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ABSTRACT

Manipulating the distribution of functional particles in a polymer matrix can enable the fabrication of multifunctional smart
composite devices. Using an acoustic field for particle patterning is a promising technique to alleviate the need for electrically
conductive particles or magnetically responsive particles. To better understand the acoustic particle patterning process, a 3D
high-fidelity multiphysics model is generally utilized. However, thousands of forward simulations are often required to
determine a suitable set of input parameters for a desired particle pattern. It is advantageous to replace the computationally
expensive forward simulation model with a cheaper-to-evaluate surrogate model to optimize the acoustic particle patterning
process. This work develops a physics-informed machine learning approach to build a surrogate model capable of predicting
the acoustic pressure pattern, which is highly related to the particle pattern. The surrogate model has an encoder-decoder
structure, and the model training uses simulation data generated from a 3D multiphysics model. The multiphysics model is
validated against experimental data before the generation of the simulation data. Physical knowledge is incorporated into the
encoder-decoder model through a physics-informed input derived from the output of a 2D multiphysics model. This 2D model
is constructed based on a cut plane of the 3D model to preserved most of the acoustic pressure information from the complex
3D model while being more efficient to evaluate and suitable for online prediction. The proposed physics-informed encoder-
decoder model can increase the quality of the acoustic pattern prediction by over 40% compared to the base encoder-decoder
model. Incorporating the physics-informed input into the base encoder-decoder can significantly reduce the sample size and
model complexity required for achieving a given acoustic pattern prediction accuracy. This work provides a guideline for
developing physics-informed machine learning models for manufacturing processes.

Keywords: Surrogate modeling, Convolutional encoder-decoder networks, Deep learning, Physics-informed machine learning,
Acoustic field particle patterning

1 INTRODUCTION

Heterogeneous mixing of multifunctional particles with polymer can form a particle-polymer composite with anisotropy
properties that enable wider applications, such as biometric materials [1]-[6]. Acoustic field-assisted particle patterning (AFP)
is a promising heterogeneous mixing method to control the spatial distribution of the functional particles (such as mechanical,
electrical, chemical, and thermal functions) dispersed in a polymer matrix to fabricate multifunctional smart composite objects.
To better understand the acoustic particle patterning process, a three-dimensional (3D) high-fidelity multiphysics model is
generally utilized. Given a desired particle distribution, many iterations of experiment designs are needed to find the correct
input parameters for the the particle patterning process. Even when utilizing optimization methods in model-based process
design, such as gradient descent or genetic algorithm, thousands of forward simulations are often required to determine a
suitable set of input parameters for a desired particle pattern. To alleviate the high computational cost of solving the partial
differential equations (PDEs) in a physical model, it is often advantageous to replace the computationally expensive model
with a cheaper-to-run mathematical model, i.e., a surrogate model, for the optimization of the acoustic particle patterning
process. With a surrogate model, an optimization method can quickly search through a large process space with a large number
of parameters and achieve a high throughput process design.

A surrogate model is often trained on a limited number of simulation-based data and then performs prediction tasks using
the surrogate instead of solving the actual PDEs. Unfortunately, most of the existing surrogate models, such as Gaussian
processes [7]-[9], polynomial chaos expansions [10], and support vector machines [11], are not designed to handle high-
dimensional problems. In this study, for each set of input parameters, the output of the AFP system is the spatial distribution
of the acoustic pressure, which is high-dimensional. The spatial distribution of the acoustic pressure can be represented as an
image with acoustic pressure patterns, which allows us to convert our problem into an image prediction problem. Thus, the
surrogate model requires the generation of the image that contains the acoustic pressure patterns given a set of input parameters.

Deep learninig approach has been widely used in computer vision tasks, such as image classification [12], [13], object
detection [14], facial recognition [15] and human pose estimation [16], [17]. Most notably, the convolutional neural networks
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(CNNs) with multiple convolutional layers have been found to be highly effective and efficient in these computer vision tasks.
The main advantages of using CNNs over traditional artificial neural networks are 1) the automatic features extraction process,
which alleviates the need for handcraft feature engineering, 2) the stack of multiple layers can learn highly representative,
multiscale features from high-dimensional input, and 3) better generalization capability when the networks are well-designed

[18], [19]. To enable CNNs for image prediction, an encoder-decoder network is utilized. An encoder network maps the high-

dimensional input to a low-dimensional latent vector. This mapping is similar to using CNNs to classify an image, i.e., after

inputting an image to a CNN, the CNN will output the class of the object in the image. A decoder network maps the encoded
latent vector of the data to high-dimensional space. An autoencoder, which uses an encoder-decoder network to reproduce the
input, is the neural network first used for dimension reduction [20] and then for other applications from gene ontology
annotation predictions to structural damage identification [21], [22]. More recently, based on the encoder-decoder network
structure, generative networks such as variational encoders [23] and Generative Adversarial Networks (GANs) [24], [25] have
gained more and more interest due to their ability to generate desirable new samples based on the training data. However, note
that in this work, the surrogate model should generate images of acoustic pressure based on the AFP system’s input parameters,
not some unknown variations of the training input. Thus, a traditional generative network, i.e., GAN, is unsuitable here.

Although conditional GAN (cGAN) [26] might be a suitable candidate, we only consider a more traditional encoder-decoder

network in this study to investigate the effect of adding physical input to the network.

In this work, we consider the surrogate modeling of an AFP system governed by multiphysics PDEs with different input
parameters. The spatial discretization of the AFP system setup is the input to the model, and the corresponding acoustic pressure
distribution is the output. A physics-informed encoder-decoder (PIED) surrogate model is developed and applied to predict the
spatially discretized acoustic pressure distribution, i.e., the image of acoustic pressure distribution. The surrogate model is
based on deep convolutional and transposed convolutional neural network architectures to enable efficient image prediction.
There are many ways to incorporate physics into machine learning model, such as physics-guided loss function [27], [28],
physics-guided initialization (e.g., transfer learning) [29], [30], and residual model [31], [32]. Physics-guided loss function
techniques are to incorporate physical constraints into the loss function of machine learning models; physics-guided
initialization techniques are to pretrain the machine learning model with one dataset and retrain on the dataset of interest;
residual model techniques are to use a machine learning model to learn the error of physics model and combine the error
prediction with a physics-based model’s prediction to improve accuracy. In this study, we chose to incorporate physics into the
machine learning model by utilizing a modified output (termed pseudo-output) from a physics-based model with lower
dimension. The pseudo-output is used as an additional input (i.e., physics-informed input) to the machine learning model.
Hence, our approach is similar to the physics-guided initialization method. The input consisted of the acoustic actuator setups,
which were also the input to a 3D multiphysics model, and the pseudo output from a 2D physics-based model. The actuator
setups of the model include the location, size, and vibration frequency of the actuator(s). The output of the surrogate model is
the acoustic pressure pattern in the polymer matrix where the particle resides. Based on previous experience, the acoustic
pressure pattern in the solution has a direct connection to the actual particle pattern [6]. The 2D model, which is derived from
the cross-section of the 3D model, can run many orders of magnitude faster than the 3D model. Both the 2D and the 3D models
are constructed and implemented in the COMSOL Multiphysics simulation software. To the best of our knowledge, this is the
first attempt to incorporate physics into a machine learning model for surrogate modeling of an AFP system to improve the
performance of the surrogate model in acoustics pattern distribution prediction.

In summary, our contributions are as follows:

e First, we propose the PIED model for surrogate modeling of the AFP system, which takes advantage of incorporating
physics knowledge into deep learning for the image prediction task. The training and test samples involve 3,133 input-
output pairs simulated from 2D and 3D multiphysics simulations.

e Second, we investigate the effects of adding the physics-informed input through feature maps analysis. The results show
that the physics-informed input can provide meaningful structure to the feature maps of the ED network, which helps
facilitate the training process.

e Third, we demonstrate the performance of ED and PIED models, designed to have different depths (numbers of
convolutional layers) and use different activation functions and trained using datasets of different sizes. The results indicate
that incorporating physics information allows the resulting physics-informed surrogate models to achieve similar
prediction accuracy with fewer training samples and smaller model sizes (i.e., models with smaller depths) regardless of
the activation functions used.

The rest of the paper is arranged in the following manner. Section 2 presents the methodology, which covers the surrogate
modeling problem setup, the numerical model, and the overall framework of the surrogate model. Section 3 describes the
generation of simulation data and the implementation details of training the surrogate model. Section 4 shows and discusses
the results in predicting the acoustic pressure distribution. Section 5 summarizes the key ideas of this study, offers concluding
remarks, and provides future recommendations for similar work



2 METHODOLOGY

2.1 Surrogate Modeling as Image Regression
The acoustic field-assisted particle patterning (AFP) system considered here is modeled by PDEs with solutions y(s, x),
i.e. the model response y € R% at spatial location s € 7 € R% (d,; = 1,2,3), with one set of experimental condition x € R%r,
{x(w), w € O}, where d,, is the number of outputs variables that we are interested in the AFP system, 7 is the index set, d, is
the number of input variables to realize one set of experimental condition, ( is the sample space. This formulation allows for
multiple output channels (i.e., d,, > 1) even though our interest here is on one output variable represented by the acoustic
pressure distribution in the solution. In particular, we are interested in the acoustic pressure distribution on a 2D plane at a
specific height, which we have d; = 1,2. The number of input channels does not necessarily equal to d,.. We will discuss in a
later section our physics-informed input allows for the use of only two channels to describe multiple input variables. We assume
the computer simulation for the physical systems is performed over a given set of spatial grid locations 7 = {s, ..., 5, _}(e.g.,
mesh nodes in finite element methods). In this case, the set experimental condition is defined over the fixed grids J, where x €
X < R%™s_The corresponding response y is solved over 7, thus can be represented as a vector y € Y © R%™s,
With the discretization described above and assuming fixed initial conditions, we consider the computation simulation as a
black-box mapping of the form:
X =Y. (1)
In order to speed up the process optimization step, that is to find the desirable set of input conditions X for a given acoustic
pattern, a surrogate model y = f(x, 8) is trained using limited simulation data D = {(x!,y*)}_,, to approximate the ‘ground
truth’ simulation-induced function y = 7(x), where 6 are the surrogate model parameters, and N is the number of simulation
runs (number of training simulation-based data).
For a 3D AFP system, we are interested in the acoustic pressure distribution over 2D regular grids of H X W, where H and
W denote the number of grid points in the two axes of the spatial domain (height and width), and n; = H X W. It is reasonable
to arrange the simulation data as an image dataset D = {(x,y")}/_,, where x € R%*#*W is the input conditions, and y €
R%*HXW is the simulated acoustic pressure distribution for x.
Therefore, we transform the surrogate modeling problem into an image-to-image regression problem, with the regression
function as
n: ]RdxxHXW N RdyXHXW. (2)
The image regression problem is concerned with pixel-wise predictions, e.g., predicting the gray scale of each pixel in an
image, or in our physical problem, predicting the acoustic pressure at each grid point. A common strategy for image regression
problems is to use an encoder-decoder architecture [33], [34]. The intuition behind the encoder-decoder architecture is to go
through a coarse-refine process, i.e., to extract high-level coarse features from the input images using an encoder network, and
then refine the coarse features to output images through a decoder network. One characteristic of a typical encoder-decoder
vision task is that the input and output images share the underlying structure. However, for our surrogate modeling tasks, the
input and output images can appear to be different due to the physical modeling process defined by PDEs. Regardless, we will
show that an encoder-decoder architecture with physics-informed input can be used as a surrogate of the original physics-based
model.

2.2 Numerical Model
2.2.1 3D model

The numerical model of the AFP setup was implemented and solved by using finite element software COMSOL
Multiphysics 5.2a. Fig. 1(a) shows the geometry and material choices for the finite element model (FEM) to reflect the
experimental setup of the AFP system for the manufacturing of Polydimethylsiloxane (PDMS) and aluminum (Al) particle
composite with controlled spatial distribution of Al particles inside the PDMS matrix. In the FEM model, a layer of PDMS
fprecursors (I: 77 mm, w: 77 mm, h: 2mm) is at the top, followed by a Kapton film (I: 77 mm, w: 77 mm, h: 0.075 mm) that is
directly underneath, and finally, the four piezoelectric transducer (PZT) plates (I: 20 mm, w: 15 mm, h: 1.5 mm) is placed at
the bottom. The material choice for the PZT is PZT-4D from the material library in COMSOL. Different types of physics were
applied to different areas of interest for simulation (simulation domain). In total, there are three simulation domains: Kapton
film domain, PZT plates domain, and PDMS precursors domain. “Solid Mechanics-Linear Elastic Materials” physics was
applied to the Kapton film domain, both “Solid Mechanics-Piezoelectric Materials” and “Electrostatics-Charge Conservation,
Piezoelectric” physics were applied to the PZT domain, and the “Pressure Acoustics” physics was applied to the PDMS
precursors domain. The boundary conditions of the model are as follows: the bottom surface of the PZT was set to “roller”
condition, the interface between the PZT and Kapton film was coupled, the interface between Kapton film and PDMS
precursors was set to “Acoustic-Structure Boundary,” the edge of the Kapton film was set to be fixed in the z-axis within the



“Prescribed Displacement”, the rest of the physical boundaries of Kapton film and PZT were set to “free” condition, and the
rest of the boundaries of the PDMS precursors domain was set to “Sound Hard Boundary” condition.

The electrostatic boundary conditions for the four PZT plates were set in accordance with whether the PZT was turned on.
To simulate the case when all four PZTs are “on,” a “Electric Potential” boundary condition with an amplitude of 80 V was
applied to the bottom surface of the PZTs, whereas a “Ground” boundary condition was applied to the top surface of the PZT.
When using a frequency domain study, the model was solved for the displacement in the Kapton film and the acoustics pressure
in the PDMS precursors matrix by simulating an applied sinusoidal potential to the PZT plates. According to [6], the distribution
of suspended particles is controlled by the acoustic pressure in the PDMS precursors matrix, which is the medium where the
suspended particles distributed. In other words, the pattern of the particles is similar to the pattern of the acoustic pressure in
the PDMS precursors domain. Since the computation time of a particle trajectory simulation is much longer than that of acoustic
pressure pattern simulation, the acoustic pressure pattern within the PDMS precursors domain in the x-y plane is used as the
output from the FEM.

The physical properties of the components in the AFP system need to be determined. For the Kapton film, the Young’s
modulus, the density, and the Poisson’s ratio were set to 2.5 GPa, 1420 kg/m3, and 0.34, respectively. The speed of sound
was set to 889 m/s, and the effective density of the PDMS precursors with the aluminum (Al) particles was set to 1000 kg/m?3.

2.2.2 2D model

The 2D model, a simplified version of the 3D model, is constructed based on the cross-section of the 3D model in the xz-
plane (Fig. 1(a)). The dash-double dot line in Fig. 1(a) shows the cross-section location for the 2D model in the 3D model. Fig.
1(b) shows the 2D model we used in this study, which is the cross-section at the dash-double dot line shown in Fig. 1(a). At
the bottom are the two PZT plates domain (I: 15 mm, h: 1.5 mm), attached to the top of the PZT-4D plate is a Kapton film
domain (I: 108.89 mm, h: 0.075 mm), and at the top of the Kapton film is the PDMS precursor domain (1: 108.89 mm, h: 2
mm). All the boundary conditions are specified similarly to those from the 3D model. In the 2D model, only one of the PZT-
4D is set to “on” with a sinusoidal voltage of 80 V at different frequencies.

The 2D model consisted of all the material components of the 3D AFP system. Note that the 2D model consisted of two
PZTs, which allow the simulation of acoustic pressure resulting from the sinusoidal voltage applied to the PZTs. Due to the
reduction of dimension and the omission of the two PZTs which do not intersect with the dash double-dot line in Fig. 1(a), the
acoustic pressure pattern simulated from the 2D model is different from that of the 3D model. However, their acoustic pattern
responses should correlate qualitatively to the changes in frequency and material properties in similar ways. Therefore, the
output from the 2D model is modified to obtain the pseudo-output, which is then used as the physics-informed input in the
proposed physics-informed surrogate model. Details on obtaining the pseudo-output is presented in section 2.3.

1 PDMS precursor
—--— Cutline for 2D model [ Kapton 1 PZT

(a) (b)

Fig. 1 (a) The 3D FEM model and (b) the 2D FEM model of the AFP setup. The material choice in each simulation domain is
color-labeled for illustration purpose. The 2D model is derived from a cut-plane along the dash-double dot line presented in (a).

2.3 Input and Output Structures

The objective of this study is to accurately predict the acoustic pressure pattern of an AFP system for given experimental
conditions, such as frequency of the PZT, location, and shape of the PZT, and material properties of each of the components in
the system. Two surrogate modeling approaches are considered in this study (See Fig. 2). The first approach (Fig. 2 (a)) is
termed the base surrogate model, which combines the PZT setup (number and locations) and frequency of the PZT to predict
the resulting acoustic pressure pattern. The inputs to this base surrogate model are similar to those of a 3D FEM. The surrogate



model is served to learn the interaction of the PDEs and the inputs to simulate the output, which is the spatial acoustic pressure
pattern. Specifically, the input to the base surrogate model is a single channel (d, = 1) image with p X p pixels (H = p and
W = p) that show the location and shape of the PZT that is turned on (See Fig. 2). In Fig. 2, we show the case where only one
PZT at the left is “on,” and therefore, other PZTs are not visible. The frequency at which the PZT vibrates is set as an input to
the decoder. The number of pixels for the input image, p, is determined based on the depth of the encoder-decoder model used
(See Fig. 3). Fig. 3 illustrates a six convolutional layer PIED model architecture used in this study. p is determined such that
the size of the feature map from the last convolutional layer of the encoder before the fully connected layer is always 4 X 4.

The second surrogate modeling approach is a physics-informed surrogate model. We proposed to include a physics-based
input, which is modified from the output of the 2D physics-based model. We chose to incorporate the physics-informed input
as an additional input channel, d,, = 2, with the same image size (p X p). Any additional input channel represents a new
variable (information) to be learned by the model. The idea of incorporating a new variable through an additional image channel
originates from the fact that we need three channels to represent a colored image. Here, the additional input channel provides
physical information about the AFP system. The process of constructing the physics-based input is as follows: 1) First, we
simulate the acoustic pressure in the x-direction from the 2D model; 2) Then, we repeat this acoustic pressure in the y-direction
to make an image that has the same size as the base surrogate model. We will show in the result section that the physics-based
input is able to provide a favorable structure to the feature maps of the surrogate model, which facilitates the training of the
surrogate model.
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Fig. 2 The two surrogate models proposed in this study. (a) Base surrogate model; (b) Physics-informed surrogate model
incorporating lower-order physics-based model’s output as the input.

2.4 Overall Framework

This research will investigate using an encoder-decoder (ED) architecture as a surrogate model to replace a computationally
expensive FEM for the AFP system. The overall structure of the surrogate model is shown in Fig. 3. The encoder comprises
six convolutional (Conv) stages, each of which includes a Conv layer, a batch normalization (BN) layer, and an activation
layer. In the context of deep learning, convolution is a linear operation that involves the multiplication of the inputs and kernels,
which is a set of weights. The Conv stage is used to down-sample the input image to extract high-level characteristic features.
The encoder is followed by a fully connected (FC) layer, which compresses the 2D features into a one-dimensional (1D) feature
vector. The frequency at which the PZT vibrates is concatenated to this 1D feature vector before feeding into the decoder. The
decoder comprises seven transposed convolutional (ConvT) stages, each including a transposed convolutional layer, a BN



layer, and an activation layer. The transposed convolutional stage is used to up-sample the feature vector to a desired output
feature map to recover the input spatial resolution. In this study, the encoding layer halves the size of the feature maps, while
the decoding layer doubles the size of the feature maps. A leaky rectified linear unit (LeakyReLU) is used as the activation
function for all the convolutional stages and transposed convolutional stages except for the output layer. We choose to use
sigmoid as the activation function for the output layer as it gives better output images compared to other activation functions
we have tried. The LeakyReLU and sigmoid activation functions are used to introduce nonlinear properties into the neural
networks. The BN layer is a widely used technique in deep learning for reducing the changes of the inputs’ distribution in each
layer and stabilizing the network training process. The implementation of the surrogate model is accomplished using the
Pytorch package.

2.5 Training Algorithm

A deep neural network model contains many parameters (e.g., weights and bias of convolutional and FC layers) that need
to be optimized during the training process. To properly identify the optimum values for these parameters in our physics-
informed encoder-decoder model, a loss function L was defined to measure differences between the model predictions and the
associated ground truth. We employed a widely used optimization method, Adam optimizer [35], to update the model
parameters 0 (weights w, and biases b) to minimize the loss function. The optimization process is repeated many times, with
each iteration executed on a small batch of training samples, until the loss converge to a small value. Given an input image X,
a target image y, and the prediction f(x, 8), the training loss function L(0) is a mean square error with regularization term was
defined as:

1
L(8) = —SI™(f; — y))? + A0(8), 3)
where 1Q(0) = 2979 is the regularization term, A denotes the £, regularization factor that weighed the relative contribution

2
of the regularization term, m is the number of samples used in each iteration, and n = d,, X H,, X W,, is the number of pixels

in all channels of one output image. The parameters 0 includes the kernel weights in all the convolution and transposed
convolution layers, the scale and shift parameters in all the batch normalization layers, and the weights and bias in an FC layer.
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Fig.3 Overview of the implemented physics-informed encoder-decoder (PIED) model in this study.

3 SIMULATION DATA AND IMPLEMENTATION DETAILS

3.1 Simulation data

In this study, the PIED model is trained with and tested on simulation data from the 3D FEM. For each simulation, we
considered the variation of two different input parameters: the number and location of PZT and the vibrational frequency of
the PZT. We considered the case when the PZT actuator could only exist at four different locations, as shown in Fig. 1(a). The
numbers of PZT actuators that were “on” were set to be one, two, three, and four. For each PZT arrangement except the
arrangement with four PZTs, we rotated the PZT and the resulting acoustic pressure image to 90, 180, and 270 degrees to
increase the sample size. We used a full factorial experimental design to sample the frequency at which the PZT actuator
vibrates from 10000 Hz to 160000 Hz. The sampling rate from 10000 Hz to 100000 Hz was 500 Hz, whereas the sampling rate
from 100000 Hz to 160000 Hz was 1000 Hz. In total, there were 3133 unique combinations of PZT arrangements and
frequencies sampled between 10000 Hz and 160000 Hz.

3.2 Image filtering

We observed a low-frequency acoustic pressure pattern caused by the excitation of a low-frequency vibration mode when
the PZT vibrates at frequencies larger than ~100000 Hz (See Fig. 4). Fig. 4(a) shows the acoustic pressure pattern at 149000
Hz. It can be observed that the high-frequency acoustic pattern is convoluted by a low-frequency pattern, which makes it
difficult to extract the high-frequency acoustic pattern of interest. In this study, the low-frequency vibration mode is of
low interest because it either is an artifact from the finite element model simulation or has a negligible effect on the



final particle pattern distribution in the experiment, which was demonstrated in the experimental results (section
4.1). The process of removing this vibration mode is shown in Fig. 4. In essence, we applied a low pass filter in the frequency
domain of the image by utilizing a fast Fourier transform (FFT). The resulting low-frequency vibration mode was removed
from the original acoustic pressure pattern to reveal the high-frequency pattern.
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Fig. 4 Processes of removing the low-frequency vibration mode in the acoustic pressure pattern. (a) Acoustic pressure
pattern from 3D FEM, (b) Acoustic pressure pattern with higher contrast by using an adapthisteq function in Matlab, (c)
FFT of image (b), (d) the low pass filter for image (c), (¢) the inverse FFT of the filtered image (c), and (f) is the resulting
acoustic pressure pattern after the removal of low-frequency vibration mode.

3.3 Implementation detail

The objective of the Adam optimizer is to minimize the loss function in equation (3). The number of training epochs is set
to be 1000 with a mini-batch size of 64 samples. We chose an initial learning rate of 0.0005 and decreased this rate by a factor
of 10 for every 500 epochs. Table 1 presents the important parameters used in training the PIED.

The proposed PIED model consists of five convolutional layers, five transposed convolutional layers, and two FC layers.
The model parameters @ (weights and biases) are randomly initialized with a mean of 0 and a standard deviation of 1.

It is important to prevent overfitting (better generalization) when training a deep neural network. There are many ways to
ensure the generalization of the model. We employed early stopping. That is, we stopped the training process before the preset
number of epochs when the validation mean square error (MSE) was larger than or equal to the smallest validation MSE for
10 epochs consecutively.

The training algorithm and PIED model are implemented in PyTorch, which is an optimized tensor library used for deep
learning applications, with GPU acceleration

Table 1 List of parameters used in the surrogate model training

Parameter Value
Number of epochs 1000
Initial learning rate 0.0005

L, regularization 0.01




3.4 Image quality metric

The accuracy of the PIED model is evaluated on the test data separated from the simulation data from the 3D FEM. 20%
of all samples are randomly removed from the simulation data set as the test data (627 samples), and the remaining 80% of all
samples are used for the training set (2506 samples). The same training and test set are used for all the analyses unless otherwise
specified. A well-known quality metric named structural similarity index measure (SSIM) was used to measure the similarity
between the true image (simulated from the 3D FEM) and the predicted image (output from the surrogate model). It was
developed by Wang et al. [36], and is considered correlated with the quality perception of the human visual system. The SSIM
measures image distortion as a combination of three factors, namely luminance distortion, contrast distortion, and structural
distortion, expressed collectively as

SSIM(y,9) = Ly, 9c(y, 9)s(y, §) 4)
where
l5.9) = e
c(y.y) = % (5)
s@.9) =0

The term [(y, §) measures the closeness of the two images’ mean luminance, 4, and uy, which maximized and equal to
one only if uy, = pg. The second term c(y, ) measures the similarity of the two images’ contrast by the standard deviation.
The second term is maximal when gy, = oy. The third term s(y, §) measures the correlation coefficient between two images,
where gy is the covariance between y and §. SSIM index goes from 0 to 1, which corresponds to no correlation between two
images to y = §. The three positive constants C;, C,, and C5 are used to avoid null denominator.

4 RESULTS AND DISCUSSION

4.1 Experimental validation

We validated the 3D FEM with experimental results. Fig. 5 compares the pattern of Al particles in PDMS with the acoustic
pressure pattern simulated from the 3D FEM. Visually comparing the particle pattern from the experiment and acoustic pressure
patterns from the simulation can be challenging. Here, we chose to use the distance between two adjacent particle patterns and
the distance between two adjacent acoustic nodes (locations with minimum acoustic pressure) to quantify the validity of the
simulation model. This is because the particles in this experiment will aggregate at the locations with minimum acoustic
pressure (i.e. acoustic nodes) due to their positive acoustic contrast factor [6]. The distance values averaged over ten
measurements on the same sample are listed in Fig. 5. It can be observed that the distance between the acoustic nodes under
two different frequencies, 80 kHz and 120 kHz, matched the distance of the particle patterns (lines or islands of particles). In
general, the shape of the particle pattern matches very well with the simulated acoustic pressure. The results in Fig. 5 show that
the FEM used in this study is validated with an actual experimental setup. It is thus reasonable to use the FEM to generate data
for training and testing the surrogate model.



Experiment: 1.496mm Experlmen: 1.217 mm
Simulation: 1.364 mm Simulation: 1.186 mm

(2) (b)

Fig. 5 Validation of simulation model with experimental results by comparing the distance between the locations of
particle accumulation with the distance between the location where acoustic pressure is minimum for two different
frequencies (a) 80 kHz and (b) 120 kHz.

4.2 Acoustic pattern prediction from the surrogate model

Figure 6 shows the prediction results from the two surrogate modeling approaches of five selected AFP setups. The first
setup has one vibrating PZT located at 0 degrees (we set this angle to increase as the PZT moves in the clockwise direction),
and it was set to vibrate at 11 kHz. The second setup has two vibrating PZTs located at 0 and 270 degrees, and they vibrate at
15.5 kHz. The third setup has four vibrating PZTs located at 0, 90, 180, and 270 degrees, and they vibrate at 73 kHz. The fourth
setup consisted of three vibrating PZTs located at 0, 180, and 270 degrees, and they vibrated at 125 kHz. The fifth setup
consisted of one vibrating PZT located at 90 degrees, and it vibrated at 133 kHz. From the figure, we observed that the acoustic
pressure pattern at higher frequencies is less regular due to the interference from a low-freqeuency vibration mode. Although
the filtering process can effectively remove the low-frequency acoustic pattern, it cannot regenerate the corrupted high-
frequency patterns. As a result, there are pixelated regions in some filtered acoustic patterns. These pixelated regions consisted
mostly the artifacts from the image filtering process and can hardly be learned by the surrogate model. In Fig. 6(a), we show
the prediction results by the base surrogate (ED) model. It can be observed that for most of the AFP setup, the ED model can
only accurately predict parts of the acoustic pressure pattern. The SSIM metric can be presented in two ways. In one way, we
presented the average SSIM for the quality of the whole image. In another way, we presented the full SSIM image, where a
darker pixel indicates lower quality. The full SSIM image is calculated using a moving average of a square kernel (default at
seven pixels on each side when using a function named compare_ssim from the scikit-image (a.k.a. skimage) python package)
through the two images being compared. The average SSIM is calculated by taking the mean of the full SSIM image. The full
SSIM image allowed us to visualize the image quality of the prediction. From Fig. 6(a), the SSIM value of the ED model is
generally less than 0.5, and based on the SSIM image, the quality of the predicted acoustic pattern does not match the true
pattern for most cases, even when the acoustic patterns are clean and regular (first and second setups).

We presented the prediction results by PIED model for the same five AFP setups in Fig. 6(b). From the SSIM image, we
can see that the quality of the predicted acoustic patterns closely matched the true acoustic pattern when the acoustic patterns
are clean and regular. When there exists pixelated regions, similar to those shown in fourth and fifth AFP setups, the PIED
model can still accurately capture regions with regular and clean acoustic patterns. Fig. 6 clearly contrasted the PIED model
from the ED model. With the same model architecture of six convolution stages and seven transposed convolution stages, same
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parameters initialization, same training epochs, and learning rate, the PIED model clearly demonstrates the benefit of
introducing physics-informed input to the ED model. We use PIED6 and ED6 to represent models with six convolution stages.
The average SSIMs over all test data are 0.77 and 0.53 for PIED6 and ED6 models, respectively. To verify whether the
prediction accuracy improvement is caused by additional input variable (PIED6 model uses an input image of two channels
while the ED6 model uses an input image of one channel), we introduce an non-physics-informed input to the ED6 model. The
non-physics-informed input contains the material properties and physical dimensions of all simulation domains (See Fig. Al
in Appendix A). Details on how to contruct the non-physics-informed input are described in Appendix A. Based on the
prediction result, the surrogate model (ED6) with non-physics-informed input do not show any prediction accuracy
improvement over the base surrogate model. The result indicates the prediction accuracy improvement arises from the
introduction of physics-informed input, rather than having an additional input variables.
ED model PIED model

f (in Hz) 11000 15500 73000 125000 133000 11000 15500 73000 125000 133000

PZT setup

True

Prediction

SSIM

SSIM 0350 0452 0.879 0.100  0.254 0732 0864 0974 0450 0443
(a) (b)

Fig. 6 Acoustic pressure patterns predicted by (a) ED6 model and (b) PIED6 model.

4.3 Feature maps analysis

To understand the reason behind the better performance of the PIED model, we looked into the feature maps of the
convolutional layers. A feature map is the output of one kernel/filter applied to the previous layer. It can be used to visualize
the types of features that the model learned and provide insight into the internal representation that the model has of a specific
input at a given point in the model. In Fig. 7, we show part of the feature maps from the first three layers of the encoder for the
first AFP setup shown in Fig. 6. It can be observed that without a physics-informed input, the feature maps from the ED model
only learned the PZT setup in the convolutional layer, which is the location of the vibrating PZT and the shape of the Kapton
film. In contrast, the feature maps from the PIED model show line patterns closely match the pseudo-output from the 2D FEM.
These line patterns give the model an underlying structure, which will help the decoder better reconstruct the acoustic pattern
of the 3D model (see Fig. 6).
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Fig. 7 Feature maps in the first three convolutional layers of (a) ED model and (b) PIED model.

4.4 Effects of convolutional layers and number of training samples

It is commonly known that the optimal number of convolutional layers is closely related to the amount and complexity of
the available data. A deeper network (i.e., more layers) is generally better suited for more complex tasks, such as computer
vision tasks. However, if insufficient data is used for training, a deeper network has a larger chance of suffering from overfitting.
In this study, we implemented an early stopping strategy to prevent overfitting (See section 3.3). We conducted a parametric
study to empirically investigate the effect of the number of convolutional layers and the number of training data on the acoustic
pressure prediction of the surrogate model. In Fig. 8, we compared the training time, training error, test time, and test accuracy
of the two surrogate modeling approaches. We use PIEDm and EDm to label the model with m number of convolutional layers
and m + 1 number of transposed convolutional layers. To account for the down-sampling nature of convolutional layers, we
set the feature maps size at the last convolutional layer to Ceonpiase X 4 X 4, by changing the size of the input image accordingly
with the number of convolutional layers. Ccopnpiase 1S the number of kernels at the last convolutional layer. The maximum input
image size is limited to 512 X 512 pixels due to the memory constraints of the graphic card. To evaluate the effect of the
training sample size, we purposely reduce the sample size to 25%, 50%, and 75% of the original training set without altering
the test data. Based on Fig. 8, four observations can be made:
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e  The training time (Fig. 8(a)) and test time (Fig. 8(c)) of PIED7 and ED7 are much longer compared to other models
with fewer Conv layers. These two models are relatively inefficient to train and test. Compared to the model with
six Conv layers (PIED6/ED6), the number of parameters in the PIED7/ED7 model is 3 times greater, with a total
of 7.7 million model parameters. To decide whether the extra time used for training and testing is worthwhile, we
have to look more closely at the improvement in surrogate modeling accuracy.

e Second, for each number of convolutional layers, the PIED model always achieved a lower training error when
compared to the ED model. The training error for the ED7 model does not decrease monotonically with the training
sample size due to the model requiring a larger epoch number to converge during training while we stop the training
process at 1000 epochs. Therefore, some ED7 models are only partially trained with partially optimized model
parameters. All PIED models are sufficiently trained before 1000 epochs, which indicates that the underlying
feature maps’ structure (Fig. 7) provided by the physics-informed input can facilitate the training of the surrogate
model.

e Third, the test accuracies of the surrogate models in terms of SSIM increased with a larger number of Conv layers
and a larger training sample size. Notably, the PIED models performed much better than ED models, with the
PIEDS-7 models having significantly higher test accuracy compared to other models. The accuracy improvement
from PIEDS to PIED7 slows down. To confirm the optimum number of Conv layers, models PIEDS, EDS, PIED9,
and ED9 are tested. Note that these two models are executed on a different computer system, with a more capable
graphic card. Therefore, the computational time is not suitable for comparison, and it is omitted here. Based on
Fig. 9, the prediction accuracies increase rapidly from 3 to 5 Conv layers. The improvement slows down from 5
to 7 Conv layers and eventually reduced from 8 to 9 Conv layers. From Fig. 9, we can conclude that the optimum
number of Conv layers is 7 for the PIED model. While the general trends hold true for the ED model, larger model
parameters prove to be challenging when there is no physics-informed input, as can be observed by the inconsistent
prediction performance for the ED model with a higher number of Conv layers (7 or above).

e  Fourth, models with a smaller number of convolutional layers are less sensitive to the number of training data (See
Fig. 8(d)). As the model size and depth increase, the improvement of prediction accuracy with the increase of the
number of training data also increases. The results show that the more complex the model, the more data it needs
for training to achieve the optimum results the model is capable of.

Based on the above observations, it is tempting to pick the model with the highest test accuracy, which is PIED7.
However, we need to know whether the extra computational burden is worthwhile. We can compare the degree of test
accuracy improvement to the amount of training/test time increase. When doing the calculations, we found that the
improvement of the test accuracy from PIED6 to PIED7 is only 2.93%, while it required an extra 61.67% training time and
29.6% test time. The extra training and test time do not bring much improvement in the acoustic pressure prediction. From
PIEDS to PIEDG, the accuracy improvement is 11.06%, while requiring only an extra 30.93% training time and 28.67% of
test time. Hence, when considering both the accuracy improvement and the test time growth, it is obvious that PIED6 gives
a much better efficiency compared to PIED7 and considerable accuracy improvement over PIEDS. Therefore, the final
surrogate model was chosen to contain six Conv layers, which is used to generate the results in Fig. 6 and Fig. 7. The test
SSIMs from different models are also summarized in Table 2. The model with the highest SSIM is highlighted in bold.
Surrogate models with six Conv layers are also used for other analyses hereafter.

Besides the effects of the number of convolutional layers and training sample size, we also investigated how the choice
of an activation function affects the prediction performance. The results are presented in Appendix B. We found from the
results that LeakyReL U is among the best-performing activation functions. Regardless of the activation function, the
proposed physics-informed surrogate model always outperforms the base surrogate model.
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Fig. 8 Parametric study results on the effect of the number of training data and the number of Conv layers. (a) Training
time comparisons, (b) training MSE comparisons, (c) test time comparisons, and (d) test SSIM comparisons.
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Table 2 Test SSIM for models with different convolutional layers and amount of training data. (The number of
convolutional layers, m, is limited by the graphic card’s memory. m = 7 is the largest number of convolutional layers for our
graphic card of NVDIA GTX 1070 8GB. For m > 7, we run the models using another system with a graphic card of NVDIA

GTX Titan XP 12GB)

Training PIEDm
data m= m=4 m=5 m=6 m= m=38 m=9
25% 0.15 0.32 0.47 0.51 0.54 0.48 0.44
50% 0.16 0.41 0.58 0.65 0.67 0.66 0.64
75% 0.17 0.46 0.66 0.71 0.75 0.72 0.72
100% 0.18 0.49 0.69 0.77 0.79 0.78 0.77
EDm
m= m=4 m= m==6 m= m=28 m=9
25% 0.14 0.24 0.30 0.34 0.35 0.34 0.15
50% 0.15 0.29 0.40 0.46 0.36 0.16 0.16
75% 0.16 0.31 0.42 0.51 0.34 0.26 0.57
100% 0.16 0.30 0.45 0.53 0.53 0.38 0.54

4.5 Out-of-distribution sample prediction

The performance of the proposed PIED model is further evaluate on out-of-distribution (OOD) sample prediction. To
evaluate OOD prediction performance, the simulation data are separated into training and test sets based on the frequency at
which the simulation data is simulated in COMSOL. To check if the test data is OOD of the training data, we employed t-
Distributed Stochastic Neighbor Embedding (t-SNE), an unsupervised, nonlinear technique used for visualizing high
dimensional data. The tsne function in MATLAB is used for analyzing the t-SNE of the acoustic patterns in the training set
and test set. As the zsne function only takes vectors as inputs, the acoustic patterns' image data (2D) are flattened into a vector
before using the function.

The proposed PIED model is trained on data without certain frequencies and is tested on data with the missing frequencies.
In this case, we specify the test set to contain all the simulation data with frequencies ranging from 70 kHz-90 kHz. The
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surrogate model is trained with the remaining data (without frequencies of 70 kHz-90 kHz). The idea is to evaluate if the
surrogate model can accurately predict the acoustic pattern in the frequency range of 70 kHz-90 kHz by interpolating from the
training data. The OOD prediction results are presented in Fig. 10. The t-SNE plot visualizes the high-dimensional image data
as a two-dimensional embeddings considering the similarities of the data. Based on the figure, the test data (red circles) clearly
has its own distribution, which is separated from the training data (colored dots). This separation in the data distribution should
create huge challenges for the surrogate model to accurately predict the test data. As a result, the predicted acoustic patterns
(hollow black square) from either PIED or ED models do not capture the distribution of the test data. In terms of the average
SSIM value (Fig. 10), PIEDG is slightly better than ED6. In the t-SNE plot, the PIED model can produce predictions close to
the embeddings of acoustic pressure patterns at around 70 kHz and 90 kHz, whereas the ED model’s predictions are only close
to embeddings of acoustic pressure patterns at around 70 kHz. Visually, the embeddings of the predictions from both models
are trying to bridge the gap between the embeddings of frequencies 50-70 kHz and 90-110 kHz. However, the true embeddings
from the test data (frequencies from 70-90 kHz) seem to move away from the gap between the embeddings from frequencies
50-70 kHz to 90-110 kHz. The difference between the two models is that the PIED model predictions’ embeddings appear
scattered, while the ED model predictions’ embeddings show more regular trends. The scattered behavior of the PIED
predictions can be explained by the embeddings of the physics-informed input (See Appendix C), which appear to be scattered.

Based on the results, the proposed PIED model shows little benefit over the ED model on OOD prediction. The advantages
of the PIED model over the ED model are its ability to produce accurate predictions with less training data (25% training data
on PIED6 has comparable prediction accuracy against 100% on ED6) and smaller model (prediction accuracy of PIED4 is
comparable to that of ED6 and ED 7). Thus, the introduction of physics-based input improves the efficiency of the surrogate
model in terms of the sample size required for training and the model size required for accurate prediction.
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Fig. 10 t-SNE plot of the acoustic patterns used in training set, test set, and predictions by (a) PIED6 and (b) ED6 models.

5 CONCLUSION AND FUTURE RECOMMENDATIONS

This study has demonstrated that the construction of a surrogate model for a 3D finite element model based on encoder-
decoder architecture can accurately predict acoustic pressure patterns by leveraging a physics-informed input derived from the
output of a 2D finite element model. The resulting physics-informed encoder-decoder (PIED) model not only exhibits improved
accuracy (~44% improvement) compared to the encoder-decoder (ED) model without the physics-informed input, but also
exhibits improved run time (i.e., the test time) compared to the 3D finite element model. In turn, this model can hasten the
process design where the optimum input parameters to the acoustic field-assisted particle patterning (AFP) system need to be
determined given an image of the desired particle pattern.

This work investigated the reason behind the better performance of the PIED model over the ED model. The physics-
informed input was found to enable favorable structure in the convolutional layers’ feature maps, which facilitate the training
of the PIED model. The optimum number of convolutional layers for the PIED model is found to be seven through a parametric
study. However, a model with six convolutional layers is adopted for other analyses considering the accuracy and efficiency
tradeoff. Although the PIED model shows little benefit over the ED model when performing out-of-distribution (OOD)
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prediction, we have demonstrated that the introduction of physics-based input to the surrogate model can significantly reduce
the number of samples and complexity of the model required to accurately train the surrogate model. This approach of
incorporating physics as the input to the machine learning model is easy to implement and can potentially provide guidance to
future research in the development of physics-informed machine learning models for other engineered systems.

Despite the advantages, we have identified a few directions for future improvements in the physics simulation model and

the proposed methodology for incorporating physics into machine learning based surrogate modeling for acoustic field-assisted
particle patterning application:

6

First, despite having a good agreement on the high-frequency acoustic pressure patterns between the physics simulation
results and experimental results, we observed a low-frequency vibrational mode in the simulation results, which was not
observed in the experimental results. Even after our best efforts in filtering out the low-frequency vibrational mode, it has
generated some unwanted artifacts, which has increased the difficulty in surrogate modeling. The low-frequency
vibrational mode might originate from the assumption of perfect couplings between PZT actuators, Kapton film, and
PDMS precursors matrix. Future simulation can consider the imperfect couplings through energy loss mechanisms such
as introducing a damping factor.

Second, the physical information was incorporated into the surrogate model through a physics-informed input. Although
the prediction accuracies of PIED are much better than the ED model, it fails to provide similar prediction accuracies
improvement when an OOD dataset is used. Future work can explore other techniques for incorporating physics into
machine learning models, such as physics-guided loss function to incorporate physics model constraints to the loss function
to improve the prediction accuracy on OOD samples.

Third, the encoder-decoder network used for the surrogate model can be replaced by more complex networks such as
conditional GAN (cGAN) [26] and U-Net [33] to evaluate if the strategy of using a physics-informed input can provide
similar improvement in acoustic pressure distribution prediction.

Lastly, the training data used in this study only consider the simulation of different AFP system setups without considering
material variations. Future work can consider datasets with different material properties to further evaluate the
effectiveness of the proposed method.
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APPENDIX

A. Effects of input variables

For a machine learning model, more input variables typically lead to better prediction accuracy. In this study, the ED6
model only contains one input variable, whereas the PIED6 model contains two input variables. A fair comparison between the
two approaches requires similar numbers of input variables. Here, a non-physics-informed input can be used in the base
surrogate model (the ED6 model). We construct the non-physics-informed input variables based on the material properties and
dimension information in each simulation domain used in the physics simulation (Fig. A1). In the non-physics-informed input
matrix, each column represents a different simulation domain (i.e., PZT domain, Kapton film domain, and PDMS precursors
domain), and each row represents the material properties and dimensions of the simulation domains. The first three rows are
the length, thickness, and width of the simulation domain. The next four rows are the density, Young’s modulus, Poisson's
ratio, and the speed of sound. The material property value is set to zero if a simulation domain does not require a specific
material property. To obtain the non-physics-informed input, the 7 X 3 matrix is resized to match the input image size of the
surrogate model using MATLAB function, imresize.

The average SSIM over all test data for this model is calculated to be 0.52, slightly lower than the SSIM of the base surrogate
model (ED6). This lower SSIM might be because the additional input variable fails to provide useful information to the
surrogate model, while requiring the training of more model parameters.
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Fig. A1 Base surrogate model with non-physics-informed input.

B. Effects of activation functions

In deep neural networks, activation functions introduce nonlinear properties into the neural networks. Throughout this study,
we have implemented the commonly used LeakyReL U activation function and are able to achieve good acoustic pressure
prediction accuracies. In order to check if the use of different activation functions would produce different acoustic pressure
pattern prediction results, we tested different activation functions on both the proposed physics-informed surrogate model and
the base surrogate model. The activation functions tested here include sigmoid, hyperbolic tangent (Tanh), rectified linear unit
(ReLU), Gaussian error linear unit (GeLU), and hard Swish (HardSwish).

The prediction results are summarized in Table B1 and Fig. B1. From the results, physics-informed surrogate models
achieved higher prediction accuracy when compared to base surrogate models regardless of the activation functions.
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Fig. B1 Comparison of acoustic pressure pattern prediction accuracy by PIED6 and ED6 using different activation functions.

Table B1 Comparison of acoustic pressure pattern prediction accuracy (measured by SSIM) by PIED6 and ED6 using
different activation functions. The activation function yielding the highest SSIM value for each type of surrogate model is

highlighted in bold.
Activation function PIED6 ED6
HardSwish 0.778 0.503
GeLU 0.773 0.538
LeakyReLU 0.771 0.526
ReLU 0.761 0.513
Sigmoid 0.739 0.388
Tanh 0.724 0.540

C. t-SNE of physics-informed inputs
In this section, we plot the t-SNE of the physics-informed inputs for out-of-distribution (OOD) prediction study.
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Fig. C1 t-SNE plot of the physics-informed inputs for OOD prediction study.
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