidden and
hidden-to-output weight matrices respectively, and are learnt using gradient
descent learning. Classification is performed using the following cross entropy

loss function:
L= Z Z YipinZyy (7)
ey feCr
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where )y, represents indices of labeled vertices, f represents each of the credibilty
features being used in the model, and ¥ € Rr!XIC7l is the label indicator
matrix.

Table 1. Network dataset statistics for news events N1-N10.

N1 N2 N3 N4 N5

VI lel Ispl | VI el Ispl |1V €] Ispl_ | VI €] Ispl_ |Vl B Ispl
F 1,797,059 | 5,316,114 | 2,584 | 885,598 1,824,585 | 943 1,228,479 | 2,477,986 | 1,313 | 2,607,629 | 7,146,454 | 4,552 | 2,150,820 | 5,215,120 | 3,344
T 1,164,162 | 2,283,160 | 437 | 453,537 | 879,854 403 |1,169,681 1,988,576 425 433,616 |773,778 467 1,168,820 1,543,513 305
F U T 2,677,924 | 7,562,503 | 3,017 | 1,230,559 | 2,641,513 | 1,337 | 2,198,524 | 4,458,228 | 1,738 | 2,900,925 | 7,882,019 | 5,015 | 3,019,066 | 6,631,032 | 3,627
F N T|283,297 8,956 4 108,576 59,912 9 199,636 376 0 140,320 3,273 5 300,574 112,098 22

N6 N7 N8 N9 N10

VI lel Ispl |1V Il Ispl |1V €] Ispl |Vl l€] Ispl |Vl le] Ispl
F 2,387,610 | 5,356,288 | 3,498 | 627,147 | 1,071,120 | 696 | 2,036,162 | 2,876,783 | 894 | 1,197,935 |2,139,912 | 2,317 | 2,174,023 | 4,280,962 | 2,323
T 1,297,371 | 1,727,503 | 481 1,166,528 | 2,524,907 | 847 ; X 1, 489 2,999,865 | 6,317,032 | 1,833 | 704,006 1,314,996 | 741
FUT| 2,449,434 |5,691,728 | 3,769 | 1,606,924 | 3,577,449 | 1,534 | 2,663,392 | 4,082,373 | 1,365 | 4,064,545 | 8,443,888 | 4,151 | 2,729,312 | 5,584,915 | 3,063
F N T|1,235,547 | 1,379,510 | 212 186,751 11,131 9 305,358 |20 133,255 | 722 1 148,717 | 699 1

4 Experimental Analysis

4.1 Data Collection

We evaluate our proposed model using real world Twitter datasets. The ground
truth of false information and the refuting true information was obtained from
www. altnews.in, a popular fact checking website based in India and are based
around politics in India. The source tweet related to the information was
obtained directly as a tweet embedded in the website. From that source tweet,
we used the Twitter API to determine the source tweeter and retweeters (proxy
for spreaders), the follower-following network of the spreaders (proxy for social
network), and user activity data (100 most recent tweets) for all nodes in the
network. Trust and credibility scores extracted from the activity data are sum-
marized in Fig.2 are directly used as feature vectors. Besides evaluating our
model on the false information (F) and true information (T) spreading networks
separately, we also evaluated our model on the combined information spreading
networks (F U T). Details regarding the number of nodes (|V]), edges (|€]), and
spreaders (|Sp|) for the networks of 10 different news events (N1-N10) is detailed
in Table 1.

4.2 Analysisof FN T

F N T in Table1 denotes the section of the network that was exposed to both
the false and its refutation information. An interesting observation is the spread-
ers who decided to spread both types of information. Figure3 (a) denotes the
distribution of spreaders in F' N T who spread false information followed by its
refutation (FT) and those whose spread refutation followed by the false infor-
mation (TF). N1 and N9 is excluded from the analysis as our dataset as we
did not have the spreaders’ timestamp information. An interesting observation
is that the majority of spreaders belong to FT. Intuitively, these are spreaders
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Fig. 2. Trust and credibility feature analysis from networks N1-N10.

who trusted the endorser without verifying the information and later corrected
their position, thereby implying that they did not intentionally want to spread
false information. Consequently, the proposed model can help identify such peo-
ple proactively in order to take measures to prevent them from endorsing false
information in the first place. While spreaders belonging to TF are comparatively
fewer (whose intentions are not certain) the proposed model can help identify
them and effective containment strategies can be adopted. Figure3 (b) shows
the time that transpired between spreading refutation and false information for
FT spreaders. Once the false information is endorsed, large portions of the net-
work must have already been exposed to false information before the endorser
corrected themselves after a significant amount of time (~1day). This serves
as a strong motivation to have a spreader prediction model which proactively
identifies likely future spreaders.
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Fig. 3. Analysis of spreaders in F N T.
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4.3 Models and Metrics

We compare our proposed attention based model with 10 baseline models.
Among the baselines, 3 models use node features only (SVMyp,., SV M.,
SV Mry.cr), 1 model uses network structure only (LI N E) and 6 models integrate
both node features and the network structure (SAGEr,, SAGE¢,, SAGEr, ¢,
GCNrp,, GCN¢y, GCNpy cy).

1. Node Feature-Based Models:

i). SV Myp,: This model applies Support Vector Machines (SVM) [3] on
node’s trust based features T'r to find an optimal classification thresh-
old.

ii). SV Me,: This model applies SVM on node’s credibility based features
Cr.

iii). SV My cr: This model applies SVM by combining node’s trust based
and credibility based features.

2. Network Structure-Based Models:

iv). LINE: Applies the Large-scale Information Network Embedding [18] as a
transductive representation learning baseline, where node embeddings are
generated after optimization is performed on the entire graph structure.

3. Network Structure + Node Feature-Based Models:

v). SAGEr,: GraphSAGE [4] serves as the inductive learning baseline where
node embeddings are generated by aggregating T'r features from neigh-
borhoods.

vi). SAGE¢,: This inductive representation learning baseline generates node
embeddings by aggregating Cr features from neighborhoods.

vii). SAGEr, cr: This inductive representation learning baseline generates
node embeddings by aggregating both T'r and Cr features from neigh-
borhoods.

viii). GC'Np,: This model applies Graph Convolution Networks [6] to learn
node embeddings by aggregating T'r features from neighborhoods.

ix). GCN¢,: This model applies Graph Convolution Networks by aggregating
Cr features from neighborhoods.

x). GCNry cr: This model applies Graph Convolution Networks by aggre-
gating both Tr and Cr features from neighborhoods.

SCARLET is the proposed model in this paper, which aggregates a node
neighborhood’s Cr features based on attention based importance scores assigned
using T'r. For evaluation, we did an 80-10-10 train-validation-test split of the
dataset. We used 5-fold cross validation and four common metrics: Accuracy,
Precision, Recall, and F1 score.

4.4 Implementation Details

We obtained Global Trust features by running the TSM algorithm on the
follower-following network of the spreaders. We used the generic settings for
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TSM parameters (number of iterations = 100, involvement score = 0.391) based

n [16]. The size of sampled neighborhood was set to 50 and depth was set to 1.
We considered neighbors with higher degrees in order to generate denser adja-
cency matrices. The number of epochs, batch size, learning rate and dropout
rate were set to 200, 64, 0.001 and 0.2, respectively. The code implementation
is also available!.

Table 2. Model performance evaluation (Vr): False information spreader, (Vr): Refu-
tation spreader.

F (Vr) T (Vr) FUT (Vp)

Accu. |Prec. |Rec. |F1 Accu. | Prec. |Rec. |F1 Accu. |Prec. |Rec. |F1
SV M, 0.497 |0.512 |0.468 |0.478 |0.473 |0.472 |0.452 |0.445 |0.398 |0.19 0.465 | 0.229
SVMc, 0.508 [0.517 |0.517 |0.509 |0.501 |0.477 |0.565 |0.509 |0.408 |0.196 |0.542 |0.272
SVMr, cr |0.516 |0.514 |0.579 |0.53 0.52 0.513 |0.598 |0.545 |0.444 |0.193 |0.489 |0.267
LINE 0.686 |0.626 |0.896 |0.733 |0.635 | 0.608 |0.881 |0.717 |0.688 [0.71 |0.896 |0.786

SAGEqp,. 0.734 |0.762 |0.691 |0.722 | 0.680 |0.698 |0.719 |0.705 |0.752 |0.743 |0.859 |0.793
SAGEc, 0.747 |0.772 |0.710 |0.736 | 0.714 |0.692 |0.764 |0.725 |0.764 |0.747 |0.881 |0.805
SAGEry cr|0.779 |0.831 |0.720 |0.763 |0.755|0.787 |0.732 |0.755 |0.785 |0.764 |0.878 |0.814
GCNr,. 0.784 |0.726 |0.947 |0.821 |0.718 |0.675 |0.916 |0.767 |0.753 |0.783 |0.930 |0.845
GCNc¢, 0.800 | 0.742 |0.953 |0.834 |0.731 |0.697 |0.906 |0.773 |0.762 |0.786 |0.940 |0.851
GCNrpy o |0.824 |10.774 |0.942 | 0.848 |0.743 |0.702 |0.916 |0.783 |0.776 |0.788|0.954 | 0.861
SCARLET |0.876|0.834|0.966|0.893|0.734 |0.674 |0.981|0.794|0.789|0.785 |0.972|0.866

4.5 Performance Evaluation

Classification results of the baselines and proposed model are summarized in
Table 2. The results are averaged over the 10 news events. We report the preci-
sion, recall, and F1 scores of the false information spreaders class (Vr) in F and
F U T networks, and of the refutation spreaders class (V) in T network. Due
to class imbalance, we undersample the majority class to obtain balanced class
distribution. We observe that structure only baseline performs better than fea-
ture only baselines, and models that combine both node features and network
structure show further improvement in performance. Additionally, we observe
that Cr features perform better than Tr features (because there are more num-
ber of Cr features than T'r features) and the model performance increases when
we use Tr and Cr features together. LINE, the structure only baseline, per-
forms better than feature only baselines by a substantial margin, which suggests
that network structure plays an important role in identifying false information
spreaders. In terms of accuracy, the LINE model shows an increase of 32.9%,
22.1% and 54.9% for F, T and F U T networks, respectively, over SV M, ¢
Graph neural network baselines that combine both network structure and node
features show a significant improvement in performance. GC'N models perform
better than GraphSAGE models on all metrics for F networks, while that is
not the case for T and F U T networks. This is because Tr and Cr features

! https://github.com/BhavtoshRath/GAT-GCN-SpreaderPrediction.
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for neighborhood of refutation information spreaders and non-spreaders do not
differ much from each other. Our proposed model SCARLFET shows an increase
in performance for all three networks. However, SAG Er, ¢, shows better accu-
racy and precision on T networks because the specific news events on which
it performed better involved religious tones, and so decision to refute them is
more sensitive to neighborhood’s Cr than T'r. Precision on F U T networks is
highest for GC Ny ¢, though it is still comparable to the proposed model’s per-
formance. More importantly, in the F U T network we observe highest accuracy
and F1 scores of 78.9% and 86.6% , thus supporting our hypothesis that false
information spreading is very sensitive to trust and credibility.
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Fig. 4. Sensitivity analysis: Neighborhood size (Neighbors) and features (Tweets). (x-
axis: News events N1-N10, y-axis: F1 scores for spreader prediction).

4.6 Sensitivity Analysis

Figure 4 shows the sensitivity analysis of F1 scores of the proposed model on two
important parameters: the size of neighborhoods (Neighbors), and the number
of recent tweets from user timeline (Tweets).

Neighbors: We evaluated our model on n-neighbors, where n=10, 20, 30, 40,
50. Figure4(a), (b), and (c) show results on F, T and F U T networks, respec-
tively. We observe that model performance is not very sensitive to varying neigh-
borhood size, which could be attributed to the fact that since we have only the
immediate follower-following network (sampling depth=1) we are not able to
entirely capture meaningful dynamics (i.e. the decision to retweet might depend
less on the immediate neighbors, and more on the source tweeter).
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Tweets: We also evaluated our model on the n-most recent timeline tweets,
where n = 20, 40, 60, 80, 100. Figure4(d), (e), and (f) shows results on F, T and
F U T networks, respectively. We observe that for all three networks, prediction
performance tends to increase as the number of timeline tweets used to aggregate
features increases. This is probably because using more behavioral data helps us
estimate trust and credibility features better.

4.7 Explainability Analysis of Trust and Credibility

Figure 5 shows importance scores that false (Vp) and refutation (Vr) spreader’s
neighbors (size = 10) assign each other based on trust dynamics (softmax atten-
tion score) and credibility score (euclidean norm of normalized feature vector)
for neighbors with both high and low modularity. Node 0 is the neighbor that the
spreader endorses. We observe that Vr’s neighbors have higher credibility than
Vr’s neighbors because of network homophily. Also low magnitude of importance
scores for neighbors of node 0 of Vg suggest that it’s neighbors trust each other
less compared to Vr’s neighbors. We observe in Fig. 5(a) and (b) that node 0 in
Vr’s neighbor has strong trust dynamics with its followers (i.e. incoming edges)
because it has more incoming edges than outgoing edges and also retweets and
gets retweeted substantially more by the neighbors, unlike who Vr endorses in
Fig.5 c) and d), because Vr’s decision to endorse depends more on information
source, which is usually a fact checker.
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Fig. 5. Explainability analysis. (0-9: Ten highest degree neighbors the spreader
follows.)
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5 Conclusions and Future Work

We propose SCARLET, an attention-based explainable graph neural network
model to predict whether a node is likely to spread false information or not.
The model learns node embeddings by first assigning trust-based importance
scores and then aggregating its neighborhood’s credibility features proportion-
ally. What makes this model different from most existing research is that it does
not rely on features extracted from the information itself. Thus it can be used
to predict spreaders even before information spreading begins. As part of future
work, we would like to analyze our model on more news events comprising larger
networks in order to sample and aggregate features at greater sampling depths.
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