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ABSTRACT 
We investigate wave propagation in in-plane rotator lattices 

and demonstrate dispersion morphing and extreme 
acoustoelastic effects using analytical and numerical means. By 
changing the angle of the rotator arms attaching the elastic 
linkage between adjacent rotators, we show that the band 
structure may morph from a positive/negative-group-velocity 
passband into a flat band across the whole wavenumber space, 
and then into a negative/positive-group-velocity passband. A 
similar process can also occur at certain fixed arm angles when 
the lattice constant changes, which one may interpret as 
stretching or compressing the structure along the lattice 
directions, effectively mimicking the acoustoelastic effect. We 
analytically investigate both processes and provide closed-form 
expressions for the occurrence of flat bands, which indicates the 
transition of the passband property. Further, we explore a chiral 
rotator lattice design where the oscillation equilibrium position 
for each rotator may shift upon the change of the lattice constant. 
This design has a unique advantage that the morphed passband 
maintains approximately the same frequency range such that a 
signal may stay propagating during the process of dispersion 
morphing. In the end, we present numerical simulations for three 
potential applications utilizing the aforementioned findings. In 
these applications, both static and dynamic lattice stretching are 
considered, resulting in on-demand bi-directional wave-guiding, 
refraction bending, and time-modulated amplifying. Numerical 
simulations document a high-quality agreement with theory and 
yield promising results that may inspire next-generation 
reconfigurable metamaterials.  
 
Keywords: rotator lattice, dispersion morphing, flat band, 
acoustoelastic effect, negative refraction, time modulation, 
parametric amplification. 

 

1. INTRODUCTION 
Periodic structures, a class of patterned structures with 

spatially repeated unit cells arranged in a lattice, continue to be 
an active area of research [1, 2]. In wave physics and 
engineering, periodic structures have advantageous features in 
on-demand wave guiding [3-5], focusing [6-8], imaging [9-12], 
sensing [13-16], protecting [17-19], and filtering [20-22]. Their 
spatially repeated patterns induce band structures that propagate 
and attenuate waves based on their frequency/energy [23]. 
Conventional designs typically engineer a specified band 
structure for a single purpose. Re-designs and fabrications are 
often required for other operating regimes or environments. In 
recent years, there has been an increasing demand for highly 
reconfigurable periodic structures, such that they adjust to 
diverse operating environments and are capable of tuning the 
desired features without excessive modification and extra costs.  

In the field of elastic and acoustic periodic structures, 
researchers have adopted two primary approaches to design 
reconfigurable structures. The first approach utilizes 
programmed circuits and tunable electrical components, such as 
piezoelectric components, to achieve reconfigurable wave-
guiding [24, 25], multiplexing [26] and filtering [27, 28]. Despite 
their advantageous reconfigurability and tunability, the control 
systems associated with these structures may become 
significantly complicated and raise concerns about stability and 
energy consumption for many-degree-of-freedom systems. The 
second approach takes advantages of compliant structures, or 
switch-like structures, incorporating multi-stability and/or 
nonlinearity. In discrete structures, Nadkarni et al. [29] 
considered a set of bi-stable members connected by magnetic 
links and achieved tunable unidirectional wave guiding. Wu et 
al. [30] engineered a 1D metastable structure wherein the band 
structure can be reconfigured by shifting the magnet-spring 
equilibrium position. In acoustics, bandgaps are engineered by 
introducing geometric frustration [31] and axial deformation 
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along a transmission line [32]. Very recently, Li et al. [33] 
studied a liquid-induced cellular microstructure transformation 
and assembly. These reconfigurable designs mostly avoid 
concerns with energy consumption and control stability; 
however, they only allow transitions between a finite (usually 
two) number of stable states.  

Building on our previous work with rotator systems [34, 35], 
in this paper, we propose an analytical and numerical study of a 
class of mechanical in-plane rotator lattices that exhibit high 
reconfigurability with theoretically many stable states, and 
explore their potential applications. We show that in the 
proposed generalized rotator model, at a given lattice constant, 
the offset angle of the rotator arms affect the passband behavior. 
By reconfiguring this offset angle, the dispersion may morph 
from an acoustic type with positive group velocity, to an optical 
type with negative group velocity across the wavenumber space. 
At each offset angle, we observe different acoustoelastic effects. 
We also investigate a chiral-type rotator lattice by considering an 
asymmetric linkage between adjacent rotators, and observe a 
huge acoustoelastic effect associated with the equilibrium 
position shift. These results extend the space of possible rotator 
lattice applications.  

2. GENERALIZIED IN-PLANE ROTATOR LATTICE 
In our previous work [34], two types of rotator lattices, with 

different spring attaching locations, were introduced resulting in 
acoustic and optical dispersion, respectively, as shown in Fig. 1. 
The two types of connections, termed side-arm connection and 
nearest-arm connection, are indeed two special cases of a 
generalized rotator lattice model.  

Introducing an offset angle  𝜃0  results in an angled 
connecting arm with respect to a normal line orthogonal to the 
lattice direction, as shown in the inscribed schematic in Fig. 2a. 
At a fixed normalized lattice constant,  𝛼 =

𝑎

𝑟
 , the linearized 

equation of motion for each rotator under small-angle oscillation 
can be expressed as,  
 𝐼𝜃̈𝑗 + (𝑘1𝜃𝑗 + 𝑘2𝜃𝑗−1)𝜖 + (𝑘1𝜃𝑗 + 𝑘2𝜃𝑗+1)𝜖 + 𝑂(𝜖3) = 0,

(1) 
 

where 𝑗 is the index of the studied rotator, and 𝜃 denotes the 
angular displacement. Parameters 𝐼 , 𝑘1  and 𝑘2  represent the 
moment of inertia of the rotator and equivalent linear stiffness 
resulting from a Taylor expansion around the small-angle 
oscillation equilibrium (𝜃 = 0 in this case). The stiffness terms 
are functions of spring parameters and geometry terms including 
normalized lattice constant 𝛼 and offset angle 𝜃0. The explicit 
forms of 𝑘1 and 𝑘2 are cumbersome and thus documented in 
the Appendix.  

Applying the Bloch Theorem [36], we find the linear 
dispersion relation as, 

𝜔 = √
1

𝐼
(2𝑘1 + 2𝑘2 cos 𝜇), (2) 

where 𝜔  and 𝜇  denote the frequency and propagation 
constant, respectively. In Fig. 2a, we depict 10 dispersion curves 
corresponding to increasing offset angles. For visualization 

convenience, we use the degree unit (°)  instead of radian 
measure to describe all offset angles (and compromising angles 
in next section) in this work. Note that the 𝜃0 = 0° and 𝜃0 =
90° cases retrieve the solutions in Figs. 1a and 1b. We note that 
when the lattice constant is fixed, the offset angle determines the 
pattern of dispersion. As the offset angle increases, the passband 
morphs from an acoustic dispersion into an optical dispersion 
with negative group velocity. It indicates that a flat band across 
the entire Brillion zone occurs at the limit of the transition. We 
note that the critical offset angle corresponding to this flat band 
is challenging to express in an explicit form, but can be written 
in a much more elegant way from the lattice constant perspective 
discussed next.  

At arbitrary fixed offset angle, the dispersion also shifts and 
morphs as the lattice constant (unit cell spacing) changes, which 
can be interpreted as an external stretch or compression along the 
lattice direction. In Fig. 2b we illustrate the dispersion morphing 
for three rotator lattices with 𝜃0 = 10°, 50°,  and  90°  by 
capturing the cut-on and cut-off frequencies at 𝜇 = 0 and 𝜇 =
𝜋.  As the unit cell spacing increases, both cut-on and cut-off 
frequencies increase, yet with non-identical rate and nonlinear 
trajectory. This phenomenon is robust for offset in the range 
of 𝜃0 = (0, 90°] . We note that the dispersion associated with 
𝜃0 = 0  is immune to the stretch. In the 𝜃0 = 50°  case (light 
blue), we observe the cut-on and cut-off frequencies cross each 

FIGURE 1: SCHEMATIC AND BAND STRUCTURE 
FOR TWO TYPES OF 1D-ROTATOR LATTICES. IN 
EACH CONFIGURATION, ROTATORS ARE PINNED AT 
THEIR CENTERS, WHICH ONLY SUPPORT 
ROTATIONAL MOTION. THE BLUE LINES DENOTE 
ELASTIC LINKAGES. (A) A ROTATOR CHAIN 
COUPLED FROM SIDE ARMS. (B) A ROTATOR CHAIN 
COUPLED FROM NEAREST ARMS.  
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other in the process of stretching, as detailed in the zoomed-in 
view. The cross point illustrates a flat band as well as a transition 
of group velocity. At the flat band, frequency 𝜔 is independent 
of the wavenumber 𝜇. This is equivalent to a zero 𝑘2 in Eq. (2). 
Accordingly, a critical lattice constant inducing the flat band can 
be derived from the expression of 𝑘2 (detailed in Appendix), 
 

𝛼∗ =
sin(𝜃0) (4𝑟 sin2(𝜃0) + 𝐿0 sin(𝜃0) + 2𝑟)

𝑟(2 sin2(𝜃0) − 1)
 (3) 

 
where 𝐿0 is the undeformed length of the spring, and the offset 
angle 𝜃0 needs to be larger than 45°. For θ0 < 45°, stretching 
the lattice will not induce a flat band. At the limit of θ0 = 45°, 
the critical spacing is at infinity. An inverse function of Eq. (3) 
can be used to pursue the critical angle for the occurrence of a 
flat band at a fixed lattice constant, with the restriction of θ0 >
45°.   

3. CHIRAL ROTATOR LATTICE 
By considering asymmetric elastic linkages between 

neighboring rotators, we introduce a variation of the discussed 
rotator lattices. As depicted in the schematic in Fig. 3a, each pair 
of neighboring rotators are only linked by one spring from their 
side arms instead of two, which lies on alternating sides of the 

rotator along the chain. We note that each rotator, along with its 
neighbor on each side, forms a pair of enantiomers, and hence 
we term this type of structure a chiral rotator lattice.    

In the top configuration of the schematic in Fig. 3a, each 
elastic linkage is assumed pre-tensioned, and each rotator is 
subject to an additional torque from its base. This torque has a 
constant magnitude of  2𝑘(𝛼0𝑟 − 𝐿0)𝑟 , where 𝑘  and 𝛼0𝑟 
denotes the spring stiffness and the lattice constant in the un-
deformed configuration (in the case,  𝛼0 = 2.1 ). The applied 
torques have identical magnitude but alternative directions for 
adjacent rotators, as indicated by the black arrows, and serve to 
stabilize the equilibrium position. Without these torques, the pre-
tensioned springs offer unbalanced torques on each rotator and 
drive the lattice away from the current equilibrium. The equation 
of motion for each rotator is given as,  

 𝐼𝜃̈𝑗 + 𝐾0 + (𝑘1𝑐𝜃𝑗 + 𝑘2𝑐𝜃𝑗−1)𝜖 + (𝑘1𝑐𝜃𝑗 + 𝑘2𝑐𝜃𝑗+1)𝜖

−𝑇𝑗 + 𝑂(𝜖3) = 0, (4)

 

 

where 𝑘1𝑐  and 𝑘2𝑐  are equivalent stiffness terms (please see 
the Appendix for explicit expressions) similar to 𝑘1 and 𝑘2 in 
Eq. (1). In Eq. (4), the additional term 𝐾0  denotes an 
unbalanced 0th-order torque resulted from the asymmetric pre-
tensioned springs, and 𝑇𝑗 denotes the external constant torque 
with alternative directions to counteract this unbalanced term. At 

FIGURE 2: PARAMETRIC STUDY ON DISPERSION RELATION OF THE GENERALIZED ROTATOR LATTICE 
STRUCTURE. (A) THE DISPERSION CURVES ASSOCIATED WITH DIFFERENT OFFSET ANGLES. OFFSET ANGLES, 
RADIUS AND LATTICE CONSTANTS ARE MARKED ON THE EMBEDDED SCHEMATIC. (B) THE CUT-ON AND CUT-
OFF FREQUENCIES AS A FUNCTION OF NORMALIZED LATTICE CONSTANT FOR THREE DIFFERENT OFFSET 
ANGLES. THE INSCRIBED PLOT ILLUSTRATES A CROSS OF THE CUT-ON AND CUT-OFF FREQUENCIES.  
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the top configuration in Fig. 3a, where the side arms are held 
perpendicular to the lattice direction, we have  𝐾0 = 𝑇𝑗 =

±2𝑘(𝛼0𝑟 − 𝐿0)𝑟, and thus Eq. (4) can be written as,  
 𝐼𝜃̈𝑗 + (𝑘1𝑐𝜃𝑗 + 𝑘2𝑐𝜃𝑗−1)𝜖 + (𝑘1𝑐𝜃𝑗 + 𝑘2𝑐𝜃𝑗+1)𝜖

+𝑂(𝜖3) = 0, (5)
 

which admits a similar form with Eq. (1). 
When one attempts to apply a static stretch to the lattice 

along the lattice direction, as depicted in the lower configuration 
in Fig. 3a, the unit cell spacing changes, and the equilibrium 
position of each rotator shifts. This shift can be modeled by a 
compromising angle 𝛽 as shown in the schematic, which relates 
to the external torque and unit cell spacing, 

|𝑇𝑗| = 2𝑘𝛿𝑟 cos 𝛽 , (6)

𝛿 = 𝛼𝑟 − 𝐿0 − 2𝑟 sin 𝛽 , (7)
 

where 𝛿  denotes the spring deformation. Note that in this 
equation, |𝑇𝑗|  is constant and 𝛽  is a function of normalized 
spacing 𝛼. At each spacing, the equation of motion of a chiral 
rotator admits an identical form as in Eq. (5), however with a 
shifted equilibrium position,  

 𝐼𝜃̈̂𝑗 + (𝑘1𝑐𝜃̂𝑗 + 𝑘2𝑐𝜃̂𝑗−1)𝜖 + (𝑘1𝑐𝜃̂𝑗 + 𝑘2𝑐𝜃̂𝑗+1)𝜖

+𝑂(𝜖3) = 0, (8)
 

where 𝜃̂𝑗+2𝑛 = 𝜃𝑗+2𝑛 + 𝛽, 𝜃̂𝑗+2𝑛−1 = 𝜃𝑗+2𝑛−1 − 𝛽, and 𝑛 ∈ 𝒁. 
Accordingly, we compute and plot the dispersion at each 

spacing in Fig. 3a, and illustrate the compromising angles as well 
as the spring deformations in Fig. 3c. We observe that when we 
stretch the lattice (in a static way), the dispersion morphs from 
an acoustic branch into optical branches with positive group 
velocity, then a flat band, and eventually a negative-group 
velocity band. Different from that shown in Fig. 2b, the cut-on 
and cut-off frequencies in Fig. 3a do not experience monotonic 

increases, and the passband maintains approximately the same 
frequency range, until the stretch grows excessively large (the 
last two dispersion curves shift upwards considerably). This 
observation can be explained by the lattice stretching process 
detailed in Figs. 3b and 3c. When the unit cell spacing first starts 
to increase, the change in the compromising angle is more 
dramatic than the change of the spring deformation. In this phase, 
one of the equivalent stiffness decreases and the other increases 
in Fig. 3b. Reflected on the band structure in Fig. 3a, the 
dispersion pattern morphs, yet stays around the same frequency 
range. When the compromising angle approaches 90°  in Fig. 
3c, its increase slows, and the lattice stretch now mostly 
translates to the stretch on the springs, which raises up both 
equivalent stiffness terms in Fig. 3b. Accordingly, the dispersion 
curves shift upwards across the whole Brillouin zone (see the last 
two dispersion curves).   

To conclude, an advantageous feature of the chiral type 
rotator lattice is its capability of morphing the pattern of the 
passband without excessively shifting it in the process of lattice 
stretching. In the following two sections, we will introduce three 
rotator lattice structures and apply the dispersion morphing 
theory, as well as verify the theory using numerical simulations.  

4. APPLICATIONS – STATIC LATTICE STRETCH 
In this section, we explore two applications stemming from 

the analytical findings in the rotator lattice. Both applications 
extend the theory to 2D rotator structures and stretch them 
statically along the lattice direction. The first application 
achieves a bi-directional wave-guiding phenomenon whereby 
external stretches can be used to guide waves propagating mostly 
perpendicular to the stretch direction. The second application 
exhibits a reconfigurable refractive index, and a signal may 

FIGURE 3: DISPERSION ANALYSIS ON A 1D CHIRAL ROTATOR STRUCTURE. (A) THE DISPERSION MORPHING 
WITH RESPECT TO THE CHANGE IN NORMALIZED LATTICE CONSTANT. THE EMBEDDED SCHEMATIC DESCRIBES 
THE COMPROMISING ANGLE AND LATTICE STRETCHING DYNAMICS. (B) THE EQUIVALENT STIFFNESS CHANGE 
IN THE PROCESS OF LATTICE STRETCHING. (C) THE EVOLUTION OF COMPROMISING ANGLE AND SPRING 
DEFORMATION IN THE PROCESS OF LATTICE STRETCHING.  
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choose to refract to the same side or the other side of the interface 
normal based on external stretches. The wave dynamics are 
simulated by numerically integrating the equations of motion 
using MATLAB’s ODE45 function.  

The first structure, as shown in Fig. 4, depicts a non-chiral 
2D rotator lattice with offset angle 𝜃0 = 45°.  A single-
frequency harmonic force excites the lattice at the center. By 
stretching the lattice either vertically (Fig. 4b) or horizontally 
(Fig. 4c), we morph the dispersion for desired anisotropy and the 
associated directional wave-guiding. As shown in the numerical 
simulation in Fig. 4b, at the given frequency ( 𝜔 = 5 ), a 
vertically-stretched lattice propagates most of the wave energy 
horizontally, which agrees with the group velocity contour 
analytically computed [36]. Similarly, if a lattice is stretched 
horizontally by the same amount, the wave shall propagate 
mostly in the vertical direction, as shown the Fig. 4c. We note 
that the shown directivity is not a narrowband phenomenon – 
given the anisotropic lattice, a wide range of frequencies within 
the passband can induce similar group velocity patterns, which 
leads to directional energy flow.  

The second structure, as shown in Fig. 5, constructs an 
interface problem between a chiral and non-chiral rotator 
structure whose passbands partially overlap. The top media 
adopts a chiral rotator structure as shown in Fig. 5a, and the 
bottom media adopts a non-chiral rotator lattice with zero offset 

angle. We note that the band structure of a zero-offset rotator 
lattice is immune to stretch along the lattice directions. The 
lattice is excited by an oblique incident wave starting from the 
bottom left corner. 

In Figs. 5a-c, the lattice is not stretched. The band structure 
of two media are designed to be identical, as depicted in Fig. 5b, 
such that the transmission is full (Fig. 5c). When we introduce a 
large bi-directional stretch, the unit cell rotates to its new 
equilibrium position shown in Fig. 5d, and its dispersion morphs 
into an optical branch with negative group velocity across the 
Brillouin zone, illustrated by the red curve in Fig. 5e. 
Accordingly, a negative refraction occurs at the interface [34]. 
We note that the lattice stretch process is reversible due to the 
existence of external torques discussed in the last section.  

These two structures illustrate highly reconfigurable 
anisotropic properties and refractive index, which play important 
roles in directional energy transfer and information transport,  
and can relate to acoustic multiplexing and demultiplexing [26]. 
Additionally, the reverse design of these structures can be 
utilized to sense global and local deformation based on the wave 
propagation pattern.  

FIGURE 4: APPLICATIONS – BI-DIRECTIONAL WAVE-GUIDING. (A) SCHEMATIC OF THE ROTATOR LATTICE WITH 
UNIT CELL DEFINED. (B) AND (C) THE VERTICALLY AND HORIZONTALLY STRETCHED LATTICE. THE BAND 
STRUCTURE IS PLOTTED AS A SUBPLOT WITH THE RED DASHED LINE INDICATING THE EXCITATION 
FREQUENCY. THE COLOR FIELDS DESCRIBE THE SPATIAL DISTRIBUTION OF ENERGY IN THE PROCESS OF WAVE 
PROPAGATION. EACH PIXEL REPRESENTS A SINGLE ROTATOR. GROUP VELOCITY CONTOURS AT THE 
EXCITATION FREQUENCY ARE PROVIDED, WITH HORIZONTAL AND VERTICAL AXES DENOTE HORIZONTAL AND 
VERTICAL COMPONENT OF GROUP VELOCITY. FOR BOTH AXES, THE CONTOUR IS CENTERED AT ZERO.  
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5. APPLICATIONS – DYNAMIC LATTICE STRETCH 
In this section, we introduce a 1D non-chiral rotator chain 

with an offset angle 𝜃0 = 90°  and time-modulated unit cell 
spacing. As shown in Fig. 6a, the spacing between each pair of 
unit cells fluctuates in time with an amplitude 𝜆𝑚  and 
frequency 𝜔𝑚. To derive the modulated dispersion relation, we 
adopt the approach in [27, 37], and assume a linearized solution 
of the form, 

𝜃𝑗(𝑡) = 𝑒𝑖(𝜔𝑡−𝜇𝑗) ∑ 𝜃̂𝑛𝑒𝑖𝑛𝜔𝑚𝑡

+∞

𝑛=−∞

 (9) 

where 𝜃̂𝑛 is the coefficient of the Fourier-expanded solutions. 
By inserting Eq. (9) into Eq. (1), we solve a quadratic eigenvalue 
problem in terms of 𝜔  at each normalized wavenumber  𝜇 ∈
[0, 𝜋]. In Fig. 6b, we present the resultant band structures. Note 
that the blue and red curves represent dispersion curves 
corresponding to real (left y-axis) and imaginary frequency 
(right y-axis), respectively. We make three observations for the 
modulated dispersion in Fig. 6b.  

 
 When two branches meet, they merge and form a flat 

band with complex frequency.   
 The flat bands locate at 𝜔𝑚

2
, and can be shifted along 

this frequency by varying the modulation frequency.  
 The flat band can be broadened by increasing the 

modulation amplitude  𝜆𝑚 . In this process, the 
magnitude of the imaginary frequency also increases.  
 

Due to the presence of imaginary frequency, a signal excited 
at the flat band shall grow exponentially in time if no energy 
dissipation is applied. Hence, this time-modulated system is 
capable of amplifying a specific frequency out of a broadband 
excitation. We model such a scenario in numerical simulations.  

Using numerical simulations, we send a finite pulse whose 
frequency content is centered around  𝜔 = 1.25 𝑟𝑎𝑑/𝑠 , as 
described in Fig. 6c. We then perform a 2D Fast Fourier 
Transformation (FFT) on the response to investigate the 
propagated frequency and wavenumber. To avoid unbounded 
amplitudes, we introduce viscous damping into the system and 
ensure the wave amplitudes are small. In Figs. 6d and 6e, we 
superimpose the two dispersions highlighted in Fig. 6b on the 
associated numerical FFT results. Specifically, Fig. 6d, with the 
orange frame, is compared with the bottom left configuration in 
Fig. 6b, and Fig. 6e, with the green frame, is compared with the 
top-right configuration in Fig. 6b. We observe that the numerical 
FFT results peak at a frequency-wavenumber pair on the flat 
band where the imaginary frequency is maximized, which agrees 
with the theory. 

The flat band observations and parametric amplifications 
are consistent with previous studies [38]. However, this system 
is rather unique since the modulation applies on a geometric 
parameter – the unit cell spacing in a macro scale. Thus, a reverse 
engineering of such can apply to motion sensing, where the 
location of a flat band deciphers the amplitude and frequency of 
the motion modulating the lattice.  

6. CONCLUSIONS 
The proposed study investigates two types of reconfigurable 

in-plane rotator lattices and associated reversible dispersion 
morphing phenomenon. Two key parameters, offset angle and 
unit cell spacing, are specifically studied to illustrate their effect 
on the band structures of the rotator lattices. The dispersion 
morphing resulting from the change of unit cell spacing is 
analogous to an acoustoelastic effect. In the generalized rotator 
lattice, a change in either key parameter is capable of converting 
the passband from a positive-group-velocity branch to a flat 
band, and then a negative-group-velocity branch. For the chiral 
rotator lattice, an increasing unit cell spacing morphs an acoustic 

FIGURE 5: APPLICATIONS – TUNABLE REFRACTION. (A) THE SCHEMATIC OF AN UN-DEFORMED CHIRAL 
ROTATOR LATTICE. (B) THE BAND STRUCTURE OF THE CONFIGURATION IN (A). THE RED AND BLUE CURVES 
DENOTE THE DISPERSION CURVES FOR THE TOP AND BOTTOM MEDIA. (C) THE SIMULATED WAVE PROPAGATION 
PROFILE, WITH THE WHITE LINE INDICATING THE INTERFACE. (D) THE SCHEMATIC OF A DEFORMED CHIRAL 
ROTATOR LATTICE. (E) THE DISPERSION OF DEPICTED CONFIGURATION IN (D). (F) THE WAVE PROPAGATION 
PROFILE ASSOCIATED WITH A DEFORMED CHIRAL ROTATOR LATTICE.   
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branch into an optical branch without shifting it to higher 
frequency.  

We also explore applications of the 1D and 2D rotator 
lattices under static or dynamic stretching. A bi-directional 
waveguide is numerically validated in an offset non-chiral 
rotator lattice. The chiral structure interfaced with a non-chiral 
lattice with zero offset angle illustrates tunable refraction index 
when subject to bi-directional stretch. Finally, a time-modulated 

lattice demonstrates the emergence of flat bands and associated 
parametric amplification in a rotator lattice, which can be applied 
to motion sensing. The theory and applications presented may 
inspire future reconfigurable metamaterial designs. Follow-on 
research will include experimental validation and investigation 
of dissipation and nonlinear effects in consideration of practical 
implementation. 
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APPENDIX – EQUIVALENT STIFFNESS  
In Eq. (1), the equivalent stiffness 𝑘1  and 𝑘2  have 

expression, 
 
 
 
 
 
 
 
 
 
 

 

𝑘1 = 

 
 
 
 
 
 
 
 
 
 

FIGURE 6: APPLICATIONS – TIME-MODULATED LATTICE. (A) THE SCHEMATIC OF A 1D ROTATOR LATTICE WITH 
UNIT CELL SPACING MODULATED IN TIME. (B) FOUR DISPERSION RELATIONS CORRESPONDING TO DIFFERENT 
MODULATION AMPLITUDE AND FREQUENCY. THE HORIZONTAL AND VERTICAL AXES ARE WAVENUMBER AND 
FREQUENCY, RESPECTIVELY. (C) THE FREQUENCY CONTENT OF A TESTING SIGNAL IN NUMERICAL 
SIMULATIONS. (D) AND (E) THE NUMERICAL RESULTS WITH MODULATION PARAMETERS HIGHLIGHTED IN (B). 
THE RESULTS ARE COMPARED TO CORRESPONDING ANALYTICAL BAND STRUCTURES.  
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𝑘2 = 

 
In Eq. (4), the equivalent stiffness 𝑘1𝑐  and 𝑘2𝑐  are 

functions of 𝛽 instead of 𝜃0. Their expressions are very similar 
to those of 𝑘1 and 𝑘2. The explicit expressions are given as, 

 
𝑘1𝑐 = 

 
 
 
𝑘2𝑐 = 
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