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Abstract—Quantitatively characterizing a locomotion perfor-
mance objective for a human-robot system is an important
consideration in the assistive wearable robot design towards
human-robot symbiosis. This problem, however, has only been
addressed sparsely in the literature. In this study, we propose a new
inverse approach from observed human-robot walking behavior to
infer a human-robot collective performance objective represented
in a quadratic form. By an innovative design of human experiments
and simulation study, respectively, we validated the effectiveness
of two solution approaches to solving the inverse problem using
inverse reinforcement learning (IRL) and inverse optimal control
(IOC). The IRL-based experiments of human walking with robotic
transfemoral prosthesis validated the realistic applicability of the
proposed inverse approach, while the IOC-based analysis provided
important human-robot system properties such as stability and
robustness that are difficult to obtain from human experiments.
This study introduces a new tool to the field of wearable lower
limb robots. It is expected to be expandable to quantify joint
human-robot locomotion performance objectives for personalizing
wearable robot control in the future.

Index Terms—Learning from demonstration, reinforcement
learning, wearable robotics.

I. INTRODUCTION

W EARABLE lower limb robotics, such as robotic ex-
oskeletons and prostheses, are promising technologies

for assisting locomotion in individuals with movement deficits.
Researchers often focus on design and control of these robotic
devices to restore normative joint kinematics and/or kinetics
for improving gait performance in human users [1]. However,
human gait biomechanics also play an important role in the
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robotic joint mechanics when human and robots are coupled in
parallel (such as exoskeletons) or in series (for example robotic
prosthesis) [2].As such,weneed to gain quantitative understand-
ing of the human-robot system during walking, a problem that
has been considered amajor challenge inwearable robots. As the
first step toward human-robot symbiosis (i.e., human and robotic
limb function together for augmented locomotion), we need
to consider the collaborative and interactive nature of human
and lower limb robots in locomotion as well as mathematically
construct a proper control objective to account for factors from
both the human and the robot.
Understanding the human-robot collective goal is important to

personalize wearable robots for gait assistance. This is because
humanmotor behaviors, especially for populations with sensori-
motor deficits, vary greatly between and within individuals due
to differences in motor weakness and compensation strategies.
Active research attempted to address this issue by personalizing
the wearable robot control as an optimization problem [3]–[6],
which is to fine tune wearable robot control to achieve a certain
optimized performance goal in walking.
Studies have considered various performance measures as the

goal to personalize the wearable robot control. Metabolic cost
has been reported as a performance objective for optimization in
exoskeleton control to improve walking energetic efficiency of
non-disabled individuals [3], [4]. The resulting customized and
optimized control allowed humans to eventually reduce overall
energy expenditure in walking. However, limited success has
been reported in using metabolic cost as the objective for opti-
mizing robotic lower limb prosthesis control [7]. Some research
groups have attempted to bring user preference into prosthetic
device control by allowing users to self-select their preferred
control parameters [8], [9]. Another research group proposed
learning algorithms [10], [11] to include human feedback, such
as good vs bad and preferred action 1 vs action 2, to identify op-
timal regions of an objective function in the exoskeleton control
optimization process. One of the difficulties in incorporating
user perception into the control objective is how to reliably
quantify and mathematically describe this goal. Additionally,
these optimization goals are based on human measurements
only, which are chosen by intuition, not chosen systematically.
Furthermore, it is not clear how to arbitrate between robotic
prosthesis control and human control in a collective control goal
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during walking, andwhether there are other confounding factors
influencing the human-robot collective performance.
Given the complexity of the problem, and tomake the problem

meaningful and tractable, in our prosthesis control problem
setting, we formulated the human-robot system objective as
meeting desired prosthesis joint kinematics features. We have
thus developed and demonstrated reinforcement learning (RL)
based tuning of the 12 prosthesis control parameters while a
human walked with the robotic prosthesis knee [5], [6]. Our
results also showed that both human motor control and comput-
erized prosthesis control have influences on the kinematics [12]
or kinetics [13] of prosthesis joints. However, to our knowledge,
few studies have focused on inferring a potential human-robot
collective performance objective in the lower limb wearable
robotics.
This study proposes a new concept and computational frame-

work that uses observed human-robot behavior to infer a human-
robot collective performance objective in locomotion.We exam-
ined two solution methods, the inverse reinforcement learning
(IRL) [14], [15] and the inverse optimal control (IOC) based on
which cost objective functions can be solved in closed form [16].
These methods can in principle be applied to capture general
forms of collective cost functions. But as the first attempt of its
kind, we demonstrate the feasibility of applying IRL and IOC in
a human-prosthetic system, by considering the cost function of a
quadratic form which contains two features under the influence
of both human and machine. IRL and IOC were then used to
specify the weighting coefficients for the performance features.
To validate the effectiveness of the proposed IRL and IOC

methods, building upon the existing knowledge we learned from
individualswalkingwith a robotic kneeprosthesis,wedeveloped
two innovative procedures, involving human experiments and
control theoretic analyses by simulations. For IRL approach,
we conducted experiments on a human when walking with a
robotic knee prosthesis. We introduced visual biofeedback as
an approach to encourage human movement behavioral change
while the prosthesis was controlled by RL. By observing differ-
ent human-robot system behaviors under the conditions of with
andwithout visual biofeedback, we showed how IRLwas able to
capture these different behavioral goals represented as different
cost functions. For IOC approach, we used OpenSim [17] to
simulate the human-prosthesis system inwalking and conducted
control theoretic analysis. Since it is difficult to simulate walk-
ing behavioral change elicited by visual feedback, instead, we
introduced gait behavior change by modifying the mechanics
limbs in simulation models. Then we were able to observe
human-robot system behaviors which resulted in different cost
functions. Both IRL and IOC have significant implication for
human-robot systems in locomotion. The IRL-based human
experiments validated the realistic applicability of the proposed
inverse approach, while the closed form IOC-based analysis
provided important human-robot system properties that were
difficult to obtain from human experiments.
Our main contributions include the following. 1) We in-

troduced a new inverse concept and approaches to identify-
ing human-robot performance objective in locomotion. The
conceptualization of the approach is general even though we

demonstrated the performance cost function in a quadratic form
in this study. 2)We validated the proposed concept by using IRL
and IOC through an innovative design of human experiments
and control theoretic analysis based on simulations. 3) While
both IRL and IOC are effective realizations for quantification
of a human-robot system performance in a cost function, our
IRL based results demonstrated the potential of our proposed
framework in realistic human application scenarios, and our IOC
based results revealed new insight that explains human-robot
systembehavior such as stability, robustness, and control/human
energy consumption.

II. METHODS

This study uses two solution approaches, IRL and IOC, to
infer a collective performance objective based on observed
human-robot system behavior. To validate the effectiveness of
both approaches, human experiments under the condition of
with and without visual feedback were carried out. Due to the
difficulty of simulating walking behavioral change elicited by
visual feedback, instead, we introduced gait behavior change by
modifying the mechanics of both intact and prosthesis limb in
simulation models realized by different damping coefficients.

A. The Human-Robot System in Walking

To apply IRL and IOC, and to validate their feasibility of
capturing human-robot behavioral performance and represent-
ing it in a cost function, we need to collect human-robot be-
havioral data under different behavioral conditions (with or
without visual feedback for human experiments, and different
damping coefficients for OpemSim simulations) in order to
inversely compute the performance objective. Enabling norma-
tive walking requires automatically controlled robotic knee to
meet a desired target profile. For this purpose, we utilized the
well establish finite state machine impedance control (FSM-IC)
framework. As depicted in Figs. 1(a) and (b), in FSM-IC, a
single gait cycle is decomposed into four consecutive phases
based on knee joint kinematics and ground reaction force: stance
flexion (STF), stance extension (STE), swing flexion (SWF) and
swing extension (SWE). Thus, four well-designed impedance
controllers for each phase are required for continuous walking.
The knee joint torque τ can then be formed to control knee joint
movement based on the impedance control law,

τ = K (θ − θe)− βΩ (1)

where in the above, sensors attached to the prosthesis provides
real time measurements of knee joint angle θ and knee angular
velocity Ω.

B. Automatic Robot Control

To enable human-robot normative walking under different
experimental and simulation protocols, we used our previously
developed RL-based control agent, the policy iteration with
constraint embedded (PICE) [5], to automatically tune the pros-
thetic knee impedance parameters to generate the automatic
control torque according to (1). The goal of robot control was
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Fig. 1. Experimental procedure and experiment setup in obtaining human-
robot behavioral data under two protocols of with and without visual feedback,
respectively. (a) The controller was developed for the human-robot to achieve
normative walking. Four reinforcement learning based controllers developed
within a finite state machine (FSM) framework [5] were tuned corresponding
to each of the four phases of the robotic knee. (b) Profile and features of knee
kinematics were described for each of the four gait phases. An example of
state definition was illustrated in the SWF phase. Two profile features, a peak
error ΔP and a duration error ΔD were defined to form system state. (c)
Human experiments were carried out with and without visual feedback. For
experiments with visual feedback, the computer screen in front of a participant
provided real-time feedback on stance duration time. The vertical displacement
of the dot relative to the centrally placed horizontal bar provided the participants
a measure of actual stance time on the prosthesis side relative to the desired.
Human-robot behavioral data were collected during testing using the previously
learned control policy. The recorded data sequence then served as inputs to an
IRL agent to infer a collective performance objective of the human-robot system.
Two different performance representations were expected corresponding to the
two different behavioral protocols, which is a validation of IRL method.

to regulate the robotic knee joint to meet a desired knee profile
[see Fig. 1(b)] characterized by four characteristic feature points.
Two features are identified for each of the target point: the target
angle Pd and target duration Dd. We measured the peak knee
angle P and timing D in every gait cycle. The value of peak
error and duration error are determined by

ΔP = P − Pd

ΔD = D −Dd (2)

We define the state variables as

s = [ΔP,ΔD] ∈ R2 (3)

Meanwhile, the control variables are the adjustments of the
impedance parameters,

a = [ΔK,Δβ,Δθ] ∈ R3 (4)

corresponding to the three impedance parameters in (1).
The goal of this design is to find an optimal policy which

minimizes a cumulative error between target profile features and
themeasured profile features. In this study, PICE control [5] was
used to solve this optimal control problem.

C. Inverse Reinforcement Learning Algorithm

Based on the previously defined system state and control
variables, IRL problem can be formulated as follows: given a
set of state s sequences, a set of actions a, a discount factor
γ � 1, and a policy π; determine the cost function r that can
characterize agent’s control policy or behavior.
Under the guidance of a control policy π, the agent picks

actions accordingly to result in a sequence of dynamic states
S = {s0, s1, s2, · · · } stemming from an initial state s0 ∼ D.
To evaluate the policy along the trajectory, we project the state
variables of each gait cycle to obtain a series of feature vectors of
the statesφ : s → [0, 1]k, which represent different factors in the
cost objective that we would like to trade off in the human-robot
system. In this study,we consider a cost functionwith its features
represented by quadratic errors. IRL approach can in principle
be applied to other cost functions to include other performance
features.
We assume that there is an unknown vectorω∗ that can specify

the relative weighting between different performance features,
and the cost function of the system can be reconstructed by the
linear combination of these features as

r∗(s) = ω∗ · φ(s) (5)

The goal of IRL is to estimate this weighting vector ω∗.
For this purpose, IRL proceeds from an evaluation of a policy

π. The value function for a policy π can be estimated as

V π (s0) = E

[
+∞∑
i=0

γir (si) |π
]
= ω · E

[
+∞∑
i=0

γiφ (si) |π
]

(6)
where the state sequence starts from initial state s0. We define
the discounted accumulated feature value vector to be

μ (π) = E

[
+∞∑
i=0

γiφ(si)|π
]

(7)

where μ(π) represents the feature expectation of ΔP and ΔD.
Based on the notations above, the value of a policy π can be
written as

V π (s0) = ω · μ (π) (8)

In this study, we use quadratic features and thus, the cost
function in (5) can be further written as

r(s) = sTHs (9)

where H = [
ω1 0
0 ω2

] ∈ R2×2 includes unknown weighting pa-

rameters that we would infer from human-robot behavioral data.
And thus in this study, the value of an observed trajectory can
be written as

V π (s0) =

∞∑
i=0

γisTi Hsi (10)

The goal of IRL now becomes determining the weighting
matrixH which maximizes the difference between the sampled
and an optimal trajectory. This optimization problem can be
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written as a max-margin question

H∗ = arg maxω minπ {V π(s0)− V π∗(s0)}
s.t. ‖H‖2 � 1

(11)

And thus, based on the feature expectations of sampled trajec-
tory, the cost function is reversely introduced, which indicates
the tradeoff among different performance factors represented by
the chosen features.

D. Human Experiments for Inverse Reinforcement Learning

1) Experimental Platform Setup: Fig. 1(c) demonstrates the
experiment setup. The prosthesis rotarymotion is driven by aDC
motor (Maxon, Switzerland), and measured by a potentiometer
attached to the joint. Details of this device can be found in [6].
Three non-disabled individuals participated in the testing on the
robotic knee prosthesis after providing institutionally-approved
informed consent reviewed by the Institutional Review Board
of UNC Chapel Hill. During each trial they wore an L-shape
adapter to walk with the knee prosthesis on an instrumented
split-belt treadmill. The ground reaction force were measured
by loadcells (Bertec, USA) attached to the treadmill belts. All
wearers received training with the powered prosthesis until they
felt comfortable and confident enough to walk at a speed of
0.6 m/s without holding the handrail.
We utilized a unilateral, temporal metric (i.e. prosthesis-side

stance time) [18] to display as visual feedback to assist wearer
with the control of prosthesis-side stance duration. The visual
feedback was created via custom code using the Vicon SDK
(VICON, U.K.) and MATLAB and displayed on a computer
monitor, 1 m in front of the participant on the treadmill. A
dot moved up and down along the y-axis, representing the
prosthesis-side stance time increasing and decreasing. The feed-
back displayed to the wearers was calculated from the ground
reaction force in real time (with a 20 N threshold), and averaged
over four strides to smooth the signal and reduce any large
stride-to-stride corrections. The target stance duration time was
self selected by wearers to make sure they felt comfortable with
walking, and it was displayed as a black bar centered on the
screen to maintain participant’s perceived accuracy.
2) Experimental Protocol and Data Collection: Wearers

were asked to walk at a constant speed of 0.6 m/s under two
conditions: 1) without visual feedback (w/o VF), and 2) with
visual feedback (w/ VF). Under the second condition, the real
time averaged stance duration of the prosthetic footwas provided
to the wearer. In this work we focused on the analysis of state
sequences in phase 2 of a gait cycle when single support on the
prosthetic leg occurs. This is because humans tend to reduce the
single support duration on the prosthesis sidewhenwalkingwith
a prosthesis [19], [20] as loading and balance in this phase both
rely on prosthetic jointmechanics.When visual feedback guided
the stance duration on the prosthesis side, the human-machine
objective may change in order to maintain a certain level of
single support duration on the prosthesis. Our previous exper-
iments also provided evidence that visual feedback of stance
duration has significant influence on knee kinematics during
single support on the prosthesis side [18].

Fig. 2. Experiments to validate feasibility of IRL. Two behavioral protocols
(with and without visual feedback) were used to illustrate how IRL was able
to respectively capture different behavioral goals represented in a quadratic
cost function form. Impedance control tuning was first performed using PICE
to obtain a stationary policy when participants achieved normative walking.
Testing was performed after participants took a short break. The generated state
trajectories were used to obtain a quantitative representation of the cost function
using IRL.

As displayed in Fig. 2, PICE control was first applied to
tune impedance parameters for each participant until reaching
stable normative walking. This is to determine an optimal policy
based onwhich human-robot behavioral data could be generated
during testing in order to apply IRL.
The controller and impedance parameters were randomly

but identically initialized for all participants. The PICE tuning
proceeded by first determining the peak error and the duration
error based on knee kinematic measurements. State variable si
were then obtained and control policy were updated using PICE.
After which the impedance adjustment ai were applied to the
FSM-IC [refer to Fig. 1(a)] to enable the next gait cycle until
reaching stopping criteria for tuning. We thus obtained two con-
trol policies: π1 was generated without VF and π2 was generated
with VF. In consideration of human variability, measurement
noise, and other uncertainties from the environment, we set the
tolerance levels of error as ±1.5 degree for peak errors and
±3% for duration errors. We considered tuning within a phase
is converged if state stays within the tolerance range for 8 out
of 10 consecutive impedance updates. If all four phases become
converged, a trial is successful and meets the stopping criteria.
After taking a break from reaching stationary control policy

for both conditions of with andwithout visual feedback, all three
wearers were asked to complete a walking trial for at least 120
gait cycles (corresponding to around 5 minutes of walking time)
and until the features of the prosthetic knee joint kinematics
were within the allowed tolerance ranges. The behavioral data
collected from this testing session were used as inputs to IRL to
infer human-robot performance cost function.
3) Data Processing: Once human-robot behavioral data

were collected using the optimal policy corresponding to nor-
mative walking, We then determined the weighting matrices
H for the two policies π1 and π2, respectively, using the IRL
algorithm in section II-A. We took the target profile as the
optimal trajectory, and denote its feature value as μπ∗ . Then
we could find the weighting matrix H∗ which maximizes the
difference between the sampled trajectory feature value and the
optimal trajectory feature value by using the algorithm proposed
in (11). The weights of feature basis vector ω1 and ω2 in the cost
function were calculated for π1 and π2 separately, showing the
tradeoff of these factors with its corresponding policy.
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E. IOC Approach to Inferring Performance Measure

As the IRL approach, the goal of IOC algorithm is also to
infer a performance objective that leads to a realized movement
trajectory, which is considered optimal when the human-robot
system have reached a target. IOC algorithm is thus applied to
determine a cost function, which is of a quadratic form in this
study. Even though both IRL and IOC are considered in the
same family of inverse optimal control algorithms, the working
mechanisms are slightly different, and approximations are made
in both algorithms. One such distinguishing factor is that IRL
algorithm we used does not require dedicated experiments to
perform a system identification procedure while IOC algorithm
does in order to obtain an approximate human-robot dynamic
system model. As will be shown below, these two methods led
to qualitatively agreeable results and IOC approach provided
additional insights on the human-robot control system.
As a classical control tool, IOC has been well developed

including important results such as necessary and sufficient
conditions for a stable state feedback law to be optimal under
some quadratic costs [16], revealing innate properties of the
human-robot system for its open-loop stability by quantitatively
examining pole location, closed-loop control gain, closed-loop
robustness via phase margin. It is worth noting that, all these
control theoretic properties are difficult to obtain from human
experiments. Therefore, once we can validate agreeable results
from IRL and IOC, we can expect that results from IOC analysis
may benefit studies of human-robotic system properties.
IOC approach also requires the same FSM-IC and automatic

robot control as in IRL (section II-A and II-B). To validate the
effectiveness of IOC method, two behavioral protocols were
realized by using different damping coefficients of the robotic
knee as it is infeasible to simulate visual feedback in virtual
environment. As in the case of IRL, different cost functions
were expected for the two different behavioral protocols. While
the IRLmethod ensured the human-robot system reach the same
performance target trajectory via PICE control, the IOCmethod
ensured a same close-loop state trajectory to assigning the
same target poles. As such, we were able to infer human-robot
performance measure under the same kinematic behaviors and
thus, able to reflect human control and its effect on the cost
function.
IOC approach proceeded as follows (Fig. 3). First, the same

impedance control framework used in IRL was applied to tune
the robotic knee using OpenSim simulations. Different stabi-
lizing impedance control parameters were obtained previously
under PICE or our other established RL controls. These control
parameters were then applied to enable a system identifica-
tion procedure to produce an open-loop human-robot system
dynamic model. Once a system model was identified as SS1

and SS2, which correspond to different damping coefficients,
a closed-loop pole assignment procedure was applied based
on the identified model to ensure both systems had identical
poles and thus resulted in the same state trajectories to the same
effect of achieving target profile. With the systemmodel and the
closed-loop control in place, wewere able to use IOC to infer the
respective weighting coefficients in the quadratic cost measure.

Fig. 3. Simulations to validate the feasibility of IOC. Two behavioral protocols
(with two different damping coefficients) were used to illustrate how IOC was
able to respectively capture different behavioral goals represented in a quadratic
cost function form. Control excitations represented by several impedance set-
tings were used to obtain stationary simulated human walking in OpenSim.
The resulted dataset including control excitation and state trajectories were then
used to identify a human-robot dynamic model. Pole placement was used to
produce stationary system trajectories signifying identical system states under
the influence of both human and computer controls for both behavioral protocols.
This resembles reaching the same normative knee profiles with and without
visual feedback in human experiment. Under such a design of simulations
study, different behavioral protocols would be expected to result in different
performance measures.

F. The Inverse Optimal Control Algorithm

Unlike IRLwhich is data driven, IOC approach requires iden-
tification of linear time invariant (LTI)model of the human-robot
dynamic system. While this procedure may introduce some
modeling errors, it provides additional insight about human-
robot system properties such as stability, control gain, closed-
loop robustness and more.
We consider a human-robot systemdescribed by the following

LTI dynamics,

ẋ = Ax+Bu

s = Cx+Du (12)

where x ∈ R2×1, A ∈ R2×2, B ∈ R2×1, C ∈ R2×2, and D ∈
R2×1. The system state s is as defined in (3). But unlike discus-
sions of IRL where a stands for control action, here we denote
control action by u as it was obtained from a different control
mechanism.
We considered the following quadratic instantaneous cost

which is common in optimal control theory,

R(x, u) = xTHx+ uTu (13)

where H = HTH with H ≥ 0 and H = [h1, h2]. We also
considered an infinite horizon cumulative cost for IOC. Note
that, IOC solution is based on a canonical linear quadratic
regulator formalism where the energy expenditure in control u
is also to be minimized. Since this term is weighed by a constant
for different scenarios, it does not affect the characteristics ofH .
Additionally, we usedH= [h1, h2] to signify the weight matrix
of performance features as it is obtained using a mechanism
different from IRL.
IOC problem is that, given a stable state feedback control law

u = −Gx (14)

determine a condition on A,B,G such that the control law
minimizes the cumulative cost based on the instantaneous cost,
and determine the cost represented by H = HTH ≥ 0, which
is weight factor for the peak error feature and the duration effort
feature as in IRL approach.
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TABLE I
OPENSIM SIMULATION SETTINGS

The solution of IOC problem requires that (A,B) are con-
trollable and (A,H) are observable. The control law minimizes
the cost if and only if

N T (−ζ)HTHN (ζ) +DT (−ζ)D(ζ) = I (15)

whereN (ζ) andD(ζ) are the numerate part and the denominate
part of the system transfer function expressed as

N (ζ) = (ζI −A−BG)−1B
D(ζ) = G(ζI −A−BG)−1B + I

(16)

Wewere thus able to solve the cost function, specificallyH after
we had identified the system dynamic model and specified the
closed-loop poles which led to the same target state trajectories
in our design for this simulations study.

G. Linear System Identification and Pole Assignment for IOC

The goal of performing a system identification is to obtain a
model ((A,B,C,D) in (12)) of the human-robot systemso thatwe
could apply the inverse optimal control procedure to recover the
system performance objective function given a control policy.
To this end, we obtained single input multiple output (SIMO)
system models from K to state ΔP as TFK→ΔP , and from K
to stateΔD, TFK→ΔD.

The stabilizing impedance control parameters were obtained
from the same automatic control algorithm used in IRL (in
section II-A and II-B). Here for the purpose of system iden-
tification, a set of impedance parameters varied as follows to
trigger system outputs (peak and duration errors). We kept θe at
values summarized in Table I. The stiffness K in Table I was
corrupted bywhite noise δK.We simulated the systemdynamics
with different damping ratio β to signify two different behavior
protocols in OpenSim. Whereas in IRL, the two behavioral
protocols were implemented by the with and without visual
feedback protocols.
The pole placement technique was applied in order to reach

the desired stationary closed-loop state trajectories. This step
was performed after obtaining an LTI system dynamic model.
Then we could obtain the corresponding control gains, which
were referred to as control policies in IRL. To represent human
influence on the robotic knee, we fixed the computer control
gain by placing identical closed-loop poles for the human-robot
system under different behavioral protocols (different damping
coefficients). In IRL, thiswas achievedby controlled kneeprofile
meeting the target under different behavioral protocols.
Further control theoretic analysis revealed that the optimal

control gain G is related to the quadratic cost H = HTH such
that H ≈ G.

Fig. 4. Experiment results under the conditions of with and without visual
feedback, respectively, for each wearer. (a) Feature values of peak error and
duration error (refer to (7)). (b) Corresponding weights defined in (9).

H. OpenSim Simulations

OpenSim is awell-established platformwhichwas used in this
study to simulate level groundwalking of a human-robot system.
Specifically, we used it under different impedance parameter
settings to generate dynamic trajectories in order to formulate
the dataset for system identification introduced above (Fig. 3).
The model settings for simulating lower limb to enable stable
walking are summarized in Table I.
We created two simulated wearers, each had two simulated

behavior protocols realized by different damping coefficients.
The two simulated wearers were characteristically different as
one had a fixed pelvis profile (simulated wearer #1) for the intact
limb and the other had adaptive pelvis control (stimulatedwearer
#2) that enables walking patterns with large variance.
For simulated wearer #1, the intact knee behavior profile

(characterized by peak value and duration value) was prescribed
as in Table I, and we used two simulated behavioral protocols by
varying β values in phase 2 (β1 = 0.08 as behavioral protocol
#1, and β2 = 0.14 as behavioral protocol #2). For simulated
wearer #2, the intact knee was enabled by impedance control
specified by impedance parameters that correspond with an
intact knee profile established from well-developed normative
dataset [21] and the two simulated behavioral protocols are
β1 = 0.11 and β2 = 0.107.

III. RESULTS AND ANALYSIS

A. Experimental Results and Analysis

Fig. 4 summarizes the feature expectation μ defined by (7),
weights ω1 and ω2, respectively, for peak error and duration
error in the cost function defined in (9), as well as the ratio be-
tween the weights defined by α = ω1/ω2 for the three wearers.
We compared the values of these measurements over the two
experimental conditions, with and without visual feedback.
With human intentional control under the guidance of

VF, the calculated features of peak error and duration er-
ror both decreased. Peak error feature μ1 decreased by
64.5%, 32.7%, 34.8%, and duration error feature μ2 decreased
by 38.3%, 41.5%, 32.8%, respectively for each wearer.

The weights for peak error and duration error in the cost
function were also quantitatively unraveled by IRL. For all
three wearers, peak error term dominated the cost function.
However, when visual feedback was provided to users, duration
error increased its relative prominence in the cost function. This
can be seen from the relationship between the two weights
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Fig. 5. Simulated walking performance results and control theoretic analyses
for simulated wearer #1 under walking protocol #1 (β1 = 0.08) and walking
protocol #2 (β2 = 0.14). All results were obtained based on 10 trials. For each
trial, randomly generated input-output data pairs allowed a system identification
procedure to produce a human-robot system model defined in (12). The black
lines represent the 75% confidence interval. (a) and (b) Simulated walking
performances represented by peak error and duration error for the two walking
protocols as impedance parameterK (stiffness) varied. The shaded areas outside
the top and the right edges of each panel are the histograms of the respective
values. Results shown in (a) and (b) illustrate different human-robot system
behaviors due to different damping coefficients. (c) Distance of the open-loop
poles from the stability margin for the identified human-robot systems. (d) Phase
margins which signify closed-loop system robustness or its ability to deal with
uncertainties and disturbances. (e) IOC resulted weighting coefficients (h1 and
h2 for peak error and duration error, respectively) in the quadratic cost defined
in (13), and the ratio α between the two weights.

by calculating their relative ratio α with ω1 weighs the peak
error and ω2 weighs the duration error. Overall, this relative
ratio consistently decreased for all three wearers. Specifically,
the relative weight ratio between peak error and duration error
decreased by 41.9%, 29.2%, 27.5%, respectively for the three
wearers when they were guided by visual feedback.
Individuals walking with and without visual feedback are

two characteristically different behaviors. With visual feedback,
prosthesis wearers were intentionally involved in the control
process. Even though it is unclear howwouldwearers internalize
the visual feedback in order to generate improved gait timing,
what we have demonstrated suggests that IRL was capable of
capturing different behavioral performance goals and quanti-
tatively represent the goals in a quadratic cost function with
appropriate weighting on performance features that we could
measure.

B. Simulation Results and Control Theoretic Analysis

In addition to providing validations for IOC as another fea-
sible approach to capturing behavioral performance goals and
representing them in a quadratic cost function with appropriate
weightings, the results obtained in this section via control theo-
retical analysis allowed us to gain additional insight that could
not be devised from human experiments.
We analyzed performance of two simulated subjects. In each

trial, a system model was identified based on 800 measured
input-output data pairs as Fig. 3 shows. The respective results
were obtained from 10 random trials. The average fit rates of the
identified systemmodels for the two simulated wearers are 71%
and 73.8% respectively. Fig. 5 summarizes results of simulated
wearer #1, the one with fixed pelvis profile.

Figs. 5(a) and (b) are walking performances obtained after
system identification procedures where input-output data pairs
were generated via OpenSim simulations. The respective av-
eraged peak error and duration error are 5.92◦ and 3.2% for
protocol #1, 2.5◦ and 0.32% for protocol #2. This illustrates
behavioral differences between the two protocols. In addition,
based on target profile, the peak error change rate from protocol
#1 to protocol #2 is much greater than the duration error which
indicates that the peak errors are more sensitive to damping
impedance change.
Fig. 5(c) examines open-loop poles of the identified human-

robot systemmodels for stability. Greater pole distance from the
origin means a more stable system. As shown, the pole distance
associated with peak error d1 is more sensitive to the protocol
change from #1 to #2 than that associated with duration error d2.
This indicates that a more stable human-robot system (signified
by farther left open-loop poles) is more responsive to impedance
control over the peak error than over the duration error, and
that walking protocol #2 possesses better stability property than
walking protocol #1.
Fig. 5(d) shows phase margins (PM) of closed-loop systems

associated with peak error PM1 and duration error PM2. Large
phase margin is associated with good robustness with respect
to phase perturbation and allows the closed-loop system to have
good low frequency command following and nice low frequency
disturbance attenuation [22]. As shown, both PM1 and PM2

have at least ±90◦ phase margin. Additionally, the PM for
protocol #2 is greater than protocol #1 which again indicates
that system behavior associated with protocol #2 is more stable
and more robust than protocol #1.
Fig. 5(e) shows the result of the inferredweighting coefficients

(h1 and h2), as well as the ratio α = h1/h2 for the quadratic
cost function represented. Protocol #2 is associatedwith average
h1 and h2 values that are significantly reduced from those
associated with protocol #1 by 97.9% and 94.85%, respectively.
Consequently, relative ratio α decreased by 45.7%.
Similar to the analysis of simulated wearer #1, we obtained

qualitatively agreeable results for simulated wearer #2, the one
with impedance controlled pelvis profile, which had large vari-
ances inmovement trajectories than thewearer with fixed pelvis.
The two walking protocols now are specified by protocol #1
with β1 = 0.11 and protocol #2 with β2 = 0.107. As expected,
wearer #2 had greater variances in prosthetic kinematics than
wearer #1 who had a fixed pelvis profile. Under protocol #2,
the human-robot performance reflected by the peak error and
duration error had absolute mean value at 0.1◦ and 0.68%,
respectively. The human-robot system performed poorer under
protocol #1 than protocol #2 where peak error and duration error
were at 0.48◦ and 0.37%, respectively. Examining the weighting
coefficients h1 and h2 and their ratio α in the quadratic cost, we
found similar outcomes as in wearer #1. The average weighting
coefficients h1 and h2 for protocol #2 significantly decreased
from those for protocol #1 by 68.5% and 68.3%, respectively,
and the ratio α decreased by 3.17%.
In summary, the control theoretic analysis allowed us to

gain new insights and to provide new explanations on the
human-robot system properties. Results consistently show that
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better kinematic performances are associated with more stable
human-robot systems (open-loop pole locations), more robust
closed-loop performance to deal with uncertainties and reject
disturbances from the environment. Finally it is worth noting
that the simulations result shows smaller control gains were
also associated with better kinematic performances. This in turn
implies less control energy expenditure.

IV. CONCLUSION AND DISCUSSION

We presented a computational approach to infer human-robot
collective performance goal in a cost function of a quadratic form
given human-robot behavioral measurements. We validated this
approach by human experiments and by simulated human walk-
ing experiments using OpenSim. Our results showed that they
are both feasible. Additionally, the human experimental results
demonstrated that IRL can be used as a practical approach in
realistic human walking conditions, and IOC approach on the
other hand, provided additional insight on important stability
and robustness properties of the human-robot system.We further
hypothesize that the human-robot system can achieve better per-
formance with realistic and accurate objective functions serving
as control design goals of wearable lower limb assistive robots.
Experimental and simulation results showed that impedance

control can have a greater influence on the kinematic peak
error performance than on the gait duration error. As such,
the peak error reduced faster than duration error if wearers
were given training to behavioral protocols such as using visual
feedback to guide walking. Our control theoretic analysis also
revealed that a better performing behavioral protocol (such as
#2) measured by kinematic errors was related to a more stable
open-loop or human-robot system. This may suggest that even
though different control settings can lead to same kinematic
performance by meeting the trajectory target, some controllers
could be more stable than others. Such analysis had not been
performed previously in the context of impedance control design
for robotic prosthesis. However, the linearization and the system
identification procedures in IOCmay introduce some error to the
analyses. An integrated experimental and theoretical approach
may deserve further exploration.
This work entails a quadratic cost structure involving two

kinematic errors in the objective. Our experimental and simula-
tionvalidations of IRLand IOCapproaches have shownpromise.
This method can potentially be extended to more general cost
structure to capture additional human-robot performance related
factors beyond kinematic errors. However, we do not know all
the aspects that a user cares about. And therefore, innovative
designs of experiments and feature representation models of the
cost function in IRL are needed. Integrated experimentation and
computational validation and testing can be expected to help
shed light on how a human user and a robotic limb function
together for augmented locomotion.
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