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1. Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set V(G) and edge set E(G). The (geodesic) distance
between two vertices x, y € V(G), denoted by d(x, y), is the length of a shortest path between x and y in G.

Metric dimension, introduced by Slater [31] and by Harary and Melter [21], is a graph parameter that has been studied
extensively (see also, e.g., [3,6,7,15,26,28,38]). For distinct x, y € V(G), let R{x,y} = {z € V(G) : d(x, z) # d(y, z)}. A subset
S C V(G) is a resolving set of G if |S N R{x,y}| > 1 for any pair of distinct vertices x and y in G. The metric dimension
of G, denoted by dim(G), is the minimum cardinality over all resolving sets of G. It is NP-hard in general to compute
dim(G) [16,26].

Khuller et al. [26] considered robot navigation as one of the applications of metric dimension, where a robot that
moves from node to node knows its distances to a set of landmarks, which are placed on the elements of the resolving
set. The traditional definition of metric dimension assumes knowledge of all pairwise distances between vertices. This
assumption allows any individual vertex v of a resolving set to play a key role in distinguishing any pair of vertices,
including pairs very far from v. In practice, however, computing pairwise distances between all pairs of vertices in a
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large network may be costly, and the quality of pairwise distance measurements may degrade with increasing distance.
Indeed, computing the distance matrix of a dense graph has time complexity O(|V|?) [ 14], whereas for a sparse graph the
complexity is O(|V||E| + [V|*In|V]) [25]. On the other hand, various models of epidemic spread over networks assume
that transmission times across edges are independent random variables [27,34]. As a consequence, transmission times
between vertices with many intermediate edges can have high variance. In this setting, resolving sets using expected
transmission time between pairs of vertices as the metric may not be effective in identifying the source of the infection
(aka ground zero).

The above factors motivate metrics in graphs that only rely on local vertex information in the graph. Assuming that
a sensor that can detect long distances to landmarks can be costly, Jannesari and Omoomi [23] consider the situation
where a robot can only detect landmarks that are adjacent to it. They define the adjacency dimension, adim(G), of G to be
the minimum number of such landmarks that are needed for the robot to determine its position. From a more technical
standpoint, [23] introduced adjacency dimension as a tool to study the metric dimension of lexicographic product graphs.

More generally, if the landmark detection range of a robot is k > 0, then the minimum number of such landmarks
needed to determine the robot’s position on the graph is called the k-truncated metric dimension (see [19] which calls it
distance-k dimension).

With truncated metric dimension, elements of a resolving set are only able to distinguish vertices up to a certain
distance; in particular, computation of the full distance matrix is no longer necessary. In the context of epidemics, by
limiting the number of relevant edges on any shortest path between elements of a resolving set and other vertices in the
graph, we have better control of the uncertainty of transmission times. Indeed, since the vertices of a graph can be at
most distance k + 1 from the nearest element of a k-truncated resolving set, these elements tend to be spread out over
the space defined by the graph.

For a positive integer k and for x,y € V(G), let di(x,y) = min{d(x, y), k + 1}. We refer to this as the distance-k or
k-truncated distance on G. For distinct x, y € V(G), let

Ri{x,y} = {z € V(G) : di(x, 2) # di(y. 2)}.

A subset S C V(G) is a k-truncated resolving set of G if |S N R{x, y}| > 1 for any pair of distinct vertices x and y in G, and
the k-truncated metric dimension of G, denoted by dimy(G), is the minimum cardinality over all k-truncated resolving sets
of G.

For an ordered set S = {uy, uy, ..., ug} € V(G) of distinct vertices, the metric code and the k-truncated metric code,
respectively, of v € V(G) with respect to S are the g-vectors

d(v|S) = (d(v, uq), d(v, u), ..., d(v, ug)),
dk(v|5) = (dk(v7 u1)7 dk(vv U2), RN dk(v» uﬂ))v

where k is any positive integer. Note that a distance-1 resolving set and the distance-1 dimension, respectively, of G
corresponds to an adjacency resolving set and the adjacency dimension of G; in particular, dim;(G) = adim(G).

In this paper, we study the k-truncated metric dimension of graphs. The paper is organized as follows. In Section 2, we
obtain some general results on k-truncated metric dimension of graphs that we use in the rest of the paper. In Section 3,
we prove characterization results for k-truncated metric dimension. For all positive integers k > 1, we characterize all
connected graphs G of order n > 4 for which dimy(G) equals n —2 or n— 1. In the case that k = 1, this solves the problem
from [19] of characterizing the graphs G with adim(G) = n — 2 when G is connected. i

In Section 4, we prove that the maximum possible order of a graph G with dim(G) = j is (L@J +1Y+j ZL]TW(zi—
1)~ For all j, k > 1, we also determine the maximum possible degree, clique number, and chromatic number of any
graph G with dimg(G) =j.

In Section 5, we examine the relationship between the k-truncated metric dimension and planarity of graphs. In
Section 6, we determine dimy(G) for some classes of graphs, including paths and cycles.

In Section 7, we examine the effect of vertex or edge deletion on k-truncated metric dimension of graphs. Let v and e,
respectively, denote a vertex and an edge of a graph G. For any positive integer k > 1, we show that dimy(G—v)— dim(G)
can be arbitrarily large (also see [19] when k = 1); for k > 2, we show that dimy(G) — dimy(G — v) can be arbitrarily large,
whereas it was shown in [19] that dim;(G) — dim(G — v) < 1. It was shown in [19] that dim(G) — 1 < dim(G —e) <
dim(G)+ 1. We show that dim;,(G —e) < dimy(G)+ 1 and that dimy(G —e) < dimy(G)+ 2 for k > 3. Moreover, in contrast
to the case of 1-truncated metric dimension, we show that dimy(G) — dimy(G — e) can be arbitrarily large for k > 2.

Finally, we focus on trees in Section 8. We define conditions under which finding the exact value of truncated metric
dimension is straightforward, present a dynamic program capable of discovering minimum resolving sets on trees when
only immediate neighbors are visible, and investigate extreme constructions for graphs in this family.

Related work. The k-truncated metric dimension of graphs was studied in [2], where it was also investigated more
generally for metric spaces. The complexity of the problem was studied in [12,13], where it was shown that computing
dim(G) is an NP-hard problem for any positive integer k. The graphs G with dim,(G) = 1 were characterized in [11],
which also investigated the problem in a more general setting.

The present paper is a result of merging the preprints [20,37]. The preprint [37] was based on the Ph.D. thesis [35]. A
review paper [36] also discussed truncated metric dimension.
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Notation. In this paragraph, we introduce some notation that we use in the paper. For x € V(G) and S € V(G), let
d(x,S) = min{d(x,y) : y € S}. The diameter, diam(G), of G is max{d(x,y) : x,y € V(G)}. The join of two graphs H; and
H,, denoted by H; + Hs, is the graph obtained from the disjoint union of two graphs H; and H, by joining every vertex
of Hy with every vertex of H,. We denote by P,, C,, K, and K, ,—, respectively, the path, the cycle, the complete graph,
and the complete bipartite graph on n vertices with one part of size a. Suppose f(x) and g(x) are two functions defined
for all sufficiently large real numbers x. We write f(x) = 0O(g(x)) if there exist positive constants N and C such that

[f(x)I < Clg(x)| for all x > N, f(x) = £2(g(x)) if g(x) = O(f(x)), and f(x) = O(g(x)) if f(x) = O(g(x)) and f(x) = $2(g(x)).
2. General results

In this section, we obtain some general results for k-truncated metric dimension of graphs. In order to state the results
in this section, we define some terminology. The open neighborhood of a vertex v € V(G) is N(v) = {u € V(G) : uv € E(G)}.
For distinct u, w € V(G), if N(u) — {w} = N(w) — {u}, then u and w are called twin vertices of G. We begin with the
following observations from [2,11,22,23] which we use in our proofs.

Observation 2.1. Let u and w be twin vertices of a graph G, and let k be a positive integer. Then
(a) ([22]) S N {u, w} # @ for any resolving set S of G;
(b) Sk N {u, w} # @ for any k-truncated resolving set Sy of G.

Observation 2.2 ([2,23]). Let G be a connected graph of order n > 2. If k > k' are positive integers, then dim(G) < dim(G) <
dimy/ (G).

Observation 2.3 ([11]). Let G be a connected graph with diam(G) = d, and let k be a positive integer.

(a) If d € {1, 2}, then dimy(G) = dim(G) for any positive integer k.
(b) If d > 2, then dimy(G) = dimg_1(G) = dim(G) for any k > d — 1.

In the next proof, we use a method similar to [7] to obtain a general upper bound on dim(G) in terms of the diameter
of G. In Section 3, we use this result to characterize the connected graphs G of order n with dim(G) = n— 2 for all k > 2
and n > 4.

Theorem 2.4. If G is a connected graph of order n > 2 and diameter d, then dimy(G) < n — min{d, k + 1} for all k > 1.

Proof. Suppose that u and v are vertices in G at distance d, and let u = vg, vq, ..., v = v be a path of order d + 1 with
endpoints u and v. If d < k+ 1, then let S = V(G) — {vy, ..., vg}. Note that di(vg, v;) = iforeach1 <i <d,soSisa
k-truncated resolving set for G.

Otherwise d > k + 1. In this case, let S = V(G) — {v1, ..., vgs+1}. Note that di(vg, v;) =iforeach 1 <i<k+1,s0S is
a k-truncated resolving set for G. O

It was shown in [9] that metric dimension is not a monotone parameter on subgraph inclusion. Moreover, it was shown

in [19] that, for two graphs H and G with H C G, d'g((g)) and ?111:?11((5)) can be arbitrarily large.

Following [19], form > 2,letH = I(m(n;rl) ;let V(H) be partltloned into Vy, Vo, ...,V such that V; = {w; 1, wio, ..., wii}
with |V;| = i, where i € {1,2, ..., m}. Let G be the graph obtained from H and m isolated vertices uy, U, ..., Uy such
that, for each i € {1,2,..., } u, is joined by an edge to each vertex of V; U (U’" ir1{wji}). Since diam(H) = 1 and
diam(G) = 2, by Observation 2.3(a), dim(H) = dimy(H) and dim(G) = dim(G) for every positive integer k. Note that
H C G, dim(H) = ™2 _ 1 by Theorem 3.1(c), and dim(G) < m since {uy, Uy, ..., Uy} forms a resolving set of G. So,
f‘i‘l?;’;((’;)) = 3‘1::'1%)) > ’"2;’:_2 for every positive integer k, which implies the following.

Corollary 2.5. For all positive integers k and N, there exist connected graphs H and G such that H C G and ?j'lrnr;"(g) N.

Next, in view of Observation 2.2, we show that ‘fj'lmm"(g and 312158 can be arbitrarily large with respect to k; thus,

dimy(G) — dim(G) and dim{(G) — dimg(G) can be arbitrarily large W1th respect to k.

Proposition 2.6 ([6]). For the grid graph G = P,0P, (m,n > 2), dim(G) = 2.

Theorem 2.7 ([19]). For m > 2, let G = Py,0OPy,. Then dim;(G) = ©(m?); thus cg?f;‘(g) can be arbitrarily large with respect to
m.

Theorem 2.8. For any positive integer k > 1, let G = P20P,2. Then dimy(G) = O(k?), and thus ‘Er;"((c) and 31;“1%;

simultaneously be arbitrarily large with respect to k.

can
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Proof. First, observe that dim(G) = 2 by Proposition 2.6, and dim;(G) = ©®(k*) by Theorem 2.7. Next we show that
dimy(G) = @(k?). First, note that there are k?(k — 2)?> subgraphs Py 10Ps41 of G, of which at least |-(2k+1)2J are disjoint.
Since any k-truncated resolving set of G must contaln at least one vertex from every P,y 10Py,+1 subgraph of G except
for at most one such subgraph, dim(G) > | 2k+1 2J 1. On the other hand, if the grid graph P,20P)2 is drawn in the
xy-plane with the four corners at (1, 1), (k?, 1), (1, k*) and (k?, k?*) and with horizontal/vertical edges of equal lengths,
then [U"“ {1+ (k= 1i, 1+ (k= 1)i))1U [Uj’f=0 Uk, {([%1 + (k—1)i, [ 1+ (k — 1)j)}] forms a k-truncated resolving
set of G, and hence dim(G) < (k+ 2)* + (k + 1)? < 2(k + 2)%. So, dim(G) = O(k?). Therefore, dd':?‘f((c and 312:1(6; can
simultaneously be arbitrarily large with respect to k. O

3. Characterizing graphs by their k-truncated metric dimension

It is known that, for any connected graph G of order at least two, 1 < dim(G) < |V(G)| — 1 (see [7]) and 1 < dim;(G) <
[V(G)| — 1 (see [23]). We recall some characterization results on metric dimension and 1-truncated dimension, before
proving characterization results about k-truncated metric dimension.

Theorem 3.1 ([7]). Let G be a connected graph of order n > 2. Then

(a) dim(G) = 1 if and only if G = Py;

(b) forn > 4,dim(G)=n—2ifand only if G = Ky, (5,t > 1), G=K; + K, (s> 1,t > 2), 0r G = K; + (K; UK;) (5, t > 1),
where H denotes the complement of a graph H;

(c) dim(G) = n — 1if and only if G = K,,.

Theorem 3.2 ([23]). Let G be a connected graph of order n > 2. Then

(a) dim{(G) = 1 if and only if G € {P,, P3};
(b) dim{(G) = n — 1 if and only if G = K,,.

More generally, the characterization of graphs G with dim;(G) = B is provided in [19] (this includes disconnected
graphs). Given any graph G; on B vertices vy, ..., vg and G, on 27 vertices {Ub}pefo. 116+ define the graph B(G;, G;) to be
obtained by connecting v; and uy if and only if the ith digit of b is 1. Moreover, define B(G;, G,) to be the family of induced
subgraphs of B(Gy, G;) that contain every vertex in G,. Finally, define #o = @ and, for each positive integer 8, define g
to be the family of graphs obtained from taking the union of B(G;, G) over all graphs G; with j vertices vy, ..., v; and G,
with 2/ vertices {up},c( .y, for each 1 <j < B.

Theorem 3.3 ([19]). For each 8 > 1, the set of graphs G with dimy(G) = B is Hg — Hg—1 up to isomorphism.

By the definition of dimy(G), Observation 2.2, and Theorems 3.1 and 3.2, we have the following

Corollary 3.4. Let G be a connected graph of order n > 2, and let k be any positive integer. Then 1 < dimy(G) < n — 1, and

(a) ([11]) dimy(G) = 1 if and only if G = P; for some i € {2, ...,k + 2},
(b) dimi(G) = n — 1 if and only if G = K,.

In the next result, we characterize the connected graphs G of order n with dimy(G) = n—2 for each k > 2. Interestingly,
these are exactly the same connected graphs G of order n for which dim(G) = n — 2.

Theorem 3.5. Let G be a connected graph of order n > 4, and let k > 2. Then dimy(G) = n — 2 if and only if G = K, with
s, t>1,G=K;+ K withs>1andt > 2,0or G=K; + (K; UK;) with s, t > 1.

Proof. First, note that all of the graphs G in the statement of the theorem have dimy(G) = n— 2. This follows immediately
from Observation 2.3(a) and Theorem 3.1(b), since all graphs G in the statement of the theorem have diameter 2, and each
of these graphs G have dim(G) = n — 2. This proves the backward implication of the biconditional.

Now we prove the forward implication. Suppose that G is a connected graph of order n > 4 with dimy(G) = n — 2.
Since k > 2, the diameter of G must be 2 by Theorem 2.4 and Corollary 3.4(b). Thus dim(G) = n— 2 by Observation 2.3(a).
Thus the result follows by Theorem 3.1(b). O

It is interesting that the similarity between dim(G) and dim(G) breaks at k = 1. We just showed for k > 2 that
the connected graphs G of order n > 4 with dim(G) = n — 2 are the same as the connected graphs G of order n with
dimy(G) = n — 2. However when k = 1, observe that dim;(P;) = 2 but dim(P;) = 1, so there exists a connected graph
G of order n = 4 with dim(G) = n — 2 and dim(G) < n — 2. In the next result, we show that this is the only connected
graph G of order n for which dim;(G) = n— 2 and dim(G) < n — 2. The next theorem answers an open problem from [19]
in the case that G is connected.
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Theorem 3.6. Let G be a connected graph of order n > 4. Then dim(G) = n — 2 if and only if G = K, with s, t > 1,
G=K;+Kwiths>1andt >2,G=K;+ (K; UK;) withs,t > 1, or G = P,.

Proof. First, note that all of the graphs G in the statement of the theorem have dim;(G) = n — 2. For all of the graphs
except for Py, this follows immediately from Observation 2.3(a) and Theorem 3.1(b), since all graphs G in the statement
of the theorem besides P, have diameter 2, and each of these graphs G have dim(G) = n — 2. In the case of P4, clearly
dim(P4) = 2. This proves the backward implication of the biconditional.

Now we prove the forward implication. Suppose that G is a connected graph of order n > 4 with dim{(G) = n — 2.
Note that G must have diameter at most 3, or else dim(G) < n— 3. To see why this is true, note that if G had two vertices
u and v with d(u, v) = 4, then there would exist vertices x, y, z in G such that u, x, y, z, v is an induced path of order 5
in G. Then V(G) — {u, y, v} would be a 1-truncated resolving set for G, contradicting the fact that dim;(G) =n — 2, s0 G
has diameter at most 3.

For the first case, suppose that G has diameter 3, so there exist vertices u and v in G with d(u, v) = 3. Since d(u, v) = 3,
there must exist vertices x, y € V(G) such that u, x, y, v form an induced path of order 4 in G.

For contradiction, assume that G has another vertex besides u, v, x, y. Let t be a vertex in G that is not in the copy of
P4 such that t is adjacent to some vertex in the copy of P4. Note that t must be adjacent to x or y. To see why this is true,
note that if t was only adjacent to one of u or v and neither of x nor y, then G would have diameter at least 4. If t was
adjacent to both u and v, then d(u, v) < 2, a contradiction. Thus, t is adjacent to at most one of u or v, and at least one
of x or y. Without loss of generality, suppose that ¢t is not adjacent to v.

Since t is adjacent to x or y, and t is not adjacent to v, there are several cases to consider. For the first case, suppose
that t is only adjacent to a single vertex among u, v, X, y. This vertex must be x or y. Without loss of generality, let t be
adjacent to x. Then V(G) — {x, t, v} is a 1-truncated resolving set for G, so dim;(G) < n — 3, a contradiction.

Now suppose that t is adjacent to two vertices among u, v, X, y. We know t is not adjacent to v, so either ¢ is adjacent
tou and x, t is adjacent to u and y, or t is adjacent to x and y. If t is adjacent to u and x, then V(G)— {x, t, v} is a 1-truncated
resolving set for G, so dim;(G) < n — 3, a contradiction. If t is adjacent to u and y, then V(G) — {u, x, y} is a 1-truncated
resolving set for G, so dim;(G) < n — 3, a contradiction. If ¢t is adjacent to x and y, then V(G) — {v, x, y} is a 1-truncated
resolving set for G, so dim;(G) < n — 3, a contradiction.

Now suppose that t is adjacent to three vertices among u, v, x, y. Since t is not adjacent to v, t must be adjacent to
u, x, and y. Then V(G) — {v, x, y} is a 1-truncated resolving set for G, so dim;(G) < n — 3, a contradiction. This covers
all of the possible cases, since t is not adjacent to v. Thus the only vertices in G are u, v, X, y, and these vertices form an
induced path, so G is P4 in the case that G has diameter 3.

Now we can assume that G has diameter 2, since we know that G has diameter at most 3, and we have already
considered the case when G has diameter 3. Thus dim(G) = n — 2 by Observation 2.3(a) and the result follows by
Theorem 3.1(b). O

4. Extremal results for k-truncated metric dimension

In this section, we derive several sharp extremal results about k-truncated metric dimension. First, we recall the
following result by Hernando et al.

Theorem 4.1 ([22]). Let G be a connected graph of order n, diam(G) = d, and dim(G) = B. Then

2d 8 {1 -
ng(bJﬂ) +ﬁ;(2z—1) .
Since dimy(G) = g implies dim(G) < 8 by Observation 2.2, we have the following.

Corollary 4.2. For any positive integer k and for any connected graph G with diam(G) = d and dim(G) = B,

P rd
Vel < (F;J + 1) +BY (2i— 1)
i=1

Using a method similar to the one in [22], we find a sharp upper bound on the maximum possible order of a graph G
with dimy(G) =j.
rdy
Theorem 4.3. The maximum possible order of a graph G with dimy(G) =j is (L—Z(k;’”J +1y+j > @i—1y"L

i=1

Proof. First we prove the upper bound. Let G be a graph with dimy(G) = j. Let S be a k-truncated resolving set for G of
size j and let ¢ € [0, k] be an integer constant that will be chosen at the end. For each v € S and integer i € [0, c], define
Ni(v) = {x € V(G) : di(x, v) = i}.
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Observe that |di(x, u) — di(y, u)| < 2i for any two vertices x, y € Nj(v) and any vertex u € S, so di(x, v) = i and d(x, t)
has at most 2i + 1 possible values by the triangle inequality for each t € S such that t # v. Thus |N;(v)| < (2i + 1)~

Consider x € V(G) such that x & N;j(v) for alli € [0,c]and v € S,i.e,c+ 1 <di(x,v) <k+ 1forall v € S.Since S is a
k-truncated resolving set for G and |S| = j, there are at most (k — ¢ 4+ 1) such vertices. Thus

VG < (k—c+1) +j) @i+1)"
i=0

Setting ¢ = f"*TW — 1 gives the upper bound. To see that the upper bound is sharp, note that the construction in [22]
of a graph G of maximum order with diameter k 4+ 1 and dim(G) = j must also have dim;(G) = j and the same order as
the bound we just obtained. O

Remark 4.4. In [19], there is a simple construction of a graph G with dim;(G) = j of maximum order j+ 2. For the k = 2
case, we also found a simple construction of a graph G with dim,(G) = j of maximum order j + 3/, which is similar to
a construction in [17]. Start with j copies of K;, each on vertices a; and b; fori € {1,...,j}. Let ¢, forr € {1,..., 3/} be
labeled with a ternary string of length j. Add an edge from c; to g; if the ith digit of ¢, is 0. Add an edge from c; to b; if
the ith digit of ¢, is 1. Let S = {a], o, aj}. Remove any ¢, with the same 2-truncated vector as b; with respect to S for

eachi e {1,...,j}. The resulting graph G has order j + 3/, and S is a 2-truncated resolving set, so dim,(G) = j.

For the remaining results in this section, we use some results from [17,18].

Theorem 4.5. Fix j > 1. Among all graphs G with dim(G) < j,

(a) [17] the maximum possible clique number of G is 2J; 4

(b) [18] the maximum possible chromatic number of G is 2/;

(c) [18] the maximum possible degree of G is 3 — 1;

(d) [18] the maximum possible degeneracy of G is ESY

(e) [18] the maximum possible n for which G contains K, , as a subgraph is n = 21,

Using the last theorem and Observation 2.2, we obtain several sharp extremal results for graphs G with dimy(G) = j.
Our constructions for the remaining results in this section are similar to the paper [ 18], which defined an infinite family of
infinite graphs and used that family to prove extremal results about the standard metric dimension. We define an infinite
family of finite graphs Dy ; with k, j > 1 such that Dy is the graph on the vertex set {0, 1, ..., k 4+ 1} with edges between
points that differ by at most one in each coordinate. Observe that Dy j = Xlli:lPk+2 holds. That is, Dy is a strong product
of paths.

Define Cj(q) to be the induced subgraph of D,,_;; whose vertex set consists of the integer points in the j-dimensional
cross polytope centered at (q, . . ., q) having as a face the (j—1)-simplex with its corners at the j points with all coordinates
equal to g except for one coordinate which is equal to 0. It was proved in [18] that dim(Cj(q)) = j for all q,j > 1. Note
that dim(Gj(q)) = dim(Gj(q)) for k > 2q — 1 by Observation 2.3(b).

Theorem 4.6. For all k,j > 1, the maximum possible clique number of any graph G with dim(G) = j is 2.

Proof. The upper bound follows from Theorem 4.5(a) and Observation 2.2. For the lower bound, consider the graph G; of
order j + 2/ with j vertices uy, ..., uj, 2 vertices v, with b € {0, 1Y, edges between v, and vy for all b, b’ € {0, 1Y with
b # b/, an edge between u; and v, if and only if the ith digit of b is 0, and no edges between vertices u; and uy with i # 7.
Then {u1, R uj} is a k-truncated resolving set for G; for each k > 1, so dim(G;) < j. Moreover G; contains a clique of
size 2/, so dimy(G;) > j. Thus dim(G;) = j and G; has clique number 2. O

We note that the lower bound construction in the last proof was also used for results about metric dimension, edge
metric dimension, adjacency dimension, and broadcast dimension in [17,19,40]. We use the same construction to get a
sharp result on complete bipartite graphs.

Theorem 4.7. Fix j, k > 1. Among all graphs G with dim(G) < j, the maximum possible n for which G contains K, , as a
subgraph is n = 2-1.

Proof. The upper bound follows from Theorem 4.5(e) and Observation 2.2. For the lower bound, we can take the clique
of size 2/ in Theorem 4.6 and assign half of its vertices to the left and the other half to the right to form a Ky—1 -1
subgraph. O

We can also use the result on clique number to obtain a sharp upper bound on the chromatic number.

Theorem 4.8. For all k,j > 1, the maximum possible chromatic number of any graph G with dim(G) = j is 2I.
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Proof. The lower bound follows from Theorem 4.6. The upper bound follows from Theorem 4.5(b) and Observation 2.2. O

Next we determine for all k > 1 the maximum possible degree of any graph G with dim(G) = j. This result was
previously known only for k = 1 [19].

Theorem 4.9. Among all graphs G with dim(G) = j:

(a) the maximum possible degree of G is 3 — 1forallk>2andallj> 1, and
(b) [19] the maximum possible degree of Gis 2 +j— 1fork=1and all j > 1.

Proof. The upper bound of 3 — 1 for (a) follows from Theorem 4.5(c).

For the lower bound of 3 — 1 in (a), we split the proof into two parts. For k > 3, we can take (j(2) and observe that
the center vertex with all coordinates 2 has degree 3/ — 1. For k = 2, we can take the intersection of Ci(2) with D, j. In
this graph, the center vertex with all coordinates 2 still has degree 3 — 1. O

Our final result in this section is about the degeneracy of a graph G, which is the minimum t such that every subgraph of
G has a vertex of degree at most t. Unlike our other extremal results, this result only covers values of k that are sufficiently
large with respect to j.

Theorem 4.10. For all j > 1, there exists a constant k; such that for each k > k;, the maximum possible degeneracy of any
graph G with dimy(G) = j is 251,

Proof. The upper bound follows from Theorem 4.5(d).
For the lower bound, fix j and let g be sufficiently large so that the ratio of the number of exterior vertices to the total
number of vertices in Gj(q) is less than ﬁ If we define n to be the number of vertices in Cj(q), then the number of interior

vertices in Gj(q) is greater than (1— 3%=)n. Thus the number of edges in Gj(q) is greater than 11— Fn= (% —1n.
Since any graph G with m edges and order n has degeneracy at least % Ci(q) must have degeneracy greater than % -1

Since degeneracy is an integer, Cj(q) must have degeneracy at least % We can let k; = 2q — 1 since Cj(q) has diameter
2q. O

5. Planarity and the k-truncated metric dimension

Next, we consider the relation between dimy(G) and planarity of G. A graph is planar if it can be drawn in a plane
without any edge crossing. For two graphs G and H, H is called a minor of G if H can be obtained from G by vertex
deletion, edge deletion, or edge contraction. We recall some known results on metric dimension and its variations in
conjunction with planarity of a graph.

Theorem 5.1 ([39]). A graph G is planar if and only if neither K5 nor K5 3 is a minor of G.

Theorem 5.2 ([26]).
(a) A graph G with dim(G) = 2 cannot have Ks or K3 3 as a subgraph.
(b) There exists a non-planar graph G with dim(G) = 2.

Theorem 5.3 ([19]).

(a) If dim(G) = 2, then G is planar; see Fig. 1(a) for graphs G with dim;(G) = 2.
(b) For each integer B > 3, there exists a non-planar graph G with dim(G) = 8.

Another variant of metric dimension was introduced by Eroh, Kang, and Yi [10]. A set S of vertices in G is called
a connected resolving set of G if S resolves G and the subgraph of G induced by S is connected. The connected metric
dimension, cdim(G), of G is the minimum cardinality over all connected resolving sets of G. For the characterization of
graphs G with cdim(G) = 2, see [10].

Theorem 5.4 ([10]).

(a) If cdim(G) = 2, then G is planar. However, there exists a non-planar graph G with dim(G) = 2 and cdim(G) > 2; see
Fig. 1(b).
(b) For each integer B > 3, there exists a non-planar graph G with cdim(G) = S.

Now, we consider the relation between k-truncated metric dimension and planarity of graphs.
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(a) (b)

Fig. 1. (a) [19] The graphs G satisfying dim,(G) = 2, where black vertices must be present, a solid edge must be present whenever the two vertices
incident to the solid edge are in the graph, but a dotted edge is not necessarily present; (b) [10] A non-planar graph G with dim(G) = 2 and
cdim(G) = 3, where black vertices form a minimum resolving set of G.

Theorem 5.5.

(a) For each k > 2, there is a non-planar connected graph G with dim(G) = 2.
(b) For each k > 1 and B > 3, there is a non-planar connected graph G with dimy(G) = B.

Proof. For the first part, an example of a non-planar graph G with dim(G) = 2 is given in Fig. 1(b), where black vertices
form a minimum k-truncated resolving set of G for each k > 2.

For the second part, let G be a graph obtained from K;,> (m > 3) by subdividing exactly one edge once; then G is
non-planar by Theorem 5.1. It was shown in [10] that cdim(G) = dim(G) = m. Since diam(G) = 2, dimy(G) = dim(G) = m
by Observation 2.3(a). O

6. The k-truncated metric dimension of some classes of graphs

In this section, we determine dimy(G) for some classes of graphs. First, we consider graphs G with diam(G) < 2. For
two graphs H; and H,, diam(H; + H,) < 2; thus, by Observation 2.3(a), dim(H; + H;) = dimg(H; + H-) for any positive
integer k.

Theorem 6.1 ([4,30]). For n > 3,

. 3 ifn € {3, 6},
dlm(C + K]) = { n+2 .
n |2%2]  otherwise.

In [21], Harary and Melter claimed that dim(H; + H,) = dim(H;) + dim(H,) for all graphs H; and H,. However,
Theorem 6.1 contradicts this claim for H; = G, and H, = Kj.
Theorem 6.2 ([5]). Forn > 1,
1 ifn=1,
. _ 2 ifne{2,3},
dim(P, + K;) = 3 ifn=6,
|22] otherwise.

By Observation 2.3(a) and Theorems 6.1 and 6.2, we have the following.

Corollary 6.3. For any positive integer k and for n > 3,
3 ifne({3,6},

dlmk(C + K]) = 2n42 .
n Z=2]|  otherwise.

Corollary 6.4. For any positive integer k and for n > 1,

1 ifn=1,
. 2 ifn e {2, 3},
dimg(P, + Kq) = 3 i§n={6 J

2n+2 .
[#2=] otherwise.
The metric dimension of complete multi-partite graphs was determined in [29].
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Theorem 6.5 ([29]). For m > 2, let G = Ky, q,,....a,, be a complete m-partite graph of order n = Z}“:l a;. Let s be the number
of partite sets of G consisting of exactly one element. Then

. ) n—m ifs=0,
dlm(G)—{ n—m+s—1 ifs#0.

As an immediate consequence of Observation 2.3(a) and Theorem 6.5, we have the following.

Corollary 6.6. Form > 2, let G = Kq, a,,....a,, be a complete m-partite graph of order n = ZL a;. Let s be the number of
partite sets of G consisting of exactly one element. Then, for any positive integer k,

n—m ifs=0,

dimk(G)={ n—m+4s—1 ifs£0

Note that by Corollary 3.4(b) and Corollary 6.6, the star graph K; ,—; attains the maximum possible value of dim(T)
over all trees T of order n. Further, dimy(K; ,—1) =n — 2 for n > 3.
Now, we recall the metric dimension of the Petersen graph.

Theorem 6.7 ([24]). For the Petersen graph P, dim(P) = 3.
Since diam(P) = 2, Observation 2.3(a) and Theorem 6.7 imply the following

Corollary 6.8. For the Petersen graph P and for any positive integer k, dim(P) = 3.

Next, we determine the k-truncated metric dimension of cycles. We recall the following results.
Proposition 6.9 ([28]). For n > 3, dim(G,) = 2.

Proposition 6.10 ([23]). For n > 4, dim;(C,) = | 242 ].

Following [4], let M be a set of at least two vertices of Cy,, let u; and u; be distinct vertices of M, and let P and P’ denote
the two distinct u; — u; paths determined by C,. If either P or P, say P, contains only two vertices of M (namely, u; and
u;), then we refer to u; and u; as neighboring vertices of M and the set of vertices of P that belong to G, — {u;, u;} as the
gap of M (determined by u; and u;). The two gaps of M determined by a vertex of M and its two neighboring vertices of
M are called neighboring gaps. Note that, M has r gaps if [M| = r, where some of the gaps may be empty.

Lemma 6.11. For a positive integer k, let My be a minimum k-truncated resolving set of C, for n > 2k + 3. Then

(a) Every gap of My, contains at most 2k + 1 vertices. Moreover, at most one gap of My contains 2k + 1 vertices.
(b) If a gap of My, contains at least k + 1 vertices, then any neighboring gaps contain at most k vertices.

Proof. For a positive integer k, let My be a minimum k-truncated resolving set of G, for n > 2k + 3.

(a) If there is a gap of My containing 2k + 2 consecutive vertices uj, Ujy1, ..., Ujjok+1 Of G, where 0 < j < n—1
and the subscript is taken modulo n, then di(uj«[Mik) = di(ujrk+11Mi), a contradiction. If there exist two distinct gaps
{Uup, Upt1, - .., Upyox) and {ug, Ugt1, - . ., Ugtak) Of My, then di(upk|Mi) = di(ug4x|My), a contradiction.

(b) Suppose a gap of M, contains at least k+ 1 vertices, and one of its neighboring gaps contains more than k vertices.
Then there exist 2k + 3 consecutive vertices uj, Ujt1, ..., Uiy 0f G, such that My N {u;, i1, . . ., Uipoks2) = {Ujpkt1)
and di(ujx|My) = di(Ujri42IMi), a contradiction. O

Theorem 6.12. Let n > 3 and let k be any positive integer.

(a) If n < 3k + 3, then dimy(C,) = 2.
(b) If n > 3k + 4, then

LGg?;ﬁ ifn=0,1,...,k+2 (mod (3k + 2)),

+2
dim(C) = { [2E5] ifn=k+3,..., [%2]1 -1 (mod (3k +2)),
|22 ifn=T1357,....3k+ 1 (mod (3k +2)).
Proof. Let C, be given by ug, uq, ..., u,_1, ug for n > 3, and let k be a positive integer.

(a) Let n < 3k+ 3. Since {ug, u,}, where @ = min{2k + 2, n — 1}, forms a k-truncated resolving set of C,, dimy(C,) < 2.
By Corollary 3.4(a), dimy(C,) > 2. Thus, dimy(C,) = 2 for n < 3k + 3.

(b) Let n > 3k + 4; then dimy(C,) > 3. Since k is a positive integer, we must have 1 < k < L%J —2.

First, we show that dim(C,) > LZ”;kii‘Z”J; moreover, we show that dim(C,) > LZ”;,(‘_':‘Z”J ifn=k+3,..., f3k2—+51 -1
(mod (3k+2)). Let S be a minimum k-truncated resolving set of C,. If |Si| = 2¢ for some positive integer £, then at most ¢

gaps contain more than k vertices by Lemma 6.11(b), and those £ gaps contain at most 2k vertices except possibly one gap
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containing 2k + 1 vertices by Lemma 6.11(a); thus, the number of vertices belonging to the gaps of Sy is at most 3k¢ + 1,
and hence n — 2¢ < 3k + 1, which implies [Si| = 2¢ > [51=51 = [ 25351 . If |Si| = 2¢ + 1 for some positive integer €,
then at most £ gaps contain more than k vertices by Lemma 6.11(b), and those ¢ gaps contain at most 2k vertices except
possibly one gap containing 2k + 1 vertices by Lemma 6.11(a); thus, the number of vertices belonging to the gaps of S is

at most 3k€+k+1, and hence n—(2€+1) < 3k€+k+1, which implies |S| = 241 > [25H52] = |2l | > | 203 |

Now, suppose n = (3k+2)x +], wherex > land k+3 <j < f3k+51 — 1; notice k > 2. Then |S;| = 2x+ 2. To see why
ISk] < 2x + 2, note that R = (U} o {u 3k4-2)i> Uk42)i+2k+1)) U {UEks2)x, Ug), where = min{(3k +2)x +2k+1,n — 1},is a
k-truncated resolving set of C; with |R| = 2x+ 2. To see why |Si| > 2x+ 2, first observe that |S¢| > 2x+ 1 follows from the
lower bounds that we proved in the last paragraph. However if |Sy| = 2x+1, then we proved that |S;| > (2’;}:‘;21 > 2x+2,
giving a contradiction. Since |Si| = 2x + 2, we have |S;| = |_2”+‘”‘ 1| in this case.

3k+2

Now we show that dimy(G,) < [ 2525 | ifn =0, 1,..., k+2 (mod (3k+2))orn = 257, ..., 3k+1 (mod (3k+2)).

Case 1: n = (3k + 2)x + j, where x > 1 and 0 < j = 1. Note that |53 = 2x. Let S, = {ug, Uzi2} U
(U _1 {u(3k+2)i+1, Ugsk+2)i+2k+2})- Then Sy is a k-truncated resolving set of G, with [Si| = 2x. So, dimk(G,) < S| = 2x =
|— 3I<+2 J

Case 2: n = (3k +2)x +j, where x > 1Tand 2 < j < k + 2. Note that [ 2431 = 2x + 1. Let §, =

3k+2
{ug, Uzya} U (U i {U(3k+2)l+], (3k+2),+2k+2}) U {u@k42)x+1)- Since Si is a k-truncated resolving set of C, with |Sx| = 2x + 1,
dimy(Gy) < |Si] = 2x + 1 = [ 2251,
Case 3: n = (3k 4+ 2x + j, where x > 1and %3] < j < 3k + 1. Note that [253%1] = 2x + 2. Let
Sk = (U;‘:’g{u@kﬂ)i, Ukt2)i+2k+1}) U {Uzk+2), Ue}, Where @ = min{n — 1, (3k 4 2)x + 2k 4 1}. Then Sy is a k-truncated

resolving set of C, with [Si| = 2x 4 2. So, dim(G,) < [Si| =2x+2 = | 25251 O

Remark 6.13. Note that, for n > 4, Proposition 6.10 is an immediate corollary of Theorem 6.12 when k = 1.

Next, we determine the k-truncated metric dimension of paths. We recall the following result.

Proposition 6.14 ([23]). For n > 4, dim;(P,) = L2”+2J.

Let P, be an n-path given by ug, uy, ..., u,_1, where n > 4. Similar to the case for C,, we define gaps and neighboring
gaps of a vertex subset M of P, analogously, where |M| > 2. If d(ug, M) = x, then the set {ug, uy, ..., uy_1} is called the
initial gap of M; similarly, if d(u,—1, M) =y, then the set {u,_1, Un—2, ..., Us—y} is called the terminal gap of M. The union
of the initial gap and the terminal gap of M is called the union gap of M. If ug € M (u,_1 € M, respectively), then the initial
gap (terminal gap, respectively) is empty. The following lemma is analogous to Lemma 6.11, after adjusting for paths.

Lemma 6.15. For a positive integer k, let My be a minimum k-truncated resolving set of P, for n > k + 3. Then

(a) Every gap of My, contains at most 2k + 1 vertices, the initial gap of My, contains at most k + 1 vertices, and the terminal
gap of My contains at most k + 1 vertices. Moreover, at most one gap of My contains 2k + 1 vertices and the union gap
of My contains at most 2k + 1 vertices, but not both.

(b) If a gap of My contains at least k + 1 vertices, then any neighboring gaps contain at most k vertices. If the initial gap or
the terminal gap of M, contains at least one vertex, then its neighboring gap contains at most k vertices.

Proof. Let P, be given by ug, uy, ..., Us_1.

(a) If there is a gap of M containing 2k+-2 consecutive vertices uj, Ujy1, ..., Ujt2k+1 Of Py, where 1 < j < n—2k—2, then
di(ujpkIMy) = di(Ujprq1|Mp). If the initial gap or the terminal gap of M, say the former without loss of generality, contains
k42 consecutive vertices ug, Uy, ..., Uxt1, then di(uo|Mi) = di(uq|My). If there exist two distinct gaps up, Upt1, - - ., Uptak
and ug, Ugy1, . . ., Ugy2k Of My, then d,<(up+k|Mk) = di(ug+kIMy). If there exists a gap of My contalmng 2k +1 consecutlve
vertices, say ur, Ur41, - - -, Uryok, and the union gap of M contains 2k 4+ 1 vertices, say ( olui}) U (Uk 1{un_;}), then
di(ur 1 |My) = dk(uole)

(b) If a gap of M, contains at least k + 1 vertices and one of its neighboring gaps contains more than k vertices,
then there exist 2k 4 3 consecutive vertices u;, Ujy1, .. ., Ujtak+2 Of Py such that My N {uj, Uy, - . ., Ujtoks2) = {Ujrks1)
and di(uj1x|Mk) = di(Ujtrs2|Mg). If the initial gap or the terminal gap of M, say the former, contains « vertices, where
1 < a < k+ 1, and its neighboring gap contains more than k vertices, then there exist k 4+ 3 consecutive vertices
Ug—1, Ug, - -+ Ugyler1 Of Py such that My N {ug 1, U, . . ., Ugqis1} = {Ue} and di(ug—1IMy) = di(Uq41IMi). O

Theorem 6.16. Let n > 2 and let k be any positive integer.

(a) If n < k+ 2, then dimy(P,) = 1.
(b) If k+3 < n < 3k + 3, then dimy(P,) = 2.
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Uy

w1 U u2

w2
O——0OC—@

u3

Ugq

Fig. 2. The graph Us 4, where the black vertices form a minimum 1-truncated resolving set.

(c) If n > 3k + 4, then
|23kl ifn=0,1,...,k+2 (mod (3k + 2)),

3k+-2
dimy(P,) = 2] ifn=k+3,.., 12211 (mod (3k +2)),
L] ifn=1337,...,3k+1 (mod (3k+2)).

Proof. Let n > 2 and let k be a positive integer.

(a) If n < k + 2, then dimy(P,) = 1 by Corollary 3.4(a).

(b) Suppose k+ 3 < n < 3k + 3. If P, is given by ug, uq, ..., u,_1, then {uy, u,}, where « = min{2k + 1, n — 1}, forms
a k-truncated resolving set of P,;; thus dimy(P,) < 2. By Corollary 3. 4(a) dim(P,) = 2.

(c) Let n > 3k + 4. First, we show that dimy(P,) < Lz”;ji"z Jifn =0,1,...,k+ 2 (mod 3k + 2)) or n =
427, ...,3k+1 (mod (3k+2)), and dimy(P,) < [ 2521 [ifn = k+3, ..., [227—1 (mod (3k+2)). By Lemmas 6.11
and 6.15, for n > 3k+4 every k-truncated resolving set of P, and C,, respectively, has cardinality at least three. Moreover,
there exists a minimum k-truncated resolving set S of G, = P, + e with a gap containing 2k + 1 vertices uj, Ujt1 . . ., Ujyok
in G;, where 0 < j < n — 1 and the subscript is taken modulo n. If e = uj«uj;r41, then S forms a k-truncated resolving
set of P,; thus dimy(P,) < dim(C,) and the desired upper bounds follow from Theorem 6.12.

Second, we show that dimy(P,) > [ 2521 |; moreover, we show that dim(P,) > LZ”;ﬂ‘;‘J ifn=k+3,..., 2571
(mod (3k+2)). Let Sy be a minimum k- truncated resolving set of P, such that the union gap of S, contains 2k + 1 vertices.
If |Sk| = 2¢ for some positive integer ¢, then at most £ — 1 gaps contain more than k vertices by Lemma 6.15(b) and
those ¢ — 1 gaps contain at most 2k vertices by Lemma 6.15(a); thus, the number of vertices belonging to the gaps of
Sk or the union gap of Sy is at most 2k(¢ — 1) + k€ + (2k + 1) = 3k¢ + 1, and hence n — 2¢ < 3k¢ + 1, which implies
[Sk] = 2€ > dimy(Cy). If |Sk| = 2¢ 4+ 1 for some positive integer ¢, then at most £ — 1 gaps contain more than k vertices
by Lemma 6.15(b) and those £ — 1 gaps contain at most 2k vertices by Lemma 6.15(a); thus, the number of vertices
belonging to the gaps of S; or the union gap of Sy is at most 2k(¢ — 1) + k(£ + 1) + (2k + 1) = 3k€ + k + 1, and hence
n—(2¢ + 1) < 3kl + k + 1, which implies |S;| = 2¢ + 1 > dimy(Cy). In each case, dimy(P,) > dimy(Cy,), and thus the
desired lower bounds follow from Theorem 6.12. O

Remark 6.17. Note that, for n > 4, Proposition 6.14 is an immediate corollary of Theorem 6.16 when k = 1.

Next, we show a simple upper bound on dim(G) given a fixed diameter.
Lemma 6.18. For any connected graph G of order n with diam(G) = 8, dimy(G) < dimy(Ps,1) 4+ (n — (8 + 1)).

Proof. Suppose u and v are vertices in G at distance §, and let Ps, ¢ be a path of order § + 1 with end points u and v in G.
If Rs11 is @ minimum k-truncated resolving set of Ps,; C G, then R = (V(G) — V(Ps41)) U Rsy1 is a k-truncated resolving
set of G. Since |[R| = (n — (8 + 1)) + dimy(Ps41), dim(G) < dimy(Ps4q) + (n — (8 +1)). O

Next, we show the sharpness of the bound in Lemma 6.18. Clearly, the bound in the lemma is achieved for G € {K,, P,}.
Fora > 3 and b > 1, let Uy be the graph obtained from the disjoint union of K, and P, by joining an edge between a
vertex of K, and a leaf of P, (see Fig. 2 for Us 4). Let V(K;) = {ug, u1, ua, ..., ug—1} and let P, be given by wq, wa, ..., wp
such that upw; € E(Ugp); note that Uy, has order a + b and diameter b + 1.

Lemma 6.19. For the graph U, of order n = a + b and diameter b+ 1 <n — 2, wherea > 3 and b > 1,

a—1 ifb<2k+1,

dimg(Ug,p) =
imy(Ug,p) {a—1+dimk(szk) otherwise.

Proof. Let U, be the graph of order n = a+ b and diameter b+ 1, where 2 < b+ 1 < n — 2, with the labeling described
above (see Fig. 2). Let S be any minimum k-truncating resolving set for Ug . Since any distinct vertices in U{_ 1{u } are
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Fig. 3. [19] Graphs G, with a > 2, such that dim(G — v) — dim(G) = dim(G — v) — dim;(G) can be arbitrarily large.

twins in Ugp, |SN (U?;ll{ui})| > a — 2. Without loss of generality, let So = Uf;zl{ui} C S. Since di(ug|So) = di(u1]Sp), at
least one vertex lying on the u; — w;, path must belong to S. So, |S| > a — 1.

First, suppose diam(Ug ) < 2(k + 1); then b < 2k + 1. If b > k, then So U {wy} forms a k-truncated resolving set of
Ugp. If 1 < b <k —1, then So U {wy} forms a k-truncated resolving set of U, 5. In each case, |S| < [Sp| + 1 = a — 1. Since
[S| >a—1,dimg(Uyp) =a— 1.

Second, suppose diam(Ug ) > 2(k + 1); then b > 2k + 2. Let S; = So U {wy}. Then S; is a k-truncated resolving set
of Ugak+1 C Ugp and di(w;|S1) = (k+1,...,k+ 1) for eachi € {2k + 1,2k + 2, ..., b}. If S’ is a minimum k-truncated
resolving set for the w1 —wy path, then S;US’ is a k-truncated resolving set of U, , with |S1|+|S'| = a— 14+ dimy(Py—2);
thus, dimy (U p) < a — 1+ dimg(Pp_2). Since any vertex subset R € V(U, ) with |R| < a — 2 + dimy(Pp_2) fails to form
a k-truncated resolving set of Ugp, S| > a — 1 + dimg(Pp—2k). So, dimy(Ugp) = a — 1+ dimy(Pp_z). O

It can be shown that dimg(Ps4+1) + (n — (8§ + 1)) — dimk(Un+1-s.5—1) € {0, 1}. In particular, this construction achieves
the bound in Lemma 6.18 for certain values of n and §.
Lemma 6.20. For2<d§<n-—2

dimy(Ps41) + (n — (8 + 1)) — dimy(Up11-5,5-1) € {0, 1}.

Proof. Suppose that b =6 — 1 < 2k + 1. Then
dimg(Ps+1) + (n — (8 + 1)) — dimy(Up41-5,5—1) = dimy(Pp12) — 1 € {0, 1}

as dimy(Py4,) is 1 or 2 by Theorem 6.16.
If b > 2k + 1 instead, we have

dimy(Ps 1) + (n — (8 + 1)) — dimy(Upy1-5.5—1) = dimy(Pp12) — dimg(Pp_z) — 1.

In general, dimy(P,) < dimy(P;—_p) + dimg(Pp+1) and dimg(P,) > dimy(P,,) for m < n. Hence, dimy(Py2) < dimg(Py—_2) +
dimy(Pog+3) and dimg(Ppyp) — dimg(Pp—zr) < 2. Further, dimy(Pp12) > dimg(Py_yx) by Theorem 6.16, and the result
follows. O

7. The effect of vertex or edge deletion on the k-truncated metric dimension of graphs

Let v and e, respectively, denote a vertex and an edge of a connected graph G such that both G — v and G — e are
connected graphs. First, we consider the effect of vertex deletion on k-truncated metric dimension of graphs. We recall
the following results on the effect of vertex deletion on metric dimension and 1-truncated dimension.

Proposition 7.1.
(a) ([4]) dim(G) — dim(G — v) can be arbitrarily large;
(b) ([8]) dim(G — v) — dim(G) can be arbitrarily large.
Proposition 7.2 ([19]).

(a) For any graph G, dimy(G) < dimy(G — v) + 1, where the bound is sharp.
(b) The value of dim{(G — v) — dimy(G) can be arbitrarily large, as G varies (see Fig. 3).

For graphs G in Fig. 3, note that diam(G) = diam(G — v) = 2, where a > 2. It was shown in [19] that dim(G) = a + 1
and dim(G — v) = 2a. By Observation 2.3(a), for any positive integer k, we have dimy(G) = dim(G) = a + 1 and
dimy(G — v) = dim(G — v) = 2a, which implies the following.
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Corollary 7.3. Let k be any positive integer. The value of dimy(G — v) — dim(G) can be arbitrarily large, as G varies.

In contrast to the case for 1-truncated dimension (see Proposition 7.2(a)), we show that dimy(G) — dimy(G — v) can be
arbitrarily large for k > 2.

Proposition 7.4. For any positive integer k > 2, dimy(G) — dimy(G — v) can be arbitrarily large.

Proof. Let k > 2 and x > 1 be integers. Let G = Csaky2) + Ki with the vertex v in the Kj. Then dimi(G) =
| 1OCHE2RE2 | — (3k+ 2)x = 6kx + 4x by Corollary 6.3, and dimy(G — v) = | 2EE231 | = 10x by Theorem 6.12(b). So,
dimy(G) — dimy(G — v) = 6kx +4x — 10x = 6(k — 1)x > coasx > oo fork > 2. O

Next, we consider the effect of edge deletion on k-truncated metric dimension of graphs. Throughout the section,
let dy r(v1, v2) denote di(vq, v2) in a graph H. We recall the following results on the effect of edge deletion on metric
dimension and 1-truncated dimension.

Theorem 7.5 ([8]).

(a) For any graph G and any edge e € E(G), dim(G — e) < dim(G) + 2.
(b) The value of dim(G) — dim(G — e) can be arbitrarily large.

Theorem 7.6 ([19]). For any graph G and any edge e € E(G), dim(G) — 1 < dim;(G — e) < dim{(G) + 1.

The proof for Theorem 7.5(a) in [8], adjusted for the case of k-truncated metric dimension, provides the following
result. We include its proof to be self-contained.

Proposition 7.7. Let k > 3 be any integer. For any graph G and any edge e € E(G), dimy(G — e) < dimy(G) + 2.

Proof. Let S be a minimum k-truncated resolving set for G, and let e = uw. We show that S U {u, w} is a k-truncated
resolving set for G — e. Let x and y be distinct vertices in V(G — e) = V(G) such that, for some z € S, d¢ k(x, z) # d¢.«(y, 2)
and dg_, k(x, 2) = dg_e k(y, z). We consider two cases.

Case 1: dg(x,z) = dg_ex(X,2) or dok(y,z) = dg—ex(y,z) but not both. Suppose d¢k(y,z) = dg—ex(y,z). Then
dox(y, 2) = dgek(y, 2) = dg_e k(x, 2) > dg (%, 2), dc (X, z) < k, and the edge e must lie on every x—z geodesic in G. So, up
to transposing the labels u and w, we have dg k(x, u)+d¢ i (u, w)+de x(w, z) = dg k(x, z). Notice that d¢ k(x, u) = dg_e (X, u)
since there is an x — u geodesic in G that does not use the edge e. Since d¢ (X, u) + dg i (u, z) = dg(x,z) < doi(y,z) <
de x(y, u) + dg k(u, z), we must have dg (X, u) < dgi(y, u). Then de_e k(x, ) = dr(x, u) < dgi(y,u) < do_er(y, u) and
dg_ek(x,u) <k—1.

Case 2: dg k(x, z) # dg_ek(x, 2) and d¢ (¥, 2) # dc—e k(¥, ). In this case, the edge e must lie on every x —z geodesic and
on every y —z geodesic in G. Moreover, we must have either d¢ y(x, z) < dg(y, z) < k or dg(y, z) < dgi(x,z) < k. Notice
that if a geodesic from some vertex a to another vertex c traverses the edge e in the order u, w (as apposed to w, u), then
a geodesic containing e from any vertex b to ¢ must also traverse e in the order u, w. Suppose that u is traversed before
w by an x — z geodesic and a y — z geodesic (directed towards z) in G. Then an x — u geodesic and a y — u geodesic,
neither containing the edge e, are obtained by removing a u — z geodesic in G from the x — z geodesic and y — z geodesic
respectively. Thus, dg_e (X, u) # dg_er(y, u). O

Remark 7.8. Note that Proposition 7.7 and its proof hold when k = 1 or k = 2. For k € {1, 2}, we obtain the stronger
result that dimy(G — e) < dimy(G) + 1. For k = 1 this follows from Theorem 7.6. To see why it is true for k = 2, let S be
a minimum 2-truncated resolving set of G, let e = uw, and let x and y be distinct vertices in V(G — e) = V(G) such that
dc.2(x,2z) # dga(y,z) and dg_e2(x, z) = dg—e2(y, z) for some z € S; further, suppose that the edge e lies on every x — z
geodesic in G and dg »(x, u) < dg2(x, w).

First, we consider Case 1. Then 0 < d¢ »(x, z) < 2; notice that x # z since the edge e lies on every x — z geodesic in G.
If dga(x,2z) = 1, then e = uw = xz; if dg2(x,z) = 2, then x = u or xu € E(G). In each case, S U {u} forms a 2-truncated
resolving set for G — e. Next, we consider Case 2. Then d¢ (X, z) < dg2(y,z) < 2 or dg2(y, z) < dga(x,2z) < 2, say the
former; then e = uw = xz and x lies on every y — z geodesic in G. So S U {u} forms a 2-truncated resolving set for G — e.
Therefore, dim,(G — e) < dimy(G) + 1.

For graphs G satisfying dim,(G — e) = dimy(G) + 1, see Fig. 4, where a,b,c > 2; one can easily check that
R = (U xi}) U (U2 Hyi}) U (U] {z:}) forms a minimum 2-truncated resolving set of G — e with [R| = a+b+c — 3 and
that R = R — {z;} forms a minimum 2-truncated resolving set for G with |R| =a+ b+ c — 4.

Remark 7.9. The bound in Proposition 7.7 is sharp. For any integer k > 3, let G be the graph in Fig. 4 and let e = x;z;.
Let L; = UL {x;}, [ = U’_ {y;} and L3 = U-_,{z;}, where a,c > 3 and b > 2.

First, we show that dimy(G — e) = a + b 4+ ¢ — 3. Note that any two vertices in L; are twin vertices in G — e, where
i € {1, 2, 3}. So, for any k-truncated resolving set S of G—e, we have |[SNL{| >a—1,|SNL;| >b—1,and [SNL3| >c—1
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X e

Fig. 4. Graphs G with dimy(G — e) = dimy(G) + 1 and dimy(G — e) = dimy(G) + 2 for k > 3.

Fig. 5. Graphs G, with k > 2 and a > 2, such that dim(G) — dimy(G — e) can be arbitrarily large.

by Observation 2.1(b); thus, dim,(G—e) > a+ b+ c — 3. On the other hand, (L; UL, UL3) — {x1, y1, z1} forms a k-truncated
resolving set of G — e, and hence dim(G —e) < a+ b+ ¢ — 3. Thus, dimy(G—e)=a+b+c — 3.

Second, we show that dimy(G) = a+b+c—>5. For any k-truncated resolving set S’ of G, we have |[S' N (L; — {x1})| > a—2,
ISNL] > b —1,and |S'N (L3 —{z1})] = ¢ — 2 by Observation 2.1(b); thus, dim(G) > a + b + ¢ — 5. Since
(LiULy UL3)—{x1, X2, Y1, Z1, 2o} forms a k-truncated resolving set of G, dimy(G) < a+b+c—5. So, dimy(G) = a+b+c—5.

Therefore, dimy(G — e) = dimy(G) + 2 for k > 3.

In contrast to Theorem 7.6, we show that dimy(G) — dimy(G — e) can be arbitrarily large for any integer k > 2.
Theorem 7.10. For any integer k > 2, the value of dimy(G) — dimy(G — e) can be arbitrarily large.

Proof. Let G be the graph in Fig. 5. For each i € {1,2, ..., a}, Ng(x;) = Ng(¥i) = {zi, z{} = Ng—e(X;) = Ng_e(yi). Let k > 2
and a > 2 be any integers. Let S be any minimum k-truncated resolving set for G — e, and let S’ be any k-truncated
resolving set for G. By Observation 2.1(b), S N {x;, yi} # @ and S’ N {x;, y;} # @ for each i € {1, 2, ..., a}; without loss of
generality let So = U, {x;} S SNS".

First, we show that dim(G — e) = a + 1. Since di(zi|So) = di(2{|So) for eachi € {1,2,...,a}inG—e |S| > a+1,
and hence dim(G — e) > a + 1. Since Sp U {v} forms a k-truncated resolving set of G — e, dimy(G — e) < a + 1. So,
dim(G—e)=a+ 1.

Second, we show that dim(G) = 2a. Note that, for each i € {1,2, ..., a}, di(zSo) = di(2/|So) in G and Ri{z;, z]} =
{zi, 2, t;}; thus, S’ N {z;, Z], t;} # ¥ for each i € (1,2, ..., a}. So, |S'| > 2a, and hence dim(G) > 2a. Since So U (UL ,{z;})
forms a k-truncated resolving set of G, dimy(G) < 2a. Thus, dimy(G) = 2a.

Therefore, dimy(G) — dim(G—e)=2a—(a+1)=a—1—> occasa— oco. O

8. Trees

Many problems that are NP-complete on arbitrary graphs have efficient solutions when restricted to trees. This
phenomenon occurs with traditional metric dimension [21,31]. In this section, we present some preliminary results
regarding the behavior of truncated metric dimension on trees. In particular, we define a family of trees for which
finding exact truncated metric dimension is straightforward and describe a polynomial time algorithm for determining
the 1-truncated metric dimension of trees.
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Fig. 6. An element of T,. The black and gray vertices constitute a minimum 2-truncated resolving set.

Let T = (V,E) be a tree and call v € V an exterior major vertex if it has degree at least three and there is at least one
leaf u € V for which the path v, ..., u contains no vertices, except v, with degree greater than two. Let £(T) be the set of
leaves on T, o (T) be the set of exterior major vertices on T, and A(v) be the set of leaves associated with a vertex v € o(T).
For any tree T that is not a path, dim(T) = |4(T)| — |o(T)| and R = Uveo(T A(v) \ {x,} is a minimum resolving set where
X, is any element of A(v) [7]. As the proof that R is minimum relies on fqaving access to full distance information, the
precise relationship between this construction and truncated metric dimension on arbitrary trees is unclear. Nevertheless,
certain aspects of this proof, along with constraints placed on paths by tree structures, suggest that there may be efficient
means of finding minimum k-truncated resolving sets on arbitrary trees.

8.1. The Ty family of trees

First, we define a class of trees for which we can find minimum k-truncated resolving sets using the construction
described above for traditional metric dimension directly.

Let Ty be a family of trees defined recursively as follows. Let the empty tree, T = ({}, {}), be in T;. Then T = (V, E) € Ty
if four conditions hold.

1. T is connected.

2. There are no vertices of degree two in V.

3. For all minimum non-truncated resolving sets R of T and for all v € V, the vector of distances d,(v|R) is unique or
(k+1,...,k+ 1) (the vector of all (k + 1)’s).

4, For all minimum non-truncated resolving sets R of T:

T’ =T\ {v such that (Yu € V \ {v}) : di(v|R) # di(u|R)} € Tx.

Ty for k > 1 includes, for example, disjoint unions of three or more perfect m-ary trees with m > 2 of the same height,
with an additional vertex acting as a common root.

Condition (3) may seem difficult to verify at first glance; however, condition (2) significantly restricts the set of
minimum non-truncated resolving sets—as seen in the next result.

Lemma 8.1 ([28]). If T € Ty then every minimum non-truncated resolving set R of T must have the form Uven(T) A()\ {x,},
where x, is any element of A(v).

The definition of T} suggests an iterative method to find minimum k-truncated resolving sets for trees in this family.
Intuitively, we can find minimum k-truncated resolving sets of T € T} by constructing a minimum non-truncated resolving
set, removing vertices that this set resolves with k-truncated distances, and repeating until we are left with a tree with
at most one vertex. For example, when this approach is applied to the tree in Fig. 6, black vertices are selected for a
2-truncated resolving set on the first iteration and gray vertices are selected on the second iteration. More precisely, we
have the following result.

Theorem 82. Let Tp € Ty and Ry be a minimum non-truncated resolving set on Ty. Further, let the sequence of pairs
(T1,R1), ..., (Tn, Ry) be generated by repeated application of condition (4) in the definition of T\. In particular, R; is a minimum
non-truncated resolving set of Tj and T; = Tj_q \ {v such that (Yu € V \ {v}) : di(v|Rj—1) # dr(ulRj—1)}. If n > O and |T,| < 1,
then dimy(Tp) = Z]':O] [R;|. Otherwise, dimy(Tp) = Z};O Rjl.

Proof. First, notice that R; must be of the form Uven(Tj) A(v) \ {x,}, with x, € A(v) for all 0 <j < n. Then, based on the

definition of Tj, U}LO R; is a k-truncated resolving set of Tp. Further, for any k-truncated resolving set R of Ty there may
be a single vertex v € Ty such that di(v,r) = k+ 1 for all r € R. In particular, if n > 0 and |T,| < 1, dg(v,r) = k+ 1
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where v e T, forall r € U,n:_ol R;. Since, for all other vertices u € Ty \ Ty, there must be at least one r € 1"2_01 R such that

di(u, r) < k+ 1, this is a unique representation and UJ";(; R; is a k-truncated resolving set of Ty. Otherwise, R, is required

to differentiate the vertices of T,. As a result, dimy(Tp) < ij_ol [Rj] if n > 0 and |T,| < 1 and dimy(Tp) < Z}Lo [R;
otherwise.

To see that these are also lower bounds on dimy(Ty), suppose that R’ is a k-truncated resolving set of Ty taking a
different form than that described above. In particular, suppose that there is at least one 0 < j < n such that there is no
subset Rt € R’ of the form Uveﬁ(m A(v) \ {x,}, with x, € A(v). Let i be one such value of j.

We note that Ry C R’ as at least two leaves of Ty would be indistinguishable otherwise. Similarly, in order to distinguish
vertices in T;, R must include at least one vertex from all but one of the subtrees rooted at vertices in A(v) where v € o(T;).
The distance from these vertices to the associated element of o(T;) cannot exceed k+ 1, otherwise at least two leaves of T;
would be indistinguishable. This means that, if n > 0 and |T,| < 1, |[R| > Zj;(} IRj| and dim(Ty) = Z]'?;OI [Rj|. Otherwise,
IR'| = 3" IRl and dimy(To) = Y1 [R;l. O

8.2. Adjacency dimension on trees

In this section we focus our attention on k = 1, and present an algorithm for finding minimum 1-truncated resolving
sets on trees in polynomial time.

Let T = (V, E) be a tree with at least two vertices and an arbitrary root. For all v € V, let C(v) be the set of children of
v. We call R C V a locating dominating set when R is a 1-truncated resolving set and, for each v € V, there is r € R such
that dq(v, r) < 1. Put another way, each v € V \ R must be adjacent to a unique non-empty subset of vertices in R.

There exists an algorithm for finding minimum locating dominating sets on trees [32,33]—though it is not obvious
how this approach might be modified to find minimum 1-truncated resolving sets. In this section, we describe a novel
dynamic programming based algorithm for computing adjacency dimension exactly on trees.

For all v € V, let T, be the subtree of T rooted at v. Consider the following definitions:

e R(v) is the size of a minimum locating dominating set R, of T,.

e R'(v) is the size of minimum locating dominating sets R C V(T,) for T, \ {v} such that there is at least one r € R
with dy(r, v) < 1. R} is one such set.

R’(v) is the size of minimum locating dominating sets R € V(T,) for T, \ {v}. R} is one such set.

R”(v) is the size of minimum locating dominating sets R € V(T,) \ {v} for T,. R} is one such set.

It is easy to see that, for all v € £(T) except possibly the root, R(v) = 1, R'(v) = 1, and R”(v) = 0. Note that R”(v) is
undefined for leaves but, as we will see shortly, it can be defined non-recursively. We describe expressions for each of
these quantities before presenting the algorithm itself.

Assume that we have R(u), R'(u), R’(u), and R”(u) for all u € C(v) for some v € V. Consider a locating dominating
set R, of T,. Either v € R, or v ¢ R,. In the first case, all children of v are adjacent to at least one element of R,
namely v. To guarantee that each child is adjacent to a different non-empty subset of R,, there may be a single u € C(v)
adjacent only to v € R, while all other w € C(v) \ {u} must be adjacent to at least one other vertex of R,. Consequently,
R, = {v}UR; U (UweC(v)\[u} R),) for some choice of u € C(v). Then, in this case and taking each u € C(v) into account,
R(v) = 1+ minyec({R7(u) + 3, cc g R(w)} (Eq. (1))

If v € R, instead, there are two additional possibilities. Either only one or at least two children of v are included in R,,.
Suppose u € C(v) is the only element of R, in C(v). Since v is not adjacent to another vertex in R,, all children of u must
be adjacent to at least one other element of R,. The remaining children of v must be located and dominated without v.
Thus, Ry = {u} U (U,ec Ry Y (UweC(u)\{u) R,)) for some choice of u € C(v) and R(v) = minyec){1 + X, o R(w) +
ngc(u)\(u) R(w)} (Eq. (2)).

Next, suppose u, w € C(v) are both in R,. Because v is the only vertex that can possibly be adjacent to both u and
w, we follow an argument identical to when v € R, but focus instead on u and w. In particular, to guarantee that each
child of u is adjacent to a different non-empty set of R,, there may be a single x € C(u) adjacent only to u € R, while all
y € C(u) \ {x} must be adjacent to at least one other vertex of R,. A symmetric argument applies to children of w. The
remaining children of v must be located and dominated without v. As a result, R, can be expressed as the union of the
three sets

Ruz{u}UR;’uu( U R;)

yeC(u)\{xu}
Ro=(wUR, u( U ®)
yeC(w)\{xw}
R, = U Ry,
xeC(v)\{u,w}
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for some choice of the pair u, w € C(v) and for some choice of x, and x,,. Thus, in this case, R(v) can be described with
Egs. (3)-(5), and Egs. (1)-(5) fully describe R(v):

R(U):min{ 1+ min{R”(u)—l— > R/(w)}, (1)
uecl) weC)\lu)
. /

mnfie X R+ 3w, @

weC(u) weC(v)\{u}
. 2 . R// R/ 3
u,glelgv)[ +)glcl(rb}){ (X)+ Z (y)} ()

yeCu\(x)

. 2 /
+ min {R'0)+ Y RO (4)

yeC(w)\{x}

+ Y R } (5)

xeC(v)\{u,w}

R'(v) is nearly identical to R(v). The only difference occurs when v ¢ R). Since we are not concerned with ensuring
that v is adjacent to a different non-empty subset of R, as compared to all other vertices, we can focus on the case when
at least one child of v is in R. Suppose u € C(v) is in R). Following an argument similar to when v € R,, to guarantee
that each child of u is adjacent to a different non-empty subset of R, there may be a single w € C(u) adjacent only to u
while all other x € C(u) must be adjacent to at least one other vertex of R, . In this case, the remaining children of v must
be located and dominated without v. This yields Eqs. (7) and (8) and a full definition of R'(v) below.

R/ — . : /! / }
(v) mm: 1+urgcl(13){R W+ > Rwi, (6)
weC(v)\{u}
i 1 in {R” R 7
mn {1 min s 30 R) ”
xeC(u)\{w}

+ Y R} } (8)
weC(v)\{u}

For R”(v), we do not require that v be adjacent to any element of R. However, all children of v must be both located
and dominated. So, if v & R), we need sets R, for each u € C(v) (Eq. (10)). Again, the case when v € R} is identical to the
corresponding cases for R(v) and R'(v) (Eq. (9)):

R'(v) = min{ 1+ min {R”(u)—i— 3 R/(w)], 9)
uectv) weC(u)\{u}
Z R(u) } (10)
ueC(v)

Finally, R”(v) follows directly from R(v) when v ¢ R, (Egs. (11)-(14)). We note here that, when u € C(v), R”(u) forces
di(v,r)=2forallr e R):

R” _ : /
R"(v) = mm[ urélcl(?)[]—i-ZR(w)—l- 3 R(w)], (1)
weC(u) weC(v)\{u}
i 2 in {R" R 12
Jmin | +;;}1£){ W+ 3 R (12)
EC(U)\{X}
+,£é'3) N+ Y R (13)
yeC(w)\{x}
+ Y Rw| } (14)
xeC(v)\{u,w}

We are now ready to define an algorithm for finding the adjacency dimension of trees. Intuitively, Algorithm 1
determines the size of minimum locating dominating sets on T and then considers the possibility that each v € V may
be the only vertex not adjacent to any element of a 1-truncated resolving set. In particular, suppose v € V is to be this
vertex. Since every u € C(v) must be located and dominated, but cannot be included in any 1-truncated resolving set, we
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T2
1

T3

Fig. 7. A visualization of 53'4. Black vertices form a minimum 4-truncated resolving set.

are interested in R] for every u. Then, R = UueC(v) R’ locates and dominates every vertex w € V \ {v}, guaranteeing that
di(v,r) = 2 for all r € R. On the other hand, picking any v € V, R, is a locating dominating set of minimum size for T.
Since a 1-truncated resolving set of minimum size must either leave one vertex at distance 2 from all elements of the set
or dominate all vertices, taking the minimum over the sizes of these sets gives us dim(T).

We note that by using well established methods for keeping track of vertices solving the minimizations in R(v) and
R”(v), Algorithm 1 can be modified to return a minimum 1-truncated resolving set of T.

Algorithm 1 Minimum 1-Truncated Resolving Sets on Trees

Input: T = (V, E), a tree with |V| > 2
Output: Adjacency dimension of T
1: function dim(T)
2 S < {R(v)}, with any v € V as the root
3: for all v € V do
4 S«supd

5: return min(S)

ueC(v) Rw(u)}

8.3. Extreme tree constructions

We end our exploration of truncated metric dimension on trees by examining structures in this family with extreme
values of dimy. We observed earlier that for each k > 1, the maximum possible value of dimy(T) over trees T of order
n > 3isn— 2, attained by Ky p_1. N - N -

Next, we describe a family of trees Sg , such that dimy(Sg ) = B and dimy(Sg ) < dim(T) for any tree T with [Sg |
vertices. This construction is from [1] and improves upon a conjecture made in [37].

Let R = {ry,...,rg} and, for each r; € R, construct a path of length k with r; as an endpoint. Include a single extra
vertex at the end of the path associated with r;. This vertex will have truncated distance k + 1 to all elements of R. Now,
for each rj € R\ {ry}, add a path to ry of length (2k 4 £)/3 where £ = k mod 3. For each vertex v on the path connecting
r1 and rj, add a new path of length k — max{d(v, r1), d(v, r;)} with v as an endpoint. In particular, the other endpoint of
these paths will be at distance k from at least one of r; and r;. The number of vertices on these paths, including those on
the path between rq and 1, is (k* + k4 1)/3 if k mod 3 = 1 and (k? 4+ k)/3 otherwise. As a result, Sg «x has order

(k* + k + [k mod 3 = 1]))

ISpul =1+ Bk+ 1)+ (B —1) 3 )

§3,4 is given as an example in Fig. 7. N

Observe that R is a k-truncated resolving set of Sg x. Indeed, since d(r;, r;) > (2k + ¢)/3 where £ = k mod 3 for each
distinct pair ry, r; € R, each individual element of R resolves its associated path of length k (or k-1 for r1) while r; € R\ {r}
and r; together resolve all vertices v such that 0 < d(v, r1), d(v, ;) < k.

To see that dimy(Sg k) = B, note that, for any set of vertices R" in Sg  such that |R'| < B, there must be at least two
vertices u and v with di(u|R’) = d(v[R') = (k+ 1, ..., k+ 1). Thus, dimi(Sg ) > B.

9. Conclusion

Truncated metric dimension restricts the ability of individual vertices to accurately assess distances to far away points
in a graph. This variation on the traditional definition somewhat forces resolving sets to take a local perspective, and has
the potential to provide more useful distance constrained resolving sets in a number of real world scenarios.
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In this work, we explored connections to the traditional definition as well as behavior on paths, cycles, and certain types
of trees. Regarding the latter, it remains to answer: can the k-truncated metric dimension of arbitrary trees be determined
efficiently?

Trees T with dim;(T) = dim(T) were characterized in [19]. For each k > 1, it remains to characterize trees T for which
dimy(T) = dim(T). More generally, which connected graphs G satisfy dimy(G) = dim(G) for each k?

We also investigated graph constructions achieving upper and lower bounds in different circumstances. For all k > 1,
we determined the connected graphs G of order n with dimy(G) = n — 1 and dim(G) = n — 2. The graphs G of order n
with dimy(G) = 1 were found in [11]. These results lead to a natural question: which connected graphs G of order n have
dimy(G) = B, foreachk > 1and B € {2,3,...,n— 3}?

For all j,k > 1 we determined the maximum possible order, degree, clique number, and chromatic number of any
graph G with dimy(G) = j. There are other natural problems in this direction. For example, what is the maximum possible

degeneracy of any graph G with dimy(G) = j? We determined that the answer is ¥=1 when k is sufficiently large with respect

2
to j, but how large must k be as a function of j for the degeneracy to be I-1,

We determined the maximum n for which there exists a graph G with dimy(G) = j which contains the complete
bipartite graph K, , as a subgraph. There are other natural problems in this direction, such as maximizing the size of
other complete bipartite subgraphs besides K; , and K; . Another problem is to find the maximum n for which there
exists a graph G with dimy(G) = j which contains the wheel W,, as a subgraph, as well as the maximum n for which there
exists a graph G with dimy(G) = j which contains the n-cube Q, as a subgraph. These are analogues of some questions
that were investigated for metric dimension and edge metric dimension in [17,18].

A variety of other interesting questions remain open. For instance, can approximations of k-truncated metric dimension be
used to effectively approximate traditional metric dimension? How effective a tool are k-truncated resolving sets for mitigating
problems associated with the accumulation of variance in transmission networks in different types of applications? There are
many avenues for future exploration related to these ideas.
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