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EVERY BT1 GROUP SCHEME APPEARS IN A JACOBIAN
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(Communicated by Matthew A. Papanikolas)

Abstract. Let p be a prime number and let k be an algebraically closed field
of characteristic p. A BT1 group scheme over k is a finite commutative group
scheme which arises as the kernel of p on a p-divisible (Barsotti–Tate) group.
Our main result is that every BT1 group scheme over k occurs as a direct factor
of the p-torsion group scheme of the Jacobian of an explicit curve defined over
Fp. We also treat a variant with polarizations. Our main tools are the Kraft
classification of BT1 group schemes, a theorem of Oda, and a combinatorial
description of the de Rham cohomology of Fermat curves.

1. Introduction

Fix a prime number p and let k be an algebraically closed field of characteristic
p. A BT1 group scheme over k is a finite commutative group scheme which is
the kernel of p on a p-divisible group. (The term BT1 stands for Barsotti–Tate
truncated at level 1, and Barsotti–Tate is a synonym for p-divisible.) These are the
finite commutative group schemes killed by p which also satisfy KerF = ImV and
KerV = ImF where F and V are the Frobenius and Verschiebung maps respectively.
The simplest BT1 group schemes are Z/pZ and µp.

We also consider polarized BT1 group schemes over k, i.e., BT1 group schemes G
with a pairing that induces a non-degenerate, alternating pairing on the Dieudonné
module of G, as in [11, §9]. If A is a principally polarized abelian variety of
dimension g over k, its p-torsion subscheme A[p] is naturally a polarized BT1 group
scheme of order p2g.

If C is a smooth irreducible projective curve of genus g over k, then its Jacobian
Jac(C) is a principally polarized abelian variety of dimension g, and thus G =
Jac(C)[p] is a polarized BT1 group scheme of order p2g. By a result of Oda [10], the
de Rham cohomology of C over k determines the isomorphism class of G uniquely
via its Dieudonné module.

In general, it is not known which polarized BT1 group schemes occur for Ja-
cobians of curves. In fact, there are very few examples of curves for which the
isomorphism class of Jac(C)[p] has been computed. Our main result is:
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526 RACHEL PRIES AND DOUGLAS ULMER

Theorem 1.1.

(1) Every BT1 group scheme over k appears as a direct factor of Jac(C)[p] for
an explicit curve C defined over Fp.

(2) Every polarized BT1 group scheme over k appears as a direct factor (with
pairing) of Jac(C)[p] for an explicit curve C defined over Fp.

(3) In particular, if G is an indecomposable BT1 group scheme of order p! with
! > 1, or if G is an indecomposable polarized BT1 group scheme of order p!

with ! > 2, then the curve C in part (1) or part (2) can be chosen to have
genus ≤ (p! − 2)/2.

We prove this theorem in Section 6. Using a result of Oort (Proposition 2.1),
parts (1) and (2) are essentially equivalent. In part (3), a polarized BT1 group
scheme is indecomposable if it is not the orthogonal direct sum of two proper
polarized subgroup schemes. The restrictions on ! in (3) are not significant, because
the omitted groups are known to appear in elliptic curves.

A weaker version of parts (1) and (2) follows from the fact that every abelian
variety appears as a subvariety of a Jacobian together with the non-emptiness of
each E–O stratum of Ag; see Remark 6.6. Our proof of Theorem 1.1 is more
elementary, and it yields a stronger result because: (i) there are no conditions on
p; (ii) the curve C is explicit and its field of definition is Fp; (iii) the genus of C is
bounded in terms of the order of G; and (iv) the other group schemes that occur
in Jac(C)[p] can be explicitly computed.

In almost all cases the “explicit curve” of the theorem can be taken to be a
quotient of a Fermat curve. Fermat curves are a natural class of curves to consider
because their de Rham cohomology, with its Frobenius and Verschiebung operators,
admits a simple combinatorial description. A result of independent interest in this
paper is that we determine the structure of the BT1 module for the Jacobian of the
Fermat curve Fd of degree d, for all positive integers d that are relatively prime to
p; see Theorem 5.5. This complements work of Yui, who determined the Newton
polygons of Fermat curves [16, Thm. 4.2].

Our arguments use parts of three classifications of BT1 group schemes largely
due to Kraft, Ekedahl, and Oort. In a companion paper [12], we provide a complete
translation between these classifications, and we apply them to give a detailed study
of the p-torsion subgroups of Jacobians of Fermat curves, including well-known
invariants like the p-rank and a-number, as well as two other invariants related to
supersingular elliptic curves.

2. Groups and modules

2.1. Dieudonné modules. We refer to [5] for background on contravariant
Dieudonné theory for finite group schemes of p-power order over k and for p-divisible
groups.

Write σ for the absolute Frobenius of k and extend it to the Witt vectors W (k).
Define the Dieudonné ring D = W (k){F, V } as the W (k)-algebra generated by F
and V with relations

FV = V F = p, Fα = σ(α)F, and αV = V σ(α) for α ∈ W (k).

Let Dk = D/pD ∼= k{F, V }.
If G is a finite, commutative group scheme over k of p-power order, then its

Dieudonné module M(G) is the left D-module of homomorphisms of k-group

Licensed to Colorado St Univ. Prepared on Mon Nov 14 22:48:51 EST 2022 for download from IP 129.82.28.144.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EVERY BT1 GROUP SCHEME APPEARS IN A JACOBIAN 527

schemes from G to the co-Witt vectors. The functor G ! M(G) is contravari-
ant and induces an anti-equivalence between the category of finite group schemes
of p-power order over k and the category of left D-modules that are of finite length
as W (k) modules [5, III.1.4].

2.2. BT1 group schemes and BT1 modules. By definition, a BT1 group scheme
over k is a finite commutative group scheme G that is killed by p and that has the
properties

Ker(F : G → G) = Im(V : G → G) and Im(F : G → G) = Ker(V : G → G).

The notation BT1 is an abbreviation of “Barsotti–Tate of level 1”.
By definition, a BT1 module over k is a Dk-module M of finite dimension over

k such that

Ker(F : M → M) = Im(V : M → M) and Im(F : M → M) = Ker(V : M → M).

A Dk-module M is a BT1 module if and only if M = M(G) for a BT1 group scheme
G over k.

The group schemes Z/pZ and µp are BT1 group schemes. So is G1,1, the kernel
of p on a supersingular elliptic curve over k. On the other hand, αp is not.

2.3. Duality. If G is a finite, commutative group scheme over k, define its Cartier
dual GD as GD := Homk−Gr(G, Gm) (homomorphisms of k-group schemes), where
Gm is the multiplicative group over k. A BT1 group scheme G is self-dual if
G ∼= GD.

If M is a left D-module of finite length over W (k), define its dual module M∗

as follows: If M is killed by pn, set M∗ = HomW (k)(M, Wn(k)) with (Fφ)(m) =
σ(φ(V m)) and (V φ)(m) = σ−1(φ(Fm)) for all φ ∈ M∗ and m ∈ M . A BT1 module
M is self-dual if M ∼= M∗.

A basic result of Dieudonné theory [5, §III.5.3] is that M(GD) ∼= M(G)∗. In
particular, G is self-dual if and only if M(G) is self-dual.

2.4. Polarized BT1 group schemes. A polarized BT1 module is a BT1 module
M equipped with a non-degenerate, alternating pairing 〈·, ·〉 : M × M → k of
Dieudonné modules (i.e., such that 〈x, x〉 = 0 and 〈Fx, y〉 = 〈x, V y〉p for all x, y ∈
M). Clearly, a polarized BT1 module is self-dual.

A polarized BT1 group scheme is a BT1 group scheme G equipped with a bilinear
form with the property that the induced form on M(G) is non-degenerate and al-
ternating. (The reason for this unusual definition is that when p = 2, an alternating
form on G need not induce an alternating form on M(G). See [11, p. 346].)

Oort proved [11, §§2, 5, 9] (see also [12, Cor. 4.2.3]) that any self-dual BT1

module can be given a unique polarization:

Proposition 2.1. Every self-dual BT1 module admits a polarization, i.e., a non-
degenerate alternating pairing, and this pairing is unique up to (non-unique) iso-
morphism.

3. The Kraft classification of BT1 modules

In this section, we review a bijection due to Kraft between isomorphism classes of
BT1 modules over k and certain data obtained from words on a two-letter alphabet;
see [6].
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3.1. Words. Let W be the monoid of words w on the two-letter alphabet {f, v}
with law of composition given by concatenation, and write 1 for the empty word.
The complement wc of w is the word obtained by exchanging f and v at every
letter.

If w ∈ W is a word of length λ, we write w = uλ−1 · · ·u0 where ui ∈ {f, v}
for 0 ≤ i ≤ λ − 1. Equip W with an action of the group Z where 1 ∈ Z maps
w = uλ−1 · · ·u0 to u0uλ−1 · · ·u1. If w and w′ are in the same orbit of this action,
we say w′ is a rotation of w. The orbit w of w under the action of Z is called a
cyclic word.

A word is primitive if it is not a power of a shorter word, i.e., not of the form
we for some integer e > 1.

3.2. Cyclic words to BT1 modules. Following Kraft [6], we attach a BT1 module
to a multiset of primitive cyclic words.

Suppose that w ∈ W is a word of length λ, say w = uλ−1 · · ·u0 with uj ∈ {f, v}.
Let M(w) be the k-vector space with basis ej with j ∈ Z/λZ and define a p-linear
map F : M(w) → M(w) and a p−1-linear map V : M(w) → M(w) by setting

F (ej) =

{
ej+1 if uj = f,

0 if uj = v,
and V (ej+1) =

{
ej if uj = v,

0 if uj = f .

This construction yields a BT1 module of dimension λ over k which up to isomor-
phism only depends on the cyclic word w associated to w.

Kraft proves that if w is primitive then M(w) is indecomposable, and that every
indecomposable BT1 module is isomorphic to one of the forms M(w) for a unique
primitive cyclic word w. Thus every BT1 module M is isomorphic to a direct sum
⊕M(wi) where wi runs through a uniquely determined multiset of primitive cyclic
words.

Even if w is not primitive, the formulas above define a BT1 module. If w = (w′)e,
Kraft also proves that M(w) ∼= M(w′)e.

It is clear that M(f) = M(Z/pZ), M(v) = M(µp), and M(fv) is the Dieudonné
module of the kernel of p on a supersingular elliptic curve. More generally, if w has
length > 1 and is primitive, then M(w) is the Dieudonné module of a unipotent,
connected BT1 group scheme.

3.3. Duality. It is clear from the definitions that duality of modules corresponds
to complementation of words, i.e., M(w)∗ ∼= M(wc). It follows that an indecom-
posable, self-dual BT1 module is either of the form M(w) where w is primitive and
induces a self-complementary cyclic word (wc = w) or of the form M(w) ⊕ M(wc)
where w is primitive and wc *= w.

4. Permutations and BT1 modules

In this section, we associate a BT1 module to certain permutations via the Kraft
construction.

4.1. Permutations. Consider a finite set S written as the disjoint union S =
Sf ∪Sv of two subsets. Let π : S → S be a permutation of S. Two such collections
of data (S = Sf ∪Sv,π) and (S′ = S′

f ∪S′
v,π′) are isomorphic if there is a bijection

ι : S → S′ such that ι(Sf ) = S′
f , ι(Sv) = S′

v, and ιπ = π′ι.
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4.2. Permutations to words. Given S = Sf ∪ Sv and π as above, we define a
multiset of cyclic words as follows: For a ∈ S with orbit of size λ, define the word
wa = uλ−1 · · ·u0 where

uj =

{
f if πj(a) ∈ Sf ,

v if πj(a) ∈ Sv.

Then wa depends only on the orbit of a. This gives a well-defined map from orbits of
π to cyclic words. Taking the union over orbits, we can associate to (S = Sf ∪Sv,π)
a multiset of cyclic words. If S and S′ are isomorphic, then they yield the same
multiset.

For example, let S = {1, . . . , 9}, Sf = {2, 3, 5, 6, 9}, and Sv = {1, 4, 7, 8}. Let
π be the permutation (135)(246)(789). The orbit through 1 and the orbit through
2 both give rise to the cyclic word ffv, and the orbit through 7 gives rise to the
cyclic word fvv. The associated multiset is {(ffv)2, fvv} (where (ffv)2 means
the cyclic word ffv taken with multiplicity 2).

4.3. Permutations to BT1 modules. Given S = Sf ∪ Sv and π as above, we
obtain a multiset of words, and thus a BT1 module of dimension equal to the
cardinality of S. This BT1 module can be described directly in terms of S as
follows: Form the k-vector space M(S) with basis elements {ea | a ∈ S} and define
a p-linear map F : M(S) → M(S) and a p−1-linear map V : M(S) → M(S) by
setting

F (ea) =

{
eπ(a) if a ∈ Sf ,

0 if a ∈ Sv,
and V (eπ(a)) =

{
ea if a ∈ Sv,

0 if a ∈ Sf .

Note that M(S) decomposes (as a BT1 module) into submodules indexed by the
orbits of π. The submodule corresponding to an orbit of π is indecomposable if and
only if the word associated to the orbit is primitive.

4.4. Duality. Given S = Sf ∪ Sv and π as above, form the BT1 module M(S). It
is clear from the definitions that the dual module M(S)∗ is the module associated
to data (S∗ = S∗

f ∪S∗
v ,π∗) where S∗ = S, S∗

f = Sv, S∗
v = Sf , and π∗ = π. It follows

that M(S) is self-dual if and only if there exists a bijection ι : S →̃S which satisfies
ι(Sf ) = Sv and π ◦ ι = ι ◦ π.

5. Fermat Jacobians

In this section, we study p-torsion group schemes of Jacobians of Fermat curves.

5.1. BT1 modules associated to curves. Let C be an irreducible, smooth, pro-
jective curve of genus g over k, and let J = JC be its Jacobian. In [10, §5], Oda
gives H1

dR(C) = H1
dR(J) the structure of a BT1 module. In particular, writing H

for H1
dR(C), we have

(5.1) Im(V : H → H) = Ker(F : H → H) ∼= H0(C,Ω1
C),

and

Im(F : H → H) = Ker(V : H → H) ∼= H1(C, OC).

Oda proves [10, Cor. 5.11] that there is a canonical isomorphism of Dk-modules

(5.2) H1
dR(C) ∼= M(J [p]).
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5.2. Fermat curves. For each positive integer d not divisible by p, let Fd be the
Fermat curve of degree d, i.e., the smooth, projective curve over k with affine model
Fd : Xd + Y d = 1 and let JFd be its Jacobian. Let Cd be the smooth, projective
curve over k with affine model

(5.3) Cd : yd = x(1 − x),

and let Jd be its Jacobian.
The curve Cd is a quotient of Fd. (Substitute Xd for x and XY for y in the

equation for Cd.) The map Fd → Cd is the quotient of Fd by a subgroup of (µd)2 ⊂
Aut(Fd) of index d. Since the degree of Fd → Cd is prime to p, Jd[p] is a direct
factor of JFd [p]. Most of our results depend only on the simpler curve Cd, so we use
it whenever possible.

5.3. Cohomology of Cd. The Riemann-Hurwitz formula shows that the genus of
Cd is

g(Cd) = .(d − 1)/2/ =

{
(d − 1)/2 if d is odd,

(d − 2)/2 if d is even.

Moreover, Cd admits an action of ζ ∈ µd with ζ : (x, y) 0→ (x, ζy).
We next describe H1

dR(Cd) in a form conducive to studying it as a Dk-module.
First, write

H1
dR(Cd) =

⊕

a∈Z/dZ
Ha,

where Ha is the subspace of H1
dR(Cd) where every ζ ∈ µd acts by multiplication

by ζa. Since the action of µd on Cd induces the trivial action on H2
dR(Cd), the

cup product induces a perfect duality between Ha and H−a, and a trivial pairing
between Ha and Hb if b *≡ −a (mod d).

Let

S =

{
Z/dZ \ {0} if d is odd,

Z/dZ \ {0, d/2} if d is even.

Multiplication by p induces a permutation of S. We make sense of any archimedean
statement about an element a ∈ S (e.g., “0 < a < d/2”) by implicitly lifting a to
its least positive residue.

Proposition 5.1.

(1) If a ∈ Z/dZ, then dimk(Ha) = 1 if a ∈ S and Ha = 0 if a *∈ S.
(2) H0(Cd,Ω1

Cd
) = ⊕0<a<d/2Ha.

(3) If 0 < a < d/2, then FHa = 0 and V induces an isomorphism V : Hpa →
Ha.

(4) If d/2 < a < d, then V Hpa = 0 and F induces an isomorphism F : Ha →
Hpa.

There are several similar calculations in the literature (e.g., [15], [3, §5], and
[14, §6]). For the convenience of the reader, we include the following efficient and
transparent proof.

Proof. For 0 < a < d/2, a simple calculation shows that the 1-form yadx/yd on
the affine model (5.3) extends to a global 1-form on Cd, and its class in H1

dR(Cd)
lies in Ha. This shows that dimk(Ha) ≥ 1 for 0 < a < d/2. Because of the perfect
duality between Ha and H−a, we see that dimk(Ha) ≥ 1 for d/2 < a < d. Since
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g(Cd) = .(d − 1)/2/, it follows that dimk(Ha) = 1 for a ∈ S and Ha = 0 for a *∈ S.
This proves parts (1) and (2).

By definition, FHa ⊂ Hpa and V Hpa ⊂ Ha. By (5.1), F kills H0(Cd,Ω1
Cd

) =
⊕0<a<d/2Ha. Since dim(KerF ) = g, the map F : Ha → Hpa is injective, and
thus bijective, for d/2 < a < d. Similarly, by (5.1), ImV = H0(Cd,Ω1

Cd
). So

V : Hpa → Ha is surjective, and thus bijective, for 0 < a < d/2 and zero for
d/2 < a < d. This proves parts (3) and (4). "

Now let Sf , Sv ⊂ S be given by

Sf = {a | d/2 < a < d} and Sv = {a | 0 < a < d/2},

and let π : S → S be the permutation induced by multiplication by p.

Theorem 5.2. The Dieudonné module M(Jd[p]) is the BT1 module associated to
the data

S =

{
Z/dZ \ {0, d/2} if d is even,

Z/dZ \ {0} if d is odd,

Sf = {a ∈ S | d/2 < a < d} , Sv = {a ∈ S | 0 < a < d/2} ,

and the permutation π : S → S given by π(a) = pa.

Proof. This is immediate from Oda’s Theorem (Equation (5.2)), Proposition 5.1,
and Section 4.3. "
Remark 5.3. The proof of the theorem shows that Jd[p] decomposes as a direct sum
over the orbits of π on S. By Sections 3.2 and 4.3, the summand corresponding
to an orbit is indecomposable if and only if the word associated to the orbit is
primitive.

Remark 5.4. The data (S = Sf ∪ Sv,π) also completely determines Jd[p] up to
isomorphism as a polarized BT1 group scheme. Indeed, by Proposition 2.1, given
any non-degenerate, alternating form on the BT1 module defined by (S = Sf ∪
Sv,π), we may choose the isomorphism in the theorem so that it intertwines the
given form with the polarization on H1

dR(Cd) induced by the cup product.

5.4. The p-torsion of Fermat curves. In this section, we determine the BT1

modules of the Jacobians of Fermat curves. We need this material to complete
Theorem 1.1 when p < 5.

First, note that µ2
d acts on Fd via (ζ1, ζ2) : (X, Y ) 0→ (ζ1X, ζ2Y ). The cohomol-

ogy H = H1
dR(Fd) decomposes into subspaces Ha,b indexed by (a, b) ∈ (Z/dZ)2 on

which (ζ1, ζ2) ∈ µ2
d acts by ζa

1 ζ
b
2. An argument parallel to Proposition 5.1 shows

that Ha,b is 1-dimensional if (a, b) ∈ T and 0 otherwise, where

T =
{
(a, b) ∈ (Z/dZ)2 | a *= 0, b *= 0, a + b *= 0

}
.

Moreover, setting

Tf = {(a, b) ∈ S | a + b > d} , and Tv = {(a, b) ∈ S | a + b < d} ,

then F induces an isomorphism F : Ha,b → Hpa,pb if (a, b) ∈ Tf , and V induces an
isomorphism V : Hpa,pb → Ha,b if (a, b) ∈ Tv. Consider the permutation σ : T → T
given by σ(a, b) = (pa, pb). We may associate words to elements of T and cyclic
words to orbits of σ. As in Section 4.3, this defines a BT1 module. Applying Oda’s
Theorem (5.2) proves that:
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532 RACHEL PRIES AND DOUGLAS ULMER

Theorem 5.5. The module M(JFd [p]) is the BT1 module associated to the data
(T = Tf ∪ Tv,σ).

5.5. A Shimura variety perspective. Another proof of Theorem 5.2 can be
extracted from [8] as follows. By [15], Jd is an abelian variety with complex multi-
plication, and Proposition 5.1(1)–(2) reveals the CM type of Jd. The corresponding
Shimura subvariety of Ag is zero-dimensional, so each point is a component of both
the Newton stratification and the E-O stratification of the Shimura subvariety. Us-
ing [8, §1], one can compute the isomorphism type of Jd[p] in terms of the CM
type.

5.6. Other related work. The curve Cd is hyperelliptic. When p = 2, Theo-
rem 5.2 is a special case of [4], where the authors compute the BT1 module and
E–O type for all hyperelliptic curves in characteristic 2. When p is odd, Devala-
purkar and Halliday compute the action of F and V on the mod p Dieudonné
module for every hyperelliptic curve [2]. However, it appears to be difficult to de-
duce Theorem 5.2 from their result because it describes the actions of F and V by
unwieldy formulas. Our work gives them essentially as permutation matrices.

In [9], the author gives a method for computing the BT1 module of a smooth
complete intersection curve over a field whose characteristic is greater than the
largest of the multidegrees. This method can be used to recover a version of The-
orem 5.2 for the Fermat curve Fd in characteristic p when d < p. However, this is
not adequate to prove Theorem 1.1 because most BT1 modules do not appear in
Jacobians of Fermat curves of degrees d < p.

6. Proof of Theorem 1.1

We will prove most cases of Theorem 1.1 by considering the Fermat quotient
curve Cd for d of the form p! − 1. When p < 5, we also need the Fermat curve Fd

and an auxiliary fiber product.

6.1. p-adic digits. Fix a positive integer ! and let d = p! − 1. As before, let

S =

{
Z/dZ \ {0, d/2} if d is even,

Z/dZ \ {0} if d is odd,

Sf = {a ∈ S | d/2 < a < d} , Sv = {a ∈ S | 0 < a < d/2} ,

and let the permutation π : S → S be given by π(a) = pa. Given a ∈ S, consider
the p-adic expansion of its least positive residue:

a = a0 + a1p + · · · + a!−1p
!−1,

where ai ∈ {0, . . . , p − 1}. We exclude: a = 0 (all ai = 0); a = d (all ai = p − 1);
and, if p is odd, a = d/2 (all ai = (p − 1)/2). Note that

pa ≡ a!−1 + a0p + · · · + a!−2p
!−1 (mod d),

so π corresponds to permuting the digits of a cyclically.
By definition, a ∈ Sv if and only if 0 < a < d/2. In terms of digits, this holds if

and only if

a!−1 < (p − 1)/2, or

a!−1 = (p − 1)/2 and a!−2 < (p − 1)/2, or

a!−1 = a!−2 = (p − 1)/2 and a!−3 < (p − 1)/2, or . . . .
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In other words, the condition is that the first p-adic digit to the left of a!−1 (inclu-
sive) which is not (p − 1)/2 is in fact less than (p − 1)/2.

Similarly a ∈ Sf if and only if a > d/2. This holds if and only if the first p-adic
digit to the left of a!−1 (inclusive) which is not (p − 1)/2 is in fact greater than
(p − 1)/2.

For a ∈ S, let λ be the size of the orbit of π through a. We say that a is primitive
if λ = !. It is clear that a is primitive if gcd(d, a) = 1. More generally, a fails to
be primitive if and only if d/ gcd(d, a) divides pλ − 1 for some λ < !. Note that a
primitive does not imply that wa is primitive.

Let wa = uλ−1 · · ·u0 be the word attached to a as in Section 4.2. The discussion
above shows that uj = v if and only if the first p-adic digit of a to the left of a!−1−j

(inclusive) which is not (p − 1)/2 is in fact less than (p − 1)/2. (Finding the first
such digit may require “wrapping around,” i.e., passing from a0 to a!−1.)

Using these observations, we may write down elements a ∈ S with given words:

Proposition 6.1. Suppose w is a word of length ! > 1.

(1) If w is primitive, then there is an element a ∈ S such that wa = w.
(2) If p > 3 and w is any word (not necessarily primitive), then there is an

element a ∈ S such that wa = w.

Proof. (1) Let w = u!−1 · · ·u0 be a primitive word of length ! > 1. For 0 ≤ j < !,
set

aj =

{
0 if u!−1−j = v,

p − 1 if u!−1−j = f.

Since w is primitive, and in particular not equal to f ! nor to v!, the integer a =
a0 + · · · + a!−1p!−1 defines an element of S, and it is clear that wa = w.

(2) If w = v! (resp. w = f !), we may take a = 1 (resp. a = d − 1). (Here we
use p > 2.) For any other word, the recipe in the preceding paragraph yields an
element of S. However, if w is not primitive, say w = w′e, this element is not what
we need because its word is w′. Modify a as follows: choose j so that aj = 0 (which
exists because w *= v!), and change aj to 1. Then the new a is primitive (because
exactly one of its digits is 1) and satisfies wa = w. (Here we use that 1 < (p− 1)/2,
i.e., p > 3.) This completes the proof of the proposition. "
Remark 6.2. In [12], we give a more refined analysis and compute the number of
a ∈ S with wa = w for any w, p, and !. It turns out that the restriction on p in part
(2) is essential. If p = 3 and e > 1, then the word (fv)e is not the word associated
to an element of S, and if p = 2, e > 1, and w′ is non-trivial, then w′e is also not
associated to an element of S.

6.2. Proof of Theorem 1.1, part (3). Let G be an indecomposable BT1 group
scheme over k of order p! with ! > 1. Then there is a primitive word w of length !
such that M(G) ∼= M(w). According to Proposition 6.1, there is an element a ∈ S
such that wa = w. By Theorem 5.2, G appears as a direct factor of Jd[p]. Since
Cd has genus .(p! − 2)/2/, this establishes the desired result for an indecomposable
BT1.

Now consider an indecomposable polarized BT1 group scheme G. If G is inde-
composable as a BT1 group scheme (ignoring the pairing), the proof in the previous
paragraph applies with the same bound on the genus. Otherwise, there is a prim-
itive word w of length !/2 such that M(G) ∼= M(w) ⊕ M(wc). Let d′ = p!/2 − 1
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and let S′ be the usual set for d′:

S′ =

{
Z/d′Z \ {0} if d′ is odd,

Z/d′Z \ {0, d/2} if d′ is even.

Since !/2 > 1, by Proposition 6.1, there is an element a ∈ S′ such that wa = w
(and so w−a = wc). By Theorem 5.2, G is a direct factor of Jd′ [p]. To confirm the
bound on the genus, we note that Cd′ has genus .(p!/2 − 2)/2/.

In the polarized case, if G is a direct factor of Jd[p], we check that the given
pairing on G is induced from that of Jd[p] using Oort’s result (Proposition 2.1).
The same argument applies if G is a direct factor of Jd′ [p]. Write Jd[p] ∼= G ⊕ G′.
Since Jd[p] and G are self-dual, so is G′. By the existence part of Proposition 2.1,
G and G′ both admit polarizations, and by the uniqueness part, we may choose
the isomorphism Jd[p] ∼= G ⊕ G′ so that the direct sum polarization on G ⊕ G′

corresponds to the canonical polarization of Jd[p].
This completes the proof of part (3) of Theorem 1.1.

The following result establishes Theorem 1.1, parts (1) and (2) for p > 3. Recall
that Jd is the Jacobian of the curve Cd with affine equation yd = x(1 − x).

Theorem 6.3. If p > 3, then every BT1 group scheme over k appears as a direct
factor of Jd[p] for an integer d of the form d = p!−1. The same holds for polarized
BT1 group schemes.

Proof. Suppose that p > 3 and let G be a BT1 group scheme over k. Let {(wi)ei}
be the multiset of distinct primitive cyclic words corresponding to G in the Kraft
classification, and let !i be the length of wei

i . Let di = p!i − 1 and let Si =
Z/diZ \ {0, di/2} with the usual partition and permutation. According to part (2)
of Proposition 6.1, there is an element a ∈ Si with wa = wei

i , and using Theorem 5.2,
we conclude that the group scheme Gi with M(Gi) ∼= M(wei

i ) appears as a direct
factor of Jdi [p].

If d′ divides d, then there is a natural quotient morphism π : Cd → Cd′ of

degree d/d′, which is prime to p. The induced composition Jd′
π∗
→ Jd

π∗→ Jd′ is
multiplication by d/d′ and therefore induces an isomorphism on Jd′ [p]. Thus Jd′ [p]
is a direct factor of Jd[p].

Now let ! be the least common multiple of the !i (so that di divides d = p! − 1
for all i). Using the maps Jdi → Jd shows that each Gi is a direct factor of Jd[p],
and since the Gi have pairwise non-isomorphic indecomposable factors, G = ⊕Gi

is a direct factor of Jd[p] as well. This completes the proof for BT1 group schemes
without polarization.

The polarized case follows from the unpolarized case and Proposition 2.1 by the
same argument given at the end of the proof of part (3). This completes the proof
of the theorem. "

The following result reproves Theorem 1.1, parts (1) and (2) for p > 3; it proves
those results for p = 3, and it handles the main case for p = 2. Recall that JFd is
the Jacobian of the Fermat curve with affine equation Xd + Y d = 1.

Theorem 6.4.

(1) If p > 2, then every BT1 group scheme over k appears as a direct factor of
JFd [p] for an integer d of the form d = p!−1. The same holds for polarized
BT1 group schemes.
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(2) The same is true if p = 2 as long as the group scheme has no factors of
Z/2Z or µ2.

Proof. Since Cd is a quotient of Fd by a group of order prime to p, the case p > 3
follows immediately from Theorem 6.3. Thus we assume p = 2 or 3. To handle
these cases, we argue as in the proof of Theorem 6.3, where Theorem 5.5 plays the
role of Theorem 5.2 and where the set T associated to the Fermat curve Fd plays
the role of the set S associated to Cd.

When p = 3, to prove (1), the essential point is to show that any word w appears
as the word of an element of the set T associated to d = 3! − 1 for a suitable !.
When p = 2, to prove (2), the essential point is to show that any word w which is
not a power of f or a power of v appears as the word of an element of the set T
associated to d = 2! − 1 for a suitable !.

Note that there is an injection S ↪→ T sending a to (a, a) which is compatible
with the partitions S = Sf ∪Sv and T = Tf ∪Tv and intertwines the permutations
π and σ. Thus, if a ∈ S has word wa = w, then the word of (a, a) ∈ T satisfies
w(a,a) = w.

Consider the case where p = 3 and w = f ! (resp. v!). It is no loss of generality
to assume that ! > 1, and in this case we may take d = 3! − 1 and a = (−1,−1)
(resp. a = (1, 1)). Consideration of 3-adic digits shows that wa = v! (resp. wa = f !).
Thus we have produced the required elements of T when p = 3 and w is a power
of f or v.

Finally, consider the case where p = 2 or 3 and w is not a power of f or a power
of v. If w is primitive, part (1) of Proposition 6.1 gives an a ∈ S with w(a,a) = w. If
w is not primitive, write w = w′e where e > 1 and w′ is primitive of length λ. Let
a′ be the element of S associated to w as in the proof of Proposition 6.1, i.e., we use
the digit 0 for v and the digit p−1 for f . Note that wa′ = w(a′,a′) = w′. Since w is a
power of w′, consideration of digits shows that a′ *= ±1 and that a′ *= d/2±1. Thus
(a′ + 1, a′ − 1) is an element of T , and it is clear that w(a′+1,a′−1) = w. Therefore
every word of length ! which is not a power of f or a power of v arises as w(a,b) for
a suitable (a, b) ∈ T , and this completes the proof of Theorem 6.4. "

6.3. The case p = 2. To finish the proof of Theorem 1.1, it remains to treat the
case where p = 2 and G is a BT1 group scheme over k with factors of Z/2Z or µ2.
Write

G ∼= (Z/2Z)f1 ⊕ (µ2)
f2 ⊕ G′,

where G′ is a BT1 group scheme with no factors of Z/2Z and no factors of µ2. We
have already proven that G′ is a direct factor of JFd [2] for a suitable value of d of
the form 2! − 1. Choose one such value of d.

Let r be an odd positive integer and let Xr be the smooth, projective curve over
k defined by

Xr :
(
x2 − x

)
(zr − 1) = 1.

One computes that Xr has genus r − 1, and by [13, Prop. 3.2], it is ordinary, i.e.,

JXr [2] ∼= (Z/2Z ⊕ µ2)
r−1 .

Choose r ≥ max{f1, f2} + 1 and odd, and let F1 be the Fermat curve of degree
1 (given by X + Y = 1). Consider the degree r projection Xr → F1 given by

(x, z) 0→ (X = x, Y = 1 − x).
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Define C as the fiber product of that projection and the degree d2 projection Fd →
F1. Since d and r are odd, JXr [2] and JFd [2] are direct factors of JC [2]. Thus G′

and (Z/2Z⊕µ2)r−1 are direct factors of JC [2]. Since they have no indecomposable
factors in common,

G ⊂ (Z/2Z ⊕ µ2)
r−1 ⊕ G′

is a direct factor of JC [2]. This completes the proof of the case p = 2 of Theorem 1.1.

Remark 6.5. Another approach to adding factors of Z/2Z and µ2 to G′ is to use an
argument similar to [7, Cor. 4.7]. Using that Fd has CM, so lies in the µ-ordinary
locus, one finds curves C whose Newton polygon is that of Fd with additional seg-
ments of slopes 0 and 1 of arbitrarily large multiplicity f . Again using µ-ordinarity,
one deduces that G′ ⊕ (Z/2Z ⊕ µ2)f is a direct factor of JC [2], thus so is G. This
method has the drawbacks that the curve C is no longer explicit and we have no
control over its field of definition other than that it is a finite field.

Remark 6.6. A weaker version of parts (1) and (2) of Theorem 1.1 follows from the
facts that each E–O stratum of Ag is non-empty and that every abelian variety A
appears as a subvariety of a Jacobian J . However, we need A[p] to be a direct factor
of J [p]. If A has dimension !, this can be verified when p > 3 and p ≥ !, via the
theory of Prym–Tyurin varieties [1, Corollary 12.2.4]. As discussed in Section 1,
our proof avoids this restriction on p and gives more information about the curve.
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[6] Hanspeter Kraft, Kommutative algebraische Gruppen und Ringe (German), Lecture Notes
in Mathematics, Vol. 455, Springer-Verlag, Berlin-New York, 1975. MR0393051

[7] W. Li, E. Mantovan, R. Pries, and Y. Tang, Newton polygon stratification of the Torelli
locus in PEL-type Shimura varieties, Preprint, to appear in Int. Math. Res. Not. IMRN
arXiv:1811.00604, 2018.

[8] Ben Moonen, Serre-Tate theory for moduli spaces of PEL type (English, with English
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