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ABSTRACT

We investigate wave propagation in in-plane rotator lattices
and  demonstrate  dispersion morphing and  extreme
acoustoelastic effects using analytical and numerical means. By
changing the angle of the rotator arms attaching the elastic
linkage between adjacent rotators, we show that the band
structure may morph from a positive/negative-group-velocity
passband into a flat band across the whole wavenumber space,
and then into a negative/positive-group-velocity passband. A
similar process can also occur at certain fixed arm angles when
the lattice constant changes, which one may interpret as
stretching or compressing the structure along the lattice
directions, effectively mimicking the acoustoelastic effect. We
analytically investigate both processes and provide closed-form
expressions for the occurrence of flat bands, which indicates the
transition of the passband property. Further, we explore a chiral
rotator lattice design where the oscillation equilibrium position
for each rotator may shift upon the change of the lattice constant.
This design has a unique advantage that the morphed passband
maintains approximately the same frequency range such that a
signal may stay propagating during the process of dispersion
morphing. In the end, we present numerical simulations for three
potential applications utilizing the aforementioned findings. In
these applications, both static and dynamic lattice stretching are
considered, resulting in on-demand bi-directional wave-guiding,
refraction bending, and time-modulated amplifying. Numerical
simulations document a high-quality agreement with theory and
yield promising results that may inspire next-generation
reconfigurable metamaterials.
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1. INTRODUCTION

Periodic structures, a class of patterned structures with
spatially repeated unit cells arranged in a lattice, continue to be
an active area of research [1, 2]. In wave physics and
engineering, periodic structures have advantageous features in
on-demand wave guiding [3-5], focusing [6-8], imaging [9-12],
sensing [13-16], protecting [17-19], and filtering [20-22]. Their
spatially repeated patterns induce band structures that propagate
and attenuate waves based on their frequency/energy [23].
Conventional designs typically engineer a specified band
structure for a single purpose. Re-designs and fabrications are
often required for other operating regimes or environments. In
recent years, there has been an increasing demand for highly
reconfigurable periodic structures, such that they adjust to
diverse operating environments and are capable of tuning the
desired features without excessive modification and extra costs.

In the field of elastic and acoustic periodic structures,
researchers have adopted two primary approaches to design
reconfigurable structures. The first approach utilizes
programmed circuits and tunable electrical components, such as
piezoelectric components, to achieve reconfigurable wave-
guiding [24, 25], multiplexing [26] and filtering [27, 28]. Despite
their advantageous reconfigurability and tunability, the control
systems associated with these structures may become
significantly complicated and raise concerns about stability and
energy consumption for many-degree-of-freedom systems. The
second approach takes advantages of compliant structures, or
switch-like structures, incorporating multi-stability and/or
nonlinearity. In discrete structures, Nadkarni et al [29]
considered a set of bi-stable members connected by magnetic
links and achieved tunable unidirectional wave guiding. Wu et
al. [30] engineered a 1D metastable structure wherein the band
structure can be reconfigured by shifting the magnet-spring
equilibrium position. In acoustics, bandgaps are engineered by
introducing geometric frustration [31] and axial deformation
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along a transmission line [32]. Very recently, Li et al. [33]
studied a liquid-induced cellular microstructure transformation
and assembly. These reconfigurable designs mostly avoid
concerns with energy consumption and control stability;
however, they only allow transitions between a finite (usually
two) number of stable states.

Building on our previous work with rotator systems [34, 35],
in this paper, we propose an analytical and numerical study of a
class of mechanical in-plane rotator lattices that exhibit high
reconfigurability with theoretically many stable states, and
explore their potential applications. We show that in the
proposed generalized rotator model, at a given lattice constant,
the offset angle of the rotator arms affect the passband behavior.
By reconfiguring this offset angle, the dispersion may morph
from an acoustic type with positive group velocity, to an optical
type with negative group velocity across the wavenumber space.
At each offset angle, we observe different acoustoelastic effects.
We also investigate a chiral-type rotator lattice by considering an
asymmetric linkage between adjacent rotators, and observe a
huge acoustoelastic effect associated with the equilibrium
position shift. These results extend the space of possible rotator
lattice applications.

2. GENERALIZIED IN-PLANE ROTATOR LATTICE

In our previous work [34], two types of rotator lattices, with
different spring attaching locations, were introduced resulting in
acoustic and optical dispersion, respectively, as shown in Fig. 1.
The two types of connections, termed side-arm connection and
nearest-arm connection, are indeed two special cases of a
generalized rotator lattice model.

Introducing an offset angle 6, results in an angled
connecting arm with respect to a normal line orthogonal to the
lattice direction, as shown in the inscribed schematic in Fig. 2a.
At a fixed normalized lattice constant, a = %, the linearized

equation of motion for each rotator under small-angle oscillation
can be expressed as,
16; + (k16; + k20;_1 )€ + (k16; + k30,11 )e + 0(€%) = 0,
€Y)

where j is the index of the studied rotator, and 6 denotes the
angular displacement. Parameters I, k; and k, represent the
moment of inertia of the rotator and equivalent linear stiffness
resulting from a Taylor expansion around the small-angle
oscillation equilibrium (6 = 0 in this case). The stiffness terms
are functions of spring parameters and geometry terms including
normalized lattice constant a and offset angle 6,. The explicit
forms of k; and k, are cumbersome and thus documented in
the Appendix.

Applying the Bloch Theorem [36], we find the linear
dispersion relation as,

1
w= \/7 (2k, + 2k, cos u), (2)

where w and p denote the frequency and propagation
constant, respectively. In Fig. 2a, we depict 10 dispersion curves
corresponding to increasing offset angles. For visualization
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FIGURE 1: SCHEMATIC AND BAND STRUCTURE
FOR TWO TYPES OF ID-ROTATOR LATTICES. IN
EACH CONFIGURATION, ROTATORS ARE PINNED AT
THEIR  CENTERS, WHICH ONLY SUPPORT
ROTATIONAL MOTION. THE BLUE LINES DENOTE
ELASTIC LINKAGES. (A) A ROTATOR CHAIN
COUPLED FROM SIDE ARMS. (B) AROTATOR CHAIN
COUPLED FROM NEAREST ARMS.

convenience, we use the degree unit (°) instead of radian
measure to describe all offset angles (and compromising angles
in next section) in this work. Note that the 6, = 0° and 6, =
90° cases retrieve the solutions in Figs. 1a and 1b. We note that
when the lattice constant is fixed, the offset angle determines the
pattern of dispersion. As the offset angle increases, the passband
morphs from an acoustic dispersion into an optical dispersion
with negative group velocity. It indicates that a flat band across
the entire Brillion zone occurs at the limit of the transition. We
note that the critical offset angle corresponding to this flat band
is challenging to express in an explicit form, but can be written
in a much more elegant way from the lattice constant perspective
discussed next.

At arbitrary fixed offset angle, the dispersion also shifts and
morphs as the lattice constant (unit cell spacing) changes, which
can be interpreted as an external stretch or compression along the
lattice direction. In Fig. 2b we illustrate the dispersion morphing
for three rotator lattices with 6, = 10°50°, and 90° by
capturing the cut-on and cut-off frequencies at y =0 and u =
. As the unit cell spacing increases, both cut-on and cut-off
frequencies increase, yet with non-identical rate and nonlinear
trajectory. This phenomenon is robust for offset in the range
of 6, = (0,90°]. We note that the dispersion associated with
6y, = 0 is immune to the stretch. In the 6, = 50° case (light
blue), we observe the cut-on and cut-off frequencies cross each
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FIGURE 2: PARAMETRIC STUDY ON DISPERSION RELATION OF THE GENERALIZED ROTATOR LATTICE
STRUCTURE. (A) THE DISPERSION CURVES ASSOCIATED WITH DIFFERENT OFFSET ANGLES. OFFSET ANGLES,
RADIUS AND LATTICE CONSTANTS ARE MARKED ON THE EMBEDDED SCHEMATIC. (B) THE CUT-ON AND CUT-
OFF FREQUENCIES AS A FUNCTION OF NORMALIZED LATTICE CONSTANT FOR THREE DIFFERENT OFFSET
ANGLES. THE INSCRIBED PLOT ILLUSTRATES A CROSS OF THE CUT-ON AND CUT-OFF FREQUENCIES.

other in the process of stretching, as detailed in the zoomed-in
view. The cross point illustrates a flat band as well as a transition
of group velocity. At the flat band, frequency w is independent
of the wavenumber . This is equivalent to a zero k, in Eq. (2).
Accordingly, a critical lattice constant inducing the flat band can
be derived from the expression of k, (detailed in Appendix),

. _ sin(8) (47 sin?(,) + Lo sin(6y,) + 27)
*= (2 sin2(6,) — 1)

(3)

where L, is the undeformed length of the spring, and the offset
angle 6, needs to be larger than 45°. For 6, < 45°, stretching
the lattice will not induce a flat band. At the limit of 8, = 45°,
the critical spacing is at infinity. An inverse function of Eq. (3)
can be used to pursue the critical angle for the occurrence of a
flat band at a fixed lattice constant, with the restriction of 8, >
45°.

3. CHIRAL ROTATOR LATTICE

By considering asymmetric elastic linkages between
neighboring rotators, we introduce a variation of the discussed
rotator lattices. As depicted in the schematic in Fig. 3a, each pair
of neighboring rotators are only linked by one spring from their
side arms instead of two, which lies on alternating sides of the

rotator along the chain. We note that each rotator, along with its
neighbor on each side, forms a pair of enantiomers, and hence
we term this type of structure a chiral rotator lattice.

In the top configuration of the schematic in Fig. 3a, each
elastic linkage is assumed pre-tensioned, and each rotator is
subject to an additional torque from its base. This torque has a
constant magnitude of 2k(ayr — Ly)r, where k and agr
denotes the spring stiffness and the lattice constant in the un-
deformed configuration (in the case, ay = 2.1). The applied
torques have identical magnitude but alternative directions for
adjacent rotators, as indicated by the black arrows, and serve to
stabilize the equilibrium position. Without these torques, the pre-
tensioned springs offer unbalanced torques on each rotator and
drive the lattice away from the current equilibrium. The equation
of motion for each rotator is given as,

16, + Ko + (kyo0 + kpe8-1)€ + (kyo8 + kyB41 )€
—T; + 0(e®) =0, (4)

where ki, and k,. are equivalent stiffness terms (please see
the Appendix for explicit expressions) similar to k; and k, in
Eq. (1). In Eq. (4), the additional term K, denotes an
unbalanced 0"-order torque resulted from the asymmetric pre-
tensioned springs, and T; denotes the external constant torque
with alternative directions to counteract this unbalanced term. At
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FIGURE 3: DISPERSION ANALYSIS ON A 1D CHIRAL ROTATOR STRUCTURE. (A) THE DISPERSION MORPHING
WITH RESPECT TO THE CHANGE IN NORMALIZED LATTICE CONSTANT. THE EMBEDDED SCHEMATIC DESCRIBES
THE COMPROMISING ANGLE AND LATTICE STRETCHING DYNAMICS. (B) THE EQUIVALENT STIFFNESS CHANGE
IN THE PROCESS OF LATTICE STRETCHING. (C) THE EVOLUTION OF COMPROMISING ANGLE AND SPRING
DEFORMATION IN THE PROCESS OF LATTICE STRETCHING.

the top configuration in Fig. 3a, where the side arms are held
perpendicular to the lattice direction, we have K, =T; =
+2k(ayr — Ly)r, and thus Eq. (4) can be written as,
16; + (kyc6; + koc0_1)€ + (kyc6; + kyc0)41)€
+0(e®) =0,
which admits a similar form with Eq. (1).

When one attempts to apply a static stretch to the lattice
along the lattice direction, as depicted in the lower configuration
in Fig. 3a, the unit cell spacing changes, and the equilibrium
position of each rotator shifts. This shift can be modeled by a
compromising angle [ asshown in the schematic, which relates
to the external torque and unit cell spacing,

|T]| = 2kércosf, (6)

6§ =ar —Ly—2rsinf, (7

where § denotes the spring deformation. Note that in this

equation, |T]| is constant and S is a function of normalized

spacing «. At each spacing, the equation of motion of a chiral

rotator admits an identical form as in Eq. (5), however with a
shifted equilibrium position,

19} + (klcé] + széj_l)G + (klcéj + k2C§j+1)E

+0(e®) =0, (8)

where 0120 = 0120 + B, 0j42n-1 = Oj42n-1 — B,and n € Z.

Accordingly, we compute and plot the dispersion at each
spacing in Fig. 3a, and illustrate the compromising angles as well
as the spring deformations in Fig. 3c. We observe that when we
stretch the lattice (in a static way), the dispersion morphs from
an acoustic branch into optical branches with positive group
velocity, then a flat band, and eventually a negative-group

velocity band. Different from that shown in Fig. 2b, the cut-on
and cut-off frequencies in Fig. 3a do not experience monotonic

)

increases, and the passband maintains approximately the same
frequency range, until the stretch grows excessively large (the
last two dispersion curves shift upwards considerably). This
observation can be explained by the lattice stretching process
detailed in Figs. 3b and 3c. When the unit cell spacing first starts
to increase, the change in the compromising angle is more
dramatic than the change of the spring deformation. In this phase,
one of the equivalent stiffness decreases and the other increases
in Fig. 3b. Reflected on the band structure in Fig. 3a, the
dispersion pattern morphs, yet stays around the same frequency
range. When the compromising angle approaches 90° in Fig.
3c, its increase slows, and the lattice stretch now mostly
translates to the stretch on the springs, which raises up both
equivalent stiffness terms in Fig. 3b. Accordingly, the dispersion
curves shift upwards across the whole Brillouin zone (see the last
two dispersion curves).

To conclude, an advantageous feature of the chiral type
rotator lattice is its capability of morphing the pattern of the
passband without excessively shifting it in the process of lattice
stretching. In the following two sections, we will introduce three
rotator lattice structures and apply the dispersion morphing
theory, as well as verify the theory using numerical simulations.

4. APPLICATIONS — STATIC LATTICE STRETCH

In this section, we explore two applications stemming from
the analytical findings in the rotator lattice. Both applications
extend the theory to 2D rotator structures and stretch them
statically along the lattice direction. The first application
achieves a bi-directional wave-guiding phenomenon whereby
external stretches can be used to guide waves propagating mostly
perpendicular to the stretch direction. The second application
exhibits a reconfigurable refractive index, and a signal may
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choose to refract to the same side or the other side of the interface
normal based on external stretches. The wave dynamics are

simulated by numerically integrating the
using MATLAB’s ODE45 function.

equations of motion

The first structure, as shown in Fig. 4, depicts a non-chiral
2D rotator lattice with offset angle 6, =45°. A single-
frequency harmonic force excites the lattice at the center. By
stretching the lattice either vertically (Fig. 4b) or horizontally
(Fig. 4c), we morph the dispersion for desired anisotropy and the
associated directional wave-guiding. As shown in the numerical
simulation in Fig. 4b, at the given frequency (w =5), a
vertically-stretched lattice propagates most of the wave energy
horizontally, which agrees with the group velocity contour
analytically computed [36]. Similarly, if a lattice is stretched
horizontally by the same amount, the wave shall propagate
mostly in the vertical direction, as shown the Fig. 4c. We note
that the shown directivity is not a narrowband phenomenon —

given the anisotropic lattice, a wide range

of frequencies within

the passband can induce similar group velocity patterns, which

leads to directional energy flow.

The second structure, as shown in Fig. 5, constructs an
interface problem between a chiral and non-chiral rotator
structure whose passbands partially overlap. The top media
adopts a chiral rotator structure as shown in Fig. Sa, and the
bottom media adopts a non-chiral rotator lattice with zero offset

angle. We note that the band structure of a zero-offset rotator
lattice is immune to stretch along the lattice directions. The
lattice is excited by an oblique incident wave starting from the
bottom left corner.

In Figs. 5a-c, the lattice is not stretched. The band structure
of two media are designed to be identical, as depicted in Fig. 5b,
such that the transmission is full (Fig. 5¢c). When we introduce a
large bi-directional stretch, the unit cell rotates to its new
equilibrium position shown in Fig. 5d, and its dispersion morphs
into an optical branch with negative group velocity across the
Brillouin zone, illustrated by the red curve in Fig. Se.
Accordingly, a negative refraction occurs at the interface [34].
We note that the lattice stretch process is reversible due to the
existence of external torques discussed in the last section.

These two structures illustrate highly reconfigurable
anisotropic properties and refractive index, which play important
roles in directional energy transfer and information transport,
and can relate to acoustic multiplexing and demultiplexing [26].
Additionally, the reverse design of these structures can be
utilized to sense global and local deformation based on the wave
propagation pattern.
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FIGURE 4: APPLICATIONS - BI-DIRECTIONAL WAVE-GUIDING. (A) SCHEMATIC OF THE ROTATOR LATTICE WITH
UNIT CELL DEFINED. (B) AND (C) THE VERTICALLY AND HORIZONTALLY STRETCHED LATTICE. THE BAND
STRUCTURE IS PLOTTED AS A SUBPLOT WITH THE RED DASHED LINE INDICATING THE EXCITATION
FREQUENCY. THE COLOR FIELDS DESCRIBE THE SPATIAL DISTRIBUTION OF ENERGY IN THE PROCESS OF WAVE

PROPAGATION.

EACH PIXEL REPRESENTS A SINGLE ROTATOR. GROUP

VELOCITY CONTOURS AT THE

EXCITATION FREQUENCY ARE PROVIDED, WITH HORIZONTAL AND VERTICAL AXES DENOTE HORIZONTAL AND
VERTICAL COMPONENT OF GROUP VELOCITY. FOR BOTH AXES, THE CONTOUR IS CENTERED AT ZERO.
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FIGURE 5: APPLICATIONS — TUNABLE REFRACTION. (A) THE SCHEMATIC OF AN UN-DEFORMED CHIRAL
ROTATOR LATTICE. (B) THE BAND STRUCTURE OF THE CONFIGURATION IN (A). THE RED AND BLUE CURVES
DENOTE THE DISPERSION CURVES FOR THE TOP AND BOTTOM MEDIA. (C) THE SIMULATED WAVE PROPAGATION
PROFILE, WITH THE WHITE LINE INDICATING THE INTERFACE. (D) THE SCHEMATIC OF A DEFORMED CHIRAL
ROTATOR LATTICE. (E) THE DISPERSION OF DEPICTED CONFIGURATION IN (D). (F) THE WAVE PROPAGATION
PROFILE ASSOCIATED WITH A DEFORMED CHIRAL ROTATOR LATTICE.

5. APPLICATIONS - DYNAMIC LATTICE STRETCH

In this section, we introduce a 1D non-chiral rotator chain
with an offset angle 8, = 90° and time-modulated unit cell
spacing. As shown in Fig. 6a, the spacing between each pair of
unit cells fluctuates in time with an amplitude A,, and
frequency w,,. To derive the modulated dispersion relation, we
adopt the approach in [27, 37], and assume a linearized solution
of the form,

+ oo
Qj(t) — ei(wt—uj) Z éneinwmt (9)
n=-—oo

where ,, is the coefficient of the Fourier-expanded solutions.
By inserting Eq. (9) into Eq. (1), we solve a quadratic eigenvalue
problem in terms of w at each normalized wavenumber u €
[0, ]. In Fig. 6b, we present the resultant band structures. Note
that the blue and red curves represent dispersion curves
corresponding to real (left y-axis) and imaginary frequency
(right y-axis), respectively. We make three observations for the
modulated dispersion in Fig. 6b.

e  When two branches meet, they merge and form a flat
band with complex frequency.

e The flat bands locate at me, and can be shifted along

this frequency by varying the modulation frequency.

e The flat band can be broadened by increasing the
modulation amplitude A4,, . In this process, the
magnitude of the imaginary frequency also increases.

Due to the presence of imaginary frequency, a signal excited
at the flat band shall grow exponentially in time if no energy
dissipation is applied. Hence, this time-modulated system is
capable of amplifying a specific frequency out of a broadband
excitation. We model such a scenario in numerical simulations.

Using numerical simulations, we send a finite pulse whose
frequency content is centered around w = 1.25 rad/s, as
described in Fig. 6c. We then perform a 2D Fast Fourier
Transformation (FFT) on the response to investigate the
propagated frequency and wavenumber. To avoid unbounded
amplitudes, we introduce viscous damping into the system and
ensure the wave amplitudes are small. In Figs. 6d and 6e, we
superimpose the two dispersions highlighted in Fig. 6b on the
associated numerical FFT results. Specifically, Fig. 6d, with the
orange frame, is compared with the bottom left configuration in
Fig. 6b, and Fig. 6e, with the green frame, is compared with the
top-right configuration in Fig. 6b. We observe that the numerical
FFT results peak at a frequency-wavenumber pair on the flat
band where the imaginary frequency is maximized, which agrees
with the theory.

The flat band observations and parametric amplifications
are consistent with previous studies [38]. However, this system
is rather unique since the modulation applies on a geometric
parameter — the unit cell spacing in a macro scale. Thus, a reverse
engineering of such can apply to motion sensing, where the
location of a flat band deciphers the amplitude and frequency of
the motion modulating the lattice.

6. CONCLUSIONS

The proposed study investigates two types of reconfigurable
in-plane rotator lattices and associated reversible dispersion
morphing phenomenon. Two key parameters, offset angle and
unit cell spacing, are specifically studied to illustrate their effect
on the band structures of the rotator lattices. The dispersion
morphing resulting from the change of unit cell spacing is
analogous to an acoustoelastic effect. In the generalized rotator
lattice, a change in either key parameter is capable of converting
the passband from a positive-group-velocity branch to a flat
band, and then a negative-group-velocity branch. For the chiral
rotator lattice, an increasing unit cell spacing morphs an acoustic
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FIGURE 6: APPLICATIONS — TIME-MODULATED LATTICE. (A) THE SCHEMATIC OF A 1D ROTATOR LATTICE WITH
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MODULATION AMPLITUDE AND FREQUENCY. THE HORIZONTAL AND VERTICAL AXES ARE WAVENUMBER AND
FREQUENCY, RESPECTIVELY. (C) THE FREQUENCY CONTENT OF A TESTING SIGNAL IN NUMERICAL
SIMULATIONS. (D) AND (E) THE NUMERICAL RESULTS WITH MODULATION PARAMETERS HIGHLIGHTED IN (B).
THE RESULTS ARE COMPARED TO CORRESPONDING ANALYTICAL BAND STRUCTURES.

branch into an optical branch without shifting it to higher
frequency.

We also explore applications of the 1D and 2D rotator
lattices under static or dynamic stretching. A bi-directional
waveguide is numerically validated in an offset non-chiral
rotator lattice. The chiral structure interfaced with a non-chiral
lattice with zero offset angle illustrates tunable refraction index
when subject to bi-directional stretch. Finally, a time-modulated
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APPENDIX — EQUIVALENT STIFFNESS
In Eq. (1), the equivalent stiffness k; and k, have
expression,

lattice demonstrates the emergence of flat bands and associated
parametric amplification in a rotator lattice, which can be applied
to motion sensing. The theory and applications presented may
inspire future reconfigurable metamaterial designs. Follow-on
research will include experimental validation and investigation
of dissipation and nonlinear effects in consideration of practical
implementation.
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1
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In Eq. (4), the equivalent stiffness k,. and k,. are
functions of S instead of 6. Their expressions are very similar
to those of k; and k,. The explicit expressions are given as,

ki =
1
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