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ABSTRACT

Background: Physical activity may be a way to increase and
maintain fat-free mass (FFM) in later life, similar to the prevention
of fractures by increasing peak bone mass.

Objectives: A study is presented of the association between FFM
and physical activity in relation to age.

Methods: In a cross-sectional study, FFM was analyzed in relation
to physical activity in a large participant group as compiled in the
International Atomic Energy Agency Doubly Labeled Water
database. The database included 2000 participants, age 3—96 y, with
measurements of total energy expenditure (TEE) and resting energy
expenditure (REE) to allow calculation of physical activity level
(PAL = TEE/REE), and calculation of FFM from isotope dilution.
Results: PAL was a main determinant of body composition at all
ages. Models with age, fat mass (FM), and PAL explained 76% and
85% of the variation in FFM in females and males < 18 y old, and
32% and 47% of the variation in FFM in females and males 2 18 y
old, respectively. In participants < 18 y old, mean FM-adjusted FFM
was 1.7 kg (95% CI: 0.1, 3.2 kg) and 3.4 kg (95% CI: 1.0, 5.6 kg)
higher in a very active participant with PAL = 2.0 than in a sedentary
participant with PAL = 1.5, for females and males, respectively. At
age 18 y, height and FM—adjusted FFM was 3.6 kg (95% CI: 2.8,
4.4 kg) and 4.4 kg (95% CI: 3.2, 5.7 kg) higher, and at age 80 y 0.7

kg (95% CI: -0.2, 1.7 kg) and 1.0 kg (95% CI: -0.1, 2.1 kg) higher,
in a participant with PAL = 2.0 than in a participant with PAL = 1.5,
for females and males, respectively.

Conclusions: If these associations are causal, they suggest physical
activity is a major determinant of body composition as reflected in
peak FFM, and that a physically active lifestyle can only partly
protect against loss of FFM in aging adults. Am J Clin Nutr
2021;114:1583-1589.

Keywords: physical activity level, age, energy expenditure, body
composition, doubly labeled water
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Introduction

Physical activity provides a variety of health benefits.
Physically active individuals sleep better and function better (1).
In addition, physical activity can be an effective lifestyle
behavior to maximize fat-free mass (FFM), as a proxy for muscle
mass, during growth. Youth physical activity is positively
associated
withbonemassaccrualandbonestructure(2,3).Physicalactivity
may be a way to increase and maintain FFM to prevent
sarcopenia in later life, similar to the prevention of fractures by
increasing peak bone mass (4—6).

Skeletal muscle accounts for about half of FFM. Muscle mass
and bone mass are closely related throughout life, and FFM is the
strongest determinant of whole-body bone mineral content.
Modeling and remodeling processes that regulate bone strength
potentially explain these relations, depending on the forces
acting on the bones (7, 8). Physical activity positively affects
FFM accretion from birth onwards (9). Physical activity during
adolescence has been associated with greater FFM in both sexes
(10). Habitual physical activity has been shown to have a
significant independent effect on the growth of FFM during
adolescence (11). These results support recommendations for
sustained physical activity participation during the growing
years (12).

FFM peaks in early adulthood (13). A cross-sectional analysis
of a large multiethnic sample, ranging in age from 18 to 110y,
resulted in a quadratic model for FFM in relation to age with a
peak FFM at similar ages for Caucasians, African Americans,
Hispanics, and Asians. The estimated turning point, where
growth ended and FFM started to decline, was in the mid-40s for
females and mid-20s for males (13). Physical activity is likely to
have a role in preventing FFM loss at later ages. A cross-
sectional study showed that higher physical activity was
associated with higher FFM in participants aged 60—64 y (14). A
longitudinal study in participants aged 65-84 y showed that
greater physical activity retained a greater FFM over 5 y of
observation (15). On the other hand, a cross-sectional study in
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529 participants aged 18-96 y suggested that greater physical
activity was not

associated with higher FFM (16). Two longitudinal studies, the
first in 904 participants aged 67-84 y and the second in 302
participants aged 70—82 y, also showed that changes in FFM over
5 y were not associated with physical activity level (PAL), when
controlled for potential confounding variables (17, 18). Thus,
there is still controversy on the relation between physical activity
and FFM at later ages.

Here, the focus is on physical activity and FFM accrual during
early and later life. A cross-sectional analysis was performed in
a large participant group, deriving physical activity from doubly
labeled water—-measured energy expenditure. Thus, physical
activity was quantified with a criterion measure (19).

FIGURE]1 Participant flowchart.

Methods

The analysis included daily total energy expenditure (TEE)
measurements as compiled in the International Atomic Energy
Agency Doubly Labeled Water database (established to pool
doubly labeled water data across multiple studies), version 3.1.2
(20). All data were recalculated with the same standard
methodology for human doubly labeled water studies as
published recently (21). The analysis was restricted to TEE
measures accompanied by measurements of resting energy
expenditure (REE), to allow calculation of PAL (TEE/REE).
REE was measured under postabsorptive, thermoneutral, and
resting conditions with a ventilated hood, or during an early
morning resting interval, directly after waking up and before
having breakfast, in a respiration chamber.

The database included 2000 participants (1182 females and
818 males) with measurements on TEE and REE to allow
calculation of PAL (Figure 1). The age range of the participants
was 3-96 y. The data analysis did not include participants with
muscle wasting or participants with diseases affecting REE. All
TEE measurements were performed under habitual daily life
conditions, neutral energy balance, and before any study
intervention.  FFMwasderivedfromtotalbodywaterasmeasured
with isotope dilution, a method directly derived from carcass
analysis and thus 1 of the 2 single-indirect methods for body
composition (22).

Age > 18 y (" = 1838)
Females (7 = 1098); males ("7 = 740)

Associations between physical activity and FFM can be
confounded by fat mass (FM) because gains or losses in fat
typically lead to respective gains or losses in FFM (23). Changes
in body weight and body composition are primarily a function of
energy balance. Consequently, changes in FM and FFM are not
independent (24). Energy balance-related body mass changes
are generally assumed to consist of 75% as FM and 25% as FFM,
which is known as the “quarter FFM” rule (25). Refinements of
the quarter FFM rule were developed for specific situations like
diet-induced weight change in extremely lean participants or
participants with obesity (26, 27). Whatever rule applies for the
relation between energy balance—induced changes in FM and
FFM, FM should be included as an independent variable in an
analysis on physical activity and FFM.

Data analysis was performed separately for participants < 18 y
old and for participants 2 18 y old. For participants < 18 y old,
the relation between FFM and PAL was assessed in a multiple
regression model accounting for FM and age. To allow body
composition comparisons between participants > 18 y old, FFM
and FM were expressed as indexes, the fatfree mass index
(FFMI) and fat mass index (FMI), respectively, where FFMI =
FFM/height? and FMI = FM/height* (FFM and FM in kg and
height in m). In this way we corrected for differences in height,
in analogy with the BMI of Quetelet: BMI = FFMI + FMI (28).
Unfortunately, the index fails to adjust for height differences in
participants during growth (29). Thus, data analysis was
performed separately for participants < 18 y old, using
unadjusted FFM and FM as measures for body composition.
Models were generated separately for females and males. In
participants 2 18 y old, 4 models were applied in a top-down
procedure, with FFMI as the outcome variable:

* Model 1: age, FMI, PAL.

» Model 2: age, FMI, PAL, age’.

» Model 3: age, FMI, PAL, age?, age*PAL.

* Model 4: age, FMI, PAL, age?, age'PAL, age**PAL.

Because the linearity assumption for age was violated, a
quadratic term (age?) needed to be included. The model
explaining most variation in FFM from age-, FM-, and
PALdifferences between participants was model 3. For females,
model 3 was better than model 2, and model 4 was not better than
model 3. For males, model 3 was as good as model 2, and model
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4 was not better than model 3. Thus, model 3 was chosen for both
sexes. Model 3 was checked for (multi)collinearity after
centering for age, resulting in the same model fit and in condition
indexes <30 (18.2 for females, 16.6 for males), indicating there
was no collinearity problem.

Results

FFM was highest, around age 30 y, in females and males
(Figure 2). The mean of peak FFM was 47 kg in females and 60

Westerterp et al.

kg in males. Females showed a higher mean FM than males
already at early ages. Mean PAL was similar in females and
males at all ages (Table 1). The typical mean PAL value was
~1.5 in the youngest (age < 10 y) and oldest (age > 80 y)
participants (Figure 2). At adult age, from 18 to 80 y, PAL values
generally ranged between a minimum of 1.1 and a maximum
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FIGURE 2 FFM, FM, and PAL, plotted as a function of age. Values for 2000 participants—1182 females (left) and 818 males (right)—with a 4th-order

polynomial curve fit. FFM, fat-free mass; FM, fat mass; PAL, physical activity level.
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TABLET1 Participant characteristics’

Characteristics Females Males
<I8yoldn
84 78
Fat-free mass, kg 26.7+£10.9 26.9+10.2
Fat mass, kg
PAL 10.8+10.4 92+7.7
218 yold 1.61£0.30 1.62 £0.29
n
1098 740
Fat-free mass index, kg/m> 16.2+23 18.5+2.2
H 2
Fat mass index, kg/m 103 449 74436
PAL
171 026 178 030
+ +

"Values are mean + SD unless otherwise indicated. PAL, physical

activity level.

of 2.5 with a mean + SD value of 1.71 + 0.26 for females and
1.78 £ 0.30 for males.

In participants < 18 y old (n= 162), FFM was significantly
higher in individuals with an older age, higher FM, and higher
PAL (Table 2):

» Females, FFM (kg) =-1.53 + 1.90 Age (y) + 0.21 FM (kg)
+3.34 PAL, R*=0.85;

* Males, FFM (kg) =-7.42 + 2.00 Age (y) + 0.39 FM (kg) +
6.90 PAL, R*=0.76.

Thus,meanFM-adjustedFFMwas1.7kg(95%CI:0.1,3.2kg) and
3.4 kg (95% CI: 1.0, 5.6 kg) higher in a very active participant
with PAL = 2.0 than in a sedentary participant with PAL = 1.5,
for females and males, respectively.

In participants > 18 y old (n= 1838), FFMI was significantly
higher in participants with a higher FMI and PAL for both sexes
(Table 3):

 Females, FFMI (kg/m?) = 7.15 + 0.094 Age (y) - 0.001
Age? (y) + 0.312 FMI (kg/m?) + 3.214 PAL - 0.033
Age'PAL (y), R*=0.47;

 Males, FFMI (kg/m?) = 9.084 +0.141 Age (y) - 0.001 Age?
(y) +0.308 FMI (kg/m?) + 3.557 PAL - 0.036 Age*PAL (y),
R*=0.32.

! Values are coefficients and P values from a multiple regression

model of FFM (kg) as a function of age (y), FM (kg), and PAL, in females

Westerterp et al.

At age 18 y, mean FMI-adjusted FFMI was 1.3 kg/m?* (95%
CI: 1.0, 1.6 kg/m?) and 1.4 kg/m?(95% CI: 1.0, 1.8 kg/m?) higher

TABLE2 Sources of variation in FFM in participants <18 y old'
Unstandardized coefficient (B)

95% CI for B

Females

Age

M 0.21 0.10,0.31

PAL 3.34 0.21, 6.47
Males

Age

M 0.39 0.22,0.57

PAL 6.90 2.66, 11.15
TABLES3 Sources of variation in FFMI in participants > 18 y old'

Unstandardized
coefticient (B)
95% CI for B P

Females

(constant) 7.150 5.466, 8.838 <0.001

Age 0.094 0.049, 0.140 <0.001

FMI 0312 0.290, 0.334 <0.001

3.214 2.379,
4.050

Age? <0.001

Age<PAL <0.001
Males

(constant) 9.084 6.674, 11.494 <0.001

Age 0.141 0.080, 0.201 <0.001

FMI 0.308 0.267, 0.349 <0.001

PAL 3.557 2.442,4.671 <0.001

AgePAL <0.001

'Values are coefficients and P values from a multiple regression model
of FFMI (kg/m?) as a function of age (y), FMI (kg/m?), PAL, and

interactions with age (y), in females (> 0.32). FFMI, fat-free mass index;
FMI, fat mass index; PAL,n = 1098, R?= 0.47) and males
(n=740,R =

physical activity level.

in a very active participant with PAL = 2.0 than in a sedentary
participant with PAL = 1.5, for females and males, respectively.
The differences in FFMI imply, for a typical female with height
1.65 m and male with height 1.75 m, a mean FM-adjusted FFM
difference of 3.6 kg (95% CI: 2.8, 4.4 kg) and 4.4 kg (95% CI:
3.2, 5.7 kg), respectively. The positive association between

€ 2
fat-free mass; FM, fat mass; PAL, physical activity level.

n =84, R =0.85) and males (n =78, R =0.76). FFM,
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FMlIadjusted FFMI and PAL was smaller the older the
participant (Table 3). Thus, at age 80 y, the differences in FFM
between a sedentary and very active female and male were 0.7
kg (95% CI: -0.2, 1.7 kg) and 1.0 kg (95% CI: -0.1, 2.1 kg),
respectively.

Participants with a higher FM had a higher FFM. The mean of
the coefficient was 0.21 and 0.39 kg FFM/kg FM, or 17% and
39% FFM/kg body mass, in females and males < 18 y old,
respectively. At later ages (>18 y old), the mean of the coefficient
was 0.312 and 0.308 kg FFM/kg FM in females and males,
respectively, or 24% FFM/kg body mass.

Discussion

The data showed that physically active participants have
higher FM-adjusted FFM already during growth under age 18 y.
Thus, physical activity is a major determinant of body
composition as reflected in FFM in this cross-sectional analysis.
However, older age counteracted the positive association of
physical activity with FFM. Peak FFM was observed around age
30y, in females and in males (Figure 2).

Age of unadjusted peak FFM is clearly higher than age of peak
bone mass, in females at 1920 y and in males at 2024 vy,
independently of race (5). The higher age for unadjusted peak
FFM than for peak bone mass is probably explained by
FMassociated FFM. FM was highest in females around age 50 y
and in males around age 75 y (Figure 2). Thus, FM-associated
FFM dominated the decrease in physical activity—associated
FFM in participants with a higher FM.

A previous study found the age of unadjusted peak FFM to be
in the mid-40s for females and mid-20s for males (13). In the
current study, peak FFM was at ~30 y old for both males and
females, a difference possibly explained by differences in FM
and thus in FM-associated FFM between the populations of
study.

In adults, larger FFM in participants with a larger FM follows
the quarter FFM rule (25). On average, 24% of the higher body
mass was FFM. Factors confounding the quarter FFM rule,
including an extreme imbalance between energy intake and
energy expenditure and effects of differences in physical activity,
were excluded in the model as presented. All participants were
observed under neutral conditions of energy balance, and
measured PAL was included in the model as an independent
variable. Unfortunately, the quarter FFM rule still lacks a
mechanistic explanation (27).

The controversy on FFM maintenance through physical
activity at later age seems to be at least partly explained with
inclusion of differences in FM between participants, in the model
as presented. FFM adjusted for differences in FM was
significantly higher in participants with a higher PAL, for
females and males at younger age. The mean difference of 3.6 kg
(95% CI: 2.8, 4.4 kg) and 4.4 kg (95% CI: 3.2, 5.7 kg) FFM at
age 18 yand 0.7 kg (95% CI: -0.2, 1.7 kg) and 1.0 kg (95% CIL:
-0.1, 2.1) FFM at age 80 y, as calculated from the model
presented, between a female and male with PAL = 1.5 and 2.0,
respectively, is in line with an earlier cross-sectional analysis.
Manini et al. (18) observed (mean + SD) 2.0 £ 1.2 kg and 2.9
1.3 kg greater FFM in older females and males, respectively, in
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participants in the first than in those in the third tertile of doubly
labeled water— assessed activity energy expenditure. Differences
in FM between participants in the first and third tertiles of
activity energy expenditure were nonsignificant. However,
despite a greater FFM in participants with a higher PAL, the age-
related decline in FFM might not be prevented by a higher PAL.

In a 5-y follow-up of the participants 70—82 y old observed by
Manini et al. (18), changes in physical activity did not affect the
age-related change in body composition.

The average difference between peak FFM and FFM at age 80
y, an age interval where PAL remained the same, was -8 kg
(Figure 2). The 8-kg difference between peak-FFM and FFM at
age 80 y is similar to an earlier identical cross-sectional
comparison resulting in -7.5 kg and -8.8 kg difference for
females and males, respectively (30, 31). The mean difference in
FM-adjusted FFM between a sedentary and a very active
participant over the same age interval was between 3 and 4 kg.
At older age, despite a greater routine physical activity, the
inverse association of age*PAL counteracts the positive
association of PAL with FFM.

Although aerobic exercise does not completely prevent the
lower FFM in aging participants, resistance exercise may be
more helpful (32). However, although resistance exercise elicited
an ~l-kg increase in FFM among older adults, this is modest
compared with the differences with healthy young adults and
with the 8-kg difference aforementioned (33). Exercise training
in adults at older age has little or no effect on muscle mass but is
important for physical fitness and performance (34). Physical
activity and exercise training increase functional capacity,
allowing individuals to maintain their independence with
increasing age and participate in activities associated with daily
living (35).

One major cause of muscle mass loss with aging appears to be
the alteration in hormonal activity involved in muscle
regeneration and protein synthesis (36). Hormone replacement
therapy in women is shown to diminish age-associated muscle
loss and to raise the synthesis rate in skeletal muscle after
exercise training (37). Thus, age-associated hormonal activity is
one explanation for the age-associated interaction between
physical activity and FFM.

From a longitudinal point of view, physical activity during
growth may provide lifelong benefits by reaching higher peak
FFM, as shown for physical activity and lifelong bone health (38,
39). Development of FFM and bone mass may be coordinated
(40). The growth phase is a window of opportunity for achieving
higher peak FFM to maximize bone mass, through a physically
active lifestyle (41). If longitudinally confirmed, early-life
physical activity may contribute to prevention of disease in old
age (42).

Thestudyhasseveralstrengths.
Itwasconductedinalargeparticipant group (i.e., 2000 participants)
covering early to late life, obtaining physical activity from
doubly labeled water—measured energy expenditure and FFM
from total body water as measured with isotope dilution, both
considered gold-standard methods. An obvious limitation is the
observational design. In addition, the use of the 2-compartment
model of body composition cannot discern the differencein
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changesofseparate componentsofFFM, including muscle mass
and FM-associated FFM.

In conclusion, physically active participants show higher
FMadjusted FFM, especially after growth at age 18 y. Thus,
physical activity seems to be a major determinant of body
composition as reflected in peak FFM. Older age counteracts the
positive association of physical activity with FFM.
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