
26 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2022� 1556-603X/22©2022IEEE

Abstract—Motivated by the increasingly powerful computing
capabilities of end-user equipment, and by the growing priva-
cy concerns over sharing sensitive raw data, a distributed
machine learning paradigm known as federated learning (FL)
has emerged. By training models locally at each client and
aggregating learning models at a central server, FL has the
capability to avoid sharing data directly, thereby reducing pri-
vacy leakage. However, the conventional FL framework relies
heavily on a single central server, and it may fail if such a
server behaves maliciously. To address this single point of fail-
ure, in this work, a blockchain-assisted decentralized FL
framework is investigated, which can prevent malicious clients
from poisoning the learning process, and thus provides a self-
motivated and reliable learning environment for clients. In

Date of current version: 19 July 2022
Digital Object Identifier 10.1109/MCI.2022.3180932

When Federated Learning
Meets Blockchain: A New
Distributed Learning Paradigm

Chuan Ma, Jun Li, and Long Shi
Nanjing University of Science and Technology, CHINA

Ming Ding
CSIRO, AUSTRALIA

Taotao Wang
Shenzhen University, CHINA

Zhu Han
University of Houston, USA, and Kyung Hee University,
SOUTH KOREA

H. Vincent Poor
Princeton University, USA

Corresponding author: Jun Li (e-mail: jun.li@njust.edu.cn).

©
S

H
U

T
T

E
R

S
TO

C
K

.C
O

M
/Y

U
R

C
H

A
N

K
A

 S
IA

R
H

E
I

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 27

F uture wireless networks are expected to require very low
latencies and high reliability. Migrating machine learning
(ML) to end-user equipments (UEs) promotes these
requirements, giving them the capability of making deci-

sions based on locally acquired data, even if it loses connectivity to
the network. Since data available at a given end-user device is
typically limited, the training of on-device ML models can bene-
fit from data exchange among UEs [1].

However, directly exchanging data among UEs presents
risks of privacy leakage and information hijacking [2]. To
reduce this risk, federated learning (FL) has been proposed,
which is an ML framework that trains an artificial intelligence
(AI) model across multiple UEs holding local datasets. In par-
ticular, distributed UEs train ML models locally, sharing their
model parameters with a central server where these local mod-
els are aggregated into a global model. In this way, FL allows
UEs to cooperatively learn a global model without exchanging
their data directly. FL has been applied in practical settings,
including health care and autonomous driving [3].

Although FL offers advantages in latency and privacy
enhancement, it suffers from several limitations. First, in the FL
process, it is assumed that the aggregator is trustworthy and will
make fair decisions in terms of user selection and aggregation.
However, this assumption is not always satisfied in practical situa-
tions where a biased aggregator can intentionally favor a few
selected UEs, thereby biasing learning performance [1]. Second,
although the aggregator has access only to the models trained by
its UEs, private client data can still be inferred from those models.
Thus, if the aggregator is compromised, privacy leakage happens.
Lastly, the conventional FL architecture is vulnerable to malicious
clients that can attack learning via model poisoning [4].

As a secure technology, blockchain has the capability to toler-
ate a single point of failure with distributed consensus, and it can
further implement incentive mechanisms to encourage partici-
pants to effectively contribute to the system [5]. For these rea-
sons, blockchain has been introduced into FL to mitigate its
aforementioned limitations. For example, [5] introduced a block-
chained FL architecture to verify uploaded model parameters
and investigated related system performance indices, such as
learning delay and block generation rate. Moreover, [6] proposed
a privacy-aware architecture that uses blockchain to enhance
security when parameters of ML models are shared among UEs.
In addition, the authors of [7] proposed a high-level framework
by enabling encryption during model transmission, and [8] fur-
ther applied this framework in a military setting. With the
advanced features of blockchain, such as tamper-resistance, ano-
nymity, and traceability, an immutable audit trail of ML models

can be created for greater trustworthiness in tracking and prov-
ing provenance [9]. In addition, security and privacy issues arising
in the decentralized FL framework are investigated in [6], [10],
[11], which delegated the responsibility of storing ML models to
a trust community in the blockchain. However, the assumption
of a trust community may incur the same privacy issues when
ML models are transmitted over the air, and the credibility of this
community also needs further verification. In addition, these
works either have not completely clarified and fully addressed
incidental issues, such as the long learning delay and impact of
blockchain forking on FL, or are difficult to apply.

In the present work, a blockchain-assisted decentralized FL
(BLADE-FL) framework, which can overcome the single point of
failure problem, is proposed in detail. In addition, several residual
issues that exist in the BLADE-FL framework are further investi-
gated, and related solutions are provided. The rest of this paper is
organized as follows. The design of the BLADE-FL framework is
presented in Sec. II, and residual issues, including privacy, resource
allocation, and lazy clients, are investigated in Sec. III. In Sec. IV,
extensive experimental results are provided to show the effective-
ness of the corresponding solutions. Finally, promising future direc-
tions are suggested and conclusions are drawn in Sec. V.

II. BLADE-FL Framework
With the aid of blockchain, the aim is to build up a secure and
reliable FL framework. To ensure this, the model updating pro-
cess of FL is decentralized at each participating client, which is
robust against the malfunction of traditional aggregators. In this
section, the BLADE-FL framework, as well as how it achieves
dynamic client selection and a decentralized learning aggrega-
tion process is presented.

The BLADE-FL framework is composed of three layers. In
the network layer, the network features a decentralized peer-
to-peer (P2P) network that consists of task publishers and
training clients, wherein a learning mission is first published by
a task publisher and then completed by the cooperation of
several training clients. Different from previous work, in which
model aggregation occurs in a trust community in the block-
chain [5]–[11], a fully decentralized framework is realized in
which each client must train ML models and mine blocks for
publishing aggregating results. In the blockchain layer, each
FL-related event, such as publishing a task, broadcasting learn-
ing models, and aggregating learning results, is tracked by
blockchain. In the application layer, the smart contract (SC)
and FL are utilized to execute the FL-related events. Next, the
workflow and key components of the BLADE-FL framework
are presented.

this framework, the model aggregation process is fully decentralized and the tasks of training for FL and mining for
blockchain are integrated into each participant. Privacy and resource-allocation issues are further investigated in the pro-
posed framework, and a critical and unique issue inherent in the proposed framework is disclosed. In particular, a lazy cli-
ent can simply duplicate models shared by other clients to reap benefits without contributing its resources to FL. To
address these issues, analytical and experimental results are provided to shed light on possible solutions, i.e., adding noise
to achieve local differential privacy and using pseudo-noise (PN) sequences as watermarks to detect lazy clients.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

28 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2022

A. Workflow
As shown in Fig. 1, the workflow of the proposed framework
consists of the following steps.

❏❏ Step 1: Task publishing and node selection. A task publisher
broadcasts an FL task by deploying an SC over the blockchain
network. In the deployed SC, the task publisher must
deposit a reward as a financial incentive for the learning
task. The SC selects available training nodes to participate in
this learning task.

❏❏ Step 2: Local model broadcast. Each training client runs its
local training by using its own data samples, and it broadcasts
local updates and the corresponding processing information
(e.g., computation time and local data size) over the P2P
network. Privacy leakage may happen during this transmis-
sion, and this issue is further investigated in Sec. III-A.

❏❏ Step 3: Model aggregation. Upon receiving the local
updates from other training nodes before a pre-set time-
stamp, each client updates the global model according to the
aggregating rule defined in the SC.

❏❏ Step 4: Block generation. Each training client changes roles
from trainer to miner and begins mining until it either finds
the required nonce or receives a generated block from other
miners. The learning results are stored in the block as well.
When one miner generates a new block, other clients verify
the contents of this block (e.g., the nonce, state changed by
the SC, transactions, and aggregated model). The resource-
allocation issue happens in each client in this step, and relat-
ed discussions will be given in Sec. III-B.

❏❏ Step 5: Block propagation. If a block is verified by the major-
ity of clients, this block will be added on the blockchain
and accepted by the entire network. The lazy client issue
occurs in this step and is further investigated in Sec. III-C.

❏❏ Step 6: Global model download and update. Each training
client downloads the aggregated model from the block and
performs updates before the next round of learning.

❏❏ Step 7: Reward allocation. The SC deployed by the task
publisher rewards the training clients according to their
contributions to the learning task.

Smart Contract
Design

Block
Verification

New Block Accountant
Book

Mining Process

Mining Mining

Step 5: Block
Propagation

Step 4: Block
Generation

Step 3: Model
Aggregation

Role Changing

Step 7: Providing
Rewards

Step 1: Task
Publishing and Client

Selection

Step 2: Local
Model Broadcast

Step 6: Global
Model Download

Global Model
Update

Local
Learning

Learning

Client

Federated Learning Process

Task
Publisher

Model Pool Model Pool

P2P Network Layer

Blockchain Layer

Application Layer

Issues:

Computing Resource Allocation:
For each client, a reasonable
resource allocation for learning and
mining should be further planned.

Privacy Leakage: Upon receiving
the models broadcast from other
clients, it is possible that a client
can infer the private information of
other clients.

Lazy Clients: A lazy client can
simply duplicate models shared
by other honest clients in order to
reap benefits without contributing
its computing resources.

FIGURE 1 BLADE-FL workflow.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 29

Before delving into each step, the key
designs in BLADE-FL are elaborated as follows.

B. SC Design
SCs are self-executing contracts defining rules
for negotiating, verifying the fulfillment of
rules, and executing the agreement using for-
mal code. The BLADE-FL framework relies
on SCs to enable trusted dynamic client
selections in terms of desired distributed learning services,
without relying on a centralized authority. Moreover, BC-FL
enables all clients to verify the learning results that are record-
ed on the blockchain, whereby distributed clients can be
incentivized to participate and untrusted learning models can
be detected. Based on the verification results, the reputation of
each distributed client can be automatically updated, making
the selection of learning nodes more reliable. In addition, the
design of SCs in the BC-FL also includes the aggregating
rules, and thus provides a fair and open rewarding of feedback
for participating clients. The SC in BC-FL enables three main
functions as follows.

Function 1: Learning task publishing. A task publisher
broadcasts an FL task through an SC to all users. The SC con-
tains the task requirements (e.g., the data size, training accuracy,
latency, etc.), the aggregating rules, and rewards paid by the
task publisher.

Function 2: Dynamic bidding for requests and automatic
incentive. Distributed training nodes, acting as auctioneers, bid
for the task by replying with their costs and capabilities. Note
that to enforce accountability, each training client must stake a
deposit to the SC. The task replies from training nodes are
recorded on the blockchain by the SC. Then, the SC selects
training clients with more valuable replies (e.g., higher capability
and lower cost) as the bid winners to jointly execute the FL
task. The training clients that lose the bidding will reclaim their
deposits from the SC, while the deposits made by winners will
be automatically refunded if the learning results are verified to
be trustworthy afterwards.

Function 3: Learning results aggregation and rewards feed-
back. Before generating a new block, each client will aggregate
the uploaded models according to the aggregating rule in the
SC, in which the contribution of each one in the aggregated
model is also recorded in the newly generated block. Then, the
SC is automatically triggered to reward the miner that helps
aggregate the learning model and the training clients that con-
tribute to the FL process.

C. BLADE-FL Design
The main purpose of BLADE-FL is to enable trusted coopera-
tive ML among distributed nodes. The decentralized account-
ability enables all miners to verify the quality of uploaded
models that are recorded on the blockchain. In addition, dis-
tributed training nodes can be motivated to participate in the
FL process and misbehaving ones can be recognized from the
low-quality FL services they provide. The key steps follow.

Local model updating and uploading: Training nodes
are bid winners with capable devices and available sets of data
samples. In each learning iteration, each training node updates
a local ML model in a parallel manner by using the global
model and its local data samples, and broadcasts its local model
in the network. In the present work, local updates can be
received by all of the miners through the gossip protocol [12]
over the P2P network. In this context, the aggregation process
in traditional FL is decentralized to each client that stores the
uploaded models in its respective model pool.

Model aggregation: After collecting the uploaded models
in the pool, each client calculates the global model updates
according to the aggregating rule in the SC. In the proposed
architecture, the clients are designed to aggregate the learning
parameters truthfully through a distributed ledger. Similar to
the prevailing block structure in [6], each block in a ledger
consists of body and header parts. Specifically, the body stores
the local model updates, such as the local data size and com-
puting time of the associated training node and the aggregat-
ed learning parameters. The header contains the information
of a pointer to the previous block, block generation rate, and
output value, such as the proof of work (PoW), in the consen-
sus protocol.

Model recording and publishing: The clients record the
aggregated models in their blocks and publish the recorded
models by broadcasting the generated block to the entire net-
work. The blocks can be generated by using distributed or
lightweight consensus protocols, such as PoW, proof of stake
(PoS), delegated PoS (DPoS), etc. [13]. In this paper, PoW is
considered due to its strong security over decentralized net-
works, and a synchronous schedule is used to ensure that all of
the miners start mining at the same time.

Once a client finds the hash value, its candidate block
becomes a new block, and the generation rate of this block is
controlled by the PoW difficulty. Then, this generated block is
broadcast to all of the other miners in the framework. All of the
other miners must verify the nonce and the aggregated results
contained in this block. For example, clients can compare the
aggregated results with the one in the publishing block or use a
public testing dataset to justify the effectiveness of the uploaded
models. If the verification result is correct, other clients will
accept it as a legal block and record it; otherwise, others will
discard this generated block and continue to mine the previous
legal block.

Reward allocation: The task publisher provides learn-
ing rewards for the participating training nodes, and the

As a secure technology, blockchain has the
capability to tolerate a single point of failure with
distributed consensus, and it can further implement
incentive mechanisms to encourage participants to
effectively contribute to the system [5].

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

30 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2022

volume can be proportional to the size of the training data.
It is noted that the reward mechanism can be further
amended by combining consideration of the data size and
the quality of data samples. In this case, clients are responsi-
ble for verifying the trustworthiness of local updates after
aggregation to address the situation that untruthful UEs
may exaggerate their sample sizes with abnormal local
model updates. Specif ically, when clients calculate the
rewards for each training node, they can give scores/reputa-
tions to the training nodes based on the model qualities. In
the next aggregation, nodes with low scores will be given
less weight, and they will be identif ied and gradually
ignored during learning. In practice, this can be guaranteed
by Intel’s software guard extensions, allowing applications
to be operated within a protected environment, which has
already been used in blockchain technologies [14]. In addi-
tion, miners can also obtain rewards from mining and
aggregating models, which can be treated as a gas tax in the
traditional blockchain.

A task publisher first broadcasts an FL task through an SC
to all of the clients. Consider that N clients dynamically bid for
this task and use PoW as the consensus mechanism in the

verification process. Thus, the pseudo-code of
the proposed BLADE-FL framework is out-
lined in Algorithm 1.

III. Unique Issues and
Potential Solutions
In this section, three critical issues that the

proposed framework may be confronted with, namely, privacy,
resource allocation, and lazy clients, are described.

A. Privacy
In BLADE-FL, the roles of each client include mining and
training. To aggregate the global model, the trained local model
will be published among clients, which raises privacy issues.
Previous works [5]–[11] usually artificially assign the training
and mining tasks to two disjoint sets of clients, and they widely
adopt that the miners are always trustful. However, if an eaves-
dropper exists in the wireless environment, the published infor-
mation of local models can cause privacy leakage. To address
this, a differentially private mechanism can be implemented at
the client side. In detail, the key steps are as follows.

❏❏ Each client sets up a self-required privacy level for itself
before training. For example, the ith client may have a local
privacy budget ie . Note that a small value of ie represents a
high local privacy level, and it will induce more additive
noises on the parameters.

❏❏ To achieve local differential privacy (LDP), each client will
add a random noise that follows a certain distribution on the
uploaded models. For example, a random Gaussian noise

(,)N 0 2
v or a Laplace noise ()Lap m will be added. Note that

a large noise power implies a high privacy level.
❏❏ Upon receiving the perturbed models, all of the clients can
aggregate the global model locally and store it in the gener-
ated block. Because of the injected noise, the learning con-
vergence as well as the system performance will be
negatively affected. A trade-off between the privacy require-
ment and learning performance needs further investigation.
In addition, a non-uniform allocation of additive noise over
communication rounds may improve learning performance;
for example, a decay rate for the noise power can be applied
when the learning accuracy between two adjacent commu-
nication rounds stops improving [15].

B. Computing Resource Allocation
Since the computation resource is limited at each client, each
participant must appropriately allocate the resources for local
training and mining to complete the task. Specifically, more
computing resources can be devoted either to accelerate model
updating or block generation. To meet the specific task require-
ments, such as learning difficulty, accuracy, and delay, each node
optimizes its allocation strategy to maximize its reward under
constraints of local capability.

According to the constraints, the computing resource allo-
cation can be formulated as an optimization problem under the
accurate mathematical model, as follows, in detail.

ALGORITHM 1 BLADE-FL algorithm.

Data: �Number of communication rounds T, initial model
w0 , and proximal term μ in local learning.

1 Task publishing and client selection.
2 Initialization: t = 1 and w wi

0 0= , i6
3 while t T# do
4    Local training:
5    while {1,2, , }Ni f! do
6       Update local model w()

i
t as

7          2w w w w() | | | |argmin F 2wi
t

i i i
t 1

i

n
= + - -` j.

8    Model broadcasting and aggregating:
9    Update aggregated model w()t as

10       w wpt
i i

t

i

N

1
=
=

N/ .

11    Block mining and verification:
12   � Each client starts mining its block that includes the

aggregated model and verifies the generated block.
13    Global model downloading:
14   � Each client downloads the aggregated model from the

verified block and updates.
15    Reward allocation for learning and mining.
16    t t 1! +

   Result: w(T)N

The decentralized accountability enables all miners
to verify the quality of up-loaded models that are
recorded on the blockchain.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 31

❏❏ The block generation rate is determined by
the computational complexity of the hash
function and the total computing power of
the blockchain network (i.e., total CPU
cycles). The average CPU cycles required to
generate a block can be defined as kcB ,
where k denotes the mining difficulty and cB is the average
number of total CPU cycles required to generate a block.
Thus, the average generation time of a block (tB) can be
expressed as /kc NfB , where N is the number of clients and f
denotes the CPU cycles per second of each client.

❏❏ The training time consumed by each training iteration, tT ,
can be expressed as (| | /)D c fT , where | |D denotes the
number of samples of each client and cT is the number of
CPU cycles required to train one sample.

❏❏ Considering that a typical FL learning task is required to
be accomplished within a fixed duration of TSum , the total
learning and mining times should be satisfied that

()K t t TSumT B #x + , where K denotes the number of total
communication rounds and x the number of local train-
ing epochs. Thus, to achieve required learning perfor-
mance, the number of communication rounds K should
be optimized under a certain ratio between the training
and mining time.

C. Lazy Clients
As the verification is processed locally, a lazy client may not
perform local learning and directly copy uploaded parameters
from other clients to save its computing resources. As a result,
the client can devote more mining resources to reaping more
mining rewards with a higher probability. However, this action
degrades learning performance. To investigate the effect of lazy
nodes on the system performance, related experimental results
are provided in Sec. V-D.

To address the lazy client issue, a signature process can be
implemented at each client, which is based on the pseudo-noise
(PN) sequence. The signature in BLADE-FL is resilient to noise
perturbation because the lazy clients are likely to perturb the
plagiarized local models to hide their misbehavior. This process
can improve detection accuracy of lazy clients at the cost of
negligible overhead to the system. The details of the process are
the following.

❏❏ Before broadcasting the local updates, each client will
produce a PN sequence of length L, where L is usually a
very large number (larger than the number of model
parameters), and a same length with model parameters is
selected and added to the local updates. This PN
sequence has a high self-correlation coefficient and is
difficult to detect or re-produce by other clients. Mini-
mally, the complexity of detecting the PN sequence
should be much larger than that of training the neural
network so as to deter the attempt to discover the used
PN sequence.

❏❏ Upon receiving local updates from the other clients, each
client will use its own PN sequence to check the correla-

tion coefficient with the updates. If high peaks in terms of
the cross-correlation coefficient exist, then the lazy clients
will be detected.

❏❏ Once a lazy client is recognized by a local client, this client
can publish the previously used PN sequence to others and
invite other honest clients to verify this process. Then, any
future updates from the lazy client might be discarded as
punishments.

The pseudo-code of the PN sequence detection is shown
in Algorithm 2.

IV. Experimental Results and Potential Solutions
In this section, several related experimental results are provided
to show the issues in the multi-functional miner in the pro-
posed BLADE-FL system.

A. System Setup
For each experiment, the original training data is divided into
non-iid training sets, and locally computes a stochastic gradi-
ent descent (SGD) updated on each dataset, and then the
server aggregates updates to train a globally shared classifier.
The prototype is evaluated on the Fashion-MNIST and
Cifar-10 datasets.

ALGORITHM 2 PN Sequence Detection Algorithm.

Data: �Number of communication rounds T, number of clients N,
detection threshold m , and amplitude of PN sequence a .

1 Initialize: w 0 , t = 1
2 while t T1= do
3    if t = 1 then
4     � i-th client adds an additive PN sequence to the

learned model as w w Si
t

i
t

i
ta= +X .

5     � Calculates the cross-correlation value between model
parameters and its own PN sequence as

S w S w SC (),i j
t

i
t

j
t

i
t

j
t

j
t)) a= = +X .

6      Sums the cross-correlation value as C C ,
,

j
t

i j
t

i i j

N

1
=

!=

/ .
7      Performs peak detection.
8      if C j

t $ m then
9        w j

t is copied;
10     else
11       w j

t is honest.
12   Discards models that are detected as lazy clients

13   � Performs a global update as w w| | / | | ,D Dt

i

N
i i

t

j

N
j

1 1

t t

R R=
= =
` cj mX

where Nt is number of honest clients after discarding
lazy clients.

14    t t 1= +

Result: wT

To achieve local differential privacy, each client
will add a random noise that follows a certain
distribution on the uploaded models.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

32 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2022

In the following, the average results of 20 run experiments
are collected. For the blockchain setup, the total computation
resource is set to T 200Sum = for each training node, and the
total number of clients to N = 20. In each communication
round, each client uses tB time resources to generate a block
and tT time resources to pursue a learning epoch, where tB = 2
for all of the experiments. Letting /t tT Bi = , a larger i implies
that the client allots more computing resources to learning in
each communication round.

B. Investigation of Local Differential Privacy
Local differential privacy is applied to each client by adding
random Gaussian noise to the uploaded models in each com-
munication round. The testing accuracies of the Fashion-
MNIST and Cifar-10 datasets are plotted in Fig. 2 with respect
to different privacy levels e . In addition, an adaptive noise
decaying method is compared with the constant one, which
will decrease the noise power when the accuracy stops increas-
ing. The figure further shows that the system achieves higher
performance with a larger value of e , which is under weaker
privacy protection, and the adaptive method can further
improve the learning performance under the same level of pri-
vacy protection.

C. Investigation of Resource Allocation
In this subsection, the resource-allocation results and the train-
ing loss values with different ratios (i) of both datasets are plot-
ted in Fig. 3. The figure shows the system performance for
different ratios as the number of total communication rounds

increases. Usually, a lower loss function value represents better
training performance. In detail, it can be found that there exists
an optimal total communication round (K) for each computing
ratio i . For example, the smallest training-loss value can be
obtained if clients stop learning in 14 communication rounds
each with 15 learning epochs when x = 1 in the Fashion-
MNIST dataset. Moreover, for different computing ratios, the
optimal loss value tends to be different. This is due to the fact
that the optimal number of local learning epochs varies accord-
ing to different values of i . In addition, similar trends can be
found in the Cifar-10 dataset.

D. Investigation of Lazy Clients
In this subsection, the impact of lazy clients on the proposed
framework is investigated. The signal-to-noise ratio (SNR) is used
to denote the ratio of the power of original model parameters to

Total Communication Rounds

1.4

1.6

1.8

2

2.2

2.4

2.6

Tr
ai

ni
ng

 L
os

s

(a)

3

3.5

4

4.5

5

5.5

6

6.5

7

Tr
ai

ni
ng

 L
os

s

(b)

5 10 15 20

Total Communication Rounds

5 10 15 20

θ = 4 θ = 2 θ = 1 θ = 0.5

FIGURE 3 Learning performance of different total communication
rounds under different resource-allocation ratios. (a) Fashion-Mnist
(b) Cifar-10.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st

in
g

A
cc

ur
ac

y

Constant Noise (Fashion-MNIST)
Adaptive Noise (Fashion-MNIST)
Constant Noise (Cifar-10)

Adaptive Noise (Cifar-10)

= 100 = 10 = 5 = 1

FIGURE 2 Learning performance with respect to different privacy levels.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

AUGUST 2022 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 33

that of the injected PN sequence, and Table I represents the
detection rate of lazy clients under different SNRs. If a high
peaks in terms of the cross-correlation coefficient surpasses a pre-
defined threshold, this client is identified as a lazy one. A PN
sequence of length 215 is generated and the first 25400 values are
used to add onto the parameters. From the results with different
SNRs, the detection performance is remarkable, and a nearly
100% rate of lazy client recognition when SNR=3 dB can be
obtained. Fig. 4 shows the PN sequence-protection performance
(SNR = 6 dB) when there are 30% (6) lazy clients in each com-
munication round. As can be seen in this figure, the system per-
formance with a certain percentage of lazy clients degrades
sharply, i.e., 22.1% and 19.6% reduction for the Fashion-MNIST
and Cifar-10 datasets, respectively. In addition, the proposed PN
sequence-protection method achieves 18% and 13.8% perfor-
mance gain for each dataset, respectively.

V. Future Directions and Conclusions
In this paper, the weaknesses of FL have been reviewed and a
blockchain-assisted decentralized FL architecture, called
BLADE-FL, has been proposed to address some of these weak-
nesses. The effectiveness of BLADE-FL has been shown in
addressing these issues, notably the problem of a single point of
failure that exists in conventional FL. In addition, further issues

have been investigated for BLADE-FL including privacy,
resource allocation, and lazy clients, and possible solutions have
been provided to address those issues and explored with exper-
iments. These results provide guidelines for the design of the
BLADE-FL framework.

Some directions for further study in this area include asyn-
chronous and heterogenetic investigations for different client
capabilities, such as computing capability, training-data size, and
transmitting diversity, and SC design, which provides reasonable
reward allocation for training and mining. In addition, light-
weight model transmission using quantization and sketch may
be an alterative way of reducing the transmission cost.

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China under Grant No. 62002170, and
61872184, and in part by the Fundamental Research Funds for
the Central Universities under Grant No. 30919011274, in part
by the Natural Science Foundation of Jiangsu Province under
Grant BK20210331, in part by the Jiangsu Specially-Appointed
Professor Program in 2021, in part by the Natural Science
Fund of Guangdong Province under Grant 2020A1515010708
and the Natural Science Fund of Shenzhen under Grant
JCYJ20210324094609027, and in part by the U.S. National
Science Foundation under Grants ECCS-2039716,
CNS-2107216 and CNS-2128368.

References
[1] C. Ma et al., “On safeguarding privacy and security in the framework of federated learning,”
IEEE Netw., vol. 34, no. 4, pp. 242–248, Jul./Aug. 2020, doi: 10.1109/MNET.001.1900506.
[2] Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and H. Seo, “FourQ on embedded
devices with strong countermeasures against side-channel attacks,” IEEE Trans. Dependable Secure
Comput., vol. 17, no. 3, pp. 536–549, May/Jun. 2020, doi: 10.1007/978-3-319-66787-4_32.
[3] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated transfer
learning framework for wearable healthcare,” IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93,
Jul./Aug. 2020, doi: 10.1109/MIS.2020.2988604.
[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, meth-
ods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020,
doi: 10.1109/MSP.2020.2975749.
[5] H. Kim, J. Park, M. Bennis, and S. Kim, “Blockchained on-device federated learn-
ing,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–1283, Jun. 2020, doi: 10.1109/
LCOMM.2019.2921755.
[6] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and federated
learning for privacy-preserved data sharing in industrial IoT,” IEEE Trans. Ind. Informat.,
vol. 16, no. 6, pp. 4177–4186, Jun. 2020, doi: 10.1109/TII.2019.2942190.
[7] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, “Flchain: A blockchain for auditable
federated learning with trust and incentive,” in Proc. 2019 5th Int. Conf. Big Data Comput.
Commun. (BIGCOM), pp. 151–159, doi: 10.1109/BIGCOM.2019.00030.
[8] P. K. Sharma, J. H. Park, and K. Cho, “Blockchain and federated learning-based distributed
computing defence framework for sustainable society,” Sustain. Cities Soc., vol. 59, p. 102,220, 2020.
[9] S. Wang, “Blockfedml: Blockchained federated machine learning systems,” in Proc.
2019 Int. Conf. Intell. Comput., Autom. Syst. (ICICAS), pp. 751–756, doi: 10.1109/ICI-
CAS48597.2019.00162.
[10] Y. Qu, S. R. Pokhrel, S. Garg, L. Gao, and Y. Xiang, “A blockchained federated
learning framework for cognitive computing in industry 4.0 networks,” IEEE Trans. Ind.
Informat., vol. 17, no. 4, pp. 2964–2973, Apr. 2021, doi: 10.1109/TII.2020.3007817.
[11] S. Otoum, I. Al Ridhawi, and H. Mouftah, “Blockchain-supported federated learn-
ing for trustworthy vehicular networks,” Dec. 2020, pp. 1–6.
[12] M. Jelasity, “Gossip,” in Self-Organising Software. New York, NY, USA: Springer-Ver-
lag, 2011, pp. 139–162.
[13] L. Ismail, H. Materwala, and S. Zeadally, “Lightweight blockchain for healthcare,”
IEEE Access, vol. 7, pp. 149,935–149,951, 2019, doi: 10.1109/ACCESS.2019.2947613.
[14] P. Fairley, “Blockchain world - feeding the blockchain beast if bitcoin ever does go
mainstream, the electricity needed to sustain it will be enormous,” IEEE Spectr., vol. 54,
no. 10, pp. 36–59, Oct. 2017, doi: 10.1109/MSPEC.2017.8048837.
[15] K. Wei et al., “User-level privacy-preserving federated learning: Analysis and perfor-
mance optimization,” IEEE Trans. Mobile Comput., early access, Feb. 4, 2021, doi: 10.1109/
TMC.2021.3056991.
�

TABLE I Detection rate with different PN sequence powers
for Fashion-MNIST and Cifar-10 datasets.

SNR 9 dB 6 dB 3 dB

Fashion-MNIST 0.931 0.989 0.999

Cifar-10 0.925 0.975 0.996

Fashion-MNIST Cifar-10

0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st

in
g

A
cc

ur
ac

y

Without Lazy Clients
30% Lazy Clients Without Detection Scheme
The Proposed Lazy Client Detection Scheme

FIGURE 4 Learning performance with/without lazy client detection.

Authorized licensed use limited to: Princeton University. Downloaded on November 15,2022 at 16:36:38 UTC from IEEE Xplore. Restrictions apply.

