
 

 

iScience 



 

Continued 

1 

ll 
OPENACCESS 

Xueying Zhang, 

Yosuke Yamada, 

Hiroyuki Sagayama, 

..., Jeanine A. 

Verbunt, Jonathan 

C.K. Wells, George 

Wilson 

yyamada831@gmail.com (Y.Y.) 

sagayama.hiroyuki.ka@u. 

tsukuba.ac.jp (H.S.) 

aluke@luc.edu (A.H.L.) 

jennifer.rood@pbrc.edu (J.R.) 

dschoell@nutrisci.wisc.edu 
(D.A.S.) 
k.westerterp@ 

maastrichtuniversity.nl (K.R.W.) 
wwong@bcm.edu (W.W.W.) 

herman.pontzer@duke.edu 
(H.P.) 
j.speakman@abdn.ac.uk (J.R.S.) 

Highlights 
Human total, activity and 

basal energy expenditure 

was unrelated to outdoor 

temperature 

Indoor temperature in the 

USA was independent of 

latitude and was 18–25C 

Human metabolism is 

independent of outdoor 

temperature because we 

buffer exposure 

Keeping mice at 30C does 

not create the best 

translational efficiency to 

humans 

Zhang et al., iScience 25, 
104682 
August 19, 2022 ª 2022 The 
Authors. 



iScience 

Article 

Continued 

2 iScience 25, 104682, August 19, 2022 

ll 
OPENACCESS 

Article 

Human total, basal and activity energy 
expenditures are independent of ambient 
environmental temperature  

https://doi.org/10.1016/ 

j.isci.2022.104682 

ll 
OPENACCESS 

https://doi.org/10.1016/j.isci.2022.104682
https://doi.org/10.1016/j.isci.2022.104682
https://doi.org/10.1016/j.isci.2022.104682


 

Continued 

3 

ll 
OPENACCESS 

iScience 

Article 

Human total, basal and activity energy 
expenditures are independent of ambient 
environmental temperature 

Xueying Zhang,1,2 Yosuke Yamada,3,4,* Hiroyuki Sagayama,5,* Philip N. Ainslie,6,7 Ellen E. Blaak,8 

Maciej S. Buchowski,9 Graeme L. Close,6 Jamie A. Cooper,10 Sai Krupa Das,11 Lara R. Dugas,12,13 Michael Gurven,14 

Asmaa El Hamdouchi,15 Sumei Hu,16,17 Noorjehan Joonas,18 Peter Katzmarzyk,19 

William E. Kraus,20 Robert F. Kushner,21 William R. Leonard,22 Corby K. Martin,19 Erwin P. Meijer,8 Marian L. 

Neuhouser,23 Robert M. Ojiambo,24,25 Yannis P. Pitsiladis,26 Guy Plasqui,27 Ross L. Prentice,23 

Susan B. Racette,28 Eric Ravussin,19 Leanne M. Redman,19 Rebecca M. Reynolds,29 Susan B. Roberts,11 

Luis B. Sardinha,30 Analiza M. Silva,30 Eric Stice,31 Samuel S. Urlacher,32,33 Edgar A. Van Mil,34 Brian M. Wood,35,36 Alexia J. 

Murphy-Alford,37 Cornelia Loechl,37 Amy H. Luke,38,* Jennifer Rood,19,* Dale A. Schoeller,39,* 

Klaas R. Westerterp,40,* William W. Wong,41,* Herman Pontzer,42,43,* John R. Speakman,1,2,17,44,45,* and the IAEA 

DLW database consortium 

SUMMARY 

Lower ambient temperature (Ta) requires greater energy expenditure to sustain body 

temperature. However, effects of Ta on human energetics may be buffered by environmental 

modification and behavioral compensation. We used the IAEA DLW database for adults in the 

USA (n = 3213) to determine the effect of Ta (10 to +30C) on TEE, basal (BEE) and activity energy 

expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p 

> 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After 

adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships 

between TEE, BEE and Ta emerged in females but the effect sizes were not biologically 

meaningful. Temperatures inside buildings are regulated at 18–25C independent of latitude. 

Hence, adults in the US modify their environments to keep TEE constant across a wide range 

of external ambient temperatures. 

INTRODUCTION 

Obesity is a state of excess deposition of white adipose tissue (WAT) that has become a major global health issue 

(Blu¨her, 2019; Gregg and Shaw, 2017)because it leads to elevated risks for several chronic noncommunicable 

diseases like type 2 diabetes, hypertension and cancer (Babu et al., 2018; Pi-Sunyer, 2019). Although obesity is caused 

by an imbalance between energy intake and expenditure (Hall et al., 2012), the causes of this imbalance remain 

unclear and disputed (Hall et al., 2022; Speakman and Hall, 2021). In addition to white adipocytes, whose primary role 

is to store triglycerides, Eutherian mammals also have other types of adipocytes that appear to serve different 

functions (Cypess, 2022). In particular, brown adipocytes are characterized by multilocular lipid droplets and large 

numbers of mitochondria that carry the uncoupling protein 1 (UCP1) on their inner membranes that can uncouple the 

passage of protons across the inner membrane from the synthesis of ATP, thereby releasing their chemiosmotic 

potential directly as heat (Cannon and Nedergaard, 2004). The third type of adipocytes, called beige or brite 

adipocytes (Ishibashi and Seale, 2010; Wu et al., 2012), seem to display both white and an attenuated brown 

phenotype under different circumstances (Rosenwald et al., 2013). 

Brown adipose tissue, mainly comprising brown adipocytes, is abundant in small mammals and neonatal humans 

(Cannon and Nedergaard, 2004). Its presence in adult humans was controversial, but it was conclusively demonstrated 

around 10–15 years ago 

(Cypess et al., 2009; 

Nedergaard et al., 2007; 

Pfannenberg et al., 2010; 

Saito et al., 2009; van 

Marken Lichtenbelt et al., 

2009). Interestingly the 

amounts of BAT in adult 
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humans decline as we age (Cypess, 2022; Pfannenberg et al., 2010), coincident with a decline in whole-body metabolic 

rate (Pontzer et al., 2021) and an increase in adiposity (Schautz et al., 2012). Moreover, levels of BAT appear to be 

inversely related to WAT (Betz and Enerba¨ck, 2015; van Marken Lichtenbelt et al., 2009; Wang et al., 2015), 

suggesting that activation of BAT might be protective against obesity. But this inverse relation may also be because 

greater levels of WAT confer better cold resistance due to its insulative properties (Speakman, 2018) and hence lower 

the need for thermogenesis derived from BAT. Nevertheless, the potential to stimulate BAT, or force the conversion 

of beige adipocytes from their white to brown form, has received enormous attention, particularly in studies of mice 

(Li et al., 2022; Nedergaard and Cannon, 2014; Rosenwald et al., 2013; Wang et al., 2016). This has been stimulated 

in part by observations that transplanting BAT but not WAT in mice causes weight loss and can reverse diet-induced 

or genetic obesity (Liu et al., 2013, 2015; Stanford and Goodyear, 2013). 

When animals are exposed to the cold, they increase their energy expenditure to balance the elevated heat loss 

(Scholander et al., 1950), and this heat requirement is supplied mainly by the BAT (Foster and Frydman, 1979). This 

effect is consistent with the fact that levels of BAT in humans detected by PET-CT increase during the temperate winter 

(Au-Yong et al., 2009; Saito et al., 2009) and at colder ambient temperatures (Cypess, 2022). If such increases are 

linked to defense against obesity, one would anticipate obesity would be less common in areas where it is colder. Yet 

within the mainland USA, such a relationship is not observed (Speakman and Heidari-Bakavoli, 2016). There are 

several potential reasons why this may pertain. Notably, humans may buffer themselves from environmental 

temperature changes by modulating their external insulation and controlling the environments where they spend 

most of their time. This would then decouple their metabolic responses from environmental exposures. Indeed, such 

decoupling may have encouraged humans into positive energy balance and be a root issue in the obesity epidemic 

(Dhurandhar and Keith, 2014; Johnson et al., 2011; Keith et al., 2006; McAllister et al., 2009). 

Our understanding, however, is hindered by the fact that we have no information on how human total energy 

requirements vary as a function of ambient temperature for free-living humans. Measurements in the laboratory 

suggest humans conform to the normal ‘Scholander relation’ (Celi et al., 2010; Chen et al., 2013), but such 

individualscannotreacttothetemperatureanyotherwaythanphysiologically.Thisraisesthequestionwhetherfreeliving 

humans buffer such environmental changes entirely by behavioral changes or altering external insulation, leading to 

no effect of environmental temperature on metabolic rate. This would then explain the absence of an effect of 

ambient temperature on obesity. If true, switching on human BAT may be a viable treatment strategy. 

Alternatively,thebufferingofambienttemperatureimpactsmaybeincomplete,butstimulatedBATinthecoldis ineffective 

at regulating adiposity because it also stimulates food intake (Cypess, 2022) or compensations elsewhere in the energy 

budget (Careau et al., 2021). This would compromise the whole strategy of stimulating BAT toreduceWATlevels. 

Thecurrent paperprovideananalysisofthetotal,basaland activityenergyexpenditureof 3213 adult humans measured 

across the USA in relation to ambient temperature, showing that indeed environmental buffering is complete across 

the range from 10 to 30C. 

RESULTS 

We present here an analysis of measurements of TEE in 3213 adults (aged 18 to 101) living in the mainland USA, 

measured using the doubly-labelled water (DLW) method, drawn from the IAEA DLW database (Speakman et al., 

2019). All original estimates of TEE were re-calculated using a standard equation which has been shown to perform 

best in validation studies (Speakman et al., 2021b). We split the data by sex: 2426 measurements of females and 787 

measurements of males. In addition, for 185 of the males and 414 of the females, we also had measures of basal 

energy expenditure (BEE) from which we derived activity energy expenditure (AEE) and the physical activity level (PAL) 

– for calculation method, 

see STAR Methods. We 

matched the individual 

estimates of TEE, based 

on reported dates and 

locations for each 

measurement in the 

database, to the local 

ambient temperature and 

precipitation available 

from the National Centers 

for Environmental 

Information (NCEI) 

(Durre, 2018). This 

database contains 

averages of daily 

maximum, minimum, and 

average temperature 

(TMAX, TMIN, and TAVG) 

for the contiguous USA 

between January 1, 1951, 

and the present, based on 

gridded fields at a 

resolution of ½4 of a 

degree (0.041667). This is 

equivalent to each grid 

being 4.6 km latitudinally 

and ranges from 3.0 km in 

the North to 4.2 km in the 

South longitudinally. Daily 

weather data were 

extracted from the 

database for the days of 

each DLW measurement 

(typically 14 to 21 days) 

for each subject and then 

averaged across these 

days. Approximately 80% 

of the temperature 

measurements were 

below the laboratory 

determined lower critical 

temperature (lower 

bound of the 

thermoneutral zone) of 

around 23C (Brychta et 

al., 2019). 

Department of Medicine, 
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The relationships between total, basal, activity energy expenditure and ambient temperature 

In both males and females, there were no significant relationships between the average temperature and the 

unadjusted TEE, BEE, AEE and PAL (Figure 1). There were no significant relationships between the two other 

measurement temperature and the unadjusted TEE, BEE, AEE and PAL (see Figure S1). There were no significant 

relationships between body mass, FFM, and FM and the three temperature measurements (see Figure S2). We 

adjusted the levels of TEE, BEE, AEE and PAL for body size and age using the residuals from general linear models with 

FFM, FM, age and age2 as predictor variables, as all these variables were significantly related to TEE, BEE and AEE (see 

Figure S3) (Pontzer et al., 2021). In males, none of the adjusted expenditure measures changed significantly with the 

three measures of ambient temperature (Figure 2). In females, there was no relationship between adjusted AEE and 

PAL and temperature measures (Figure 2). Still, there was a significant decline in adjusted TEE with increased ambient 

temperature (Figure 2A, r2 (TEE) TAVG = 0.3%, F (TEE) TAVG = 7.23, P (TEE) TAVG = 0.007; Figure 2B r2 (TEE) TMAX = 0.25%, F (TEE) TMAX 

= 5.99, P (TEE) TMAX = 0.01; Figure 2C r2 (TEE) TMIN = 0.33%, F (TEE) TMIN = 8.13, P (TEE) TMIN = 0.004). However, the variance 

explained by temperature was very low (<0.5%) and the gradient of decline (0.01 MJ/day, se (SE) = 0.003 MJ/day) was 

equivalent to an average reduction in adjusted TEE by only 0.1 MJ (1.03%) over 10C (95%CI = 0.15 to 0.02 MJ/day). 

The effect size for temperature on TEE was far lower than the direct impact of temperature on energy expenditure 

observed in laboratory cold exposure studies. For example, RMR increases by about 25% coincident with a 3C drop in 

ambient temperature below thermoneutrality27, an effect about 753 greater than reported here. 

Adjusted BEE also decreased with the increase of ambient temperature for females (Figure 2D, r2 
(BEE) 

TAVG = 2.69%, F (BEE) TAVG = 11.38, P (BEE) TAVG = 0.001; Figure 2E r2 (BEE) TMAX = 2.37%, F (BEE) TMAX = 

10.01, P (BEE) TMAX = 0.002; Figure 2F r2 (BEE) TMIN = 3.16%, F (BEE) TMIN = 13.47, P (BEE) TMIN < 0.001). As with TEE, the explained 

variance was small and the gradient of decline (0.01 MJ/day, se = 0.004 MJ/day) was equivalent to an average 

reduction in adjusted BEE of just 0.1 MJ (1.86%) over 10 (95%CI = 0.19 to 

0.05 MJ/day). 

Associations between outdoor temperature (oC), indoor temperature (oC) and latitude (oN) 

We explored the relationships between outdoor ambient temperature, indoor ambient temperature and latitude. We 

found significant negative relationships between latitude and both outdoor and indoor temperature (Figure 3A, Foutdoor 

= 490.89, p < 0.001; Figure 3B, Findoor = 1713.03, p < 0.001). However, the gradient of the effect of latitude on indoor 

temperatures was significantly shallower (Fgroup = 8.81, p = 

0.003; Flatitude = 1989.87, p < 0.001, Fgroup x latitude = 134.87, p < 0.001) with the consequence that virtually all indoor 

temperatures were in the range 18–25C (Figure 3B). 

Seasonal variations of ambient temperature and seasonal effects on energetics 

There was clear seasonal variation in ambient temperature (Figure 4). Month had a significant effect on the ambient 

temperature (Figures 4A and 4F (TAVG) month = 679.66 p < 0.001; Figures 4B and 4F (TMAX) month = 592.50, p < 0.001; Figures 

4C and 4F (TMIN) month = 685.23, p < 0.001). The highest average level of TMAX was 31.30C (se = 0.27) in June, while the 

lowest average level of TMIN was 0.66C (se = 0.46) in January. We explored the seasonal effects on the unadjusted 

TEE, BEE, AEE, PAL, body mass (BM), fat free mass (FFM) and fat mass (FM) (Figure 4). Month had significant effects 

on all the traits for both males and females. 

TEE levels varied seasonally (Figure 4D, FM (TEE) month = 2.31, PM = 0.02; FF (TEE) month = 2.54, PF = 0.003). In males, the average 

TEE over time was 11.82 MJ/day (se = 0.09 MJ/day) with the highest level in August (12.88 MJ/day, se = 0.46 MJ/day) 

and lowest level in February (11.13 MJ/day, se = 0.38 MJ/day). The average level of TEE for females was 9.28 MJ/day 

(se = 0.04 MJ/day) which was significantly lower than males (F = 914.38, p < 0.001). The seasonal trend of TEE for 

females was different from that in males with the highest level in January (9.86 MJ/day, se = 0.21 MJ/day) and lowest 

level in August (9.05 MJ/day, se = 0.09 MJ/ day). Month also had an effect on BM (Figure 4H, FM (BM) month = 2.31, p = 

0.009; FF (BM) month = 4.02, p < 0.001), including clear seasonal trends in both FFM and FM (Figure 4I, FM (FFM) month = 2.31, 

p = 0.009; FF (FFM) month = 4.30, p < 0.001; Figure 4J, FM (FM) month = 2.37, p = 0.007; FF (FM) month = 3.29, p < 0.001). 

Once we adjusted for the differences in fat-free, fat mass and age there was no seasonal cycle apparent in the adjusted 

TEE, AEE and PAL data (Figure 4K, r2 (TEE) month = 0.55%, F (TEE) month = 1.62, P (TEE) month = 0.09; 

Figure 4M, r2 (AEE) month = 1.52%, F (AEE) month = 0.82, P (AEE) month = 0.62; Figure 4N, r2 (PAL) month = 1.06%, F (PAL) month = 0.57, P 

(PAL) month = 0.85). However, there was a marginally significant seasonal effect on 
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red lines are for females. 

adjusted BEE (Figure 4L, r2 (BEE) month = 3.8%, F (BEE) month = 2.11, P (BEE) month = 0.02). We also had repeated measures data 

for 109 adults that were measured twice in different months. We found there was a between individual effect and 

also month/seasonal effect on adjusted TEE (Figure 4O, F month = 1.98, P month = 0.04; F ID = 2.91, P ID < 0.001). These 

repeated measurements were mostly older (postmenopausal women) from geographically diverse regions of the US. 

DISCUSSION 

The absence of a relationship between TEE and ambient temperature is probably because of two behavioral responses 

that humans display in response to changes in ambient temperature. The first is to heat or cool homes to a relatively 

narrow range of 18–25C (Figure 3B). This buffers inhabitants from the temperature extremes outside, which in the 

present study varied from 10 to 30C (Figure 3A). Interestingly despite the numerous claims that humans always live 

inside the thermoneutral zone (Fischer et al., 2018, 2019), these indoor temperatures are almost all lower than the 

laboratory observed lower critical temperature (lower bound of the thermoneutral zone) for lightly clothed humans 

of around 23C (Brychta et al., 2019). This is probably because the lower critical point is by definition the lowest 

temperature at which the demands for thermoregulation are matched by the heat produced from basal metabolism 

(IUPS Thermal commission, 2003; Scholander et al., 1950). However, we spend very little of our time metabolizing at 

basal levels of energy expenditure (BEE). Most of the time, we expend energy at levels higher than BEE. On average, 

using the data from the present study, TEE was about 70% higher than BEE. If we lived perpetually inside the 

thermoneutral zone, we would have to continually dissipate this extra heat above BEE by either evaporation or 

becoming mildly hyperthermic to increase the driving gradient for heat loss. Probably largely to avoid these options, 

we habitually occupy an environment cooler than the lower critical 
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A B 

Figure 1. Associations between unadjusted total, basal, activity energy expenditure, physical activity levels, and ambient temperature (A) average temperature 

(oC) vs TEE (MJ/day). (B) average temperature (oC) vs BEE (MJ/day). 

(C) average temperature (oC) vs AEE (MJ/day). 

(D) average temperature (oC) vs PAL. Each data point is a different individual. The black lines are the least-squares fitted regression lines for males, and the 

https://doi.org/10.1016/j.isci.2022.104682
https://doi.org/10.1016/j.isci.2022.104682
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Figure 2. Associations between adjusted total, basal, activity energy expenditure, physical activity levels (adjusted for fat-free mass, fat mass, age, and age2), and ambient 

temperature 

(A) average (B) maximum and (C) minimum temperature (oC) vs adjusted TEE (MJ/day). 

(D) average, (E) maximum, and (F) minimum temperature (oC) vs adjusted BEE (MJ/day). (G) average, 

(H) maximum, and (I) minimum temperature (oC) vs adjusted AEE (MJ/day). 

(J) average, (K) maximum, and (L) minimum temperature (oC) vs adjusted PAL. Each data point is a different individual. The black lines are the least-squares fitted 

regression lines for males, and the red lines are for females. 

temperature (Figure 3B). Our routine heat production can then be dissipated along the gradient from core 

temperature to environmental temperature without the need to elevate evaporative water loss or body temperature. 

Nevertheless, there was a shallow relationship between indoor temperature and latitude, which could be because 

there is some carryover between outdoor and indoor clothing. This would mean that the lower critical temperature 

was not fixed at 23C (reflecting light clothing). Observations of what people wear indoors and outdoors at different 

latitudes and the thermal insulation of such clothing would be necessary to test this idea. 

This observation has implications for the debate about the best temperature at which to house mice to provide the 

best translation to studies of humans ((Fischer et al., 2018, 2019; Ganeshan and Chawla, 2017; Gordon, 2017; Keijer 

et al., 2019a, b; Li and Speakman, 2022; Maloney et al., 2014; Speakman and Keijer, 2014). Although it is generally 

agreed that keeping mice at 20–22C is too cold, the present data suggest that the widely promoted alternative of 

keeping them at 30C because a) that is mouse thermoneutral, and b) humans always live at thermoneutral, is based 

on an error in the second statement. Moreover, the first statement is also incorrect for many mouse strains 

(Speakman and Keijer, 2014). Responses of mice at 30C do indeed often differ from those reported at 20–22C 

(Feldmann et al., 2009; Giles et al., 2016, 2017; Kokolus et al., 2013; Rudaya et al., 2005). However, whether these 

mice give us any better translational efficiency to humans is questionable since humans do not routinely live in 

equivalent thermal conditions. 
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Figure 3. Associations between (A): outdoor temperature (oC) and (B): indoor temperature (oC) and latitude (oN) The outdoor 

temperature is the average temperature. For the indoor temperatures, the limits of 25C and 18C are shown in red. 

The absence of an effect of temperature on TEE in the present data is probably, therefore, primarily driven by the fact 

that humans in the modern United States are largely buffered from external temperatures. Whether this pattern is 

also evident in populations that do not have access to air-conditioning and heating is interesting, but at the moment, 

we do not have a large enough sample of TEE data from such communities to test the idea. Studies of forager-

horticulturalists (the Tsimane) suggest no effect of ambient temperature on RMR in a fully adjusted model (Gurven et 

al., 2016). However, the range of temperatures experienced by this population is relatively low (the average varies 

from 27C in May to 32C in September). The Yakut living in NE Siberia experience a much lower temperature range but 

use stoves to keep warm and have a difference in BMR between summer and winter of about 6% (Leonard et al., 

2014). Studies of subjects living in Basel (Senn et al., 2018) showed that BMR was unrelated to the average outdoor 

temperature, which varied between 5C and 30C). 

However, even humans living in the USA do not live their entire lives indoors. The second reason why TEE does not 

increase when it is colder is that humans have a unique capability to modulate their external insulation in response 

to ambient temperature conditions by adding and taking off outer clothing. Animals can also anticipate seasonal 

changes in ambient temperature and respond by molting into pelage that provides greater or less external insulation 

(Lindstro¨ m et al., 1993; McNab, 2002; Schieltz and Murphy, 1997; Scholander et al., 1950; Speakman et al., 2021a). 

However, the speed and flexibility of this response are considerably slower than for humans, who can vary their 

clothing extremely rapidly in response to changing external demands. Hence, even when humans go outdoors in the 

cold, they likely do not significantly elevate their expenditure on thermoregulation. A final possibility explaining the 

absence of an impact of ambient temperature on TEE would be that significant demands of thermoregulation are 

somehow compensated in the energy budget. This could happen, for example, if lower levels of physical activity offset 

greater expenditure on thermoregulation. Since these both affect AEE, our data does not allow us to separate these 

component costs. The alternative that greater levels of thermoregulation at lower temperatures lead to suppressed 

basal metabolism (Careau et al., 2021) can be discounted as BEE was also independent of ambient temperature. 

The effective absence of an impact of average ambient temperature between 10 and +30C was unexpected in the 

light of previous observations that brown adipose tissue appears to be seasonally activated (Au-Yong et al., 2009; 

Johnson et al., 2011; Ouellet et al., 2011; Yoneshiro et al., 2016), suggesting some physiological acclimatization to 

lowered temperature and elevated thermoregulatory requirements. This discrepancy suggests that elevations of BAT 

activity may not translate to changes in TEE. There are several potential explanations for this disconnect. The effect 

of changes in BAT on TEE may be too small to be significant because the periods of exposure to cold sufficient to 

stimulate BAT are too short for that expenditure to be detectable within the 2–3 weeks study period of a DLW 

measurement. Alternatively, activation of BAT may only be observed in a subset of the population (Au-Yong et al., 

2009; Ouellet et al., 2011; Yoneshiro et al., 2016), and the effects in these responders are swamped by the majority 

who do not respond. 

The absence of an association between ambient temperature and TEE is consistent with the lack of a relationship 

between ambient temperature and obesity prevalence for the same population (Speakman and Heidari-Bakavoli, 

2016). The absence of this relationship (also in the present individual-level data) could 
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Figure 4. Seasonal variations of ambient temperature and seasonal effects for TEE, BEE, AEE, PAL, body mass, fat-free mass, fat mass, adjusted 

TEE, adjusted BEE, adjusted AEE, adjusted PAL (adjusted for fat-free mass, fat mass, age, and age2) Plots A to J are shown as 

double plots to illuminate the seasonal trends, and all error bars are present as SE. (A) average temperature (oC). 

(B) maximum temperature (oC). 

(C) minimum temperature (oC). 

(D) Total energy expenditure (MJ/d). 
(E) Basal energy expenditure (MJ/d). 
(F) Activity energy expenditure (MJ/d). 
(G) Physical activity level. 
(H) Body mass (kg). 
(I) fat-free mass (kg). 
(J) fat mass (kg). 
(K) adjusted TEE. 
(L) adjusted BEE. 
(M) adjusted AEE, and (N) adjusted PAL. 
(O) repeated measures of adjusted TEE. Lines join repeat measures of the same individual in different months. Unadjusted and adjusted TEE, BEE, and AEE are in MJ/day, 
and each data point is a different individual. 

be because lower temperatures stimulate TEE, but this is offset by increases in food intake, or because the lower 

temperatures do not stimulate TEE because of the buffering effects discussed above. The current data support this 

latter interpretation. This is an important distinction because if elevated TEE due to thermoregulatory demands were 

offset by elevated food intake, then the strategy to increase TEE by, for example, switching on brown adipose tissue, 

or forcing the conversion of beige adipocytes from white to brown phenotypes, would be compromised. The absence 

of such a relationship leaves unexplained the strong relationship between ambient temperature and the prevalence 

of type 2 diabetes (Speakman and Heidari-Bakavoli, 2016). Potentially this is because stimulation of BAT in the cold is 

sufficient to affect glucose homeostasis but insufficient to affect energy budgets. Understanding the links of brown 

adipose tissue activity to free-living TEE is lacking and should be a key future goal. 
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In conclusion, the absence of a relationship between ambient temperature and human total energy expenditure 

suggests humans completely buffer themselves from the environmental impact of temperature probably by a 

combination of changing the thermal environment of their homes and office spaces and modulating external 

insulation (clothing) during periods spent outside these spaces. 

Limitations of the study 

Although we were able to connect 3213 measurements of TEE with external ambient temperature records, our study 

has several clear limitations. First, the temperature exposure was inferred from the general area where the people 

lived. We did not have actual temperature exposures for given individuals, which could in theory be measured by 

individuals carrying around temperature sensing devices while their expenditure was being measured. Moreover, we 

had no data on the clothing the individuals wore, both indoor and outdoor, which might indicate the insulation effects 

they were experiencing. Considerable individual variation in TEE (and AEE and BEE) at each temperature might reflect 

different actual exposures and clothing differences that we could not quantify. Second, we did not have individual 

measures of BAT activity regarding either the individual temperature exposure or the energy expenditure parameters. 

Connecting these observations together will provide much more insight into the links of BAT activity to total 

expenditure and its potential as a therapy for weight control. Third, while we did not observe substantial sex 

differences, the sample for females was much larger than for males, and hence the reason we were able to detect 

some minor effects in females but not males could have been a power issue. Finally, it would be interesting to contrast 

these data with measurements of energy demands of people living in environments where access to air-conditioning 

and heating is limited. 
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Any additional information required to reanalyze the data reported in this paper is available from the lead contact 

upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

This version of the database comprises 7,340 measurements of TEE using the DLW method. We selected from the 

database measurements of adults aged >18y, living in the USA, that also had a record of age, sex and date of 

measurement. In total, this resulted in 3254 measurements across both sexes. Estimates of TEE were recalculated 

using a standard equation shown to perform best in validation studies. These were then converted into energy 

expenditure using the Weir equation (Weir, 1949) with food quotients derived from the original studies. This included 

815 measurements of males and 2439 measurements of females. The individual studies that contributed to the 

database were all individually proved by multiple review boards. 

METHOD DETAILS 

The DLW method is based on the differential elimination of isotopes of oxygen and hydrogen introduced into the body 

water2. The details of the practical implementation of the method and its theoretical basis have been previously 

published (Speakman, 1997). 

For 185 of the males and 414 of the females, we also had measurements of basal metabolic rate (BMR). BMR 

measurements were derived either from hood calorimetry or minimal metabolic rate determined overnight during 

chamber calorimetry (strictly sleeping metabolic rates or SMR). We converted these BMR or SMR to estimates of basal 

energy expenditure (BEE). BMR and SMR are measured for relatively short periods lasting 30 minutes to an hour. BEE 

is a theoretical value for the energy expenditure that would pertain if this BMR/SMR measurement was sustained for 

24h. We estimated several other traits for those individuals where we could estimate BEE. These were the activity 

energy expenditure (AEE), defined as AEE = (0.9*TEE) - BEE, and the physical activity level or PAL, defined as PAL = 

TEE/BEE. 

Additional characteristics of the subjects (BM, age, and sex) were measured using standard protocols. We estimated 

the FFM of individuals using the estimated total body water and assumed hydration constant for lean tissue of 0.732 

(Wang et al., 1999) and then calculated FM by difference (FM = BM - FFM). This approach assumes no temperature 

effects on the hydration coefficient. The data span almost 35 years, with the first measurements in late 1981 and the 

latest measurements made in late 2017. 

We obtained daily averages of ambient temperature for each county of the USA available from the National Centers 

for Environmental Information (NCEI)’s FTP site (ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/). This dataset contains 

area averages of daily maximum, minimum, and average temperature (TMAX, TMIN, and TAVG) for the contiguous 

USA between January 1, 1951, and the present (Durre, 2018). Data in the database are available for gridded fields 

covering the land area between 24N and 49N and between 67W and 125W at a resolution of 0.041667. This means 

the grid point spacing is 4.6 km between latitudes and varies from 3.0 km in the North to 4.2 km in the South between 

longitudes. These data are compiled into averages for nine different types of area which includes countries. For each 

DLW measurement we used the known geographical location to identify the county where the person was measured 

and then extracted the daily averages for the duration of the measurement which was also provided from the IAEA 

DLW database. We then generated an average maximum, minimum and mean temperature exposure for each 

individual measurement. 

The indoor temperature data used in this study were selected from existing databases: ASHRAE Thermal 

Comfort Database I (De Dear, 1998), ASHRAE Global Thermal Comfort Database II (Licina et al., 2018) NREL RITS 

database (Booten et al., 2017), NYSERDA database (NYSERDA, 2019) and Indoor temperature - office work 

performance database (Porras-Salazar et al., 2021). We filtered those data mainly considering three aspects: datasets 

include indoor temperature or not; buildings located in the USA or not; buildings have location information 

(latitude/region/county) or not. We filtered 12,732 data points from the original databases. These data included 74 

cities from different counties in the USA, with latitudes ranging from 31 to 44.5. The annual total energy consumption 

per capita is based on the latest data from the EIA for 2018 (https://majorenergy.com/whats-the-average-home-

energy-consumption-in-your-state/). Using the same dataset, these data was compared to average temperature and 

days with a maximum temperature of less than 18 degrees in each state in the same year using the same dataset 

(ftp://ftp.ncdc.noaa.gov/ pub/data/daily-grids/). 

ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/
https://majorenergy.com/whats-the-average-home-energy-consumption-in-your-state/
https://majorenergy.com/whats-the-average-home-energy-consumption-in-your-state/
ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/
ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/
ftp://ftp.ncdc.noaa.gov/pub/data/daily-grids/
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QUANTIFICATION AND STATISTICAL ANALYSIS 

All results were presented as mean G se (standard error). n = 3254 and n represents the number of human subjects. 

We first calculated the seasonal variations of ambient temperature using One–way ANOVA. Then we calculated 

seasonal and latitude effects for all the traits (TEE, BEE, AEE, PAL, BM, FM and FFM) using one-way ANOVA and linear 

regression models. In the subsequent analyses, we used the unadjusted TEE measures as dependent variables in linear 

regression models with ambient temperature as the predictors. All analyses were performed using Minitab v19. It is 

well established that TEE depends on body composition and subject age. Patterns of variation in unadjusted values 

with ambient temperature might then reflect biased population sampling concerning these traits. We used general 

linear modeling to adjust (logged) TEE using log FFM, log FM, and age as the predictor variables. For log TEE, Log BEE 

and Log AEE the predictors Age, Age2, log FFM and log FM were all significant. Following the above procedure, we 

then calculated the residuals to the fitted models and added them back to the mean logged TEE, BEE and AEE across 

all measurements. These values were then converted back to ‘adjusted TEE, BEE and AEE’ measures by taking the 

exponent of the derived values. We then sought relationships between the adjusted variables and ambient 

temperature using linear regression. Significance was defined as p-value less than 0.05. 


