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Abstract

It is shown that a local-in-time strong solution u to the 3D Navier-Stokes equations remains
regular on an interval (0, T ) provided a smallness ε0-condition on u in a dynamically restricted
local Morrey space is stipulated; more precisely,

sup
t∈(0,T )

sup
x∈R3, η(t)≤r≤1

1

rα

ˆ
Br(x)

|u(y, t)|pdy ≤ ε0

where η is a dynamic dissipation scale consistent with the turbulence phenomenology and α
and p are suitable parameters. Such regularity criterion guarantees the volumetric sparseness
of local spatial structure of intense vorticity components, preventing the formation of the finite-
time blow up at T under the framework of Zα-sparseness classes introduced in Bradshaw et al.
[2].

1 Introduction

Consider a 3D incompressible, visous fluid modeled by the 3D Navier-Stokes equations (NSE)

ut −∆u+ u · ∇u+∇p = 0 , div u = 0 , u(x, 0) = u0 .

For simplicity, set the viscosity ν to be 1 and the external force f to be 0. Henceforth, the spatial
domain will be the whole space R3.

Morrey spaces, both global and local variants (or–in other words–nonrestricted and restricted
versions), have been utilized in the mathematical study of the 3D NSE as a source of the initial
configurations yielding local-in-time well-posedness for large initial data and global-in-time well-
posedness for small initial data (e.g., Taylor [19] and Giga and Miyakawa [8]), as well as the
mathematical framework suitable for formulating interior regularity conditions (e.g., Chen and Price
[6]). The local Morrey spaces are of particular interest as they describe uniformly-local behavior
of local Lp-quantities with respect to the (physical) scale. Local conditions of the Caffarelli-Kohn-
Nirenberg (CKN)-type (lim supr→0 on the parabolic cylinder-type) are closely related (Caffarelli
et al. [5]).

In 1938, Morrey [18] introduced the following norms,

‖f‖Mp,λ
:= sup

Br(x)
r−λ/p‖f‖Lp(Br(x)).
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The local Morrey-type spaces LMp,θ,w were introduced by Guliev and Mustafaev [16] and the
norm is given by

‖f‖LMp,θ,w
:= ‖w(r)‖f‖Lp(Br(0))‖Lθ(0,∞)

where w is a positive measurable function defined on (0,∞). Later, Guliyev considered the com-
plementary local Morrey-type space and the norm is given by

‖f‖CLMp,θ,w
:= ‖w(r)‖f‖Lp(Rd\Br(0))‖Lθ(0,∞) .

The global Morrey-type space GMp,θ,w was introduced in Burenkov and Guliyev [3] with

‖f‖GMp,θ,w
:= sup

x∈Rd
‖w(r)‖f‖Lp(Br(x))‖Lθ(0,∞) .

Note that GMp,∞,r−λ = Mp,λ. The precise definitions of these generalized Morrey-type spaces will
be given in Section 3.

Classical local Morrey spaces correspond to the weight function w(r) = r−α and the range of
scales r in (0, 1],

sup
x∈R3, 0<r≤1

r−α
ˆ
Br(x)

|f(y)|pdy <∞;

in particular, this leads to a local, scaling-invariant 3D NSE regularity class

L∞
(

(0, T );GM
2,∞,r−

1
2

)
,

i.e., a requirement that

sup
t∈(0,T )

sup
x∈R3, 0<r≤1

1

r

ˆ
Br(x)

|u(y, t)|2dy ≤ ε0 (1.1)

for a suitably small positive constant ε0. This condition is also of interest from the physical point
of view as it rigorously quantifies the uniformly-local r-behavior of the local kinetic energy of
the fluid consistent with the scaling. One can also formulate analogous conditions in terms of
the locally finite measures (e.g., Giga and Miyakawa [8] presented well-posedness results for the
vorticity formulation of the 3D NSE in the class of locally finite measures with the exponent q = 3

2).
A natural question motivated by the physics of turbulence is whether it is possible to restrict

the range of scales in the local Morrey-type conditions to an interval of the form [η(t), 1] for
some explicit, strictly positive function η representing a manifestation of the dissipation scale. A
recent rigorous work by Bradshaw and Grujić [1] presented a conceptually analogous result in
the setting of the Besov spaces in which the physical scales are replaced by the Littlewood-Paley
frequencies, supplementing the physical motivation. The goal of this project is to show that it is
indeed possible to replace/weaken the classical local Morrey conditions with the suitably defined
lower time-restricted versions. In particular, the claim is that the Morrey regularity condition (1.1)
can be replaced with the following dynamically restricted Morrey condition,

sup
t∈(0,T )

sup

x∈R3, ‖∇u(t)‖
− 1

2∞ .r≤1

1

r

ˆ
Br(x)

|u(y, t)|2dy ≤ ε0 . (1.2)
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The idea of the proof is to show that the condition (1.2) implies the vorticity ω eventually
(sufficiently close to the blow-up time) gets trapped in the critical sparseness class Z 1

2
introduced

in Bradshaw et al. [2], yielding a contradiction. Membership in Z 1
2

will follow from modifying a

criterion for 3D sparseness at scale r stating that if

‖f‖H−1 ≤ c∗(λ, δ)r
5
2 ‖f‖∞ (1.3)

with λ, δ, c∗ properly chosen, then each of the six super-level sets

Si,±λ =
{
x ∈ R3 : f±i (x) > λ‖f‖∞

}
, 1 ≤ i ≤ 3 (1.4)

is 3D δ-sparse at scale r (see Bradshaw et al. [2]); here, H−1 denotes the dual of the Sobolev space
H1. In order to utilize the uniformly-local condition (1.2) within the sparseness realm, a technical
adjustment of the global H−1-norm is required.

Furthermore, following the general idea for establishing the pre-duality results exposed in
Gogatishvili and Mustafayev [11], we obtain the regularity of solutions under more general as-
sumption than (1.2), namely,

sup
t∈(0,T )

‖u(t)‖GMp,θ,w
≤ ε0

with w(r) = r−β1[‖ω(t)‖−δ∞ , 1], discovering that δ, the exponent on the lower restriction, is intrinsi-

cally related to the α-parameter of the regularity class Zα. This paper is also a demonstration of
how the Zα formalism in Bradshaw et al. [2] can be utilized to obtain novel results in the setting
of the more traditional functional frameworks.

The paper is organized as follows. In section 2, we recall the notion of sparseness and the
associated geometric-type criteria for smoothness of solutions to the 3D NSE. In section 3, we
give the precise definition of the generalized Morrey-type spaces, GMp,θ,w and exhibit some results
about the pre-duality in this type of spaces as well as prove a key technical lemma needed for our
main results. Section 4 is devoted to formulating the main theorems and demonstrating the proofs
relying on the results gathered in the previous sections.

2 Sparseness and Geometric Regularity Criteria

To be able to give a precise statement of the main theorem, in this section we compile some notions
and ideas about sparseness of the regions of intense fluid activity whose mathematical setup was
developed in Grujić [13, 12] and later has been reformulated and applied for various purposes (see,
e.g., Farhat et al. [7] and Bradshaw et al. [2]). We also provide a technical lemma in preparation
for the proof of the main theorem.

Let S be an open subset of R3 and µ be the Lebesgue measure.

Definition 2.1. For any spatial point x0 and δ ∈ (0, 1), an open set S is 1D δ-sparse around x0 at
scale r if there exists a unit vector ν such that

µ (S ∩ (x0 − rν, x0 + rν))

2r
≤ δ .

The volumetric version is the following.
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Definition 2.2. For any spatial point x0 and δ ∈ (0, 1), an open set S is 3D δ-sparse around x0 at
scale r if

µ (S ∩Br(x0))

µ(Br(x0))
≤ δ .

In addition, S is said to be r-semi-mixed with ratio δ if the above inequality holds for every x0 ∈ R3.
(It is straightforward to show that for any S, 3D δ-sparseness at scale r implies 1D δ1/3-sparseness
at scale r around any spatial point x0; however the converse is false.)

Based on the scale of sparseness of the super-level sets of the positive and negative parts of the
vectorial components of a function f , Bradshaw et al. [2] introduced the classes Zα as a new device
for scaling comparison of solutions to the 3D NSE.

Definition 2.3. For α > 0, λ, δ ∈ (0, 1) and c0 > 1, we denote by Zα(λ, δ, c0) the set of all bounded
continuous functions f : R3 → R3 satisfying that for any x0 ∈ R3, if f±j (x0) = |f(x0)|, the set

S±j :=
{
x ∈ R3 | f±j (x) > λ‖f‖∞

}
is δ-sparse around x0 at scale 1

c
1

‖f‖α∞
for some c ∈ ( 1

c0
, c0).

Since the sparseness is utilized via the harmonic measure maximum principle for subharmonic
functions, the spatial analyticity of solutions is a key player. Here, we recall the result on the
spatial analyticity of u and ω, inspired by the method of finding a lower bound on the uniform
radius of spatial analyticity of solutions in Lp spaces introduced in Grujić and Kukavica [14].

Theorem 2.4 (Guberović [15] and Bradshaw et al. [2]). Let the initial datum u0 ∈ L∞ (resp.
ω0 ∈ L∞ ∩ L2). Then, for any M > 1, there exists a constant c(M) such that there is a unique
mild solution u (resp. ω) in Cw([0, T ], L∞) where T ≥ 1

c(M)2‖u0‖2∞
(resp. T ≥ 1

c(M)‖ω0‖∞ ), which

has an analytic extension U(t) (resp. W (t)) to the region

Dt :=
{
x+ iy ∈ C3 : |y| ≤

√
t/c(M)

(
resp. |y| ≤

√
t/
√
c(M)

)}
for all t ∈ [0, T ], and

sup
t≤T
‖U(t)‖L∞(Dt) ≤M‖u0‖∞

(
resp. sup

t≤T
‖W (t)‖L∞(Dt) ≤M‖ω0‖∞

)
.

As has been demonstrated in Farhat et al. [7] and Bradshaw et al. [2], the concept of ‘escape
time’ provides a more optimal setting for applying the harmonic measure principle-based sparseness
argument.

Definition 2.5. Let u (resp. ω) be in C((0, T ∗), L∞) where T ∗ is the first possible blow-up time.
A time t ∈ (0, T ∗) is an escape time if ‖u(s)‖∞ > ‖u(t)‖∞ (resp. ‖ω(s)‖∞ > ‖ω(t)‖∞) for any
s ∈ (t, T ∗). (Local-in-time continuity of L∞-norm implies there are continuum-many escape times.)

Next we recall a theorem in Farhat et al. [7] and an analogous result (a variation of it) in
Bradshaw et al. [2] to be utilized in the proof of our main result,
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Theorem 2.6 (Farhat et al. [7] and Bradshaw et al. [2]). Let u (resp. ω) be in C((0, T ∗), L∞) where
T ∗ is the first possible blow-up time, and assume, in addition, that u0 ∈ L∞ (resp. ω0 ∈ L∞ ∩L2).
Let t be an escape time of u(t) (resp. ω(t)), and suppose that there exists a temporal point

s = s(t) ∈
[
t+

1

4c(M)2‖u(t)‖2∞
, t+

1

c(M)2‖u(t)‖2∞

]
(

resp. s = s(t) ∈
[
t+

1

4c(M)‖ω(t)‖∞
, t+

1

c(M)‖ω(t)‖∞

] )

such that for any spatial point x0, there exists a scale ρ ≤ 1
2c(M)2‖u(s)‖∞

(
resp. ρ ≤ 1

2c(M)‖ω(s)‖
1
2∞

)
with the property that the super-level set

V j,±
λ =

{
x ∈ R3 | u±j (x, s) > λ‖u(s)‖∞

}
(

resp. Ωj,±
λ =

{
x ∈ R3 | ω±j (x, s) > λ‖ω(s)‖∞

} )
is 1D δ-sparse around x0 at scale ρ; here the index (j,±) is chosen such that |u(x0, s)| = u±j (x0, s)

(resp. |ω(x0, s)| = ω±j (x0, s)), and the pair (λ, δ) is chosen such that the followings hold:

λh+ (1− h) = 2λ , h =
2

π
arcsin

1− δ2

1 + δ2
,

1

1 + λ
< δ < 1 .

(Note that such pair exists and a particular example is that when δ = 3
4 , λ > 1

3 .) Then, there exists
γ > 0 such that u ∈ L∞((0, T ∗ + γ);L∞), i.e. T ∗ is not a blow-up time.

The following lemma is a vector-valued, uniformly-local L2 version of a scalar-valued, Sobolev
space lemma in Iyer et al. [17]; a vectorial B−1

∞,∞ version and H−1 version were given respectively
in Farhat et al. [7] and Bradshaw et al. [2].

Lemma 2.7. Let r ∈ (0, 1] and f a bounded and continuously differentiable vector-valued function
in R3. Then, for any pair (λ, δ), λ ∈ (0, 1) and δ ∈ ( 1

1+λ , 1), there exists c∗(λ, δ) > 0 such that if

sup
x∈R3

‖f‖L2(Br(x)) ≤ c∗(λ, δ)r
5
2 ‖∇ × f‖∞ (2.1)

then each of the six super-level sets

Si,±λ =
{
x ∈ R3 | (∇× f)±i (x) > λ‖∇ × f‖∞

}
, i = 1, 2, 3

is (κr)-semi-mixed with ratio δ, where κ = 3

√
δ(λ+1)+1
2δ(λ+1) .

Proof. Assume the opposite, i.e. there is an index i such that either Si,+λ or Si,−λ is not (κr)-semi-

mixed with the ratio δ. Without loss of generality, suppose it is S1,+
λ . Then there exists a spatial

point x0 such that

µ(S1,+
λ ∩Bκr(x0)) > $δκ3r3 (2.2)
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where $ denotes the volume of the 3D unit ball. Let φ be a smooth, radially symmetric and radially
decreasing function such that

φ =

{
1 on Bκr(x0)
0 on (Br(x0))c

and |∇φ| . (1− κ)−1r−1

First observe that∣∣∣∣ˆ
R3

(∇× f)1(y)φ(y)dy

∣∣∣∣ =

∣∣∣∣∣
ˆ
Br(x0)

(f3(y)(∇φ)2(y)− f2(y)(∇φ)3(y)) dy

∣∣∣∣∣
≤ ‖f‖L2(Br(x0)) ‖∇φ‖L2(Br(x0))

. (1− κ)
1
2 r

1
2 ‖f‖L2(Br(x0)) (2.3)

To develop a contradictive result to (2.1), we write∣∣∣∣ˆ
R3

(∇× f)1(y)φ(y)dy

∣∣∣∣ ≥ ˆ
R3

(∇× f)1(y)φ(y)dy ≥ I − J −K (2.4)

where

I =

ˆ
S1,+
λ ∩Bκr(x0)

(∇× f)1(y)φ(y)dy

J =

∣∣∣∣∣
ˆ
Bκr(x0)\S1,+

λ

(∇× f)1(y)φ(y)dy

∣∣∣∣∣
K =

∣∣∣∣∣
ˆ
Br(x0)\Bκr(x0)

(∇× f)1(y)φ(y)dy

∣∣∣∣∣
With (2.2) we have estimates

I =

ˆ
S1,+
λ ∩Bκr(x0)

(∇× f)+
1 (y)dy

> λ‖∇ × f‖∞ µ
(
S1,+
λ ∩Bκr(x0)

)
≥ $λδκ3r3‖∇ × f‖∞

and

J ≤ ‖∇× f‖∞ µ
(
Bκr(x0) \ S1,+

λ

)
≤ ‖∇× f‖∞

(
µ (Bκr(x0))− µ

(
Bκr(x0) ∩ S1,+

λ

))
≤ $(1− δ)κ3r3‖∇ × f‖∞

and

K ≤ ‖∇× f‖∞ (µ (Br(x0))− µ (Bκr(x0))) ≤ $(1− κ3)r3‖∇ × f‖∞
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Combining the above estimates for I, J,K, (2.3) and (3.8), we deduce

(1− κ)
1
2 r

1
2 ‖f‖L2(Br(x0)) & $r3‖∇ × f‖∞

(
(λ+ 1)δκ3 − 1

)
(2.5)

in other words, for some constant c,

‖f‖L2(Br(x0)) > c$(1− κ)−
1
2
(
(λ+ 1)δκ3 − 1

)
r

5
2 ‖∇ × f‖∞ (2.6)

Since δ > 1
1+λ , if we set (λ+ 1)δκ3 = δ(1+λ)+1

2 , then

‖f‖L2(Br(x0)) > c∗(λ, δ) r
5
2 ‖∇ × f‖∞

where c∗(λ, δ) = c$(1−κ)−
1
2 (δ(1+λ)−1)/2 with κ = 3

√
δ(λ+1)+1
2δ(λ+1) , which produces a contradiction.

3 Pre-duality in Morrey-type Spaces

In this section, we review some known results about duality and pre-duality of Morrey spaces in
a more general setting as well as prove a key lemma in order to fit our arguments into the setting
of general Morrey-type spaces GMp,θ,w, with an eye on relaxing the requirements on the lower
restriction of the scale r by modifying the parameters p and θ.

Definition 3.1 (Burenkov and Guliyev [3]). Let 0 < p, θ ≤ ∞ and let w be a non-negative
measurable function on (0,∞). Denote by LMp,θ,w(Rd) the local Morrey-type space, the space of
all functions f ∈ Lploc(R

d) with finite quasi-norms

‖f‖LMp,θ,w(Rd) := ‖w(r)‖f‖Lp(Br(0))‖Lθ(0,∞) .

Denote by CLMp,θ,w(Rd) the complementary local Morrey-type space, the space of all functions
f ∈ Lp(Rd \Br(0)) for all r > 0 with finite quasi-norms

‖f‖CLMp,θ,w(Rd) := ‖w(r)‖f‖Lp(Rd\Br(0))‖Lθ(0,∞) .

A global version of such Morrey-type spaces, denoted by GMp,θ,w, is defined as the space of all
functions f ∈ Lploc(R

d) with finite quasi-norms

‖f‖GMp,θ,w
:= sup

x∈Rd
‖f(x+ ·)‖LMp,θ,w(Rd) .

Analogously, global versions of the complementary local Morrey-type spaces are defined as
follows.

Definition 3.2 (Burenkov et al. [4] and Gogatishvili and Mustafayev [10]). Let 0 < p, θ ≤ ∞ and
let w be a non-negative measurable function on (0,∞). Denote by ∆(CLMp,θ,w) the space of all
functions f ∈ Lploc(R

d) with finite quasi-norms

‖f‖∆(CLMp,θ,w) := sup
x∈Rd

‖f(x+ ·)‖CLMp,θ,w(Rd) .

Denote by CGMp,θ,w the space of all distributions f =
∑

k fk where fk(xk + ·) ∈ CLMp,θ,w(Rd) and
xk ∈ Rd with finite quasi-norms

‖f‖CGMp,θ,w
:= inf

f=
∑
k fk

∑
k

‖fk(xk + ·)‖CLMp,θ,w(Rd) .
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For the dual spaces of these local Morrey-type spaces, Gogatishvili and Mustafayev [11] and
Gogatishvili and Mustafayev [10] give partial answers as follow.

Theorem 3.3 (Gogatishvili and Mustafayev [11], Theorem 6.1 and Theorem 6.2). Denote by Ωθ

the set of all non-negative measurable functions w on (0,∞) such that

0 < ‖w‖Lθ(r,∞) <∞ , r > 0

and by CΩθ the set of all non-negative measurable functions w on (0,∞) such that

0 < ‖w‖Lθ(0,r) <∞ , r > 0 .

Assume 1 ≤ p, θ <∞. If w ∈ Ωθ and ‖w‖Lθ(0,∞) =∞, then

(LMp,θ,w)∗ = CLMp′,θ′,w̃

where w̃(t) = wθ−1(t)

(ˆ ∞
t

wθ(s)ds

)−1

. If w ∈ CΩθ and ‖w‖Lθ(0,∞) =∞, then

(CLMp,θ,w

)∗
= LMp′,θ′,w̄

where w̄ = wθ−1(t)

(ˆ t

0
wθ(s)ds

)−1

. The duality is defined under the pairing 〈f, g〉 =

ˆ
Rd
fg.

Theorem 3.4 (Gogatishvili and Mustafayev [10], Theorem 6.1). Let 1 ≤ p < ∞ and 0 < λ < d.
Then (

CGMp′,1, d−λ
p
−1(Rd)

)∗
= GMp,∞,λ−d

p
(Rd)

where GMp,∞,ν := GMp,∞,w
(
resp. CGMp,∞,ν := CGMp,∞,w

)
with w(r) = rν .

The results above shall lead us to some proximity of Lemma 2.7 since the key step in contradic-
tion argument was the bound on integration against test functions. However, they are not directly
applicable because they require either ‖w‖Lθ(0,∞) = ∞ or w ≡ rν while our goal is to restrict the
scale r to an interval of the form [η, 1]. In order to obtain the duality (or pre-duality) results in
GMp,∞,w with general w, we refer to the following.

Theorem 3.5 (Gogatishvili and Mustafayev [9], Theorem 5.4). Assume that 0 < p ≤ 1, p < q ≤ ∞
and ` is determined by 1

` = 1
p −

1
q . Let f and w be weight functions on Rd and (0,∞) respectively.

Assume ‖w‖Lq(t,∞) <∞ for all t > 0 and w 6= 0 a.e. on (0,∞). Then, the inequality

‖fg‖Lp(Rd) ≤ c

∥∥∥∥∥w(t)

ˆ
Bt(0)

|g(y)|dy

∥∥∥∥∥
Lq(0,∞)

holds for all measurable function g if and only if

C0 :=

(ˆ ∞
0
‖f‖`

Lp′ (Rd\Bt(0))

d

dt

(
‖w‖−`Lq(t,∞)

))1/`

+
‖f‖Lp′ (Rd)

‖w‖Lq(0,∞)
<∞

The sharpest constant c ≈ C0.
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Remark 3.6. Following Convention 5.3 in Gogatishvili and Mustafayev [9], if ‖w‖Lq(t,∞) = 0 at

t = b we set
d

dt

(
‖w‖−`Lq(t,∞)

)
= 0 for all t > b.

Next, following the general idea for proving Corollary 3.2 in Gogatishvili and Mustafayev [11],
we derive the following pre-duality result.

Lemma 3.7. Let 1 ≤ p < ∞, 1 < θ ≤ ∞. Assume ‖w‖Lθ(r,∞) < ∞ for all r > 0 and w 6= 0 a.e.
on (0,∞). Then

sup
g∈GMp,θ,w

ˆ
Rd
|f(x)g(x)|dx

‖g‖GMp,θ,w

.

(
inf
x∈Rd

ˆ ∞
0
‖f‖θ′

Lp′ (Rd\Br(x))

d

dr

(
‖w‖−θ′

Lθ(r,∞)

))1/θ′

+
‖f‖Lp′ (Rd)

‖w‖Lθ(0,∞)

(3.1)

Proof. By definition,

ˆ
Rd
|f(x)g(x)|dx

‖g‖GMp,θ,w

=


‖|f |p|g|p‖L1/p(Rd)

sup
x∈Rd

∥∥∥∥∥wp(r)
ˆ
Br(x)

|g(y)|pdy

∥∥∥∥∥
Lθ/p(0,∞)


1/p

.

For any 1 ≤ p <∞ and 1 < θ ≤ ∞, by Theorem 3.5

‖|f(x+ ·)|p|g(x+ ·)|p‖L1/p(Rd) ≤ C

∥∥∥∥∥wp(r)
ˆ
Br(0)

|g(x+ y)|pdy

∥∥∥∥∥
Lθ/p(0,∞)

(3.2)

holds for all measurable function g on Rd if and only if

C∗(x) :=

(ˆ ∞
0
‖|f(x+ ·)|p‖θ

′/p

L(1/p)′ (Rd\Br(0))

d

dr

(
‖wp‖−θ

′/p

Lθ/p(r,∞)

))p/θ′
+
‖|f(x+ ·)|p‖Lθ′/p(Rd)

‖wp‖Lθ/p(0,∞)

=

(ˆ ∞
0
‖f‖θ′

Lp′ (Rd\Br(x))

d

dr

(
‖w‖−θ′

Lθ(r,∞)

))p/θ′
+

(
‖f‖Lθ′ (Rd)

‖w‖Lθ(0,∞)

)p
<∞ .

The sharpest constant in (3.2) satisfies C ≈ C∗(x). Therefore, for all x ∈ Rd,

sup
g∈GMp,θ,w

ˆ
Rd
|f(y)g(y)|dy

‖g‖GMp,θ,w

≤ c∗

((ˆ ∞
0
‖f‖θ′

Lp′ (Rd\Br(x))

d

dr

(
‖w‖−θ′

Lθ(r,∞)

))1/θ′

+
‖f‖Lθ′ (Rd)

‖w‖Lθ(0,∞)

)

where c∗ is a constant which only depends on p and θ.

The following lemma will serve as the lower restricted local Morrey version of Lemma 2.7.
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Lemma 3.8. Let r ∈ (0, 1] and f be a bounded and continuously differentiable vector-valued func-
tion in R3. Suppose 1 ≤ p < ∞, 1 < θ ≤ ∞ and w(s) = s−α1[ρ,1] with αθ > 1 and 0 < ρ � 1.

Then, for any pair (λ, δ), λ ∈ (0, 1) and δ ∈ ( 1
1+λ , 1), there exists ε(λ, δ) > 0 such that if

‖f‖GMp,θ,w
≤

 ε(λ, δ) (r ∨ ρ)
1−αθ
θ r

3+ p′−3
p′ ‖∇ × f‖∞ , if θ <∞

ε(λ, δ) (r ∨ ρ)−α r
3+ p′−3

p′ ‖∇ × f‖∞ , if θ =∞
(3.3)

(
resp. ‖f‖GMp,θ,w

≤

{
ε(λ, δ) (r ∨ ρ)

1−αθ
θ r

3− 3
p′ ‖f‖∞ , if θ <∞

ε(λ, δ) (r ∨ ρ)−α r
3− 3

p′ ‖f‖∞ , if θ =∞

)
where r ∨ ρ := max{r, ρ}, then each of the six super-level sets

Si,±λ =
{
x ∈ R3 | (∇× f)±i (x) > λ‖∇ × f‖∞

}
, i = 1, 2, 3(

resp. Si,±λ =
{
x ∈ R3 | f±i (x) > λ‖f‖∞

}
, i = 1, 2, 3

)
is r-semi-mixed with ratio δ.

Proof. Assume the opposite, i.e. there is either Si,+λ or Si,−λ which is not r-semi-mixed with the

ratio δ. Suppose it is S1,+
λ . Then there exists a spatial point x0 such that

µ
(
S1,+
λ ∩Br(x0)

)
> $δr3 (3.4)

where $ denotes the volume of the 3D unit ball.
Let φ be a smooth, radially symmetric and radially decreasing function such that

φ =

{
1 on Br(x0)
0 on

(
B(1+η)r(x0)

)c and |∇φ| . η−1r−1

Using an analogous argument to the one in the proof of Lemma 2.7, together with the pre-duality
of GMp,θ,w in Lemma 3.7, we obtain∣∣∣∣ˆ

R3

(∇× f)1(y)φ(y)dy

∣∣∣∣ =

∣∣∣∣ˆ
R3

(f3(y)(∇φ)2(y)− f2(y)(∇φ)3(y)) dy

∣∣∣∣
. ‖f‖GMp,θ,w

((
inf
x∈R3

ˆ ∞
0
‖∇φ‖θ′

Lp
′ (R3\Bt(x))

d

dt

(
‖w‖−θ′

Lθ(t,∞)

))1/θ′

+
‖∇φ‖Lp′ (R3)

‖w‖Lθ(0,∞)

)
. (3.5)

Before arguing for a contradiction, we need to compute the quantities ‖∇φ‖Lp′ (R3), ‖w‖Lθ(0,∞) and

the Lebesgue-Stieltjes integral

ˆ ∞
0
‖∇φ‖θ′

Lp
′
(R3\Bt(x))

d

dt

(
‖w‖−θ′

Lθ(t,∞)

)
. From the assumption on φ

and w,

‖∇φ‖Lp′ (R3\Bt(x0)) =

(ˆ
B(1+η)r(x0)\Bt(x0)

|∇φ|p′dy

)1/p′

.


((
η−1r−1

)p′ · ((1 + η)3 − 1
)
r3
)1/p′

if t ≤ r((
η−1r−1

)p′ · ((1 + η)3 − (t/r)3
)
r3
)1/p′

if r < t < (1 + η)r

0 if t ≥ (1 + η)r

.
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If θ <∞, then

‖w‖Lθ(t,∞) =



(ˆ 1

β
s−αθds

)1/θ

.
(
β1−αθ − 1

)1/θ
if 0 < t ≤ β(ˆ 1

t
s−αθds

)1/θ

.
(
t1−αθ − 1

)1/θ
if β < t < 1

0 if t ≥ 1

.

If θ =∞, then

‖w‖Lθ(t,∞) .


β−α if 0 < t ≤ β
t−α if β < t < 1
0 if t ≥ 1

.

In the rest of the proof, we only present the case θ < ∞ since the deduction for θ = ∞ is similar
and easier. Now, for θ <∞,

‖∇φ‖Lp′ (R3)

‖w‖Lθ(0,∞)

.

(
(1 + η)3 − η3

)1/p′
r

3
p′−1

(β1−αθ − 1)
1/θ

η
. η−1

(
(1 + η)3 − 1

)1/p′
β(αθ−1)/θr

3
p′−1

. (3.6)

Note that the Lebesgue-Stieltjes integral in (3.5) attains its minimum when x = x0 (in which case
R3 \Bt(x) covers most of the support of ∇φ), and referring to Remark 3.6 we write

d

dt

(
‖w‖−θ′

Lθ(t,∞)

)
.


0 if 0 < t ≤ β(

t1−αθ − 1
)−θ′/θ−1

t−αθ if β < t < 1
0 if t ≥ 1

.

Therefore, combining the above calculations gives the estimate

inf
x∈R3

ˆ ∞
0
‖∇φ‖θ′

Lp
′ (R3\Bt(x))

d

dt

(
‖w‖−θ′

Lθ(t,∞)

)

.



ˆ (1+η)r

r

((
(1 + η)3 − (t/r)3

) 1
p′
η−1

)θ′
r

( 3
p′−1)θ′

(
t1−αθ − 1

)− θ′
θ
−1
t−αθdt

+

ˆ r

β

((
(1 + η)3 − 1

) 1
p′ η−1

)θ′
r

( 3
p′−1)θ′

(
t1−αθ − 1

)− θ′
θ
−1
t−αθdt

if β ≤ r

ˆ (1+η)r

β

((
(1 + η)3 − (t/r)3

) 1
p′
η−1

)θ′
r

( 3
p′−1)θ′

(
t1−αθ − 1

)− θ′
θ
−1
t−αθdt if r < β < (1 + η)r

0 if β ≥ (1 + η)r

.

Simplification via some asymptotic properties reduces the estimate to(
inf
x∈R3

ˆ ∞
0
‖∇φ‖θ′

Lp′ (R3\Bt(x))

d

dt

(
‖w‖−θ′

Lθ(t,∞)

))1/θ′

.

 η−1
(
(1 + η)3 − 1

) 1
p′

(
(1 + η)

(αθ−1)θ′
θ − 1

) 1
θ′

r
3
p′−1

(r ∨ β)
αθ−1
θ if β < (1 + η)r

0 if β ≥ (1 + η)r

. (3.7)
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Now, following the idea in the proof of Lemma 2.7, we write∣∣∣∣ˆ
R3

(∇× f)1(y)φ(y)dy

∣∣∣∣ ≥ ˆ
R3

(∇× f)1(y)φ(y)dy ≥ I − J −K (3.8)

where

I =

ˆ
S1,+
λ ∩Br(x0)

(∇× f)1(y)φ(y)dy

J =

∣∣∣∣∣
ˆ
Br(x0)\S1,+

λ

(∇× f)1(y)φ(y)dy

∣∣∣∣∣
K =

∣∣∣∣∣
ˆ
B(1+η)r(x0)\Br(x0)

(∇× f)1(y)φ(y)dy

∣∣∣∣∣
Similarly, with (3.4) we deduce

I > λ‖∇ × f‖∞ µ
(
S1,+
λ ∩Br(x0)

)
≥ $λδr3‖∇ × f‖∞

J ≤ ‖∇× f‖∞
(
µ (Br(x0))− µ

(
Br(x0) ∩ S1,+

λ

))
≤ $(1− δ)r3‖∇ × f‖∞

and

K ≤ ‖∇× f‖∞
(
µ
(
B(1+η)r(x0)

)
− µ (Br(x0))

)
≤ $((1 + η)3 − 1)r3‖∇ × f‖∞ .

Combining the estimates for I, J,K, (3.5)-(3.8), we deduce

$r3
(
(1 + λ)δ − (1 + η)3

)
‖∇ × f‖∞ . ‖f‖GMp,θ,w

(
η−1

(
(1 + η)3 − 1

) 1
p′ β

αθ−1
θ r

3
p′−1

+ η−1
(
(1 + η)3 − 1

) 1
p′

(
(1 + η)

(αθ−1)θ′
θ − 1

) 1
θ′

r
3
p′−1

(r ∨ β)
αθ−1
θ

)
. ‖f‖GMp,θ,w

η−1
(
(1 + η)3 − 1

) 1
p′ (1 + η)

αθ−1
θ r

3
p′−1

(r ∨ β)
αθ−1
θ ,

in other words, for some constant c,

‖f‖GMp,θ,w
>
c $

(
(1 + λ)δ − (1 + η)3

)
r

3+ p′−3
p′ (r ∨ β)

1−αθ
θ

η−1 ((1 + η)3 − 1)
1
p′ (1 + η)

αθ−1
θ

‖∇ × f‖∞ . (3.9)

Since δ > 1
1+λ , if we set (1 + η)3 = δ(1+λ)+1

2 , then

‖f‖GMp,θ,w
> ε(λ, δ) r

3+ p′−3
p′ (r ∨ β)

1−αθ
θ ‖∇ × f‖∞

where ε(λ, δ) = c $
(
δ(1+λ)−1

2

)1− 1
p′
(
δ(1+λ)+1

2

) 1−αθ
3θ

(
3

√
δ(1+λ)+1

2 − 1

)
, which produces a contra-

diction.
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4 The Main Results

The main results are the following.

Theorem 4.1. Let u be a unique regular solution to the 3D NSE evolving from u0 ∈ L∞ and T ∗

be the first possible blow-up time. Assume that the initial value of the vorticity ω0 ∈ L2 ∩ L∞ and
let t be an escape time. There exists ε0 such that if the solution u and the vorticity ω satisfy

inf
s∈
[
t+ 1

4c0‖ω(t)‖∞
, t+ 1

c0‖ω(t)‖∞

] sup

x∈R3, ‖ω(s)‖
− 1

2∞ .r≤1

1

r

ˆ
Br(x)

|u(s, y)|2dy ≤ ε0 , (4.1)

then, there exists γ > 0 such that u ∈ L∞((0, T ∗ + γ);L∞), i.e. T ∗ is not a blow-up time.

Proof. By the assumption there exists s ∈
[
t+ 1

4c0‖ω(t)‖∞ , t+ 1
c0‖ω(t)‖∞

]
such that

sup

x∈R3, ‖ω(s)‖
− 1

2∞ .r≤1

r−1‖u(s)‖2L2(Br(x)) ≤ ε0 .

This can be reformulated as

sup
x∈R3

r−1‖u(s)‖2L2(Br(x)) ≤ ε0 for all ‖ω(s)‖−
1
2∞ . r ≤ 1 ;

in other words,

r−
1
2 sup
x∈R3

‖u(s)‖L2(Br(x)) ≤ ε
1
2
0 for all r such that 1 . ‖ω(s)‖

1
2∞ r ≤ ‖ω(s)‖

1
2∞ ,

which implies that, for all ‖ω(s)‖−
1
2∞ . r ≤ 1,

sup
x∈R3

‖u(s)‖L2(Br(x)) ≤ ε
1
2
0 r

1
2 . ε

1
2
0 r

1
2

(
‖ω(s)‖

1
2∞r

)2

. ε
1
2
0 r

5
2 ‖ω(s)‖∞ .

In particular, for some r ≤ 1

c0‖ω(s)‖
1
2∞

we have

sup
x∈R3

‖u(s)‖L2(Br(x)) . ε
1
2
0 r

5
2 ‖ω(s)‖∞ . (4.2)

Now applying Lemma 2.7 with f = u(s) we can conclude that for any pair (λ, δ) with λ ∈ (0, 1)
and δ ∈ ( 1

1+λ , 1), there exists sufficiently small ε0 such that all the super-level sets

Ωi,±
λ =

{
x ∈ R3 | ω±i (x, s) > λ‖ω(s)‖∞

}
, i = 1, 2, 3

are (κr)-semi-mixed with ratio δ for some κ < 1. This implies each Ωi,±
λ is 1D (κr)

1
3 -sparse around

any spatial point x0 at scale r ≤ 1

c0‖ω(s)‖
1
2∞

, which fits the assumption in Theorem 2.6; therefore T ∗

is not a blow-up time.
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Using Theorem 2.6 together with Lemma 3.8, we provide a different proof of Theorem 4.1 which
not only extends the result into the general Morrey-type spaces introduced in Section 3 but also
embeds our regularity result into a more general formalism, the Zα classes (cf. Section 2).

Theorem 4.2. Let u be a unique regular solution to the 3D NSE evolving from u0 ∈ L∞ and T ∗

be the first possible blow-up time. Assume that the initial value of the vorticity ω0 ∈ L2 ∩ L∞ and

let t be an escape time. There exists ε0 such that if there is s ∈
[
t+ 1

4c0‖ω(t)‖∞ , t+ 1
c0‖ω(t)‖∞

]
with

‖u(s)‖GMp,θ,w
≤

 ε0 (‖ω(s)‖∞)
(α∧β) νθ−1

θ
−α
(

3+ p′−3
p′

)
+1

if 1 < θ <∞

ε0 (‖ω(s)‖∞)
(α∧β)ν−α

(
3+ p′−3

p′

)
+1

if θ =∞
(4.3)

where w(r) = r−ν1[
c‖ω(s)‖−β∞ , 1

], then ω(s) ∈ Zα(λ, δ, ε∗) for any pair (λ, δ) such that λ ∈ (0, 1) and

δ ∈ ( 1
1+λ , 1) with some ε∗ depending on (λ, δ); in particular, this implies that when α = 1

2 , T ∗ is
not a blow-up time. If the above parameters satisfy

(α ∧ β)νθ−1
θ − α

(
3 + p′−3

p′

)
+ 1 = 0 if θ <∞;

(α ∧ β)ν − α
(

3 + p′−3
p′

)
+ 1 = 0 if θ =∞,

the condition (4.3) simply writes ‖u(s)‖GMp,θ,w
≤ ε0. Note that Theorem 4.1 is the special case

when ν = β = 1
2 , p = 2 and θ =∞.

Proof. This is an immediate consequence of the first part of Lemma 3.8, and when α = 1
2 the

continuation of smooth solution at T ∗ follows from Theorem 2.6.

Theorem 4.3. Let u be a unique regular solution to the 3D NSE evolving from u0 ∈ L∞ and
T ∗ be the first possible blow-up time. Assume that the initial value of the vorticity ω0 ∈ L2 ∩ L∞

and let t be an escape time. There exists ε0 such that if there is s ∈
[
t+ 1

4c20‖u(t)‖2∞
, t+ 1

c20‖u(t)‖2∞

]
(

resp. s ∈
[
t+ 1

4c20‖ω(t)‖∞
, t+ 1

c20‖ω(t)‖∞

] )
with

‖u(s)‖GMp,θ,w
≤

 ε0 (‖u(s)‖∞)
(α∧β) νθ−1

θ
−α
(

3− 3
p′

)
+1

if 1 < θ <∞

ε0 (‖u(s)‖∞)
(α∧β)ν−α

(
3− 3

p′

)
+1

if θ =∞
(4.4)

resp. ‖ω(s)‖GMp,θ,w
≤

 ε0 (‖ω(s)‖∞)
(α∧β) νθ−1

θ
−α
(

3− 3
p′

)
+1

if 1 < θ <∞

ε0 (‖ω(s)‖∞)
(α∧β)ν−α

(
3− 3

p′

)
+1

if θ =∞


where w(r) = r−ν1[

c‖u(s)‖−β∞ , 1
] (resp. w(r) = r−ν1[

c‖ω(s)‖−β∞ , 1
]), then u(s) ∈ Zα(λ, δ, ε∗) (resp.

ω(s) ∈ Zα(λ, δ, ε∗)) for any pair (λ, δ) such that λ ∈ (0, 1) and δ ∈ ( 1
1+λ , 1) with some ε∗ depending

on (λ, δ), which implies that when α = 1 (resp. α = 1
2), T ∗ is not a blow-up time. In particular, if

the above parameters satisfy

(α ∧ β)νθ−1
θ − α

(
3− 3

p′

)
+ 1 = 0 if θ <∞;

(α ∧ β)ν − α
(

3− 3
p′

)
+ 1 = 0 if θ =∞,
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the condition (4.4) simply writes ‖u(s)‖GMp,θ,w
≤ ε0

(
resp. ‖ω(s)‖GMp,θ,w

≤ ε0
)
.

Proof. This is an immediate consequence of the second part of Lemma 3.8, and when α = 1 (resp.
α = 1

2) the continuation of smooth solution at T ∗ is a corollary of Theorem 2.6.

Analogously, one can formulate regularity criteria such as

‖u(s)‖GMp,θ,w
≤ ε0 (‖u(s)‖∞)γ1 (‖ω(s)‖∞)γ2 with w(r) = r−ν1[

c‖u(s)‖−β1∞ ‖ω(s)‖−β2∞ , 1
]

or

‖ω(s)‖GMp,θ,w
≤ ε0 (‖u(s)‖∞)γ1 (‖ω(s)‖∞)γ2 with w(r) = r−ν1[

c‖u(s)‖−β1∞ ‖ω(s)‖−β2∞ , 1
]

The proofs are replicable.
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Gap’ in the Navier–Stokes Regularity Problem. Arch. Ration. Mech. Anal., 231(3):1983–
2005, 2019. ISSN 0003-9527. doi: 10.1007/s00205-018-1314-5. URL https://doi.org/10.1007/

s00205-018-1314-5.

[3] Viktor I. Burenkov and Huseyn V. Guliyev. Necessary and sufficient conditions for boundedness
of the maximal operator in local Morrey-type spaces. Studia Math., 163(2):157–176, 2004. ISSN
0039-3223. doi: 10.4064/sm163-2-4. URL https://doi.org/10.4064/sm163-2-4.

[4] Viktor I. Burenkov, Huseyn V. Guliyev, and Vagif S. Guliyev. Necessary and sufficient con-
ditions for the boundedness of fractional maximal operators in local Morrey-type spaces. J.
Comput. Appl. Math., 208(1):280–301, 2007. ISSN 0377-0427. doi: 10.1016/j.cam.2006.10.085.
URL https://doi.org/10.1016/j.cam.2006.10.085.

[5] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the
Navier-Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982. ISSN 0010-3640. doi:
10.1002/cpa.3160350604. URL https://doi.org/10.1002/cpa.3160350604.

[6] Zhi-Min Chen and W. G. Price. Morrey space techniques applied to the interior regularity
problem of the Navier-Stokes equations. Nonlinearity, 14(6):1453–1472, 2001. ISSN 0951-7715.
doi: 10.1088/0951-7715/14/6/303. URL https://doi.org/10.1088/0951-7715/14/6/303.
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