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a b s t r a c t

Let G be a graph with vertex set V (G), and let d(x, y) denote the length of a shortest
path between nodes x and y in G. For a positive integer k and for distinct x, y ∈ V (G),
let dk(x, y) = min{d(x, y), k + 1} and Rk{x, y} = {z ∈ V (G) : dk(x, z) ̸= dk(y, z)}. A
subset S ⊆ V (G) is a k-truncated resolving set of G if |S ∩ Rk{x, y}| ≥ 1 for any pair of
distinct x, y ∈ V (G). The k-truncated metric dimension, dimk(G), of G is the minimum
cardinality over all k-truncated resolving sets of G, and the usual metric dimension is
recovered when k + 1 is at least the diameter of G. We obtain some general bounds
for k-truncated metric dimension. For all k ≥ 1, we characterize connected graphs G
of order n with dimk(G) = n − 2 and dimk(G) = n − 1. For all j, k ≥ 1, we find the
maximum possible order, degree, clique number, and chromatic number of any graph G
with dimk(G) = j. We determine dimk(G) when G is a cycle or a path. We also examine
the effect of vertex or edge deletion on the truncated metric dimension of graphs, and
study various problems related to the truncated metric dimension of trees.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set V (G) and edge set E(G). The (geodesic) distance
etween two vertices x, y ∈ V (G), denoted by d(x, y), is the length of a shortest path between x and y in G.
Metric dimension, introduced by Slater [31] and by Harary and Melter [21], is a graph parameter that has been studied

extensively (see also, e.g., [3,6,7,15,26,28,38]). For distinct x, y ∈ V (G), let R{x, y} = {z ∈ V (G) : d(x, z) ̸= d(y, z)}. A subset
S ⊆ V (G) is a resolving set of G if |S ∩ R{x, y}| ≥ 1 for any pair of distinct vertices x and y in G. The metric dimension
of G, denoted by dim(G), is the minimum cardinality over all resolving sets of G. It is NP-hard in general to compute
dim(G) [16,26].

Khuller et al. [26] considered robot navigation as one of the applications of metric dimension, where a robot that
moves from node to node knows its distances to a set of landmarks, which are placed on the elements of the resolving
set. The traditional definition of metric dimension assumes knowledge of all pairwise distances between vertices. This
assumption allows any individual vertex v of a resolving set to play a key role in distinguishing any pair of vertices,
including pairs very far from v. In practice, however, computing pairwise distances between all pairs of vertices in a
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arge network may be costly, and the quality of pairwise distance measurements may degrade with increasing distance.
ndeed, computing the distance matrix of a dense graph has time complexity O(|V |3) [14], whereas for a sparse graph the
omplexity is O(|V ||E| + |V |2 ln |V |) [25]. On the other hand, various models of epidemic spread over networks assume
hat transmission times across edges are independent random variables [27,34]. As a consequence, transmission times
etween vertices with many intermediate edges can have high variance. In this setting, resolving sets using expected
ransmission time between pairs of vertices as the metric may not be effective in identifying the source of the infection
aka ground zero).

The above factors motivate metrics in graphs that only rely on local vertex information in the graph. Assuming that
sensor that can detect long distances to landmarks can be costly, Jannesari and Omoomi [23] consider the situation
here a robot can only detect landmarks that are adjacent to it. They define the adjacency dimension, adim(G), of G to be

the minimum number of such landmarks that are needed for the robot to determine its position. From a more technical
standpoint, [23] introduced adjacency dimension as a tool to study the metric dimension of lexicographic product graphs.

More generally, if the landmark detection range of a robot is k > 0, then the minimum number of such landmarks
needed to determine the robot’s position on the graph is called the k-truncated metric dimension (see [19] which calls it
distance-k dimension).

With truncated metric dimension, elements of a resolving set are only able to distinguish vertices up to a certain
distance; in particular, computation of the full distance matrix is no longer necessary. In the context of epidemics, by
limiting the number of relevant edges on any shortest path between elements of a resolving set and other vertices in the
graph, we have better control of the uncertainty of transmission times. Indeed, since the vertices of a graph can be at
most distance k + 1 from the nearest element of a k-truncated resolving set, these elements tend to be spread out over
the space defined by the graph.

For a positive integer k and for x, y ∈ V (G), let dk(x, y) = min{d(x, y), k + 1}. We refer to this as the distance-k or
k-truncated distance on G. For distinct x, y ∈ V (G), let

Rk{x, y} = {z ∈ V (G) : dk(x, z) ̸= dk(y, z)}.

subset S ⊆ V (G) is a k-truncated resolving set of G if |S ∩ Rk{x, y}| ≥ 1 for any pair of distinct vertices x and y in G, and
the k-truncated metric dimension of G, denoted by dimk(G), is the minimum cardinality over all k-truncated resolving sets
of G.

For an ordered set S = {u1, u2, . . . , uβ} ⊆ V (G) of distinct vertices, the metric code and the k-truncated metric code,
respectively, of v ∈ V (G) with respect to S are the β-vectors

d(v|S) = (d(v, u1), d(v, u2), . . . , d(v, uβ )),
dk(v|S) = (dk(v, u1), dk(v, u2), . . . , dk(v, uβ )),

where k is any positive integer. Note that a distance-1 resolving set and the distance-1 dimension, respectively, of G
corresponds to an adjacency resolving set and the adjacency dimension of G; in particular, dim1(G) = adim(G).

In this paper, we study the k-truncated metric dimension of graphs. The paper is organized as follows. In Section 2, we
obtain some general results on k-truncated metric dimension of graphs that we use in the rest of the paper. In Section 3,
we prove characterization results for k-truncated metric dimension. For all positive integers k ≥ 1, we characterize all
connected graphs G of order n ≥ 4 for which dimk(G) equals n−2 or n−1. In the case that k = 1, this solves the problem
from [19] of characterizing the graphs G with adim(G) = n− 2 when G is connected.

In Section 4, we prove that the maximum possible order of a graph G with dimk(G) = j is (⌊ 2(k+1)3 ⌋+1)j+ j
∑⌈

k+1
3 ⌉

i=1 (2i−
)j−1. For all j, k ≥ 1, we also determine the maximum possible degree, clique number, and chromatic number of any
raph G with dimk(G) = j.
In Section 5, we examine the relationship between the k-truncated metric dimension and planarity of graphs. In

Section 6, we determine dimk(G) for some classes of graphs, including paths and cycles.
In Section 7, we examine the effect of vertex or edge deletion on k-truncated metric dimension of graphs. Let v and e,

espectively, denote a vertex and an edge of a graph G. For any positive integer k ≥ 1, we show that dimk(G−v)−dimk(G)
an be arbitrarily large (also see [19] when k = 1); for k ≥ 2, we show that dimk(G)−dimk(G−v) can be arbitrarily large,
hereas it was shown in [19] that dim1(G) − dim1(G − v) ≤ 1. It was shown in [19] that dim1(G) − 1 ≤ dim1(G − e) ≤
im1(G)+1. We show that dim2(G−e) ≤ dim2(G)+1 and that dimk(G−e) ≤ dimk(G)+2 for k ≥ 3. Moreover, in contrast
o the case of 1-truncated metric dimension, we show that dimk(G)− dimk(G− e) can be arbitrarily large for k ≥ 2.

Finally, we focus on trees in Section 8. We define conditions under which finding the exact value of truncated metric
imension is straightforward, present a dynamic program capable of discovering minimum resolving sets on trees when
nly immediate neighbors are visible, and investigate extreme constructions for graphs in this family.
Related work. The k-truncated metric dimension of graphs was studied in [2], where it was also investigated more

enerally for metric spaces. The complexity of the problem was studied in [12,13], where it was shown that computing
imk(G) is an NP-hard problem for any positive integer k. The graphs G with dimk(G) = 1 were characterized in [11],
hich also investigated the problem in a more general setting.
The present paper is a result of merging the preprints [20,37]. The preprint [37] was based on the Ph.D. thesis [35]. A

eview paper [36] also discussed truncated metric dimension.
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otation. In this paragraph, we introduce some notation that we use in the paper. For x ∈ V (G) and S ⊆ V (G), let
d(x, S) = min{d(x, y) : y ∈ S}. The diameter, diam(G), of G is max{d(x, y) : x, y ∈ V (G)}. The join of two graphs H1 and
H2, denoted by H1 + H2, is the graph obtained from the disjoint union of two graphs H1 and H2 by joining every vertex
of H1 with every vertex of H2. We denote by Pn, Cn, Kn, and Ka,n−a respectively, the path, the cycle, the complete graph,
and the complete bipartite graph on n vertices with one part of size a. Suppose f (x) and g(x) are two functions defined
for all sufficiently large real numbers x. We write f (x) = O(g(x)) if there exist positive constants N and C such that
|f (x)| ≤ C |g(x)| for all x > N , f (x) = Ω(g(x)) if g(x) = O(f (x)), and f (x) = Θ(g(x)) if f (x) = O(g(x)) and f (x) = Ω(g(x)).

2. General results

In this section, we obtain some general results for k-truncated metric dimension of graphs. In order to state the results
in this section, we define some terminology. The open neighborhood of a vertex v ∈ V (G) is N(v) = {u ∈ V (G) : uv ∈ E(G)}.
For distinct u, w ∈ V (G), if N(u) − {w} = N(w) − {u}, then u and w are called twin vertices of G. We begin with the
following observations from [2,11,22,23] which we use in our proofs.

Observation 2.1. Let u and w be twin vertices of a graph G, and let k be a positive integer. Then

(a) ([22]) S ∩ {u, w} ̸= ∅ for any resolving set S of G;
(b) Sk ∩ {u, w} ̸= ∅ for any k-truncated resolving set Sk of G.

Observation 2.2 ([2,23]). Let G be a connected graph of order n ≥ 2. If k ≥ k′ are positive integers, then dim(G) ≤ dimk(G) ≤
dimk′ (G).

Observation 2.3 ([11]). Let G be a connected graph with diam(G) = d, and let k be a positive integer.

(a) If d ∈ {1, 2}, then dimk(G) = dim(G) for any positive integer k.
(b) If d ≥ 2, then dimk(G) = dimd−1(G) = dim(G) for any k ≥ d− 1.

In the next proof, we use a method similar to [7] to obtain a general upper bound on dimk(G) in terms of the diameter
of G. In Section 3, we use this result to characterize the connected graphs G of order n with dimk(G) = n− 2 for all k ≥ 2
and n ≥ 4.

Theorem 2.4. If G is a connected graph of order n ≥ 2 and diameter d, then dimk(G) ≤ n−min{d, k+ 1} for all k ≥ 1.

Proof. Suppose that u and v are vertices in G at distance d, and let u = v0, v1, . . . , vd = v be a path of order d+ 1 with
endpoints u and v. If d ≤ k + 1, then let S = V (G) − {v1, . . . , vd}. Note that dk(v0, vi) = i for each 1 ≤ i ≤ d, so S is a
k-truncated resolving set for G.

Otherwise d > k+ 1. In this case, let S = V (G)− {v1, . . . , vk+1}. Note that dk(v0, vi) = i for each 1 ≤ i ≤ k+ 1, so S is
a k-truncated resolving set for G. □

It was shown in [9] that metric dimension is not a monotone parameter on subgraph inclusion. Moreover, it was shown
in [19] that, for two graphs H and G with H ⊂ G, dim(H)

dim(G) and dim1(H)
dim1(G)

can be arbitrarily large.
Following [19], form ≥ 2, let H = Km(m+1)

2
; let V (H) be partitioned into V1, V2, . . . , Vm such that Vi = {wi,1, wi,2, . . . , wi,i}

with |Vi| = i, where i ∈ {1, 2, . . . ,m}. Let G be the graph obtained from H and m isolated vertices u1, u2, . . . , um such
that, for each i ∈ {1, 2, . . . ,m}, ui is joined by an edge to each vertex of Vi ∪ (∪m

j=i+1{wj,i}). Since diam(H) = 1 and
diam(G) = 2, by Observation 2.3(a), dim(H) = dimk(H) and dim(G) = dimk(G) for every positive integer k. Note that
H ⊂ G, dim(H) = m(m+1)

2 − 1 by Theorem 3.1(c), and dim(G) ≤ m since {u1, u2, . . . , um} forms a resolving set of G. So,
dimk(H)
dimk(G)

=
dim(H)
dim(G) ≥

m2
+m−2
2m for every positive integer k, which implies the following.

orollary 2.5. For all positive integers k and N, there exist connected graphs H and G such that H ⊂ G and dimk(H)
dimk(G)

> N.

Next, in view of Observation 2.2, we show that dimk(G)
dim(G) and dim1(G)

dimk(G)
can be arbitrarily large with respect to k; thus,

imk(G)− dim(G) and dim1(G)− dimk(G) can be arbitrarily large with respect to k.

roposition 2.6 ([6]). For the grid graph G = Pm□Pn (m, n ≥ 2), dim(G) = 2.

heorem 2.7 ([19]). For m ≥ 2, let G = Pm□Pm. Then dim1(G) = Θ(m2); thus dim1(G)
dim(G) can be arbitrarily large with respect to

m.

Theorem 2.8. For any positive integer k > 1, let G = Pk2□Pk2 . Then dimk(G) = Θ(k2), and thus dimk(G)
dim(G) and dim1(G)

dimk(G)
can

simultaneously be arbitrarily large with respect to k.
152



R.M. Frongillo, J. Geneson, M.E. Lladser et al. Discrete Applied Mathematics 320 (2022) 150–169

P

x

|

p

T

g
o
s

C

t

T
s

P

o

S
T

t
d
G
g
i

roof. First, observe that dim(G) = 2 by Proposition 2.6, and dim1(G) = Θ(k4) by Theorem 2.7. Next, we show that
dimk(G) = Θ(k2). First, note that there are k2(k− 2)2 subgraphs P2k+1□P2k+1 of G, of which at least ⌊ k4

(2k+1)2
⌋ are disjoint.

Since any k-truncated resolving set of G must contain at least one vertex from every P2k+1□P2k+1 subgraph of G except
for at most one such subgraph, dimk(G) ≥ ⌊ k4

(2k+1)2
⌋ − 1. On the other hand, if the grid graph Pk2□Pk2 is drawn in the

y-plane with the four corners at (1, 1), (k2, 1), (1, k2) and (k2, k2) and with horizontal/vertical edges of equal lengths,
then [∪k+1

j=0 ∪
k+1
i=0 {(1+ (k− 1)i, 1+ (k− 1)j)}] ∪ [∪k

j=0 ∪
k
i=0 {(⌈

k
2⌉ + (k− 1)i, ⌈ k2⌉ + (k− 1)j)}] forms a k-truncated resolving

set of G, and hence dimk(G) ≤ (k + 2)2 + (k + 1)2 < 2(k + 2)2. So, dimk(G) = Θ(k2). Therefore, dimk(G)
dim(G) and dim1(G)

dimk(G)
can

simultaneously be arbitrarily large with respect to k. □

3. Characterizing graphs by their k-truncated metric dimension

It is known that, for any connected graph G of order at least two, 1 ≤ dim(G) ≤ |V (G)|−1 (see [7]) and 1 ≤ dim1(G) ≤
V (G)| − 1 (see [23]). We recall some characterization results on metric dimension and 1-truncated dimension, before
roving characterization results about k-truncated metric dimension.

heorem 3.1 ([7]). Let G be a connected graph of order n ≥ 2. Then

(a) dim(G) = 1 if and only if G = Pn;
(b) for n ≥ 4, dim(G) = n− 2 if and only if G = Ks,t (s, t ≥ 1), G = Ks + Kt (s ≥ 1, t ≥ 2), or G = Ks + (K1 ∪ Kt ) (s, t ≥ 1),

where H denotes the complement of a graph H;
(c) dim(G) = n− 1 if and only if G = Kn.

Theorem 3.2 ([23]). Let G be a connected graph of order n ≥ 2. Then

(a) dim1(G) = 1 if and only if G ∈ {P2, P3};
(b) dim1(G) = n− 1 if and only if G = Kn.

More generally, the characterization of graphs G with dim1(G) = β is provided in [19] (this includes disconnected
raphs). Given any graph G1 on β vertices v1, . . . , vβ and G2 on 2β vertices {ub}b∈{0,1}β , define the graph B(G1,G2) to be
btained by connecting vi and ub if and only if the ith digit of b is 1. Moreover, define B(G1,G2) to be the family of induced
ubgraphs of B(G1,G2) that contain every vertex in G1. Finally, define H0 = ∅ and, for each positive integer β , define Hβ

to be the family of graphs obtained from taking the union of B(G1,G2) over all graphs G1 with j vertices v1, . . . , vj and G2
with 2j vertices {ub}b∈{0,1}j , for each 1 ≤ j ≤ β .

Theorem 3.3 ([19]). For each β ≥ 1, the set of graphs G with dim1(G) = β is Hβ −Hβ−1 up to isomorphism.

By the definition of dimk(G), Observation 2.2, and Theorems 3.1 and 3.2, we have the following

orollary 3.4. Let G be a connected graph of order n ≥ 2, and let k be any positive integer. Then 1 ≤ dimk(G) ≤ n− 1, and

(a) ([11]) dimk(G) = 1 if and only if G = Pi for some i ∈ {2, . . . , k+ 2},
(b) dimk(G) = n− 1 if and only if G = Kn.

In the next result, we characterize the connected graphs G of order n with dimk(G) = n−2 for each k ≥ 2. Interestingly,
hese are exactly the same connected graphs G of order n for which dim(G) = n− 2.

heorem 3.5. Let G be a connected graph of order n ≥ 4, and let k ≥ 2. Then dimk(G) = n− 2 if and only if G = Ks,t with
, t ≥ 1, G = Ks + Kt with s ≥ 1 and t ≥ 2, or G = Ks + (K1 ∪ Kt ) with s, t ≥ 1.

roof. First, note that all of the graphs G in the statement of the theorem have dimk(G) = n−2. This follows immediately
from Observation 2.3(a) and Theorem 3.1(b), since all graphs G in the statement of the theorem have diameter 2, and each
f these graphs G have dim(G) = n− 2. This proves the backward implication of the biconditional.
Now we prove the forward implication. Suppose that G is a connected graph of order n ≥ 4 with dimk(G) = n − 2.

ince k ≥ 2, the diameter of G must be 2 by Theorem 2.4 and Corollary 3.4(b). Thus dim(G) = n−2 by Observation 2.3(a).
hus the result follows by Theorem 3.1(b). □

It is interesting that the similarity between dim(G) and dimk(G) breaks at k = 1. We just showed for k ≥ 2 that
he connected graphs G of order n ≥ 4 with dim(G) = n − 2 are the same as the connected graphs G of order n with
imk(G) = n − 2. However when k = 1, observe that dim1(P4) = 2 but dim(P4) = 1, so there exists a connected graph
of order n = 4 with dim1(G) = n− 2 and dim(G) < n− 2. In the next result, we show that this is the only connected
raph G of order n for which dim1(G) = n−2 and dim(G) < n−2. The next theorem answers an open problem from [19]
n the case that G is connected.
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heorem 3.6. Let G be a connected graph of order n ≥ 4. Then dim1(G) = n − 2 if and only if G = Ks,t with s, t ≥ 1,
= Ks + Kt with s ≥ 1 and t ≥ 2, G = Ks + (K1 ∪ Kt ) with s, t ≥ 1, or G = P4.

roof. First, note that all of the graphs G in the statement of the theorem have dim1(G) = n − 2. For all of the graphs
xcept for P4, this follows immediately from Observation 2.3(a) and Theorem 3.1(b), since all graphs G in the statement

of the theorem besides P4 have diameter 2, and each of these graphs G have dim(G) = n − 2. In the case of P4, clearly
dim1(P4) = 2. This proves the backward implication of the biconditional.

Now we prove the forward implication. Suppose that G is a connected graph of order n ≥ 4 with dim1(G) = n − 2.
Note that G must have diameter at most 3, or else dim1(G) ≤ n−3. To see why this is true, note that if G had two vertices
u and v with d(u, v) = 4, then there would exist vertices x, y, z in G such that u, x, y, z, v is an induced path of order 5
in G. Then V (G) − {u, y, v} would be a 1-truncated resolving set for G, contradicting the fact that dim1(G) = n − 2, so G
has diameter at most 3.

For the first case, suppose that G has diameter 3, so there exist vertices u and v in G with d(u, v) = 3. Since d(u, v) = 3,
there must exist vertices x, y ∈ V (G) such that u, x, y, v form an induced path of order 4 in G.

For contradiction, assume that G has another vertex besides u, v, x, y. Let t be a vertex in G that is not in the copy of
P4 such that t is adjacent to some vertex in the copy of P4. Note that t must be adjacent to x or y. To see why this is true,
note that if t was only adjacent to one of u or v and neither of x nor y, then G would have diameter at least 4. If t was
adjacent to both u and v, then d(u, v) ≤ 2, a contradiction. Thus, t is adjacent to at most one of u or v, and at least one
of x or y. Without loss of generality, suppose that t is not adjacent to v.

Since t is adjacent to x or y, and t is not adjacent to v, there are several cases to consider. For the first case, suppose
that t is only adjacent to a single vertex among u, v, x, y. This vertex must be x or y. Without loss of generality, let t be
adjacent to x. Then V (G)− {x, t, v} is a 1-truncated resolving set for G, so dim1(G) ≤ n− 3, a contradiction.

Now suppose that t is adjacent to two vertices among u, v, x, y. We know t is not adjacent to v, so either t is adjacent
to u and x, t is adjacent to u and y, or t is adjacent to x and y. If t is adjacent to u and x, then V (G)−{x, t, v} is a 1-truncated
resolving set for G, so dim1(G) ≤ n − 3, a contradiction. If t is adjacent to u and y, then V (G) − {u, x, y} is a 1-truncated
resolving set for G, so dim1(G) ≤ n − 3, a contradiction. If t is adjacent to x and y, then V (G) − {v, x, y} is a 1-truncated
resolving set for G, so dim1(G) ≤ n− 3, a contradiction.

Now suppose that t is adjacent to three vertices among u, v, x, y. Since t is not adjacent to v, t must be adjacent to
u, x, and y. Then V (G) − {v, x, y} is a 1-truncated resolving set for G, so dim1(G) ≤ n − 3, a contradiction. This covers
all of the possible cases, since t is not adjacent to v. Thus the only vertices in G are u, v, x, y, and these vertices form an
induced path, so G is P4 in the case that G has diameter 3.

Now we can assume that G has diameter 2, since we know that G has diameter at most 3, and we have already
considered the case when G has diameter 3. Thus dim(G) = n − 2 by Observation 2.3(a) and the result follows by
Theorem 3.1(b). □

4. Extremal results for k-truncated metric dimension

In this section, we derive several sharp extremal results about k-truncated metric dimension. First, we recall the
following result by Hernando et al.

Theorem 4.1 ([22]). Let G be a connected graph of order n, diam(G) = d, and dim(G) = β . Then

n ≤
(⌊

2d
3

⌋
+ 1

)β

+ β

⌈
d
3 ⌉∑

i=1

(2i− 1)β−1.

Since dimk(G) = β implies dim(G) ≤ β by Observation 2.2, we have the following.

Corollary 4.2. For any positive integer k and for any connected graph G with diam(G) = d and dimk(G) = β ,

|V (G)| ≤
(⌊

2d
3

⌋
+ 1

)β

+ β

⌈
d
3 ⌉∑

i=1

(2i− 1)β−1.

Using a method similar to the one in [22], we find a sharp upper bound on the maximum possible order of a graph G
with dimk(G) = j.

Theorem 4.3. The maximum possible order of a graph G with dimk(G) = j is (⌊ 2(k+1)3 ⌋ + 1)j + j
⌈
k+1
3 ⌉∑

i=1
(2i− 1)j−1.

roof. First we prove the upper bound. Let G be a graph with dimk(G) = j. Let S be a k-truncated resolving set for G of
ize j and let c ∈ [0, k] be an integer constant that will be chosen at the end. For each v ∈ S and integer i ∈ [0, c], define
(v) = {x ∈ V (G) : d (x, v) = i}.
i k
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Observe that |dk(x, u)− dk(y, u)| ≤ 2i for any two vertices x, y ∈ Ni(v) and any vertex u ∈ S, so dk(x, v) = i and dk(x, t)
has at most 2i+ 1 possible values by the triangle inequality for each t ∈ S such that t ̸= v. Thus |Ni(v)| ≤ (2i+ 1)j−1.

Consider x ∈ V (G) such that x ̸∈ Ni(v) for all i ∈ [0, c] and v ∈ S, i.e., c + 1 ≤ dk(x, v) ≤ k+ 1 for all v ∈ S. Since S is a
k-truncated resolving set for G and |S| = j, there are at most (k− c + 1)j such vertices. Thus

|V (G)| ≤ (k− c + 1)j + j
c∑

i=0

(2i+ 1)j−1.

Setting c = ⌈ k+13 ⌉ − 1 gives the upper bound. To see that the upper bound is sharp, note that the construction in [22]
f a graph G of maximum order with diameter k+ 1 and dim(G) = j must also have dimk(G) = j and the same order as
he bound we just obtained. □

emark 4.4. In [19], there is a simple construction of a graph G with dim1(G) = j of maximum order j+2j. For the k = 2
ase, we also found a simple construction of a graph G with dim2(G) = j of maximum order j + 3j, which is similar to
construction in [17]. Start with j copies of K2, each on vertices ai and bi for i ∈ {1, . . . , j}. Let cr for r ∈ {1, . . . , 3j

} be
abeled with a ternary string of length j. Add an edge from cr to ai if the ith digit of cr is 0. Add an edge from cr to bi if
he ith digit of cr is 1. Let S =

{
a1, . . . , aj

}
. Remove any cr with the same 2-truncated vector as bi with respect to S for

ach i ∈ {1, . . . , j}. The resulting graph G has order j+ 3j, and S is a 2-truncated resolving set, so dim2(G) = j.

For the remaining results in this section, we use some results from [17,18].

heorem 4.5. Fix j ≥ 1. Among all graphs G with dim(G) ≤ j,

(a) [17] the maximum possible clique number of G is 2j;
(b) [18] the maximum possible chromatic number of G is 2j;
(c) [18] the maximum possible degree of G is 3j

− 1;
(d) [18] the maximum possible degeneracy of G is 3j−1

2 ;
(e) [18] the maximum possible n for which G contains Kn,n as a subgraph is n = 2j−1.

Using the last theorem and Observation 2.2, we obtain several sharp extremal results for graphs G with dimk(G) = j.
Our constructions for the remaining results in this section are similar to the paper [18], which defined an infinite family of
infinite graphs and used that family to prove extremal results about the standard metric dimension. We define an infinite
family of finite graphs Dk,j with k, j ≥ 1 such that Dk,j is the graph on the vertex set {0, 1, . . . , k+ 1}j with edges between
oints that differ by at most one in each coordinate. Observe that Dk,j ∼= ⊠

j
i=1Pk+2 holds. That is, Dk,j is a strong product

of paths.
Define Cj(q) to be the induced subgraph of D2q−1,j whose vertex set consists of the integer points in the j-dimensional

ross polytope centered at (q, . . . , q) having as a face the (j−1)-simplex with its corners at the j points with all coordinates
qual to q except for one coordinate which is equal to 0. It was proved in [18] that dim(Cj(q)) = j for all q, j ≥ 1. Note
hat dim(Cj(q)) = dimk(Cj(q)) for k ≥ 2q− 1 by Observation 2.3(b).

heorem 4.6. For all k, j ≥ 1, the maximum possible clique number of any graph G with dimk(G) = j is 2j.

roof. The upper bound follows from Theorem 4.5(a) and Observation 2.2. For the lower bound, consider the graph Gj of
rder j + 2j with j vertices u1, . . . , uj, 2j vertices vb with b ∈ {0, 1}j, edges between vb and vb′ for all b, b′ ∈ {0, 1}j with
̸= b′, an edge between ui and vb if and only if the ith digit of b is 0, and no edges between vertices ui and ui′ with i ̸= i′.
hen

{
u1, . . . , uj

}
is a k-truncated resolving set for Gj for each k ≥ 1, so dimk(Gj) ≤ j. Moreover Gj contains a clique of

ize 2j, so dimk(Gj) ≥ j. Thus dimk(Gj) = j and Gj has clique number 2j. □

We note that the lower bound construction in the last proof was also used for results about metric dimension, edge
etric dimension, adjacency dimension, and broadcast dimension in [17,19,40]. We use the same construction to get a
harp result on complete bipartite graphs.

heorem 4.7. Fix j, k ≥ 1. Among all graphs G with dimk(G) ≤ j, the maximum possible n for which G contains Kn,n as a
ubgraph is n = 2j−1.

roof. The upper bound follows from Theorem 4.5(e) and Observation 2.2. For the lower bound, we can take the clique
f size 2j in Theorem 4.6 and assign half of its vertices to the left and the other half to the right to form a K2j−1,2j−1

ubgraph. □

We can also use the result on clique number to obtain a sharp upper bound on the chromatic number.

heorem 4.8. For all k, j ≥ 1, the maximum possible chromatic number of any graph G with dim (G) = j is 2j.
k
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roof. The lower bound follows from Theorem 4.6. The upper bound follows from Theorem 4.5(b) and Observation 2.2. □

Next we determine for all k ≥ 1 the maximum possible degree of any graph G with dimk(G) = j. This result was
previously known only for k = 1 [19].

Theorem 4.9. Among all graphs G with dimk(G) = j:

(a) the maximum possible degree of G is 3j
− 1 for all k ≥ 2 and all j ≥ 1, and

(b) [19] the maximum possible degree of G is 2j
+ j− 1 for k = 1 and all j ≥ 1.

Proof. The upper bound of 3j
− 1 for (a) follows from Theorem 4.5(c).

For the lower bound of 3j
− 1 in (a), we split the proof into two parts. For k ≥ 3, we can take Cj(2) and observe that

the center vertex with all coordinates 2 has degree 3j
− 1. For k = 2, we can take the intersection of Cj(2) with D2,j. In

this graph, the center vertex with all coordinates 2 still has degree 3j
− 1. □

Our final result in this section is about the degeneracy of a graph G, which is the minimum t such that every subgraph of
G has a vertex of degree at most t . Unlike our other extremal results, this result only covers values of k that are sufficiently
large with respect to j.

Theorem 4.10. For all j ≥ 1, there exists a constant kj such that for each k ≥ kj, the maximum possible degeneracy of any
graph G with dimk(G) = j is 3j−1

2 .

roof. The upper bound follows from Theorem 4.5(d).
For the lower bound, fix j and let q be sufficiently large so that the ratio of the number of exterior vertices to the total

umber of vertices in Cj(q) is less than 2
3j−1

. If we define n to be the number of vertices in Cj(q), then the number of interior

ertices in Cj(q) is greater than (1− 2
3j−1

)n. Thus the number of edges in Cj(q) is greater than 3j−1
2 (1− 2

3j−1
)n = ( 3

j
−1
2 −1)n.

ince any graph G with m edges and order n has degeneracy at least m
n , Cj(q) must have degeneracy greater than 3j−1

2 −1.
ince degeneracy is an integer, Cj(q) must have degeneracy at least 3j−1

2 . We can let kj = 2q− 1 since Cj(q) has diameter
q. □

. Planarity and the k-truncated metric dimension

Next, we consider the relation between dimk(G) and planarity of G. A graph is planar if it can be drawn in a plane
ithout any edge crossing. For two graphs G and H , H is called a minor of G if H can be obtained from G by vertex
eletion, edge deletion, or edge contraction. We recall some known results on metric dimension and its variations in
onjunction with planarity of a graph.

heorem 5.1 ([39]). A graph G is planar if and only if neither K5 nor K3,3 is a minor of G.

heorem 5.2 ([26]).

(a) A graph G with dim(G) = 2 cannot have K5 or K3,3 as a subgraph.
(b) There exists a non-planar graph G with dim(G) = 2.

heorem 5.3 ([19]).

(a) If dim1(G) = 2, then G is planar; see Fig. 1(a) for graphs G with dim1(G) = 2.
(b) For each integer β ≥ 3, there exists a non-planar graph G with dim1(G) = β .

Another variant of metric dimension was introduced by Eroh, Kang, and Yi [10]. A set S of vertices in G is called
connected resolving set of G if S resolves G and the subgraph of G induced by S is connected. The connected metric
imension, cdim(G), of G is the minimum cardinality over all connected resolving sets of G. For the characterization of
raphs G with cdim(G) = 2, see [10].

heorem 5.4 ([10]).

(a) If cdim(G) = 2, then G is planar. However, there exists a non-planar graph G with dim(G) = 2 and cdim(G) > 2; see
Fig. 1(b).

(b) For each integer β ≥ 3, there exists a non-planar graph G with cdim(G) = β .

Now, we consider the relation between k-truncated metric dimension and planarity of graphs.
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T

T

Fig. 1. (a) [19] The graphs G satisfying dim1(G) = 2, where black vertices must be present, a solid edge must be present whenever the two vertices
incident to the solid edge are in the graph, but a dotted edge is not necessarily present; (b) [10] A non-planar graph G with dim(G) = 2 and
cdim(G) = 3, where black vertices form a minimum resolving set of G.

Theorem 5.5.

(a) For each k ≥ 2, there is a non-planar connected graph G with dimk(G) = 2.
(b) For each k ≥ 1 and β ≥ 3, there is a non-planar connected graph G with dimk(G) = β .

Proof. For the first part, an example of a non-planar graph G with dimk(G) = 2 is given in Fig. 1(b), where black vertices
form a minimum k-truncated resolving set of G for each k ≥ 2.

For the second part, let G be a graph obtained from Km+2 (m ≥ 3) by subdividing exactly one edge once; then G is
non-planar by Theorem 5.1. It was shown in [10] that cdim(G) = dim(G) = m. Since diam(G) = 2, dimk(G) = dim(G) = m
by Observation 2.3(a). □

6. The k-truncated metric dimension of some classes of graphs

In this section, we determine dimk(G) for some classes of graphs. First, we consider graphs G with diam(G) ≤ 2. For
two graphs H1 and H2, diam(H1 + H2) ≤ 2; thus, by Observation 2.3(a), dim(H1 + H2) = dimk(H1 + H2) for any positive
integer k.

Theorem 6.1 ([4,30]). For n ≥ 3,

dim(Cn + K1) =
{

3 if n ∈ {3, 6},
⌊
2n+2

5 ⌋ otherwise.

In [21], Harary and Melter claimed that dim(H1 + H2) = dim(H1) + dim(H2) for all graphs H1 and H2. However,
heorem 6.1 contradicts this claim for H1 = Cn and H2 = K1.

heorem 6.2 ([5]). For n ≥ 1,

dim(Pn + K1) =

⎧⎪⎨⎪⎩
1 if n = 1,
2 if n ∈ {2, 3},
3 if n = 6,
⌊
2n+2

5 ⌋ otherwise.

By Observation 2.3(a) and Theorems 6.1 and 6.2, we have the following.

Corollary 6.3. For any positive integer k and for n ≥ 3,

dimk(Cn + K1) =
{

3 if n ∈ {3, 6},
⌊
2n+2

5 ⌋ otherwise.

Corollary 6.4. For any positive integer k and for n ≥ 1,

dimk(Pn + K1) =

⎧⎪⎨⎪⎩
1 if n = 1,
2 if n ∈ {2, 3},
3 if n = 6,
⌊
2n+2

5 ⌋ otherwise.

The metric dimension of complete multi-partite graphs was determined in [29].
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heorem 6.5 ([29]). For m ≥ 2, let G = Ka1,a2,...,am be a complete m-partite graph of order n =
∑m

i=1 ai. Let s be the number
f partite sets of G consisting of exactly one element. Then

dim(G) =
{

n−m if s = 0,
n−m+ s− 1 if s ̸= 0.

As an immediate consequence of Observation 2.3(a) and Theorem 6.5, we have the following.

orollary 6.6. For m ≥ 2, let G = Ka1,a2,...,am be a complete m-partite graph of order n =
∑m

i=1 ai. Let s be the number of
artite sets of G consisting of exactly one element. Then, for any positive integer k,

dimk(G) =
{

n−m if s = 0,
n−m+ s− 1 if s ̸= 0.

Note that by Corollary 3.4(b) and Corollary 6.6, the star graph K1,n−1 attains the maximum possible value of dimk(T )
ver all trees T of order n. Further, dimk(K1,n−1) = n− 2 for n ≥ 3.
Now, we recall the metric dimension of the Petersen graph.

heorem 6.7 ([24]). For the Petersen graph P , dim(P) = 3.

Since diam(P) = 2, Observation 2.3(a) and Theorem 6.7 imply the following

orollary 6.8. For the Petersen graph P and for any positive integer k, dimk(P) = 3.

Next, we determine the k-truncated metric dimension of cycles. We recall the following results.

roposition 6.9 ([28]). For n ≥ 3, dim(Cn) = 2.

Proposition 6.10 ([23]). For n ≥ 4, dim1(Cn) = ⌊ 2n+25 ⌋.

Following [4], let M be a set of at least two vertices of Cn, let ui and uj be distinct vertices of M , and let P and P ′ denote
he two distinct ui − uj paths determined by Cn. If either P or P ′, say P , contains only two vertices of M (namely, ui and
j), then we refer to ui and uj as neighboring vertices of M and the set of vertices of P that belong to Cn − {ui, uj} as the
ap of M (determined by ui and uj). The two gaps of M determined by a vertex of M and its two neighboring vertices of
are called neighboring gaps. Note that, M has r gaps if |M| = r , where some of the gaps may be empty.

emma 6.11. For a positive integer k, let Mk be a minimum k-truncated resolving set of Cn for n ≥ 2k+ 3. Then

(a) Every gap of Mk contains at most 2k+ 1 vertices. Moreover, at most one gap of Mk contains 2k+ 1 vertices.
(b) If a gap of Mk contains at least k+ 1 vertices, then any neighboring gaps contain at most k vertices.

roof. For a positive integer k, let Mk be a minimum k-truncated resolving set of Cn for n ≥ 2k+ 3.
(a) If there is a gap of Mk containing 2k + 2 consecutive vertices uj, uj+1, . . . , uj+2k+1 of Cn, where 0 ≤ j ≤ n − 1

nd the subscript is taken modulo n, then dk(uj+k|Mk) = dk(uj+k+1|Mk), a contradiction. If there exist two distinct gaps
up, up+1, . . . , up+2k} and {uq, uq+1, . . . , uq+2k} of Mk, then dk(up+k|Mk) = dk(uq+k|Mk), a contradiction.

(b) Suppose a gap of Mk contains at least k+ 1 vertices, and one of its neighboring gaps contains more than k vertices.
hen there exist 2k + 3 consecutive vertices uj, uj+1, . . . , uj+2k+2 of Cn such that Mk ∩ {uj, uj+1, . . . , uj+2k+2} = {uj+k+1}

nd dk(uj+k|Mk) = dk(uj+k+2|Mk), a contradiction. □

heorem 6.12. Let n ≥ 3 and let k be any positive integer.

(a) If n ≤ 3k+ 3, then dimk(Cn) = 2.
(b) If n ≥ 3k+ 4, then

dimk(Cn) =

⎧⎨⎩
⌊
2n+3k−1

3k+2 ⌋ if n ≡ 0, 1, . . . , k+ 2 (mod (3k+ 2)),
⌊
2n+4k−1

3k+2 ⌋ if n ≡ k+ 3, . . . , ⌈ 3k+52 ⌉ − 1 (mod (3k+ 2)),
⌊
2n+3k−1

3k+2 ⌋ if n ≡ ⌈ 3k+52 ⌉, . . . , 3k+ 1 (mod (3k+ 2)).

roof. Let Cn be given by u0, u1, . . . , un−1, u0 for n ≥ 3, and let k be a positive integer.
(a) Let n ≤ 3k+ 3. Since {u0, uα}, where α = min{2k+ 2, n− 1}, forms a k-truncated resolving set of Cn, dimk(Cn) ≤ 2.

y Corollary 3.4(a), dimk(Cn) ≥ 2. Thus, dimk(Cn) = 2 for n ≤ 3k+ 3.
(b) Let n ≥ 3k+ 4; then dimk(Cn) ≥ 3. Since k is a positive integer, we must have 1 ≤ k ≤ ⌊ n2⌋ − 2.
First, we show that dimk(Cn) ≥ ⌊ 2n+3k−13k+2 ⌋; moreover, we show that dimk(Cn) ≥ ⌊ 2n+4k−13k+2 ⌋ if n ≡ k+ 3, . . . , ⌈ 3k+52 ⌉− 1

mod (3k+2)). Let Sk be a minimum k-truncated resolving set of Cn. If |Sk| = 2ℓ for some positive integer ℓ, then at most ℓ
aps contain more than k vertices by Lemma 6.11(b), and those ℓ gaps contain at most 2k vertices except possibly one gap
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ontaining 2k+ 1 vertices by Lemma 6.11(a); thus, the number of vertices belonging to the gaps of Sk is at most 3kℓ+ 1,
nd hence n− 2ℓ ≤ 3kℓ+ 1, which implies |Sk| = 2ℓ ≥ ⌈ 2n−23k+2 ⌉ = ⌊

2n+3k−1
3k+2 ⌋. If |Sk| = 2ℓ+ 1 for some positive integer ℓ,

hen at most ℓ gaps contain more than k vertices by Lemma 6.11(b), and those ℓ gaps contain at most 2k vertices except
ossibly one gap containing 2k+ 1 vertices by Lemma 6.11(a); thus, the number of vertices belonging to the gaps of Sk is

at most 3kℓ+k+1, and hence n−(2ℓ+1) ≤ 3kℓ+k+1, which implies |Sk| = 2ℓ+1 ≥ ⌈ 2n+k−23k+2 ⌉ = ⌊
2n+4k−1

3k+2 ⌋ ≥ ⌊
2n+3k−1

3k+2 ⌋.
Now, suppose n = (3k+ 2)x+ j, where x ≥ 1 and k+ 3 ≤ j ≤ ⌈ 3k+52 ⌉− 1; notice k ≥ 2. Then |Sk| = 2x+ 2. To see why

Sk| ≤ 2x+ 2, note that R = (∪x−1
i=0 {u(3k+2)i, u(3k+2)i+2k+1}) ∪ {u(3k+2)x, uβ}, where β = min{(3k+ 2)x+ 2k+ 1, n− 1}, is a

-truncated resolving set of Cn with |R| = 2x+2. To see why |Sk| ≥ 2x+2, first observe that |Sk| ≥ 2x+1 follows from the
ower bounds that we proved in the last paragraph. However if |Sk| = 2x+1, then we proved that |Sk| ≥ ⌈ 2n+k−23k+2 ⌉ ≥ 2x+2,
giving a contradiction. Since |Sk| = 2x+ 2, we have |Sk| = ⌊ 2n+4k−13k+2 ⌋ in this case.

Now we show that dimk(Cn) ≤ ⌊ 2n+3k−13k+2 ⌋ if n ≡ 0, 1, . . . , k+2 (mod (3k+2)) or n ≡ ⌈ 3k+52 ⌉, . . . , 3k+1 (mod (3k+2)).
Case 1: n = (3k + 2)x + j, where x ≥ 1 and 0 ≤ j ≤ 1. Note that ⌊ 2n+3k−13k+2 ⌋ = 2x. Let Sk = {u0, u2k+2} ∪

∪
x−1
i=1 {u(3k+2)i+1, u(3k+2)i+2k+2}). Then Sk is a k-truncated resolving set of Cn with |Sk| = 2x. So, dimk(Cn) ≤ |Sk| = 2x =

2n+3k−1
3k+2 ⌋.
Case 2: n = (3k + 2)x + j, where x ≥ 1 and 2 ≤ j ≤ k + 2. Note that ⌊ 2n+3k−13k+2 ⌋ = 2x + 1. Let Sk =

{u0, u2k+2} ∪ (∪x−1
i=1 {u(3k+2)i+1, u(3k+2)i+2k+2}) ∪ {u(3k+2)x+1}. Since Sk is a k-truncated resolving set of Cn with |Sk| = 2x+ 1,

dimk(Cn) ≤ |Sk| = 2x+ 1 = ⌊ 2n+3k−13k+2 ⌋.
Case 3: n = (3k + 2)x + j, where x ≥ 1 and ⌈ 3k+52 ⌉ ≤ j ≤ 3k + 1. Note that ⌊ 2n+3k−13k+2 ⌋ = 2x + 2. Let

k = (∪x−1
i=0 {u(3k+2)i, u(3k+2)i+2k+1}) ∪ {u(3k+2)x, uα}, where α = min{n − 1, (3k + 2)x + 2k + 1}. Then Sk is a k-truncated

esolving set of Cn with |Sk| = 2x+ 2. So, dimk(Cn) ≤ |Sk| = 2x+ 2 = ⌊ 2n+3k−13k+2 ⌋. □

Remark 6.13. Note that, for n ≥ 4, Proposition 6.10 is an immediate corollary of Theorem 6.12 when k = 1.

Next, we determine the k-truncated metric dimension of paths. We recall the following result.

Proposition 6.14 ([23]). For n ≥ 4, dim1(Pn) = ⌊ 2n+25 ⌋.

Let Pn be an n-path given by u0, u1, . . . , un−1, where n ≥ 4. Similar to the case for Cn, we define gaps and neighboring
aps of a vertex subset M of Pn analogously, where |M| ≥ 2. If d(u0,M) = x, then the set {u0, u1, . . . , ux−1} is called the
nitial gap of M; similarly, if d(un−1,M) = y, then the set {un−1, un−2, . . . , un−y} is called the terminal gap of M . The union
f the initial gap and the terminal gap of M is called the union gap of M . If u0 ∈ M (un−1 ∈ M , respectively), then the initial
ap (terminal gap, respectively) is empty. The following lemma is analogous to Lemma 6.11, after adjusting for paths.

emma 6.15. For a positive integer k, let Mk be a minimum k-truncated resolving set of Pn for n ≥ k+ 3. Then

(a) Every gap of Mk contains at most 2k+ 1 vertices, the initial gap of Mk contains at most k+ 1 vertices, and the terminal
gap of Mk contains at most k+ 1 vertices. Moreover, at most one gap of Mk contains 2k+ 1 vertices and the union gap
of Mk contains at most 2k+ 1 vertices, but not both.

(b) If a gap of Mk contains at least k+ 1 vertices, then any neighboring gaps contain at most k vertices. If the initial gap or
the terminal gap of Mk contains at least one vertex, then its neighboring gap contains at most k vertices.

roof. Let Pn be given by u0, u1, . . . , un−1.
(a) If there is a gap of Mk containing 2k+2 consecutive vertices uj, uj+1, . . . , uj+2k+1 of Pn, where 1 ≤ j ≤ n−2k−2, then

k(uj+k|Mk) = dk(uj+k+1|Mk). If the initial gap or the terminal gap of Mk, say the former without loss of generality, contains
+2 consecutive vertices u0, u1, . . . , uk+1, then dk(u0|Mk) = dk(u1|Mk). If there exist two distinct gaps up, up+1, . . . , up+2k
nd uq, uq+1, . . . , uq+2k of Mk, then dk(up+k|Mk) = dk(uq+k|Mk). If there exists a gap of Mk containing 2k + 1 consecutive
ertices, say ur , ur+1, . . . , ur+2k, and the union gap of Mk contains 2k + 1 vertices, say (∪k

i=0{ui}) ∪ (∪k
j=1{un−j}), then

k(ur+k|Mk) = dk(u0|Mk).
(b) If a gap of Mk contains at least k + 1 vertices and one of its neighboring gaps contains more than k vertices,

hen there exist 2k + 3 consecutive vertices uj, uj+1, . . . , uj+2k+2 of Pn such that Mk ∩ {uj, uj+1, . . . , uj+2k+2} = {uj+k+1}

nd dk(uj+k|Mk) = dk(uj+k+2|Mk). If the initial gap or the terminal gap of Mk, say the former, contains α vertices, where
≤ α ≤ k + 1, and its neighboring gap contains more than k vertices, then there exist k + 3 consecutive vertices

α−1, uα, . . . , uα+k+1 of Pn such that Mk ∩ {uα−1, uα, . . . , uα+k+1} = {uα} and dk(uα−1|Mk) = dk(uα+1|Mk). □

Theorem 6.16. Let n ≥ 2 and let k be any positive integer.

(a) If n ≤ k+ 2, then dimk(Pn) = 1.
(b) If k+ 3 ≤ n ≤ 3k+ 3, then dim (P ) = 2.
k n
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Fig. 2. The graph U5,4 , where the black vertices form a minimum 1-truncated resolving set.

(c) If n ≥ 3k+ 4, then

dimk(Pn) =

⎧⎨⎩
⌊
2n+3k−1

3k+2 ⌋ if n ≡ 0, 1, . . . , k+ 2 (mod (3k+ 2)),
⌊
2n+4k−1

3k+2 ⌋ if n ≡ k+ 3, . . . , ⌈ 3k+52 ⌉ − 1 (mod (3k+ 2)),
⌊
2n+3k−1

3k+2 ⌋ if n ≡ ⌈ 3k+52 ⌉, . . . , 3k+ 1 (mod (3k+ 2)).

roof. Let n ≥ 2 and let k be a positive integer.
(a) If n ≤ k+ 2, then dimk(Pn) = 1 by Corollary 3.4(a).
(b) Suppose k+ 3 ≤ n ≤ 3k+ 3. If Pn is given by u0, u1, . . . , un−1, then {uk, uα}, where α = min{2k+ 1, n− 1}, forms

k-truncated resolving set of Pn; thus dimk(Pn) ≤ 2. By Corollary 3.4(a), dimk(Pn) = 2.
(c) Let n ≥ 3k + 4. First, we show that dimk(Pn) ≤ ⌊ 2n+3k−13k+2 ⌋ if n ≡ 0, 1, . . . , k + 2 (mod (3k + 2)) or n ≡

3k+5
2 ⌉, . . . , 3k+1 (mod (3k+2)), and dimk(Pn) ≤ ⌊ 2n+4k−13k+2 ⌋ if n ≡ k+3, . . . , ⌈ 3k+52 ⌉−1 (mod (3k+2)). By Lemmas 6.11

and 6.15, for n ≥ 3k+4 every k-truncated resolving set of Pn and Cn, respectively, has cardinality at least three. Moreover,
there exists a minimum k-truncated resolving set S of Cn = Pn+ e with a gap containing 2k+ 1 vertices uj, uj+1 . . . , uj+2k
n Cn, where 0 ≤ j ≤ n − 1 and the subscript is taken modulo n. If e = uj+kuj+k+1, then S forms a k-truncated resolving
et of Pn; thus dimk(Pn) ≤ dimk(Cn) and the desired upper bounds follow from Theorem 6.12.
Second, we show that dimk(Pn) ≥ ⌊ 2n+3k−13k+2 ⌋; moreover, we show that dimk(Pn) ≥ ⌊ 2n+4k−13k+2 ⌋ if n ≡ k+3, . . . , ⌈ 3k+52 ⌉−1

mod (3k+2)). Let Sk be a minimum k-truncated resolving set of Pn such that the union gap of Sk contains 2k+1 vertices.
If |Sk| = 2ℓ for some positive integer ℓ, then at most ℓ − 1 gaps contain more than k vertices by Lemma 6.15(b) and
those ℓ − 1 gaps contain at most 2k vertices by Lemma 6.15(a); thus, the number of vertices belonging to the gaps of
Sk or the union gap of Sk is at most 2k(ℓ − 1) + kℓ + (2k + 1) = 3kℓ + 1, and hence n − 2ℓ ≤ 3kℓ + 1, which implies
|Sk| = 2ℓ ≥ dimk(Cn). If |Sk| = 2ℓ + 1 for some positive integer ℓ, then at most ℓ − 1 gaps contain more than k vertices
by Lemma 6.15(b) and those ℓ − 1 gaps contain at most 2k vertices by Lemma 6.15(a); thus, the number of vertices
belonging to the gaps of Sk or the union gap of Sk is at most 2k(ℓ − 1) + k(ℓ + 1) + (2k + 1) = 3kℓ + k + 1, and hence
n − (2ℓ + 1) ≤ 3kℓ + k + 1, which implies |Sk| = 2ℓ + 1 ≥ dimk(Cn). In each case, dimk(Pn) ≥ dimk(Cn), and thus the
desired lower bounds follow from Theorem 6.12. □

emark 6.17. Note that, for n ≥ 4, Proposition 6.14 is an immediate corollary of Theorem 6.16 when k = 1.

Next, we show a simple upper bound on dimk(G) given a fixed diameter.

emma 6.18. For any connected graph G of order n with diam(G) = δ, dimk(G) ≤ dimk(Pδ+1)+ (n− (δ + 1)).

roof. Suppose u and v are vertices in G at distance δ, and let Pδ+1 be a path of order δ+ 1 with end points u and v in G.
f Rδ+1 is a minimum k-truncated resolving set of Pδ+1 ⊆ G, then R = (V (G) − V (Pδ+1)) ∪ Rδ+1 is a k-truncated resolving
et of G. Since |R| = (n− (δ + 1))+ dimk(Pδ+1), dimk(G) ≤ dimk(Pδ+1)+ (n− (δ + 1)). □

Next, we show the sharpness of the bound in Lemma 6.18. Clearly, the bound in the lemma is achieved for G ∈ {Kn, Pn}.
or a ≥ 3 and b ≥ 1, let Ua,b be the graph obtained from the disjoint union of Ka and Pb by joining an edge between a
ertex of Ka and a leaf of Pb (see Fig. 2 for U5,4). Let V (Ka) = {u0, u1, u2, . . . , ua−1} and let Pb be given by w1, w2, . . . , wb
uch that u0w1 ∈ E(Ua,b); note that Ua,b has order a+ b and diameter b+ 1.

emma 6.19. For the graph Ua,b of order n = a+ b and diameter b+ 1 ≤ n− 2, where a ≥ 3 and b ≥ 1,

dimk(Ua,b) =
{
a− 1 if b ≤ 2k+ 1,
a− 1+ dimk(Pb−2k) otherwise.

roof. Let Ua,b be the graph of order n = a+ b and diameter b+ 1, where 2 ≤ b+ 1 ≤ n− 2, with the labeling described
bove (see Fig. 2). Let S be any minimum k-truncating resolving set for U . Since any distinct vertices in ∪a−1

{u } are
a,b i=1 i
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Fig. 3. [19] Graphs G, with a ≥ 2, such that dim(G− v)− dim(G) = dim1(G− v)− dim1(G) can be arbitrarily large.

wins in Ua,b, |S ∩ (∪a−1
i=1 {ui})| ≥ a − 2. Without loss of generality, let S0 = ∪a−1

i=2 {ui} ⊆ S. Since dk(u0|S0) = dk(u1|S0), at
east one vertex lying on the u1 − wb path must belong to S. So, |S| ≥ a− 1.

First, suppose diam(Ua,b) ≤ 2(k + 1); then b ≤ 2k + 1. If b ≥ k, then S0 ∪ {wk} forms a k-truncated resolving set of
a,b. If 1 ≤ b ≤ k− 1, then S0 ∪ {wb} forms a k-truncated resolving set of Ua,b. In each case, |S| ≤ |S0| + 1 = a− 1. Since
S| ≥ a− 1, dimk(Ua,b) = a− 1.

Second, suppose diam(Ua,b) > 2(k + 1); then b ≥ 2k + 2. Let S1 = S0 ∪ {wk}. Then S1 is a k-truncated resolving set
f Ua,2k+1 ⊆ Ua,b and dk(wi|S1) = (k + 1, . . . , k + 1) for each i ∈ {2k + 1, 2k + 2, . . . , b}. If S ′ is a minimum k-truncated
esolving set for the w2k+1−wb path, then S1∪S ′ is a k-truncated resolving set of Ua,b with |S1|+|S ′| = a−1+dimk(Pb−2k);
hus, dimk(Ua,b) ≤ a− 1+ dimk(Pb−2k). Since any vertex subset R ⊆ V (Ua,b) with |R| ≤ a− 2+ dimk(Pb−2k) fails to form
k-truncated resolving set of Ua,b, |S| ≥ a− 1+ dimk(Pb−2k). So, dimk(Ua,b) = a− 1+ dimk(Pb−2k). □

It can be shown that dimk(Pδ+1) + (n − (δ + 1)) − dimk(Un+1−δ,δ−1) ∈ {0, 1}. In particular, this construction achieves
he bound in Lemma 6.18 for certain values of n and δ.

emma 6.20. For 2 ≤ δ ≤ n− 2

dimk(Pδ+1)+ (n− (δ + 1))− dimk(Un+1−δ,δ−1) ∈ {0, 1}.

roof. Suppose that b = δ − 1 ≤ 2k+ 1. Then

dimk(Pδ+1)+ (n− (δ + 1))− dimk(Un+1−δ,δ−1) = dimk(Pb+2)− 1 ∈ {0, 1}

s dimk(Pb+2) is 1 or 2 by Theorem 6.16.
If b > 2k+ 1 instead, we have

dimk(Pδ+1)+ (n− (δ + 1))− dimk(Un+1−δ,δ−1) = dimk(Pb+2)− dimk(Pb−2k)− 1.

n general, dimk(Pn) ≤ dimk(Pn−m)+ dimk(Pm+1) and dimk(Pn) ≥ dimk(Pm) for m < n. Hence, dimk(Pb+2) ≤ dimk(Pb−2k)+
imk(P2k+3) and dimk(Pb+2) − dimk(Pb−2k) ≤ 2. Further, dimk(Pb+2) > dimk(Pb−2k) by Theorem 6.16, and the result
ollows. □

. The effect of vertex or edge deletion on the k-truncated metric dimension of graphs

Let v and e, respectively, denote a vertex and an edge of a connected graph G such that both G − v and G − e are
connected graphs. First, we consider the effect of vertex deletion on k-truncated metric dimension of graphs. We recall
the following results on the effect of vertex deletion on metric dimension and 1-truncated dimension.

Proposition 7.1.

(a) ([4]) dim(G)− dim(G− v) can be arbitrarily large;
(b) ([8]) dim(G− v)− dim(G) can be arbitrarily large.

Proposition 7.2 ([19]).

(a) For any graph G, dim1(G) ≤ dim1(G− v)+ 1, where the bound is sharp.
(b) The value of dim1(G− v)− dim1(G) can be arbitrarily large, as G varies (see Fig. 3).

For graphs G in Fig. 3, note that diam(G) = diam(G− v) = 2, where a ≥ 2. It was shown in [19] that dim(G) = a+ 1
and dim(G − v) = 2a. By Observation 2.3(a), for any positive integer k, we have dimk(G) = dim(G) = a + 1 and
dim (G− v) = dim(G− v) = 2a, which implies the following.
k

161



R.M. Frongillo, J. Geneson, M.E. Lladser et al. Discrete Applied Mathematics 320 (2022) 150–169

C

a

P

P
⌊

T

r

P

P
r
a

d
t
s

orollary 7.3. Let k be any positive integer. The value of dimk(G− v)− dimk(G) can be arbitrarily large, as G varies.

In contrast to the case for 1-truncated dimension (see Proposition 7.2(a)), we show that dimk(G)− dimk(G− v) can be
rbitrarily large for k ≥ 2.

roposition 7.4. For any positive integer k ≥ 2, dimk(G)− dimk(G− v) can be arbitrarily large.

roof. Let k ≥ 2 and x ≥ 1 be integers. Let G = C5(3k+2)x + K1 with the vertex v in the K1. Then dimk(G) =
10(3k+2)x+2

5 ⌋ = 2(3k+ 2)x = 6kx+ 4x by Corollary 6.3, and dimk(G− v) = ⌊ 10(3k+2)x+3k−13k+2 ⌋ = 10x by Theorem 6.12(b). So,
dimk(G)− dimk(G− v) = 6kx+ 4x− 10x = 6(k− 1)x→∞ as x→∞ for k ≥ 2. □

Next, we consider the effect of edge deletion on k-truncated metric dimension of graphs. Throughout the section,
let dH,k(v1, v2) denote dk(v1, v2) in a graph H . We recall the following results on the effect of edge deletion on metric
dimension and 1-truncated dimension.

Theorem 7.5 ([8]).

(a) For any graph G and any edge e ∈ E(G), dim(G− e) ≤ dim(G)+ 2.
(b) The value of dim(G)− dim(G− e) can be arbitrarily large.

heorem 7.6 ([19]). For any graph G and any edge e ∈ E(G), dim1(G)− 1 ≤ dim1(G− e) ≤ dim1(G)+ 1.

The proof for Theorem 7.5(a) in [8], adjusted for the case of k-truncated metric dimension, provides the following
esult. We include its proof to be self-contained.

roposition 7.7. Let k ≥ 3 be any integer. For any graph G and any edge e ∈ E(G), dimk(G− e) ≤ dimk(G)+ 2.

roof. Let S be a minimum k-truncated resolving set for G, and let e = uw. We show that S ∪ {u, w} is a k-truncated
esolving set for G− e. Let x and y be distinct vertices in V (G− e) = V (G) such that, for some z ∈ S, dG,k(x, z) ̸= dG,k(y, z)
nd dG−e,k(x, z) = dG−e,k(y, z). We consider two cases.
Case 1: dG,k(x, z) = dG−e,k(x, z) or dG,k(y, z) = dG−e,k(y, z), but not both. Suppose dG,k(y, z) = dG−e,k(y, z). Then

G,k(y, z) = dG−e,k(y, z) = dG−e,k(x, z) > dG,k(x, z), dG,k(x, z) ≤ k, and the edge e must lie on every x−z geodesic in G. So, up
o transposing the labels u and w, we have dG,k(x, u)+dG,k(u, w)+dG,k(w, z) = dG,k(x, z). Notice that dG,k(x, u) = dG−e,k(x, u)
ince there is an x − u geodesic in G that does not use the edge e. Since dG,k(x, u) + dG,k(u, z) = dG,k(x, z) < dG,k(y, z) ≤
dG,k(y, u) + dG,k(u, z), we must have dG,k(x, u) < dG,k(y, u). Then dG−e,k(x, u) = dG,k(x, u) < dG,k(y, u) ≤ dG−e,k(y, u) and
dG−e,k(x, u) ≤ k− 1.

Case 2: dG,k(x, z) ̸= dG−e,k(x, z) and dG,k(y, z) ̸= dG−e,k(y, z). In this case, the edge e must lie on every x− z geodesic and
on every y− z geodesic in G. Moreover, we must have either dG,k(x, z) < dG,k(y, z) ≤ k or dG,k(y, z) < dG,k(x, z) ≤ k. Notice
that if a geodesic from some vertex a to another vertex c traverses the edge e in the order u, w (as apposed to w, u), then
a geodesic containing e from any vertex b to c must also traverse e in the order u, w. Suppose that u is traversed before
w by an x − z geodesic and a y − z geodesic (directed towards z) in G. Then an x − u geodesic and a y − u geodesic,
neither containing the edge e, are obtained by removing a u− z geodesic in G from the x− z geodesic and y− z geodesic
respectively. Thus, dG−e,k(x, u) ̸= dG−e,k(y, u). □

Remark 7.8. Note that Proposition 7.7 and its proof hold when k = 1 or k = 2. For k ∈ {1, 2}, we obtain the stronger
result that dimk(G− e) ≤ dimk(G)+ 1. For k = 1 this follows from Theorem 7.6. To see why it is true for k = 2, let S be
a minimum 2-truncated resolving set of G, let e = uw, and let x and y be distinct vertices in V (G − e) = V (G) such that
dG,2(x, z) ̸= dG,2(y, z) and dG−e,2(x, z) = dG−e,2(y, z) for some z ∈ S; further, suppose that the edge e lies on every x − z
geodesic in G and dG,2(x, u) < dG,2(x, w).

First, we consider Case 1. Then 0 < dG,2(x, z) ≤ 2; notice that x ̸= z since the edge e lies on every x− z geodesic in G.
If dG,2(x, z) = 1, then e = uw = xz; if dG,2(x, z) = 2, then x = u or xu ∈ E(G). In each case, S ∪ {u} forms a 2-truncated
resolving set for G − e. Next, we consider Case 2. Then dG,2(x, z) < dG,2(y, z) ≤ 2 or dG,2(y, z) < dG,2(x, z) ≤ 2, say the
former; then e = uw = xz and x lies on every y− z geodesic in G. So S ∪ {u} forms a 2-truncated resolving set for G− e.
Therefore, dim2(G− e) ≤ dim2(G)+ 1.

For graphs G satisfying dim2(G − e) = dim2(G) + 1, see Fig. 4, where a, b, c ≥ 2; one can easily check that
R = (∪a−1

i=1 {xi})∪ (∪b−1
i=1 {yi})∪ (∪c−1

i=1 {zi}) forms a minimum 2-truncated resolving set of G− e with |R| = a+ b+ c − 3 and
that R′ = R− {z1} forms a minimum 2-truncated resolving set for G with |R′| = a+ b+ c − 4.

Remark 7.9. The bound in Proposition 7.7 is sharp. For any integer k ≥ 3, let G be the graph in Fig. 4 and let e = x1z1.
Let L1 = ∪a

i=1{xi}, L2 = ∪
b
i=1{yi} and L3 = ∪c

i=1{zi}, where a, c ≥ 3 and b ≥ 2.
First, we show that dimk(G − e) = a + b + c − 3. Note that any two vertices in Li are twin vertices in G − e, where

i ∈ {1, 2, 3}. So, for any k-truncated resolving set S of G−e, we have |S ∩ L | ≥ a−1, |S ∩ L | ≥ b−1, and |S ∩ L | ≥ c−1
1 2 3
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Fig. 4. Graphs G with dim2(G− e) = dim2(G)+ 1 and dimk(G− e) = dimk(G)+ 2 for k ≥ 3.

Fig. 5. Graphs G, with k ≥ 2 and a ≥ 2, such that dimk(G)− dimk(G− e) can be arbitrarily large.

y Observation 2.1(b); thus, dimk(G− e) ≥ a+b+ c−3. On the other hand, (L1∪ L2∪ L3)−{x1, y1, z1} forms a k-truncated
esolving set of G− e, and hence dimk(G− e) ≤ a+ b+ c − 3. Thus, dimk(G− e) = a+ b+ c − 3.

Second, we show that dimk(G) = a+b+c−5. For any k-truncated resolving set S ′ of G, we have |S ′ ∩ (L1 − {x1})| ≥ a−2,
S ′ ∩ L2| ≥ b − 1, and |S ′ ∩ (L3 − {z1})| ≥ c − 2 by Observation 2.1(b); thus, dimk(G) ≥ a + b + c − 5. Since
L1∪L2∪L3)−{x1, x2, y1, z1, z2} forms a k-truncated resolving set of G, dimk(G) ≤ a+b+c−5. So, dimk(G) = a+b+c−5.

Therefore, dimk(G− e) = dimk(G)+ 2 for k ≥ 3.

In contrast to Theorem 7.6, we show that dimk(G)− dimk(G− e) can be arbitrarily large for any integer k ≥ 2.

heorem 7.10. For any integer k ≥ 2, the value of dimk(G)− dimk(G− e) can be arbitrarily large.

roof. Let G be the graph in Fig. 5. For each i ∈ {1, 2, . . . , a}, NG(xi) = NG(yi) = {zi, z ′i } = NG−e(xi) = NG−e(yi). Let k ≥ 2
nd a ≥ 2 be any integers. Let S be any minimum k-truncated resolving set for G − e, and let S ′ be any k-truncated
esolving set for G. By Observation 2.1(b), S ∩ {xi, yi} ̸= ∅ and S ′ ∩ {xi, yi} ̸= ∅ for each i ∈ {1, 2, . . . , a}; without loss of
enerality let S0 = ∪a

i=1{xi} ⊆ S ∩ S ′.
First, we show that dimk(G − e) = a + 1. Since dk(zi|S0) = dk(z ′i |S0) for each i ∈ {1, 2, . . . , a} in G − e, |S| ≥ a + 1,

nd hence dimk(G − e) ≥ a + 1. Since S0 ∪ {v} forms a k-truncated resolving set of G − e, dimk(G − e) ≤ a + 1. So,
imk(G− e) = a+ 1.
Second, we show that dimk(G) = 2a. Note that, for each i ∈ {1, 2, . . . , a}, dk(zi|S0) = dk(z ′i |S0) in G and Rk{zi, z ′i } =

zi, z ′i , ti}; thus, S
′
∩ {zi, z ′i , ti} ̸= ∅ for each i ∈ {1, 2, . . . , a}. So, |S ′| ≥ 2a, and hence dimk(G) ≥ 2a. Since S0 ∪ (∪a

i=1{zi})
orms a k-truncated resolving set of G, dimk(G) ≤ 2a. Thus, dimk(G) = 2a.

Therefore, dimk(G)− dimk(G− e) = 2a− (a+ 1) = a− 1→∞ as a→∞. □

. Trees

Many problems that are NP-complete on arbitrary graphs have efficient solutions when restricted to trees. This
henomenon occurs with traditional metric dimension [21,31]. In this section, we present some preliminary results
egarding the behavior of truncated metric dimension on trees. In particular, we define a family of trees for which
inding exact truncated metric dimension is straightforward and describe a polynomial time algorithm for determining
he 1-truncated metric dimension of trees.
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Fig. 6. An element of T2 . The black and gray vertices constitute a minimum 2-truncated resolving set.

Let T = (V , E) be a tree and call v ∈ V an exterior major vertex if it has degree at least three and there is at least one
leaf u ∈ V for which the path v, . . . , u contains no vertices, except v, with degree greater than two. Let ℓ(T ) be the set of
leaves on T , σ (T ) be the set of exterior major vertices on T , and ∆(v) be the set of leaves associated with a vertex v ∈ σ (T ).
For any tree T that is not a path, dim(T ) = |ℓ(T )| − |σ (T )| and R =

⋃
v∈σ (T ) ∆(v) \ {xv} is a minimum resolving set where

xv is any element of ∆(v) [7]. As the proof that R is minimum relies on having access to full distance information, the
precise relationship between this construction and truncated metric dimension on arbitrary trees is unclear. Nevertheless,
certain aspects of this proof, along with constraints placed on paths by tree structures, suggest that there may be efficient
means of finding minimum k-truncated resolving sets on arbitrary trees.

8.1. The Tk family of trees

First, we define a class of trees for which we can find minimum k-truncated resolving sets using the construction
described above for traditional metric dimension directly.

Let Tk be a family of trees defined recursively as follows. Let the empty tree, T = ({}, {}), be in Tk. Then T = (V , E) ∈ Tk
if four conditions hold.

1. T is connected.
2. There are no vertices of degree two in V .
3. For all minimum non-truncated resolving sets R of T and for all v ∈ V , the vector of distances dk(v|R) is unique or

(k+ 1, . . . , k+ 1) (the vector of all (k+ 1)’s).
4. For all minimum non-truncated resolving sets R of T :

T ′ = T \ {v such that (∀u ∈ V \ {v}) : dk(v|R) ̸= dk(u|R)} ∈ Tk.

Tk for k > 1 includes, for example, disjoint unions of three or more perfect m-ary trees with m ≥ 2 of the same height,
with an additional vertex acting as a common root.

Condition (3) may seem difficult to verify at first glance; however, condition (2) significantly restricts the set of
minimum non-truncated resolving sets—as seen in the next result.

Lemma 8.1 ([28]). If T ∈ Tk then every minimum non-truncated resolving set R of T must have the form
⋃

v∈σ (T ) ∆(v) \ {xv},
where xv is any element of ∆(v).

The definition of Tk suggests an iterative method to find minimum k-truncated resolving sets for trees in this family.
Intuitively, we can find minimum k-truncated resolving sets of T ∈ Tk by constructing a minimum non-truncated resolving
set, removing vertices that this set resolves with k-truncated distances, and repeating until we are left with a tree with
at most one vertex. For example, when this approach is applied to the tree in Fig. 6, black vertices are selected for a
2-truncated resolving set on the first iteration and gray vertices are selected on the second iteration. More precisely, we
have the following result.

Theorem 8.2. Let T0 ∈ Tk and R0 be a minimum non-truncated resolving set on T0. Further, let the sequence of pairs
(T1, R1), . . . , (Tn, Rn) be generated by repeated application of condition (4) in the definition of Tk. In particular, Rj is a minimum
non-truncated resolving set of Tj and Tj = Tj−1 \ {v such that (∀u ∈ V \ {v}) : dk(v|Rj−1) ̸= dk(u|Rj−1)}. If n > 0 and |Tn| ≤ 1,
then dimk(T0) =

∑n−1
j=0 |Rj|. Otherwise, dimk(T0) =

∑n
j=0 |Rj|.

Proof. First, notice that Rj must be of the form
⋃

v∈σ (Tj)
∆(v) \ {xv}, with xv ∈ ∆(v) for all 0 ≤ j ≤ n. Then, based on the

definition of Tj,
⋃n

j=0 Rj is a k-truncated resolving set of T0. Further, for any k-truncated resolving set R of T0 there may
be a single vertex v ∈ T such that d (v, r) = k + 1 for all r ∈ R. In particular, if n > 0 and |T | ≤ 1, d (v, r) = k + 1
0 k n k
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here v ∈ Tn for all r ∈
⋃n−1

j=0 Rj. Since, for all other vertices u ∈ T0 \ Tn, there must be at least one r ∈
⋃n−1

j=0 Rj such that

k(u, r) < k+ 1, this is a unique representation and
⋃n−1

j=0 Rj is a k-truncated resolving set of T0. Otherwise, Rn is required
o differentiate the vertices of Tn. As a result, dimk(T0) ≤

∑n−1
j=0 |Rj| if n > 0 and |Tn| ≤ 1 and dimk(T0) ≤

∑n
j=0 |Rj|

therwise.
To see that these are also lower bounds on dimk(T0), suppose that R′ is a k-truncated resolving set of T0 taking a

ifferent form than that described above. In particular, suppose that there is at least one 0 < j ≤ n such that there is no
ubset R′j ⊆ R′ of the form

⋃
v∈σ (Tj)

∆(v) \ {xv}, with xv ∈ ∆(v). Let i be one such value of j.
We note that R0 ⊆ R′ as at least two leaves of T0 would be indistinguishable otherwise. Similarly, in order to distinguish

ertices in Ti, R′ must include at least one vertex from all but one of the subtrees rooted at vertices in ∆(v) where v ∈ σ (Ti).
he distance from these vertices to the associated element of σ (Ti) cannot exceed k+1, otherwise at least two leaves of Ti
ould be indistinguishable. This means that, if n > 0 and |Tn| ≤ 1, |R′| ≥

∑n−1
j=0 |Rj| and dimk(T0) =

∑n−1
j=0 |Rj|. Otherwise,

R′| ≥
∑n

j=0 |Rj| and dimk(T0) =
∑n

j=0 |Rj|. □

.2. Adjacency dimension on trees

In this section we focus our attention on k = 1, and present an algorithm for finding minimum 1-truncated resolving
ets on trees in polynomial time.
Let T = (V , E) be a tree with at least two vertices and an arbitrary root. For all v ∈ V , let C(v) be the set of children of

. We call R ⊆ V a locating dominating set when R is a 1-truncated resolving set and, for each v ∈ V , there is r ∈ R such
hat d1(v, r) ≤ 1. Put another way, each v ∈ V \ R must be adjacent to a unique non-empty subset of vertices in R.

There exists an algorithm for finding minimum locating dominating sets on trees [32,33]—though it is not obvious
ow this approach might be modified to find minimum 1-truncated resolving sets. In this section, we describe a novel
ynamic programming based algorithm for computing adjacency dimension exactly on trees.
For all v ∈ V , let Tv be the subtree of T rooted at v. Consider the following definitions:

• R(v) is the size of a minimum locating dominating set Rv of Tv .
• R′(v) is the size of minimum locating dominating sets R ⊆ V (Tv) for Tv \ {v} such that there is at least one r ∈ R

with d1(r, v) ≤ 1. R′v is one such set.
• R′′(v) is the size of minimum locating dominating sets R ⊆ V (Tv) for Tv \ {v}. R′′v is one such set.
• R′′′(v) is the size of minimum locating dominating sets R ⊆ V (Tv) \ {v} for Tv . R′′′v is one such set.

It is easy to see that, for all v ∈ ℓ(T ) except possibly the root, R(v) = 1, R′(v) = 1, and R′′(v) = 0. Note that R′′′(v) is
ndefined for leaves but, as we will see shortly, it can be defined non-recursively. We describe expressions for each of
hese quantities before presenting the algorithm itself.

Assume that we have R(u), R′(u), R′′(u), and R′′′(u) for all u ∈ C(v) for some v ∈ V . Consider a locating dominating
et Rv of Tv . Either v ∈ Rv or v ̸∈ Rv . In the first case, all children of v are adjacent to at least one element of Rv ,
amely v. To guarantee that each child is adjacent to a different non-empty subset of Rv , there may be a single u ∈ C(v)
djacent only to v ∈ Rv while all other w ∈ C(v) \ {u} must be adjacent to at least one other vertex of Rv . Consequently,
v = {v} ∪ R′′u ∪ (

⋃
w∈C(v)\{u} R

′
w) for some choice of u ∈ C(v). Then, in this case and taking each u ∈ C(v) into account,

(v) = 1+minu∈C(v){R′′(u)+
∑

w∈C(v)\{u} R
′(w)} (Eq. (1)).

If v ̸∈ Rv instead, there are two additional possibilities. Either only one or at least two children of v are included in Rv .
uppose u ∈ C(v) is the only element of Rv in C(v). Since v is not adjacent to another vertex in Rv , all children of u must
e adjacent to at least one other element of Rv . The remaining children of v must be located and dominated without v.
hus, Rv = {u} ∪ (

⋃
w∈C(u) R

′
w) ∪ (

⋃
w∈C(v)\{u} Rw) for some choice of u ∈ C(v) and R(v) = minu∈C(v){1 +

∑
w∈C(u) R

′(w) +∑
w∈C(v)\{u} R(w)} (Eq. (2)).
Next, suppose u, w ∈ C(v) are both in Rv . Because v is the only vertex that can possibly be adjacent to both u and

w, we follow an argument identical to when v ∈ Rv but focus instead on u and w. In particular, to guarantee that each
child of u is adjacent to a different non-empty set of Rv , there may be a single x ∈ C(u) adjacent only to u ∈ Rv while all
∈ C(u) \ {x} must be adjacent to at least one other vertex of Rv . A symmetric argument applies to children of w. The

emaining children of v must be located and dominated without v. As a result, Rv can be expressed as the union of the
hree sets

Ru = {u} ∪ R′′xu ∪
( ⋃
y∈C(u)\{xu}

R′y
)

Rw = {w} ∪ R′′xw ∪
( ⋃
y∈C(w)\{xw}

R′y
)

Rz =
⋃

x∈C(v)\{u,w}

Rx,
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or some choice of the pair u, w ∈ C(v) and for some choice of xu and xw . Thus, in this case, R(v) can be described with
qs. (3)–(5), and Eqs. (1)–(5) fully describe R(v):

R(v) = min

{
1+ min

u∈C(v)

{
R′′(u)+

∑
w∈C(v)\{u}

R′(w)
}
, (1)

min
u∈C(v)

{
1+

∑
w∈C(u)

R′(w)+
∑

w∈C(v)\{u}

R(w)
}
, (2)

min
u,w∈C(v)

{
2+ min

x∈C(u)

{
R′′(x)+

∑
y∈C(u)\{x}

R′(y)
}

(3)

+ min
x∈C(w)

{
R′′(x)+

∑
y∈C(w)\{x}

R′(y)
}

(4)

+

∑
x∈C(v)\{u,w}

R(x)
} }

. (5)

R′(v) is nearly identical to R(v). The only difference occurs when v ̸∈ R′v . Since we are not concerned with ensuring
hat v is adjacent to a different non-empty subset of R′v as compared to all other vertices, we can focus on the case when
t least one child of v is in R′v . Suppose u ∈ C(v) is in R′v . Following an argument similar to when v ∈ Rv , to guarantee
hat each child of u is adjacent to a different non-empty subset of R′v , there may be a single w ∈ C(u) adjacent only to u
hile all other x ∈ C(u) must be adjacent to at least one other vertex of R′v . In this case, the remaining children of v must
e located and dominated without v. This yields Eqs. (7) and (8) and a full definition of R′(v) below.

R′(v) = min

{
1+ min

u∈C(v)

{
R′′(u)+

∑
w∈C(v)\{u}

R′(w)
}
, (6)

min
u∈C(v)

{
1+ min

w∈C(u)

{
R′′(w)+

∑
x∈C(u)\{w}

R′(x)
}

(7)

+

∑
w∈C(v)\{u}

R(w)
} }

. (8)

For R′′(v), we do not require that v be adjacent to any element of R′′v . However, all children of v must be both located
nd dominated. So, if v ̸∈ R′′v , we need sets Ru for each u ∈ C(v) (Eq. (10)). Again, the case when v ∈ R′′v is identical to the
orresponding cases for R(v) and R′(v) (Eq. (9)):

R′′(v) = min

{
1+ min

u∈C(v)

{
R′′(u)+

∑
w∈C(v)\{u}

R′(w)
}
, (9)

∑
u∈C(v)

R(u)

}
. (10)

Finally, R′′′(v) follows directly from R(v) when v ̸∈ Rv (Eqs. (11)–(14)). We note here that, when u ∈ C(v), R′′′(u) forces
1(v, r) = 2 for all r ∈ R′′′u :

R′′′(v) = min

{
min
u∈C(v)

{
1+

∑
w∈C(u)

R′(w)+
∑

w∈C(v)\{u}

R(w)
}
, (11)

min
u,w∈C(v)

{
2+ min

x∈C(u)

{
R′′(x)+

∑
y∈C(u)\{x}

R′(y)
}

(12)

+ min
x∈C(w)

{
R′′(x)+

∑
y∈C(w)\{x}

R′(y)
}

(13)

+

∑
x∈C(v)\{u,w}

R(x)
} }

. (14)

We are now ready to define an algorithm for finding the adjacency dimension of trees. Intuitively, Algorithm 1
etermines the size of minimum locating dominating sets on T and then considers the possibility that each v ∈ V may
e the only vertex not adjacent to any element of a 1-truncated resolving set. In particular, suppose v ∈ V is to be this

ertex. Since every u ∈ C(v) must be located and dominated, but cannot be included in any 1-truncated resolving set, we

166



R.M. Frongillo, J. Geneson, M.E. Lladser et al. Discrete Applied Mathematics 320 (2022) 150–169

a
d
S
o

R

v

S̃

d
a

v

Fig. 7. A visualization of S̃3,4 . Black vertices form a minimum 4-truncated resolving set.

re interested in R′′′u for every u. Then, R =
⋃

u∈C(v) R
′′′
u locates and dominates every vertex w ∈ V \ {v}, guaranteeing that

1(v, r) = 2 for all r ∈ R. On the other hand, picking any v ∈ V , Rv is a locating dominating set of minimum size for T .
ince a 1-truncated resolving set of minimum size must either leave one vertex at distance 2 from all elements of the set
r dominate all vertices, taking the minimum over the sizes of these sets gives us dim1(T ).
We note that by using well established methods for keeping track of vertices solving the minimizations in R(v) and
′′′(v), Algorithm 1 can be modified to return a minimum 1-truncated resolving set of T .

Algorithm 1 Minimum 1-Truncated Resolving Sets on Trees
Input: T = (V , E), a tree with |V | > 2
Output: Adjacency dimension of T

1: function dim1(T )
2: S ← {R(v)}, with any v ∈ V as the root
3: for all v ∈ V do
4: S ← S ∪ {

∑
u∈C(v) R

′′′(u)}

5: return min(S)

8.3. Extreme tree constructions

We end our exploration of truncated metric dimension on trees by examining structures in this family with extreme
alues of dimk. We observed earlier that for each k ≥ 1, the maximum possible value of dimk(T ) over trees T of order

n ≥ 3 is n− 2, attained by K1,n−1.
Next, we describe a family of trees S̃β,k such that dimk (̃Sβ,k) = β and dimk (̃Sβ,k) ≤ dimk(T ) for any tree T with |̃Sβ,k|

vertices. This construction is from [1] and improves upon a conjecture made in [37].
Let R = {r1, . . . , rβ} and, for each rj ∈ R, construct a path of length k with rj as an endpoint. Include a single extra

vertex at the end of the path associated with r1. This vertex will have truncated distance k+ 1 to all elements of R. Now,
for each rj ∈ R \ {r1}, add a path to r1 of length (2k+ ℓ)/3 where ℓ = k mod 3. For each vertex v on the path connecting
r1 and rj, add a new path of length k −max{d(v, r1), d(v, rj)} with v as an endpoint. In particular, the other endpoint of
these paths will be at distance k from at least one of r1 and rj. The number of vertices on these paths, including those on
the path between r1 and rj, is (k2 + k+ 1)/3 if k mod 3 = 1 and (k2 + k)/3 otherwise. As a result, S̃β,k has order

|̃Sβ,k| = 1+ β(k+ 1)+ (β − 1)
(k2 + k+ [[k mod 3 = 1]])

3
.

3,4 is given as an example in Fig. 7.
Observe that R is a k-truncated resolving set of S̃β,k. Indeed, since d(ri, rj) ≥ (2k + ℓ)/3 where ℓ = k mod 3 for each

istinct pair ri, rj ∈ R, each individual element of R resolves its associated path of length k (or k+1 for r1) while rj ∈ R\{r1}
nd r1 together resolve all vertices v such that 0 < d(v, r1), d(v, rj) ≤ k.
To see that dimk (̃Sβ,k) = β , note that, for any set of vertices R′ in S̃β,k such that |R′| < β , there must be at least two

ertices u and v with dk(u|R′) = dk(v|R′) = (k+ 1, . . . , k+ 1). Thus, dimk (̃Sβ,k) ≥ β .

9. Conclusion

Truncated metric dimension restricts the ability of individual vertices to accurately assess distances to far away points
in a graph. This variation on the traditional definition somewhat forces resolving sets to take a local perspective, and has
the potential to provide more useful distance constrained resolving sets in a number of real world scenarios.
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In this work, we explored connections to the traditional definition as well as behavior on paths, cycles, and certain types
of trees. Regarding the latter, it remains to answer: can the k-truncated metric dimension of arbitrary trees be determined
efficiently?

Trees T with dim1(T ) = dim(T ) were characterized in [19]. For each k > 1, it remains to characterize trees T for which
imk(T ) = dim(T ). More generally, which connected graphs G satisfy dimk(G) = dim(G) for each k?
We also investigated graph constructions achieving upper and lower bounds in different circumstances. For all k ≥ 1,

we determined the connected graphs G of order n with dimk(G) = n − 1 and dimk(G) = n − 2. The graphs G of order n
ith dimk(G) = 1 were found in [11]. These results lead to a natural question: which connected graphs G of order n have

dimk(G) = β , for each k ≥ 1 and β ∈ {2, 3, . . . , n− 3}?
For all j, k ≥ 1 we determined the maximum possible order, degree, clique number, and chromatic number of any

graph G with dimk(G) = j. There are other natural problems in this direction. For example, what is the maximum possible
degeneracy of any graph G with dimk(G) = j? We determined that the answer is 3j−1

2 when k is sufficiently large with respect
to j, but how large must k be as a function of j for the degeneracy to be 3j−1

2 ?
We determined the maximum n for which there exists a graph G with dimk(G) = j which contains the complete

bipartite graph Kn,n as a subgraph. There are other natural problems in this direction, such as maximizing the size of
other complete bipartite subgraphs besides K1,n and Kn,n. Another problem is to find the maximum n for which there
exists a graph G with dimk(G) = j which contains the wheel Wn as a subgraph, as well as the maximum n for which there
xists a graph G with dimk(G) = j which contains the n-cube Qn as a subgraph. These are analogues of some questions
hat were investigated for metric dimension and edge metric dimension in [17,18].

A variety of other interesting questions remain open. For instance, can approximations of k-truncated metric dimension be
sed to effectively approximate traditional metric dimension? How effective a tool are k-truncated resolving sets for mitigating
roblems associated with the accumulation of variance in transmission networks in different types of applications? There are
any avenues for future exploration related to these ideas.
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