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ABSTRACT. Let p be a prime number and let k be an algebraically closed field
of characteristic p. A BT group scheme over k is a finite commutative group
scheme which arises as the kernel of p on a p-divisible (Barsotti-Tate) group.
Our main result is that every BT} group scheme over k occurs as a direct factor
of the p-torsion group scheme of the Jacobian of an explicit curve defined over
Fp. We also treat a variant with polarizations. Our main tools are the Kraft
classification of BT; group schemes, a theorem of Oda, and a combinatorial
description of the de Rham cohomology of Fermat curves.

1. INTRODUCTION

Fix a prime number p and let k£ be an algebraically closed field of characteristic
p. A BTy group scheme over k is a finite commutative group scheme which is
the kernel of p on a p-divisible group. (The term BTj stands for Barsotti-Tate
truncated at level 1, and Barsotti—Tate is a synonym for p-divisible.) These are the
finite commutative group schemes killed by p which also satisfy KerF = ImV and
KerV = ImF where F and V are the Frobenius and Verschiebung maps respectively.
The simplest BT; group schemes are Z/pZ and p,,.

We also consider polarized BT} group schemes over k, i.e., BT} group schemes G
with a pairing that induces a non-degenerate, alternating pairing on the Dieudonné
module of G, as in [11, §9]. If A is a principally polarized abelian variety of
dimension g over k, its p-torsion subscheme A[p] is naturally a polarized BT} group
scheme of order p29.

If C' is a smooth irreducible projective curve of genus g over k, then its Jacobian
Jac(C) is a principally polarized abelian variety of dimension g, and thus G =
Jac(C)[p] is a polarized BT} group scheme of order p?9. By a result of Oda [10], the
de Rham cohomology of C over k determines the isomorphism class of G uniquely
via its Dieudonné module.

In general, it is not known which polarized BT} group schemes occur for Ja-
cobians of curves. In fact, there are very few examples of curves for which the
isomorphism class of Jac(C)[p] has been computed. Our main result is:
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526 RACHEL PRIES AND DOUGLAS ULMER

Theorem 1.1.

(1) Ewery BTy group scheme over k appears as a direct factor of Jac(C)[p] for
an explicit curve C' defined over IFy,.

(2) Every polarized BTy group scheme over k appears as a direct factor (with
pairing) of Jac(C)[p] for an explicit curve C' defined over Fp,.

(3) In particular, if G is an indecomposable BTy group scheme of order p* with
(> 1, or if G is an indecomposable polarized BT, group scheme of order p
with £ > 2, then the curve C in part (1) or part (2) can be chosen to have
genus < (p* —2)/2.

We prove this theorem in Section 6. Using a result of Oort (Proposition 2.1),
parts (1) and (2) are essentially equivalent. In part (3), a polarized BT} group
scheme is indecomposable if it is not the orthogonal direct sum of two proper
polarized subgroup schemes. The restrictions on ¢ in (3) are not significant, because
the omitted groups are known to appear in elliptic curves.

A weaker version of parts (1) and (2) follows from the fact that every abelian
variety appears as a subvariety of a Jacobian together with the non-emptiness of
each E-O stratum of A,; see Remark 6.6. Our proof of Theorem 1.1 is more
elementary, and it yields a stronger result because: (i) there are no conditions on
p; (ii) the curve C is explicit and its field of definition is F,; (iii) the genus of C is
bounded in terms of the order of G; and (iv) the other group schemes that occur
in Jac(C)[p] can be explicitly computed.

In almost all cases the “explicit curve” of the theorem can be taken to be a
quotient of a Fermat curve. Fermat curves are a natural class of curves to consider
because their de Rham cohomology, with its Frobenius and Verschiebung operators,
admits a simple combinatorial description. A result of independent interest in this
paper is that we determine the structure of the BT; module for the Jacobian of the
Fermat curve Fy of degree d, for all positive integers d that are relatively prime to
p; see Theorem 5.5. This complements work of Yui, who determined the Newton
polygons of Fermat curves [16, Thm. 4.2].

Our arguments use parts of three classifications of BT) group schemes largely
due to Kraft, Ekedahl, and Oort. In a companion paper [12], we provide a complete
translation between these classifications, and we apply them to give a detailed study
of the p-torsion subgroups of Jacobians of Fermat curves, including well-known
invariants like the p-rank and a-number, as well as two other invariants related to
supersingular elliptic curves.

2. GROUPS AND MODULES

2.1. Dieudonné modules. We refer to [5] for background on contravariant
Dieudonné theory for finite group schemes of p-power order over k and for p-divisible
groups.

Write o for the absolute Frobenius of k and extend it to the Witt vectors W (k).
Define the Dieudonné ring D = W (k){F,V} as the W (k)-algebra generated by F
and V with relations

FV=VF =p, Fa=o0(a)F, and aV =Vo(a) for a € W(k).
Let D =D/pD = k{F,V}.
If G is a finite, commutative group scheme over k of p-power order, then its
Dieudonné module M(G) is the left D-module of homomorphisms of k-group
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EVERY BT, GROUP SCHEME APPEARS IN A JACOBIAN 527

schemes from G to the co-Witt vectors. The functor G ~» M(G) is contravari-
ant and induces an anti-equivalence between the category of finite group schemes
of p-power order over k and the category of left D-modules that are of finite length
as W (k) modules [5, 111.1.4].

2.2. BT group schemes and B7; modules. By definition, a BTy group scheme
over k is a finite commutative group scheme G that is killed by p and that has the
properties

Ker(F:G—-G)=Im(V:G—=G) and Im(F:G— G)=Ker(V:G— G).

The notation BT is an abbreviation of “Barsotti—Tate of level 17.
By definition, a BT} module over k is a Di-module M of finite dimension over
k such that

Ker(F: M —-M)=Im(V:M— M) and Im(F:M — M)=Ker(V:M— M).

A Dy-module M is a BT} module if and only if M = M(G) for a BT} group scheme
G over k.

The group schemes Z/pZ and p, are BTy group schemes. So is Gy 1, the kernel
of p on a supersingular elliptic curve over k. On the other hand, «, is not.

2.3. Duality. If G is a finite, commutative group scheme over k, define its Cartier
dual GP as GP := Homy,_ ¢, (G, G,,) (homomorphisms of k-group schemes), where
G, is the multiplicative group over k. A BTj group scheme G is self-dual if
G=GP.

If M is a left D-module of finite length over W (k), define its dual module M*
as follows: If M is killed by p”, set M* = Homyy (M, W, (k)) with (F¢)(m) =
a(¢p(Vm)) and (V@)(m) = o~ (¢(Fm)) for all ¢ € M* and m € M. A BT} module
M is self-dual if M = M*.

A basic result of Dieudonné theory [5, §I11.5.3] is that M(GP) = M(G)*. In
particular, G is self-dual if and only if M (G) is self-dual.

2.4. Polarized BT group schemes. A polarized BT, module is a BT} module
M equipped with a non-degenerate, alternating pairing (-,-) : M x M — k of
Dieudonné modules (i.e., such that (z,x) =0 and (Fz,y) = (x,Vy)? for all z,y €
M). Clearly, a polarized BT} module is self-dual.

A polarized BTy group scheme is a BT} group scheme G equipped with a bilinear
form with the property that the induced form on M (G) is non-degenerate and al-
ternating. (The reason for this unusual definition is that when p = 2, an alternating
form on G need not induce an alternating form on M(G). See [11, p. 346].)

Oort proved [11, §§2, 5, 9] (see also [12, Cor. 4.2.3]) that any self-dual BT}
module can be given a unique polarization:

Proposition 2.1. FEvery self-dual BTy module admits a polarization, i.e., a non-
degenerate alternating pairing, and this pairing is unique up to (non-unique) iso-
morphism.

3. THE KRAFT CLASSIFICATION OF BT} MODULES

In this section, we review a bijection due to Kraft between isomorphism classes of
BT, modules over k and certain data obtained from words on a two-letter alphabet;
see [6].
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528 RACHEL PRIES AND DOUGLAS ULMER

3.1. Words. Let W be the monoid of words w on the two-letter alphabet {f,v}
with law of composition given by concatenation, and write 1 for the empty word.
The complement w® of w is the word obtained by exchanging f and v at every
letter.

If w € W is a word of length A\, we write w = uy_1---up where u; € {f,v}
for 0 < i < A—1. Equip W with an action of the group Z where 1 € Z maps
W= Ux_1- Uy t0 Ugur_1 ---u1. If w and w’ are in the same orbit of this action,
we say w’ is a rotation of w. The orbit W of w under the action of Z is called a
cyclic word.

A word is primitive if it is not a power of a shorter word, i.e., not of the form
w® for some integer e > 1.

3.2. Cyclic words to BT} modules. Following Kraft [6], we attach a BT} module
to a multiset of primitive cyclic words.

Suppose that w € W is a word of length A, say w = ux_1 - - - up with u; € {f,v}.
Let M(w) be the k-vector space with basis e; with j € Z/AZ and define a p-linear
map F : M(w) — M(w) and a p~!-linear map V : M (w) — M (w) by setting

Fle;) =4 G+t Tt o Viegq) =49 DW=0
0 if u; = v, 0 ifu;=f.

This construction yields a B77; module of dimension A over k& which up to isomor-
phism only depends on the cyclic word w associated to w.

Kraft proves that if w is primitive then M (w) is indecomposable, and that every
indecomposable BT; module is isomorphic to one of the forms M (w) for a unique
primitive cyclic word w. Thus every B7; module M is isomorphic to a direct sum
@M (w;) where w; runs through a uniquely determined multiset of primitive cyclic
words.

Even if w is not primitive, the formulas above define a BT} module. If w = (w')¢,
Kraft also proves that M(w) = M (w’)e.

It is clear that M (f) = M(Z/pZ), M(v) = M(u,), and M(fv) is the Dieudonné
module of the kernel of p on a supersingular elliptic curve. More generally, if w has
length > 1 and is primitive, then M (w) is the Dieudonné module of a unipotent,
connected BT; group scheme.

3.3. Duality. It is clear from the definitions that duality of modules corresponds
to complementation of words, i.e., M(w)* = M(w®). It follows that an indecom-
posable, self-dual BT} module is either of the form M (w) where w is primitive and
induces a self-complementary cyclic word (w® = w) or of the form M (w) ® M (w®)
where w is primitive and w° # .

4. PERMUTATIONS AND BT} MODULES

In this section, we associate a BT} module to certain permutations via the Kraft
construction.

4.1. Permutations. Consider a finite set S written as the disjoint union S =
St US, of two subsets. Let 7 : § — S be a permutation of S. Two such collections
of data (S = SyUSy, ) and (S" = S} U S, 7') are isomorphic if there is a bijection

t: 8 — 8" such that «(Sy) = 5%, 1(S,) = Sy, and 7 = 7'e.
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EVERY BT, GROUP SCHEME APPEARS IN A JACOBIAN 529

4.2. Permutations to words. Given S = Sy U S, and 7 as above, we define a
multiset of cyclic words as follows: For a € S with orbit of size A, define the word
Wq = Ur—_1 - - - Ug Where

s — {f if 77 (a) € Sy,

v if 7 (a) € S,.

Then w, depends only on the orbit of a. This gives a well-defined map from orbits of
7 to cyclic words. Taking the union over orbits, we can associate to (S = SyUS,,m)
a multiset of cyclic words. If S and S’ are isomorphic, then they yield the same
multiset.

For example, let S = {1,...,9}, Sy = {2,3,5,6,9}, and S, = {1,4,7,8}. Let
7 be the permutation (135)(246)(789). The orbit through 1 and the orbit through
2 both give rise to the cyclic word ffv, and the orbit through 7 gives rise to the
cyclic word fvv. The associated multiset is {(ffv)?, fuv} (where (ffv)? means

the cyclic word ffv taken with multiplicity 2).

4.3. Permutations to BT} modules. Given S = Sy U S, and 7 as above, we
obtain a multiset of words, and thus a BT} module of dimension equal to the
cardinality of S. This B7T7; module can be described directly in terms of S as
follows: Form the k-vector space M (.S) with basis elements {e, | @ € S} and define
a p-linear map F : M(S) — M(S) and a p~!-linear map V : M(S) — M(S) by
setting

Fley) = €r(a) ?faGSf, and V(ena) = €q ?faeSv,
0 if a € 5, 0 ifaecdSy.

Note that M(S) decomposes (as a BT; module) into submodules indexed by the
orbits of w. The submodule corresponding to an orbit of 7 is indecomposable if and
only if the word associated to the orbit is primitive.

4.4. Duality. Given S = Sy U.S, and 7 as above, form the BT; module M (S). It
is clear from the definitions that the dual module M (S)* is the module associated
to data (S* = S}‘US;‘,W*) where 5% =5, 5% = 5,, 55 = Sy, and 7 = 7. It follows
that M(S) is self-dual if and only if there exists a bijection ¢ : S = .S which satisfies
((Sf)=S,and Tror=rom.

5. FERMAT JACOBIANS

In this section, we study p-torsion group schemes of Jacobians of Fermat curves.

5.1. BT} modules associated to curves. Let C be an irreducible, smooth, pro-
jective curve of genus g over k, and let J = J¢ be its Jacobian. In [10, §5], Oda
gives H},(C) = H}(J) the structure of a BT} module. In particular, writing H
for H},(C), we have

(5.1) Im(V:H — H)=Ker(F: H— H)=H(C,Q),
and
Im(F:H— H)=Ker(V:H — H)= H'Y(C,Oc).

Oda proves [10, Cor. 5.11] that there is a canonical isomorphism of Dg-modules

(5:2) H;p(C) = M(J[p)).
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5.2. Fermat curves. For each positive integer d not divisible by p, let Fy be the
Fermat curve of degree d, i.e., the smooth, projective curve over k with affine model
F;: X44Y%=1 and let Jr, be its Jacobian. Let C; be the smooth, projective
curve over k with affine model

(5.3) Ca: vl =2(1-2),

and let Jy be its Jacobian.

The curve Cq is a quotient of Fy. (Substitute X? for z and XY for y in the
equation for Cy.) The map F; — Cq is the quotient of F; by a subgroup of (uq)? C
Aut(Fy) of index d. Since the degree of Fy — C4 is prime to p, Jg[p] is a direct
factor of Jg,[p]. Most of our results depend only on the simpler curve Cq4, SO we use
it whenever possible.

5.3. Cohomology of C;. The Riemann-Hurwitz formula shows that the genus of
Cd is
(d—1)/2 if dis odd,
Cq)=1d-1)/2] =
9(Ca) = I( /2] {(d —2)/2 if dis even.

Moreover, Cq admits an action of ¢ € pg with ¢ : (z,y) — (z,(y).

We next describe Hlp(Cq) in a form conducive to studying it as a Dj-module.
First, write

HéR(Cd) = @ Hav
a€Z/dZ

where H, is the subspace of H allR(Cd) where every ( € pg acts by multiplication
by ¢®. Since the action of ug on Cyq induces the trivial action on H3,(Cq), the
cup product induces a perfect duality between H, and H_,, and a trivial pairing
between H, and Hp if b Z —a (mod d).

Let

Z/dz\ {0,d/2} if d is even.
Multiplication by p induces a permutation of S. We make sense of any archimedean

statement about an element a € S (e.g., “0 < a < d/2”) by implicitly lifting a to
its least positive residue.

g {Z/dZ \ {0} if d is odd,

Proposition 5.1.
(1) Ifa€Z/dZ, then dimy(H,) =1 ifa€ S and H, =0 ifa & S.
(2) HO(C(i’ Q(ljd) = @0<a<d/2Ha'
(3) If 0 < a < d/2, then FH, =0 and V induces an isomorphism V : Hp, —
H,.
(4) If d/2 < a < d, then VHp, =0 and F induces an isomorphism F : H, —
Hp,.

There are several similar calculations in the literature (e.g., [15], [3, §5], and
[14, §6]). For the convenience of the reader, we include the following efficient and
transparent proof.

Proof. For 0 < a < d/2, a simple calculation shows that the 1-form y%dx/y? on
the affine model (5.3) extends to a global 1-form on Cy, and its class in H}5(Cy)
lies in H,. This shows that dimy(H,) > 1 for 0 < a < d/2. Because of the perfect
duality between H, and H_,, we see that dimy(H,) > 1 for d/2 < a < d. Since
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g(Cq) = |(d—1)/2], it follows that dimy(H,) =1 for a € S and H, =0 for a ¢ S.
This proves parts (1) and (2).

By definition, FH, C H,, and VH,, C H,. By (5.1), F kills HO(Cd,Qéd) =
®o<a<d/zHqy. Since dim(KerF) = g, the map F' : H, — Hp, is injective, and
thus bijective, for d/2 < a < d. Similarly, by (5.1), ImV = H%(C4,9,). So
V : H,, — H, is surjective, and thus bijective, for 0 < a < d/2 and zero for
d/2 < a < d. This proves parts (3) and (4). O

Now let S¢, S, C S be given by
Sg={a|d/2<a<d} and S,={a|0<a<d/2},
and let 7 : S — S be the permutation induced by multiplication by p.

Theorem 5.2. The Dieudonné module M (J4[p]) is the BT1 module associated to
the data

Z7/dZ\ {0,d/2} if d is even,
Z/dZ\ {0} if d is odd,

Sg={aecS|d2<a<d}, S,={acS|0<a<d/2},
and the permutation w: S — S given by w(a) = pa.

Proof. This is immediate from Oda’s Theorem (Equation (5.2)), Proposition 5.1,
and Section 4.3. O

Remark 5.3. The proof of the theorem shows that J;[p] decomposes as a direct sum
over the orbits of m on S. By Sections 3.2 and 4.3, the summand corresponding
to an orbit is indecomposable if and only if the word associated to the orbit is
primitive.

Remark 5.4. The data (S = Sy U S,,m) also completely determines Jy[p] up to
isomorphism as a polarized BT} group scheme. Indeed, by Proposition 2.1, given
any non-degenerate, alternating form on the BT; module defined by (S = Sy U
Sy, ), we may choose the isomorphism in the theorem so that it intertwines the
given form with the polarization on H Gll (Cq) induced by the cup product.

5.4. The p-torsion of Fermat curves. In this section, we determine the BT}
modules of the Jacobians of Fermat curves. We need this material to complete
Theorem 1.1 when p < 5.

First, note that p2 acts on Fy via (¢1,¢2) : (X,Y) = ((1X,(Y). The cohomol-
ogy H = H},(Fy) decomposes into subspaces H,; indexed by (a,b) € (Z/dZ)? on
which (¢1,() € /‘(21 acts by ¢#¢5. An argument parallel to Proposition 5.1 shows
that H, p is 1-dimensional if (a,b) € T and 0 otherwise, where

T = {(a,b) € (Z/dZ)* | a #0,b # 0,a+b # 0} .
Moreover, setting
Ty ={(a,b) € S|la+b>d}, and T, = {(a,b) € S| a+b<d},

then F induces an isomorphism F': H,, — Hpq pp if (a,b) € Ty, and V induces an
isomorphism V' : Hpq pp — Hgp if (a,b) € T,,. Consider the permutation o : T — T'
given by o(a,b) = (pa,pb). We may associate words to elements of T' and cyclic
words to orbits of o. As in Section 4.3, this defines a BT} module. Applying Oda’s
Theorem (5.2) proves that:
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532 RACHEL PRIES AND DOUGLAS ULMER

Theorem 5.5. The module M(Jr,[p]) is the BTy module associated to the data
(T =T;UTy,0).

5.5. A Shimura variety perspective. Another proof of Theorem 5.2 can be
extracted from [8] as follows. By [15], J; is an abelian variety with complex multi-
plication, and Proposition 5.1(1)—(2) reveals the CM type of J4. The corresponding
Shimura subvariety of A, is zero-dimensional, so each point is a component of both
the Newton stratification and the E-O stratification of the Shimura subvariety. Us-
ing [8, §1], one can compute the isomorphism type of Jy[p] in terms of the CM

type.

5.6. Other related work. The curve Cy is hyperelliptic. When p = 2, Theo-
rem 5.2 is a special case of [4], where the authors compute the BT} module and
E-O type for all hyperelliptic curves in characteristic 2. When p is odd, Devala-
purkar and Halliday compute the action of F' and V on the mod p Dieudonné
module for every hyperelliptic curve [2]. However, it appears to be difficult to de-
duce Theorem 5.2 from their result because it describes the actions of F' and V' by
unwieldy formulas. Our work gives them essentially as permutation matrices.

In [9], the author gives a method for computing the BT; module of a smooth
complete intersection curve over a field whose characteristic is greater than the
largest of the multidegrees. This method can be used to recover a version of The-
orem 5.2 for the Fermat curve Fy in characteristic p when d < p. However, this is
not adequate to prove Theorem 1.1 because most BT} modules do not appear in
Jacobians of Fermat curves of degrees d < p.

6. PROOF OF THEOREM 1.1

We will prove most cases of Theorem 1.1 by considering the Fermat quotient
curve Cq for d of the form p* — 1. When p < 5, we also need the Fermat curve F}
and an auxiliary fiber product.

6.1. p-adic digits. Fix a positive integer £ and let d = p’ — 1. As before, let
_Jz/dZ\ {0,d/2} if d is even,
-\ z/dz\ {0} if d is odd,
Sg={aeS|d2<a<d}, Sy,={a€cS|0<a<d/2},
and let the permutation 7 : .S — S be given by 7(a) = pa. Given a € S, consider

the p-adic expansion of its least positive residue:

a=ag+ap+--+a1ph

where a; € {0,...,p—1}. We exclude: ¢ =0 (all a; = 0); a = d (all a; = p — 1);
and, if p is odd, a = d/2 (all a; = (p — 1)/2). Note that
Pa = ap_1+agp + -+ ag_op’ " (mod d),
so 7 corresponds to permuting the digits of a cyclically.
By definition, a € S, if and only if 0 < a < d/2. In terms of digits, this holds if
and only if
ar—1 < (p—1)/2, or
a1 =(p—1)/2 and ap_2<(p—1)/2, or
ap—1=ap—2=(p—1)/2 and ay_3<(p—1)/2, or ....
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EVERY BT, GROUP SCHEME APPEARS IN A JACOBIAN 533

In other words, the condition is that the first p-adic digit to the left of ay—1 (inclu-
sive) which is not (p — 1)/2 is in fact less than (p — 1)/2.

Similarly a € Sy if and only if a > d/2. This holds if and only if the first p-adic
digit to the left of a;—; (inclusive) which is not (p — 1)/2 is in fact greater than
(b 1)/2

For a € S, let A\ be the size of the orbit of 7 through a. We say that a is primitive
if A =2/. It is clear that a is primitive if ged(d,a) = 1. More generally, a fails to
be primitive if and only if d/ ged(d, a) divides p* — 1 for some A < £. Note that a
primitive does not imply that w, is primitive.

Let wg, = ux_1 - - - ug be the word attached to a as in Section 4.2. The discussion
above shows that u; = v if and only if the first p-adic digit of a to the left of a,—1_;
(inclusive) which is not (p — 1)/2 is in fact less than (p — 1)/2. (Finding the first
such digit may require “wrapping around,” i.e., passing from ag to as—1.)

Using these observations, we may write down elements a € S with given words:

Proposition 6.1. Suppose w is a word of length £ > 1.

(1) If w is primitive, then there is an element a € S such that w, = w.
(2) If p > 3 and w is any word (not necessarily primitive), then there is an
element a € S such that w, = w.

Proof. (1) Let w = ug_1 - - ug be a primitive word of length £ > 1. For 0 < j < ¢,

set
o — 0 ifup_1-j;=wv,
/ p—l if Up—1—j :f
Since w is primitive, and in particular not equal to f¢ nor to v%, the integer a =
ag+ -+ + ap_1p’~! defines an element of S, and it is clear that w, = w.

(2) If w = v* (resp. w = f*), we may take a = 1 (resp. a = d — 1). (Here we
use p > 2.) For any other word, the recipe in the preceding paragraph yields an
element of S. However, if w is not primitive, say w = w’®, this element is not what
we need because its word is w’. Modify a as follows: choose j so that a; = 0 (which
exists because w # v%), and change a; to 1. Then the new a is primitive (because
exactly one of its digits is 1) and satisfies w, = w. (Here we use that 1 < (p—1)/2,
i.e., p > 3.) This completes the proof of the proposition. O

Remark 6.2. In [12], we give a more refined analysis and compute the number of
a € S with w, = w for any w, p, and £. It turns out that the restriction on p in part
(2) is essential. If p = 3 and e > 1, then the word (fv)¢ is not the word associated
to an element of S, and if p = 2, e > 1, and w’ is non-trivial, then w’® is also not
associated to an element of S.

6.2. Proof of Theorem 1.1, part (3). Let G be an indecomposable BT} group
scheme over k of order p’ with £ > 1. Then there is a primitive word w of length £
such that M (G) =2 M (w). According to Proposition 6.1, there is an element a € S
such that w, = w. By Theorem 5.2, G appears as a direct factor of J4[p]. Since
Cq has genus | (p® —2)/2], this establishes the desired result for an indecomposable
BT;.

Now consider an indecomposable polarized BT group scheme G. If G is inde-
composable as a BT group scheme (ignoring the pairing), the proof in the previous
paragraph applies with the same bound on the genus. Otherwise, there is a prim-
itive word w of length £/2 such that M(G) = M(w) & M(w®). Let d' = p*/? — 1
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and let S’ be the usual set for d’:
, ) Z/d'Z\ {0} if d’ is odd,
Z/d'7Z\ {0,d/2} if d’ is even.

Since ¢/2 > 1, by Proposition 6.1, there is an element a € S’ such that w, = w
(and so w_, = w°). By Theorem 5.2, G is a direct factor of Jy [p]. To confirm the
bound on the genus, we note that Cy has genus [ (p*/? — 2)/2].

In the polarized case, if G is a direct factor of Jy[p], we check that the given
pairing on G is induced from that of Jy[p] using Oort’s result (Proposition 2.1).
The same argument applies if G is a direct factor of Jy [p]. Write Jy[p] = G & G.
Since Jy4[p] and G are self-dual, so is G'. By the existence part of Proposition 2.1,
G and G’ both admit polarizations, and by the uniqueness part, we may choose
the isomorphism Jy[p] = G & G’ so that the direct sum polarization on G & G’
corresponds to the canonical polarization of Jy[p].

This completes the proof of part (3) of Theorem 1.1.

The following result establishes Theorem 1.1, parts (1) and (2) for p > 3. Recall
that J,; is the Jacobian of the curve Cy with affine equation y? = (1 — z).

Theorem 6.3. If p > 3, then every BTy group scheme over k appears as a direct
factor of Jy[p] for an integer d of the form d = p* —1. The same holds for polarized
BTy group schemes.

Proof. Suppose that p > 3 and let G be a BT} group scheme over k. Let {(w;)%}
be the multiset of distinct primitive cyclic words corresponding to G in the Kraft
classification, and let ¢; be the length of w;*. Let d; = pfi —1 and let S; =
Z/d;Z\ {0, d;/2} with the usual partition and permutation. According to part (2)
of Proposition 6.1, there is an element a € S; with w, = w{’, and using Theorem 5.2,
we conclude that the group scheme G; with M(G;) = M(w;") appears as a direct
factor of Jg, [p)].

If d’ divides d, then there is a natural quotient morphism 7 : C4 — Cq of
degree d/d’, which is prime to p. The induced composition Jy LS gy s
multiplication by d/d’" and therefore induces an isomorphism on Jy [p]. Thus Jy [p]
is a direct factor of Jy[p].

Now let ¢ be the least common multiple of the ¢; (so that d; divides d = p* — 1
for all ¢). Using the maps J;, — J4 shows that each G; is a direct factor of Jy[p],
and since the GG; have pairwise non-isomorphic indecomposable factors, G = ®G;
is a direct factor of Jy[p] as well. This completes the proof for BT} group schemes
without polarization.

The polarized case follows from the unpolarized case and Proposition 2.1 by the
same argument given at the end of the proof of part (3). This completes the proof
of the theorem. |

The following result reproves Theorem 1.1, parts (1) and (2) for p > 3; it proves
those results for p = 3, and it handles the main case for p = 2. Recall that Jg, is
the Jacobian of the Fermat curve with affine equation X% 4+ Y? = 1.

Theorem 6.4.

(1) If p > 2, then every BTy group scheme over k appears as a direct factor of
Jr,[p] for an integer d of the form d = p* —1. The same holds for polarized
BTy group schemes.
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(2) The same is true if p = 2 as long as the group scheme has no factors of
Z)2Z or ps.

Proof. Since C4 is a quotient of F; by a group of order prime to p, the case p > 3
follows immediately from Theorem 6.3. Thus we assume p = 2 or 3. To handle
these cases, we argue as in the proof of Theorem 6.3, where Theorem 5.5 plays the
role of Theorem 5.2 and where the set T associated to the Fermat curve Fy plays
the role of the set S associated to Cy4.

When p = 3, to prove (1), the essential point is to show that any word w appears
as the word of an element of the set T associated to d = 3¢ — 1 for a suitable .
When p = 2, to prove (2), the essential point is to show that any word w which is
not a power of f or a power of v appears as the word of an element of the set T
associated to d = 2¢ — 1 for a suitable .

Note that there is an injection S — T sending a to (a,a) which is compatible
with the partitions S = Sy US, and T'= Ty UT,, and intertwines the permutations
7w and o. Thus, if a € S has word w, = w, then the word of (a,a) € T satisfies
W(q,a) = W.

Consider the case where p = 3 and w = f¢ (resp. v%). It is no loss of generality
to assume that £ > 1, and in this case we may take d = 3 — 1 and a = (—1, 1)
(resp. a = (1,1)). Consideration of 3-adic digits shows that w, = v* (resp. w, = f*).
Thus we have produced the required elements of T" when p = 3 and w is a power
of f or v.

Finally, consider the case where p = 2 or 3 and w is not a power of f or a power
of v. If w is primitive, part (1) of Proposition 6.1 gives an a € S with w(, ) = w. If
w is not primitive, write w = w’® where e > 1 and w’ is primitive of length \. Let
a’ be the element of S associated to w as in the proof of Proposition 6.1, i.e., we use
the digit 0 for v and the digit p—1 for f. Note that wa = w(, o) = w’. Since w is a
power of w’, consideration of digits shows that a’ # +1 and that o’ # d/2+1. Thus
(@' 4+1,a" — 1) is an element of T, and it is clear that w4/ 41,4—1) = w. Therefore
every word of length ¢ which is not a power of f or a power of v arises as w(q ) for
a suitable (a,b) € T, and this completes the proof of Theorem 6.4.

6.3. The case p = 2. To finish the proof of Theorem 1.1, it remains to treat the
case where p = 2 and G is a BT} group scheme over k with factors of Z/27Z or ps.
Write

G = (2/22)" & (n2)"* © &,
where G’ is a BT} group scheme with no factors of Z/2Z and no factors of po. We
have already proven that G’ is a direct factor of Jp,[2] for a suitable value of d of

the form 2¢ — 1. Choose one such value of d.

Let r be an odd positive integer and let X,. be the smooth, projective curve over
k defined by

X, : (2 —2) (2" —1) =1
One computes that X, has genus r — 1, and by [13, Prop. 3.2], it is ordinary, i.e.,
T, (2= (Z)226 ma)

Choose r > max{f1, fo} + 1 and odd, and let F; be the Fermat curve of degree
1 (given by X +Y =1). Consider the degree r projection X, — F} given by

(r,2) » (X =2,Y =1—2).
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Define C' as the fiber product of that projection and the degree d? projection F; —
Fy. Since d and r are odd, Jx,[2] and Jg,[2] are direct factors of Jco[2]. Thus G’
and (Z/27 @ po)" 1 are direct factors of Jo[2]. Since they have no indecomposable
factors in common,

GC(Z2L& ) ' ad
is a direct factor of Jo[2]. This completes the proof of the case p = 2 of Theorem 1.1.

Remark 6.5. Another approach to adding factors of Z/27Z and s to G’ is to use an
argument similar to [7, Cor. 4.7]. Using that F; has CM, so lies in the p-ordinary
locus, one finds curves C' whose Newton polygon is that of F,; with additional seg-
ments of slopes 0 and 1 of arbitrarily large multiplicity f. Again using p-ordinarity,
one deduces that G’ @ (Z/27Z @ us)’ is a direct factor of Jo[2], thus so is G. This
method has the drawbacks that the curve C' is no longer explicit and we have no
control over its field of definition other than that it is a finite field.

Remark 6.6. A weaker version of parts (1) and (2) of Theorem 1.1 follows from the
facts that each E-O stratum of A, is non-empty and that every abelian variety A
appears as a subvariety of a Jacobian J. However, we need A[p] to be a direct factor
of J[p]. If A has dimension ¢, this can be verified when p > 3 and p > ¢, via the
theory of Prym—Tyurin varieties [1, Corollary 12.2.4]. As discussed in Section 1,
our proof avoids this restriction on p and gives more information about the curve.
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