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Abstract—Motivated by the increasingly powerful computing 
capabilities of end-user equipment, and by the growing priva-
cy concerns over sharing sensitive raw data, a distributed 
machine learning paradigm known as federated learning (FL) 
has emerged. By training models locally at each client and 
aggregating learning models at a central server, FL has the 
capability to avoid sharing data directly, thereby reducing pri-
vacy leakage. However, the conventional FL framework relies 
heavily on a single central server, and it may fail if such a 
server behaves maliciously. To address this single point of fail-
ure, in this work, a blockchain-assisted decentralized FL 
framework is investigated, which can prevent malicious clients 
from poisoning the learning process, and thus provides a self-
motivated and reliable learning environment for clients. In 
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F uture wireless networks are expected to require very low 
latencies and high reliability. Migrating machine learning 
(ML) to end-user equipments (UEs) promotes these 
requirements, giving them the capability of making deci-

sions based on locally acquired data, even if it loses connectivity to 
the network. Since data available at a given end-user device is 
typically limited, the training of on-device ML models can bene-
fit from data exchange among UEs [1].

However, directly exchanging data among UEs presents 
risks of privacy leakage and information hijacking [2]. To 
reduce this risk, federated learning (FL) has been proposed, 
which is an ML framework that trains an artificial intelligence 
(AI) model across multiple UEs holding local datasets. In par-
ticular, distributed UEs train ML models locally, sharing their 
model parameters with a central server where these local mod-
els are aggregated into a global model. In this way, FL allows 
UEs to cooperatively learn a global model without exchanging 
their data directly. FL has been applied in practical settings, 
including health care and autonomous driving [3].

Although FL offers advantages in latency and privacy 
enhancement, it suffers from several limitations. First, in the FL 
process, it is assumed that the aggregator is trustworthy and will 
make fair decisions in terms of user selection and aggregation. 
However, this assumption is not always satisfied in practical situa-
tions where a biased aggregator can intentionally favor a few 
selected UEs, thereby biasing learning performance [1]. Second, 
although the aggregator has access only to the models trained by 
its UEs, private client data can still be inferred from those models. 
Thus, if the aggregator is compromised, privacy leakage happens. 
Lastly, the conventional FL architecture is vulnerable to malicious 
clients that can attack learning via model poisoning [4].

As a secure technology, blockchain has the capability to toler-
ate a single point of failure with distributed consensus, and it can 
further implement incentive mechanisms to encourage partici-
pants to effectively contribute to the system [5]. For these rea-
sons, blockchain has been introduced into FL to mitigate its 
aforementioned limitations. For example, [5] introduced a block-
chained FL architecture to verify uploaded model parameters 
and investigated related system performance indices, such as 
learning delay and block generation rate. Moreover, [6] proposed 
a privacy-aware architecture that uses blockchain to enhance 
security when parameters of ML models are shared among UEs. 
In addition, the authors of [7] proposed a high-level framework 
by enabling encryption during model transmission, and [8] fur-
ther applied this framework in a military setting. With the 
advanced features of blockchain, such as tamper-resistance, ano-
nymity, and traceability, an immutable audit trail of ML models 

can be created for greater trustworthiness in tracking and prov-
ing provenance [9]. In addition, security and privacy issues arising 
in the decentralized FL framework are investigated in [6], [10], 
[11], which delegated the responsibility of storing ML models to 
a trust community in the blockchain. However, the assumption 
of a trust community may incur the same privacy issues when 
ML models are transmitted over the air, and the credibility of this 
community also needs further verification. In addition, these 
works either have not completely clarified and fully addressed 
incidental issues, such as the long learning delay and impact of 
blockchain forking on FL, or are difficult to apply.

In the present work, a blockchain-assisted decentralized FL 
(BLADE-FL) framework, which can overcome the single point of 
failure problem, is proposed in detail. In addition, several residual 
issues that exist in the BLADE-FL framework are further investi-
gated, and related solutions are provided. The rest of this paper is 
organized as follows. The design of the BLADE-FL framework is 
presented in Sec. II, and residual issues, including privacy, resource 
allocation, and lazy clients, are investigated in Sec. III. In Sec. IV, 
extensive experimental results are provided to show the effective-
ness of the corresponding solutions. Finally, promising future direc-
tions are suggested and conclusions are drawn in Sec. V.

II. BLADE-FL Framework
With the aid of blockchain, the aim is to build up a secure and 
reliable FL framework. To ensure this, the model updating pro-
cess of FL is decentralized at each participating client, which is 
robust against the malfunction of traditional aggregators. In this 
section, the BLADE-FL framework, as well as how it achieves 
dynamic client selection and a decentralized learning aggrega-
tion process is presented.

The BLADE-FL framework is composed of three layers. In 
the network layer, the network features a decentralized peer-
to-peer (P2P) network that consists of task publishers and 
training clients, wherein a learning mission is first published by 
a task publisher and then completed by the cooperation of 
several training clients. Different from previous work, in which 
model aggregation occurs in a trust community in the block-
chain [5]–[11], a fully decentralized framework is realized in 
which each client must train ML models and mine blocks for 
publishing aggregating results. In the blockchain layer, each 
FL-related event, such as publishing a task, broadcasting learn-
ing models, and aggregating learning results, is tracked by 
blockchain. In the application layer, the smart contract (SC) 
and FL are utilized to execute the FL-related events. Next, the 
workflow and key components of the BLADE-FL framework 
are presented.

this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for 
blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the pro-
posed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy cli-
ent can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To 
address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise 
to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.
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A. Workflow
As shown in Fig. 1, the workflow of the proposed framework 
consists of the following steps.

❏❏ Step 1: Task publishing and node selection. A task publisher 
broadcasts an FL task by deploying an SC over the blockchain 
network. In the deployed SC, the task publisher must 
deposit a reward as a financial incentive for the learning 
task. The SC selects available training nodes to participate in 
this learning task.

❏❏ Step 2: Local model broadcast. Each training client runs its 
local training by using its own data samples, and it broadcasts 
local updates and the corresponding processing information 
(e.g., computation time and local data size) over the P2P 
network. Privacy leakage may happen during this transmis-
sion, and this issue is further investigated in Sec. III-A.

❏❏ Step 3: Model aggregation. Upon receiving the local 
updates from other training nodes before a pre-set time-
stamp, each client updates the global model according to the 
aggregating rule defined in the SC.

❏❏ Step 4: Block generation. Each training client changes roles 
from trainer to miner and begins mining until it either finds 
the required nonce or receives a generated block from other 
miners. The learning results are stored in the block as well. 
When one miner generates a new block, other clients verify 
the contents of this block (e.g., the nonce, state changed by 
the SC, transactions, and aggregated model). The resource-
allocation issue happens in each client in this step, and relat-
ed discussions will be given in Sec. III-B.

❏❏ Step 5: Block propagation. If a block is verified by the major-
ity of clients, this block will be added on the blockchain 
and accepted by the entire network. The lazy client issue 
occurs in this step and is further investigated in Sec. III-C.

❏❏ Step 6: Global model download and update. Each training 
client downloads the aggregated model from the block and 
performs updates before the next round of learning.

❏❏ Step 7: Reward allocation. The SC deployed by the task 
publisher rewards the training clients according to their 
contributions to the learning task.
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FIGURE 1 BLADE-FL workflow.
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Before delving into each step, the key 
designs in BLADE-FL are elaborated as follows.

B. SC Design
SCs are self-executing contracts defining rules 
for negotiating, verifying the fulfillment of 
rules, and executing the agreement using for-
mal code. The BLADE-FL framework relies 
on SCs to enable trusted dynamic client 
selections in terms of desired distributed learning services, 
without relying on a centralized authority. Moreover, BC-FL 
enables all clients to verify the learning results that are record-
ed on the blockchain, whereby distributed clients can be 
incentivized to participate and untrusted learning models can 
be detected. Based on the verification results, the reputation of 
each distributed client can be automatically updated, making 
the selection of learning nodes more reliable. In addition, the 
design of SCs in the BC-FL also includes the aggregating 
rules, and thus provides a fair and open rewarding of feedback 
for participating clients. The SC in BC-FL enables three main 
functions as follows.

Function 1: Learning task publishing. A task publisher 
broadcasts an FL task through an SC to all users. The SC con-
tains the task requirements (e.g., the data size, training accuracy, 
latency, etc.), the aggregating rules, and rewards paid by the 
task publisher.

Function 2: Dynamic bidding for requests and automatic 
incentive. Distributed training nodes, acting as auctioneers, bid 
for the task by replying with their costs and capabilities. Note 
that to enforce accountability, each training client must stake a 
deposit to the SC. The task replies from training nodes are 
recorded on the blockchain by the SC. Then, the SC selects 
training clients with more valuable replies (e.g., higher capability 
and lower cost) as the bid winners to jointly execute the FL 
task. The training clients that lose the bidding will reclaim their 
deposits from the SC, while the deposits made by winners will 
be automatically refunded if the learning results are verified to 
be trustworthy afterwards.

Function 3: Learning results aggregation and rewards feed-
back. Before generating a new block, each client will aggregate 
the uploaded models according to the aggregating rule in the 
SC, in which the contribution of each one in the aggregated 
model is also recorded in the newly generated block. Then, the 
SC is automatically triggered to reward the miner that helps 
aggregate the learning model and the training clients that con-
tribute to the FL process.

C. BLADE-FL Design
The main purpose of BLADE-FL is to enable trusted coopera-
tive ML among distributed nodes. The decentralized account-
ability enables all miners to verify the quality of uploaded 
models that are recorded on the blockchain. In addition, dis-
tributed training nodes can be motivated to participate in the 
FL process and misbehaving ones can be recognized from the 
low-quality FL services they provide. The key steps follow.

Local model updating and uploading: Training nodes 
are bid winners with capable devices and available sets of data 
samples. In each learning iteration, each training node updates 
a local ML model in a parallel manner by using the global 
model and its local data samples, and broadcasts its local model 
in the network. In the present work, local updates can be 
received by all of the miners through the gossip protocol [12] 
over the P2P network. In this context, the aggregation process 
in traditional FL is decentralized to each client that stores the 
uploaded models in its respective model pool.

Model aggregation: After collecting the uploaded models 
in the pool, each client calculates the global model updates 
according to the aggregating rule in the SC. In the proposed 
architecture, the clients are designed to aggregate the learning 
parameters truthfully through a distributed ledger. Similar to 
the prevailing block structure in [6], each block in a ledger 
consists of body and header parts. Specifically, the body stores 
the local model updates, such as the local data size and com-
puting time of the associated training node and the aggregat-
ed learning parameters. The header contains the information 
of a pointer to the previous block, block generation rate, and 
output value, such as the proof of work (PoW), in the consen-
sus protocol.

Model recording and publishing: The clients record the 
aggregated models in their blocks and publish the recorded 
models by broadcasting the generated block to the entire net-
work. The blocks can be generated by using distributed or 
lightweight consensus protocols, such as PoW, proof of stake 
(PoS), delegated PoS (DPoS), etc. [13]. In this paper, PoW is 
considered due to its strong security over decentralized net-
works, and a synchronous schedule is used to ensure that all of 
the miners start mining at the same time.

Once a client finds the hash value, its candidate block 
becomes a new block, and the generation rate of this block is 
controlled by the PoW difficulty. Then, this generated block is 
broadcast to all of the other miners in the framework. All of the 
other miners must verify the nonce and the aggregated results 
contained in this block. For example, clients can compare the 
aggregated results with the one in the publishing block or use a 
public testing dataset to justify the effectiveness of the uploaded 
models. If the verification result is correct, other clients will 
accept it as a legal block and record it; otherwise, others will 
discard this generated block and continue to mine the previous 
legal block.

Reward allocation: The task publisher provides learn-
ing rewards for the participating training nodes, and the 

As a secure technology, blockchain has the 
capability to tolerate a single point of failure with 
distributed consensus, and it can further implement 
incentive mechanisms to encourage participants to 
effectively contribute to the system [5].

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore.  Restrictions apply. 



30    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2022

volume can be proportional to the size of the training data. 
It is noted that the reward mechanism can be further 
amended by combining consideration of the data size and 
the quality of data samples. In this case, clients are responsi-
ble for verifying the trustworthiness of local updates after 
aggregation to address the situation that untruthful UEs 
may exaggerate their sample sizes with abnormal local 
model updates. Specif ically, when clients calculate the 
rewards for each training node, they can give scores/reputa-
tions to the training nodes based on the model qualities. In 
the next aggregation, nodes with low scores will be given 
less weight, and they will be identif ied and gradually 
ignored during learning. In practice, this can be guaranteed 
by Intel’s software guard extensions, allowing applications 
to be operated within a protected environment, which has 
already been used in blockchain technologies [14]. In addi-
tion, miners can also obtain rewards from mining and 
aggregating models, which can be treated as a gas tax in the 
traditional blockchain.

A task publisher first broadcasts an FL task through an SC 
to all of the clients. Consider that N clients dynamically bid for 
this task and use PoW as the consensus mechanism in the 

verification process. Thus, the pseudo-code of 
the proposed BLADE-FL framework is out-
lined in Algorithm 1.

III. Unique Issues and  
Potential Solutions
In this section, three critical issues that the 

proposed framework may be confronted with, namely, privacy, 
resource allocation, and lazy clients, are described.

A. Privacy
In BLADE-FL, the roles of each client include mining and 
training. To aggregate the global model, the trained local model 
will be published among clients, which raises privacy issues. 
Previous works [5]–[11] usually artificially assign the training 
and mining tasks to two disjoint sets of clients, and they widely 
adopt that the miners are always trustful. However, if an eaves-
dropper exists in the wireless environment, the published infor-
mation of local models can cause privacy leakage. To address 
this, a differentially private mechanism can be implemented at 
the client side. In detail, the key steps are as follows.

❏❏ Each client sets up a self-required privacy level for itself 
before training. For example, the ith client may have a local 
privacy budget ie . Note that a small value of ie  represents a 
high local privacy level, and it will induce more additive 
noises on the parameters.

❏❏ To achieve local differential privacy (LDP), each client will 
add a random noise that follows a certain distribution on the 
uploaded models. For example, a random Gaussian noise 

( , )N 0 2
v  or a Laplace noise ( )Lap m  will be added. Note that 

a large noise power implies a high privacy level.
❏❏ Upon receiving the perturbed models, all of the clients can 
aggregate the global model locally and store it in the gener-
ated block. Because of the injected noise, the learning con-
vergence as well as the system performance will be 
negatively affected. A trade-off between the privacy require-
ment and learning performance needs further investigation. 
In addition, a non-uniform allocation of additive noise over 
communication rounds may improve learning performance; 
for example, a decay rate for the noise power can be applied 
when the learning accuracy between two adjacent commu-
nication rounds stops improving [15].

B. Computing Resource Allocation
Since the computation resource is limited at each client, each 
participant must appropriately allocate the resources for local 
training and mining to complete the task. Specifically, more 
computing resources can be devoted either to accelerate model 
updating or block generation. To meet the specific task require-
ments, such as learning difficulty, accuracy, and delay, each node 
optimizes its allocation strategy to maximize its reward under 
constraints of local capability.

According to the constraints, the computing resource allo-
cation can be formulated as an optimization problem under the 
accurate mathematical model, as follows, in detail.

ALGORITHM 1 BLADE-FL algorithm.

Data: �Number of communication rounds T, initial model  
w0 , and proximal term μ in local learning.

1 Task publishing and client selection.
2  Initialization: t = 1 and w wi

0 0= , i6
3  while t T#  do
4     Local training:
5      while {1,2, , }Ni f!  do
6           Update local model w( )

i
t  as

7                2w w w w( ) | | | |argmin F 2wi
t

i i i
t 1

i

n
= + - -` j.

8      Model broadcasting and aggregating:
9      Update aggregated model w( )t  as

10           w wpt
i i

t

i

N

1
=
=

N/ .

11      Block mining and verification:
12    �  Each client starts mining its block that includes the 

aggregated model and verifies the generated block.
13      Global model downloading:
14    �  Each client downloads the aggregated model from the 

verified block and updates.
15      Reward allocation for learning and mining.
16      t t 1! +

   Result: w(T)N

The decentralized accountability enables all miners 
to verify the quality of up-loaded models that are 
recorded on the blockchain.
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❏❏ The block generation rate is determined by 
the computational complexity of the hash 
function and the total computing power of 
the blockchain network (i.e., total CPU 
cycles). The average CPU cycles required to 
generate a block can be defined as kcB , 
where k denotes the mining difficulty and cB  is the average 
number of total CPU cycles required to generate a block. 
Thus, the average generation time of a block (tB ) can be 
expressed as /kc NfB , where N is the number of clients and f 
denotes the CPU cycles per second of each client.

❏❏ The training time consumed by each training iteration, tT , 
can be expressed as (| | / )D c fT , where | |D  denotes the 
number of samples of each client and cT  is the number of 
CPU cycles required to train one sample.

❏❏ Considering that a typical FL learning task is required to 
be accomplished within a fixed duration of TSum , the total 
learning and mining times should be satisfied that 

( )K t t TSumT B #x + , where K denotes the number of total 
communication rounds and x  the number of local train-
ing epochs. Thus, to achieve required learning perfor-
mance, the number of communication rounds K should 
be optimized under a certain ratio between the training 
and mining time.

C. Lazy Clients
As the verification is processed locally, a lazy client may not 
perform local learning and directly copy uploaded parameters 
from other clients to save its computing resources. As a result, 
the client can devote more mining resources to reaping more 
mining rewards with a higher probability. However, this action 
degrades learning performance. To investigate the effect of lazy 
nodes on the system performance, related experimental results 
are provided in Sec. V-D.

To address the lazy client issue, a signature process can be 
implemented at each client, which is based on the pseudo-noise 
(PN) sequence. The signature in BLADE-FL is resilient to noise 
perturbation because the lazy clients are likely to perturb the 
plagiarized local models to hide their misbehavior. This process 
can improve detection accuracy of lazy clients at the cost of 
negligible overhead to the system. The details of the process are 
the following.

❏❏ Before broadcasting the local updates, each client will 
produce a PN sequence of length L, where L is usually a 
very large number (larger than the number of model 
parameters), and a same length with model parameters is 
selected and added to the local updates. This PN 
sequence has a high self-correlation coefficient and is 
difficult to detect or re-produce by other clients. Mini-
mally, the complexity of detecting the PN sequence 
should be much larger than that of training the neural 
network so as to deter the attempt to discover the used 
PN sequence.

❏❏ Upon receiving local updates from the other clients, each 
client will use its own PN sequence to check the correla-

tion coefficient with the updates. If high peaks in terms of 
the cross-correlation coefficient exist, then the lazy clients 
will be detected.

❏❏ Once a lazy client is recognized by a local client, this client 
can publish the previously used PN sequence to others and 
invite other honest clients to verify this process. Then, any 
future updates from the lazy client might be discarded as 
punishments.

The pseudo-code of the PN sequence detection is shown 
in Algorithm 2.

IV. Experimental Results and Potential Solutions
In this section, several related experimental results are provided 
to show the issues in the multi-functional miner in the pro-
posed BLADE-FL system.

A. System Setup
For each experiment, the original training data is divided into 
non-iid training sets, and locally computes a stochastic gradi-
ent descent (SGD) updated on each dataset, and then the 
server aggregates updates to train a globally shared classifier. 
The prototype is evaluated on the Fashion-MNIST and 
Cifar-10 datasets.

ALGORITHM 2 PN Sequence Detection Algorithm.

Data: �Number of communication rounds T, number of clients N, 
detection threshold m , and amplitude of PN sequence a .

1 Initialize: w 0 , t = 1
2 while t T1=  do
3     if t = 1 then
4     �    i-th client adds an additive PN sequence to the 

learned model as w w Si
t

i
t

i
ta= +X .

5     �    Calculates the cross-correlation value between model 
parameters and its own PN sequence as 

S w S w SC ( ),i j
t

i
t

j
t

i
t

j
t

j
t) ) a= = +X .

6         Sums the cross-correlation value as C C ,
,

j
t

i j
t

i i j

N

1
=

!=

/ .
7         Performs peak detection.
8         if C j

t $ m  then
9             w j

t  is copied;
10       else
11             w j

t  is honest.
12     Discards models that are detected as lazy clients

13   �  Performs a global update as w w| | / | | ,D Dt

i

N
i i

t

j

N
j

1 1

t t

R R=
= =
` cj mX  

where Nt is number of honest clients after discarding 
lazy clients.

14     t t 1= +

Result: wT

To achieve local differential privacy, each client 
will add a random noise that follows a certain 
distribution on the uploaded models.
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In the following, the average results of 20 run experiments 
are collected. For the blockchain setup, the total computation 
resource is set to T 200Sum =  for each training node, and the 
total number of clients to N = 20. In each communication 
round, each client uses tB  time resources to generate a block 
and tT  time resources to pursue a learning epoch, where tB = 2 
for all of the experiments. Letting /t tT Bi = , a larger i  implies 
that the client allots more computing resources to learning in 
each communication round.

B. Investigation of Local Differential Privacy
Local differential privacy is applied to each client by adding 
random Gaussian noise to the uploaded models in each com-
munication round. The testing accuracies of the Fashion-
MNIST and Cifar-10 datasets are plotted in Fig. 2 with respect 
to different privacy levels e . In addition, an adaptive noise 
decaying method is compared with the constant one, which 
will decrease the noise power when the accuracy stops increas-
ing. The figure further shows that the system achieves higher 
performance with a larger value of e , which is under weaker 
privacy protection, and the adaptive method can further 
improve the learning performance under the same level of pri-
vacy protection.

C. Investigation of Resource Allocation
In this subsection, the resource-allocation results and the train-
ing loss values with different ratios (i ) of both datasets are plot-
ted in Fig. 3. The figure shows the system performance for 
different ratios as the number of total communication rounds 

increases. Usually, a lower loss function value represents better 
training performance. In detail, it can be found that there exists 
an optimal total communication round (K) for each computing 
ratio i . For example, the smallest training-loss value can be 
obtained if clients stop learning in 14 communication rounds 
each with 15 learning epochs when x  = 1 in the Fashion-
MNIST dataset. Moreover, for different computing ratios, the 
optimal loss value tends to be different. This is due to the fact 
that the optimal number of local learning epochs varies accord-
ing to different values of i . In addition, similar trends can be 
found in the Cifar-10 dataset.

D. Investigation of Lazy Clients
In this subsection, the impact of lazy clients on the proposed 
framework is investigated. The signal-to-noise ratio (SNR) is used 
to denote the ratio of the power of original model parameters to 
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that of the injected PN sequence, and Table I represents the 
detection rate of lazy clients under different SNRs. If a high 
peaks in terms of the cross-correlation coefficient surpasses a pre-
defined threshold, this client is identified as a lazy one. A PN 
sequence of length 215 is generated and the first 25400 values are 
used to add onto the parameters. From the results with different 
SNRs, the detection performance is remarkable, and a nearly 
100% rate of lazy client recognition when SNR=3 dB can be 
obtained. Fig. 4 shows the PN sequence-protection performance 
(SNR = 6 dB) when there are 30% (6) lazy clients in each com-
munication round. As can be seen in this figure, the system per-
formance with a certain percentage of lazy clients degrades 
sharply, i.e., 22.1% and 19.6% reduction for the Fashion-MNIST 
and Cifar-10 datasets, respectively. In addition, the proposed PN 
sequence-protection method achieves 18% and 13.8% perfor-
mance gain for each dataset, respectively.

V. Future Directions and Conclusions
In this paper, the weaknesses of FL have been reviewed and a 
blockchain-assisted decentralized FL architecture, called 
BLADE-FL, has been proposed to address some of these weak-
nesses. The effectiveness of BLADE-FL has been shown in 
addressing these issues, notably the problem of a single point of 
failure that exists in conventional FL. In addition, further issues 

have been investigated for BLADE-FL including privacy, 
resource allocation, and lazy clients, and possible solutions have 
been provided to address those issues and explored with exper-
iments. These results provide guidelines for the design of the 
BLADE-FL framework.

Some directions for further study in this area include asyn-
chronous and heterogenetic investigations for different client 
capabilities, such as computing capability, training-data size, and 
transmitting diversity, and SC design, which provides reasonable 
reward allocation for training and mining. In addition, light-
weight model transmission using quantization and sketch may 
be an alterative way of reducing the transmission cost.
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TABLE I Detection rate with different PN sequence powers 
for Fashion-MNIST and Cifar-10 datasets.

SNR 9 dB 6 dB 3 dB

Fashion-MNIST 0.931 0.989 0.999

Cifar-10 0.925 0.975 0.996
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FIGURE 4 Learning performance with/without lazy client detection.
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