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Abstract

Search-optimization problems are plentiful in scientific and engineering domains. Artificial intelligence has

long contributed to the development of search algorithms and declarative programming languages geared

towards solving and modeling search-optimization problems. Automated reasoning and knowledge repre-

sentation are the subfields of AI that are particularly vested in these developments. Many popular automated

reasoning paradigms provide users with languages supporting optimization statements. Recall integer lin-

ear programming, MaxSAT, optimization satisfiability modulo theory, (constraint) answer set programming.

These paradigms vary significantly in their languages in ways they express quality conditions on computed

solutions. Here we propose a unifying framework of so called extended weight systems that eliminates syn-

tactic distinctions between paradigms. They allow us to see essential similarities and differences between

optimization statements provided by distinct automated reasoning languages. We also study formal prop-

erties of the proposed systems that immediately translate into formal properties of paradigms that can be

captured within our framework.

1 Introduction

Artificial intelligence is a powerhouse for delivering algorithmic frameworks to support solu-

tions to search-optimization problems that are plentiful in scientific and engineering domains.

Automated reasoning and knowledge representation are the subfields of AI that are particularly

vested in developing general-purpose search algorithms and declarative programming languages

specifically geared towards formulating constraints of search-optimization problems. Various au-

tomated reasoning paradigms provide users with languages supporting optimization statements.

Indeed, consider such popular paradigms as integer linear programming (ILP) (Papadimitriou

and Steiglitz, 1982), MaxSAT (Robinson et al., 2010), optimization satisfiability modulo theory

(OMT) (Nieuwenhuis and Oliveras, 2006; Sebastiani and Tomasi, 2012), answer set program-

ming with weak constraints (Alviano, 2018), constraint answer set programming (CASP) (Ban-

bara et al., 2017). These paradigms allow a user to express “hard” and “soft” constraints given a

problem of interest. Hard part of an encoding for a considered problem is meant to state require-

ments on what constitutes a solution to this problem. Soft part of the encoding is meant to state

optimization criteria based on which we compare resulting solutions and find optimal ones. For

example, integer linear programs have the form

maximize cTx

subject to Ax≤ b ; x≥ 0; and

x ∈ Z
n

(1)

where c, b are vectors and A is a matrix whose all entries are integers. The maximize statement

encodes soft constraints, whereas the subject to statements encode hard constraints. On the



other hand, in partially weighted MaxSAT the statements to encode both hard and soft part have

the form of a clause

ℓ1∨·· ·∨ ℓn,

where ℓi is a literal (recall that a literal is either an atom or its negation, where an atom is a

binary/propositional variable). Clauses of the soft part are associated with weights and the goal

is to maximize the sum of weights for clauses satisfied by a model of the hard part. These samples

of two distinct automated reasoning paradigms offering optimizations point at clear differences.

These paradigms vary significantly in their languages, for example, in ways they express the

“hard constraints”, in ways they express “soft constraints”, as well as their vocabularies. Indeed,

ILP primarily objects are variables over integers, whereas in MaxSAT we are looking at binary

variables. Furthermore, in formalisms such as optimizations modulo theory or constraints answer

set programming both kinds of variables are allowed together with intricate interface between

these.

The relations between many of the enumerated paradigms have been studied in the ab-

sence of “soft constraints.” Recently, Lierler (2021) provided a formal account comparing

MaxSAT/MinSAT family (Robinson et al., 2010) and answer set programs with weak con-

straints (Alviano, 2018) (weak constraints are syntactic objects to express soft constraints in logic

programs). In that work, to draw the precise parallel between these frameworks so called abstract

modular weight-systems (w-systems) served the role of a primary tool. These systems abstracted

away syntactic differences of the paradigms, while leaving the essential semantic ingredients

sufficient to introduce a concept of a model and optimization criteria for their comparison. An

abstract notion of a logic introduced by Brewka and Eiter (2007) is a crucial ingredient of w-

systems. This abstract logic may encapsulate languages over binary variables. Hence, w-systems

may capture frameworks such as MaxSAT or logic programs with optimizations.

In this work, we extend the concepts of an abstract logic and w-systems to provide us with

a framework capable to capture formalisms that utilize distinct kinds of variables in their lan-

guages. Then, we show how resulting extended w-systems encapsulate ILP, OMT (in its two

common variants), and CASP with optimization statements. We trust that such birds eye view on

these distinct paradigms will boost cross-fertilization between approaches used in design of al-

gorithms supporting optimizations in distinct fields. Indeed, Lierler (2021; 2022) illustrated how

MaxSAT/MinSAT solvers can be used to compute optimal answer sets for logic programs with

weak constraints by providing theoretical basis for cross-translations between formalisms. This

work provides theoretical grounds for devising translations for related optimization statements

in CASP and OMT. Thus, we pave the way, for example, for an extension of a constraint answer

set solver EZSMT (Shen and Lierler, 2018). This solver relies on utilizing satisfiability modulo

theory solvers for finding answer sets of a considered CASP program. In the future, this system

can utilize OMT solvers to find optimal answer sets of a CASP program.

We would like to point at work by Alviano et al. (2018), where the authors also realized

the importance of abstracting away the syntactic details of the formalisms to describing hard

and soft constraints of a considered problem in order to streamline the utilization of existing

efficient solving techniques in new settings. Alviano et al. (2018) define optimization problems

at a semantic level to present translations of several preference relations into minimize/maximize

and subset/supset statements, as implemented in the ASPRIN system developed by Brewka et al.

(2015) and based on answer set programming technology.
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The paper is organized as follows. We start the paper by reviewing the concepts of an abstract

logic and logic programs. We then define a notion of an extended logic. In Section 3, we show

how extended logics naturally capture constraint answer set programs and satisfiability modulo

theory formulas (reviewed in the same section). Section 4 introduces the central concept of this

work: extended weighted modular systems. Then, we use these modular systems to capture a va-

riety of automated reasoning paradigms with optimization statements, namely, several OMT and

CLINGCON-based frameworks. In addition, we provide natural generalizations to these frame-

works utilizing introduced modular systems. We conclude by enumerating formal properties of

these systems and an account of proofs for presented formal results.

2 Review: Abstract Logic; Logic Programs

A language is a set L of formulas. A theory is a subset of L. Thus the set of theories is closed under

union and has the least and the greatest elements: /0 and L. This definition ignores any syntactic

details behind the concepts of a formula and a theory. A vocabulary is an infinite countable set

of atoms. Subsets of a vocabulary σ represent (classical propositional) interpretations of σ . We

write Int(σ) for the family of all interpretations of a vocabulary σ .

Definition 1

A logic is a triple L = (LL ,σL ,semL ), where

1. LL is a language (the language of the logic L ),

2. σL is a vocabulary (the vocabulary of the logic L ),

3. semL : 2LL → 2Int(σL ) is a function assigning collections of interpretations to theories in

LL (the semantics of L ).

If a logic L is clear from the context, we omit the subscript L from the notation of the language,

the vocabulary and the semantics of the logic.

Literals over a vocabulary σ are expressions a and ¬a, where a is an atom from σ . A (logic)

rule over σ is of the form

a0← a1, . . . ,aℓ, not aℓ+1, . . . , not am, (2)

where a0 is an atom in σ or ⊥ (empty), and each ai, 1≤ i≤m, is an atom in σ . A logic program

over σ is a set of rules over σ . The expression a0 is the head of the rule. The expression on the

right hand side of the arrow is the body. We write hd(Π) for the set of nonempty heads of rules

in logic program Π. It is customary for a given vocabulary σ , to identify a set X of atoms over

σ with (i) the complete and consistent set of literals over σ constructed as X ∪{¬a | a ∈ σ \X},

and with (ii) an assignment function that assigns the truth value true to every atom in X and false

to every atom in σ \X . In the sequel, we may refer to sets of atoms as assignments and the other

way around following this convention. We say that a set X of atoms satisfies rule (2), if X satisfies

the propositional formula

a1∧ . . .∧aℓ∧ ¬aℓ+1∧ . . .∧ ¬am→ a0.

The reduct ΠX of a program Π relative to a set X of atoms is obtained by first removing all

rules (2) such that X does not satisfy the propositional formula corresponding to the negative

part of the body ¬aℓ+1∧ . . .∧¬am, and replacing all remaining rules with

a0← a1, . . . ,aℓ.

3



A set X of atoms is an answer set, if it is the minimal set that satisfies all rules of ΠX (Lifschitz

et al., 1999). For example, program

a← not b

b← not a.
(3)

has two answer sets {a} and {b}.

A set X of atoms from a vocabulary σ is an input answer set of a logic program Π over σ if X

is an answer set of the program Π∪ (X \hd(Π)) (Lierler and Truszczynski, 2011). For example,

if we consider program (3) as a program over vocabulary {a,b,c}, then program (3) has four

input answer sets: {a}, {b}, {a,c}, {b,c}.

Brewka and Eiter (2007) showed that their abstract notion of a logic captures default logic,

propositional logic, and logic programs under the answer set semantics. For example, the logic

L = (L,σ ,sem), where

1. L is the set of propositional formulas over σ ,

2. sem(F), for a theory F ⊆ L, is the set of propositional models of F over σ ,

captures propositional logic. We call this logic L the pl-logic and theories (that we later call

modules) in the pl-logic, pl-theories/modules. If we restrict elements of L to be clauses, then we

call L a sat-logic.

Similarly, a logic L = (L,σ ,sem), where

1. L is the set of logic program rules over σ ,

2. sem(Π), for a program Π⊆ L, is the set of answer sets/input answer sets of Π over σ ,

captures logic programs under the answer set/input answer set semantics. We call these logics

the lp-logic and ilp-logic respectively and theories/modules in these logics, lp-theories/modules

and ilp-theories/modules.

3 Extended Logic for CAS Programs and SMT Formulas

Constraint Satisfaction Problems and Constraint Answer Set Programs A pair [V,D], where V

is a set of variables and D is a set of values for variables in V or the domain for V , is called a

specification. A constraint over specification [V,D] is a pair 〈t,R〉, where t is a tuple of some

(possibly all) variables from V and R is a relation on D of the same arity as t. A collection

of constraints over [V,D] is a constraint satisfaction problem (CSP) over [V,D]. An evaluation

of V is a function assigning to every variable in V a value from D. An evaluation ν satisfies a

constraint 〈(x1, . . . ,xn),R〉 (or is a solution of this constraint) if (ν(x1), . . . ,ν(xn)) ∈ R. An eval-

uation satisfies (or is a solution to) a constraint satisfaction problem if it satisfies every constraint

of the problem. Let c = 〈t,R〉 be a constraint and D the domain of its variables. Let k denote the

arity of t. The constraint c = 〈t,Dk \R〉 is the complement (or dual) of c. Clearly, an evaluation

of variables in t satisfies c if and only if it does not satisfy c. Frequently, constraints are stated

implicitly without a reference to explicit relation. In particular, constraints over integers or reals

are often formulated by means of common arithmetic relation symbols.

Example 1

A constraint c1 = 〈x,〈(1),(2)〉〉 over specification s1 = [{x},{0,1,2}] can be implicitly repre-

sented as inequality x≥ 1 or inequality x 6= 0.
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When we refer to some class of constraints we assume that all of its members are over the

same specification. We call a function from a vocabulary σ to a class C of constraints a (σ ,C )-

denotation. From now on given a vocabulary σ , we assume that some of its atoms are marked

as irregular/constraint atoms. We utilize subscripts r and c to refer to regular atoms – atoms not

marked as constraint ones – and constraint atoms, respectively. Thus, given vocabulary σ : σr

forms the subset of σ containing all regular atoms and σc forms the subset of σ containing all

constraint atoms.

We present the definition of answer sets for CAS programs as proposed by Lierler (2014) using

the notation of this paper.

Definition 2 (CAS Programs and their Answer Sets)

A CAS rule over vocabulary σ is a logic rule (2) over σ , where a0 is an atom in σr or ⊥ (empty),

and each ai, 1 ≤ i ≤ m, is an atom in σ . A constraint answer set program (CAS program) P

over vocabulary σ , class C of constraints, and (σc,C )-denotation γ is a set of CAS rules over σ .

Given a CAS program (or logic program or propositional formula) P, by At(P) we denote atoms

occurring in P. A set X ⊆ At(P) is an answer set of P if

• X ∩At(P)r ⊆ hd(P),

• X is an input answer set of P, and

• the following CSP has a solution1

{γ(a) | a ∈ X ∩At(P)c}∪{γ(a) | a ∈ At(P)c \X}. (4)

A pair (X ,ν) is an extended answer set of CAS program P if X is an answer set of P and ν is a

solution to (4).

Example 2

Consider specification s1 and a class C1 of constraints consisting of constraint c1 and its comple-

ment, where s1 and c1 are defined in Example 1. Take vocabulary σ1 contain two regular atoms

a,b and an irregular atom |x 6= 0|; and assume (σ1c,C1)-denotation that maps irregular atom

|x 6= 0| to constraint c1. Let P1 be CAS program over σ1, C1, and (σ1c,C1)-denotation consisting

of rules in (3) and rule

← a, |x 6= 0|.

Take ν0, ν1, ν2 be evaluations assigning x to 0, 1, and 2, respectively. The extended answer sets

of P1 are ({a},ν0), ({b},ν0), ({b, |x 6= 0|},ν1), ({b, |x 6= 0|},ν2).

Lierler and Truszczynski (2015) introduced abstract modular systems based of conglomera-

tions of theories over various logics. They illustrated that such systems can be used to capture

CAS programs: in particular, they may capture answer sets of a given CAS program. Here, we

introduce an extended notion of a logic so that we may speak of abstract systems capturing the

meaning of CAS progams in terms of extended answer sets. We then show that the concept of ex-

tended logic is helpful in capturing problems expressed as satisfiability modulo theories (SMT).

1 Gebser et al. (2016) proposed a definition for CAS programs that assumes two kinds of irregular/constraint atoms:
strict-irregular and non-strict-irregular. In our presentation here constraint atoms behave as strict-irregular atoms.
Changing condition (4) to {γ(a) : a ∈ X ∩At(Π)c} turns the behavior of constraint atoms to non-strict-irregular atoms.
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Extended Logic For a vocabulary σ , set V of variables, and domain D, we call a pair (I,ν),

where I is an interpretation over σ and ν is an evaluation from V to D, an extended interpretation

over σ , V , D. We write Int(σ ,V,D) for the family of all extended interpretations over σ , V , D.

Definition 3 (Extended Logic)

An extended logic or e-logic L+ is a tuple

(LL+,σL+,∆L+,ϒL+,semL+),

where

1. LL+ is a language

2. σL+ is a vocabulary

3. ∆L+ is a domain – a set of values – (the domain of the logic L+)

4. ϒL+ is a a set of variables over domain ∆L+ (the variables of the logic L+)

5. semL+: is a function assigning collections of extended interpretations (I,ν) to theories in

LL+, where (I,ν) is an element in Int(σL+,ϒL+,∆L+).

In the sequel, we will default to naming the members of the tuples of extended logic L+ as

in this definition.

It is easy to see that an extended logic generalizes the concept of a logic: we can identify any

logic L = (LL ,σL ,semL ) with its extended counterpart L+ = (LL ,σL , /0, /0,semL ), where

semL in L+ is identified with a function that maps theories into pairs whose first element is an

interpretation of semL in L application and the second element is empty function.

We now illustrate that extended logic captures CAS programs under extended answer set

semantics. Then, we show how SMT formulas are captured by this formalism. Indeed, pro-

vided class C of constraints over specification [V,D] and a (σc,C )-denotation, the extended

logic (L,σ ,D,V,sem), where

1. L is the set of CAS rules over vocabulary σ ;

2. sem(P), for a theory P ⊆ L, over class C of constraints and (σc,C )-denotation, is the set

of extended answer sets of P,

captures CAS programs under extended answer set semantics. We call this logic CAS logic.

Satisfiability Modulo Theories as Theories in Extended Logic Here we state the definition of a

Satisfiability Modulo Theories (or SMT) formula (Barrett and Tinelli, 2014) following the lines

by Lierler and Susman (2017) using terminology introduced in this work. An alternative name

for SMT formulas could have been constraint formulas.

Definition 4 (SMT formulas and their Models)

An SMT formula F over vocabulary σ , class C of constraints and (σc,C )-denotation γ is a set

of propositional formulas (often assumed to be clauses) over σ . A set X ⊆ σ of atoms is a model

of F , denoted X |= F , if

• X is a model of propositional classical logic theory F , and

• the CSP (4) with P replaced by F has a solution.

A pair (X ,ν) is an extended model, denoted (X ,ν) |= F , if X is model of F and ν is a solution

to (4) with P replaced by F .
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SMT formulas can be captured by extended logic theories just as CAS programs. Pro-

vided class C of constraints over specification [V,D] and a (σc,C )-denotation, the extended

logic (L,σ ,D,V,sem), where

1. L is the set of propositional formulas over vocabulary σ ;

2. sem(F ), for a theory F ⊆ L over class C of constraints and (σc,C )-denotation, is the set

of extended models of F ,

captures SMT formulas. We call this logic SMT-logic (over constraints C ). If we restrict elements

of L to be conjunctions of literals

a1∧ . . .∧aℓ∧ ¬aℓ+1∧ . . .∧ ¬am. (5)

then we call this extended logic a Restricted SMT or RSMT-logic.

Example 3

Example 2 defines σ1, C1, and (σ1c,C1)-denotation considered here. Let clauses

{a∨b, ¬a, ¬a∨¬|x 6= 0|}

over σ1, C1, and (σ1c,C1)-denotation form an SMT-logic theory H. Recall how (i) Example 2

is a continuation of Example 1, where domain of variable x was specified as {0,1,2} and (ii)

valuations ν0,ν1,ν2 are chosen to assign x to 0, 1, 2, respectively. There are three extended

interpretations that are extended models to the considered SMT-logic theory H:

({b},ν0), ({b, |x 6= 0|},ν1), ({b, |x 6= 0|},ν2).

Integer CSP as Extended Logic An integer expression has the form

b1x1 + · · ·+bnxn,

where b1, . . . ,bn are integers Z and x1, . . . ,xn are variables over Z. When bi = 1 (1 ≤ i ≤ n) we

may omit it from the expression. We call a constraint integer when it is over specification whose

domain is Z and is encoded implicitly via the form e ⊲⊳ k, where e is an integer expression, k is

an integer, and ⊲⊳ belongs to {<,>,≤,≥,=, 6=}. We call a CSP an integer constraint satisfaction

problem when it is composed of integer constraints.

Integer CSPs can be captured by extended logic theories. Indeed, an extended logic

(L, /0,Z,V,sem), where

1. L is the set of integer constraints over [V,Z];

2. sem(F ), for a theory F ⊆ L, is the set of pairs ( /0,ν), where evaluation ν is a solution

to F ,

captures integer CSPs. We call this logic an I-CSP-logic. If the domain of this extended logic is

that of nonnegative integers Z+ then we call this logic a nonnegative I-CSP-logic.

4 Extended Weighted Abstract Modular Systems or EW-Systems

Lierler and Truszczynski (2015) propose (model-based) abstract modular systems or AMS that

allow us to construct heterogeneous systems based of “modules” stemming from a variety of

logics. We now generalize their framework by incorporating the notion of an extended logic.

7



Definition 5 (Extended Modules (or e-modules) and their Models)

Let L+ be an extended logic. A theory of L+, that is, a subset of the language LL+ is called

an extended (model-based) L+-module (or an e-module, if the explicit reference to its logic is

not necessary).

Let T be an extended L+-module. An extended interpretation (I,ν) over σL+, ∆L+, ϒL+

is an extended model of T , whereas I is a model of T if (I,ν) ∈ semL+(T ).

By LT , σT , ∆T , ϒT , and semT we refer to the elements LL+,σL+,∆L+,ϒL+, and semL+ of

module T logic L+, respectively.

As before, we use words theory and modules interchangeably. Furthermore, for a theory/module

in SMT-logic we often refer to these as SMT formulas. For a theory/module in CAS-logic we

refer to it as a CAS program.

For an interpretation I, by I|σ we denote an interpretation over vocabulary σ constructed from I

by dropping all its members not in σ . For a set V of variables and an evaluation ν defined

over some superset of V , by ν|V we denote an evaluation over V constructed from ν so that

ν|V (v) = ν(v) for any variable v in V . For example, let V be the set of variables {x,y}, and

evaluation ν defined over {x,y,z} assigns x and y to 1 and variable z to 2. Evaluation ν|V is

defined on domain V and assigns both of its variables value 1.

We now generalize the notion of an extended model to vocabularies and evaluations that go

beyond the one of a considered module in a straight forward manner. For an e-module T and an

extended interpretation (I,ν) over σ , V , D so that σT ⊆ σ , ϒT ⊆V , ∆T ⊆D, we say that (I,ν) is

an extended model of T , denoted (I,ν) |= T , if (I|σT
,ν|ϒT

)∈ semT . We can generalize the concept

of a model in a similar way.

We call extended logics (L,σ ,D,V,sem) and (L′,σ ′,D′,V ′,sem′) (and, respectively e-modules

in these logics) coherent if D = D′, whenever V ∩V ′ 6= /0. In other words if e-logics are coherent

and they share variables then the domains of these e-logics coincide.

Definition 6 (Extended Abstract Modular Systems (EAMSs) and their models)

A set of coherent e-modules, possibly in different logics, over different vocabularies and/or vari-

ables, is an extended (model-based) abstract modular system (EAMS). For an extended abstract

modular system H ,

• the union of the vocabularies of the logics of the modules in H forms the vocabulary

of H , denoted by σH ,

• the union of the variables of the logics of the modules in H forms the set of variables

of H , denoted by ϒH ,

• the union of the domains of the logics of the modules in H forms the domain of H ,

denoted by ∆H .

An extended interpretation (I,ν) over σH , ϒH , ∆H is an extended model of H whereas I is a

model of H , when for every module B ∈H , (I,ν) is an extended model of B.

When an EAMS consists of a single module {F} we identify it with module F itself. Just as the

concept of an extended logic presented here is a generalization of logic by Brewka and Eiter, the

concept of EAMS is a generalization of AMS by Lierler and Truszczynski (2015).

Extended W-systems In practice, we are frequently interested not only in identifying models of

a given logical formulation of a problem (hard fragment), but also identifying models that are
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deemed optimal according to some criteria (soft fragment). Frequently, multi-level optimizations

are of interest. Lierler and Truszczynski (2015) argued how AMS and, consequently, EAMS

as its generalization are geared towards capturing heterogeneous solutions for formulating hard

constraints. Lierler (2021) used abstract modular systems to formulate a concept of w-systems

that enable soft constraints. W-systems are adequate to capture the MaxSAT/MinSAT family

of problems (Robinson et al., 2010) as well as logic programs with weak constraints (Alviano,

2018). W-systems provide us with means of studying these distinct logic frameworks under a

unified viewpoint.

Definition 7 (Ew-conditions and their models)

An ew-condition in an extended logic L+ is a pair (T,w;c@ℓ) — consisting of an L+ e-

module T and an expression w;c@ℓ, where

• w is an integer,

• c is a function from variables in ϒT to reals, and

• l is a positive integer.

We refer to integers l and w as levels and weights, respectively. We refer to function c as coeffi-

cients function.

Let B be an ew-condition (T,w;c@ℓ). Intuitively, by σB, ∆B, and ϒB we refer to σT , ∆T ,

and ϒT , respectively. Let (I,ν) ∈ Int(σT ,ϒT ,∆T ) be an extended interpretation; it is an extended

model of B, denoted (I,ν) |= B, when (I,ν) is an extended model of T , also in this case I is called

a model, denoted I |= B.

The notion of an (extended) model for ew-condition is generalized to vocabularies and eval-

uations that go beyond the one of a considered ew-condition in a straight forward manner (as it

was done earlier for the case of e-modules). For an extended interpretation (I,ν) over σ , V , D so

that σB ⊆ σ , ϒB ⊆V , ∆B ⊆D, we say that (I,ν) is an extended model of ew-condition B, denoted

(I,ν) |= B, if (I|σT
,ν|ϒT

) |= B. The concept of a model is generalized in a similar way.

Intuitively, the role of weights w in ew-condition B = (T,w;c@ℓ) is to distinguish the quality

of models/extended models of B given their propositional part; the role of the coefficient c is

to distinguish the quality of extended models of B given their evaluation part. These intuitions

become more apparent in the next definition, where we associate “cost” expressions with the

models of ew-conditions. We elaborate more on these expressions after their definitions.

Definition 8 (Cost expressions for (extended) interpretations of ew-conditions)

Ler B be an ew-condition.

For an extended interpretation (I,ν) over σ , V , D so that σB ⊆ σ , ϒB ⊆V , ∆B ⊆D, a mapping

[(I,ν) |= B] is defined as

[(I,ν) |= B] =







∑
x∈ϒB

ν(x) · c(x) when (I,ν) |= B

0 otherwise.

(6)

For an interpretation I over σ so that σB ⊆ σ , a mapping [I |= B] is defined as follows

[I |= B] =

{

w when I |= B,

0 otherwise.
(7)
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We view expressions [(I,ν) |= B] and [I |= B] as costs associated with two distinct parts of an

(extended) interpretation of a considered ew-condition B. Indeed, the former expression accounts

for “the quality” of an evaluation associated with an extended interpretation and utilizes the co-

efficient of ew-condition B to compute that. The later expression accounts for “the quality” of

“logical/propositional part” of an interpretation by considering the weight of ew-condition B. It

is easy to see that non-zero values for costs are associated only with (extended) interpretations

that are also models. These cost expressions are used in formulating the definitions of optimal

(extended) models of ew-systems defined next. These ew-systems take ew-conditions as the tool

for distinguishing quality of their (extended) models. Formulas (6) and (7) are used within ex-

pressions (8) and (10) utilized in the definitions of optimal models and optimal extended models

of ew-systems, respectively. In the sequel, Examples 4, 5, 6 illustrate the use of instances of cost

expressions (6) and (7) within formulas (8) and (10) .

Before introducing the key concept of this paper – ew-systems – we present a number of useful

abbreviations. We identify ew-conditions of the form

• (T,w;c@1) with expressions (T,w;c): i.e., when the level is missing it is considered to

be 1.

• (T,w; /0@ℓ) with expressions (T,w@ℓ): i.e., when the coefficients function is empty.

• (T,w;c@ℓ) with expressions (T,w@ℓ), when the coefficients function c assigns 0 to every

element in its domain.

For example, (T,w) stands for ew-condition, whose level is 1 and whose coefficients function is

either empty or assigns 0 to every element in its domain.

For a collection Z of ew-conditions, its vocabulary, denoted by σZ , its set of variables,

denoted by ϒZ , its domain, denoted by ∆Z is defined following the lines of these concepts for

EAMS. We say that ew-condition (T,w;c@ℓ) is coherent with an EAMS H if

• σT ⊆ σH ,

• ϒT ⊆ ϒH ,

• given any module H in H , ∆T = ∆H whenever ϒT ∩ϒH 6= /0.

Definition 9 (Ew-systems and their models)

A pair (H ,Z ) consisting of an EAMS H and a set Z of ew-conditions so that every element

in Z is coherent with H is called an ew-system (H and Z intuitively stand for hard and soft,

respectively).

Let W = (H ,Z ) be an ew-system. The vocabulary of H forms the vocabulary of W ,

denoted by σW . Similarly, ϒW = ϒH and ∆W = ∆H . An extended interpretation (I,ν) in

Int(σW ,ϒW ,∆W ) is an extended model of W , whereas I is a model, if (I,ν) is an extended

model of H .

For a level l, by Wl we denote the subset of Z that includes all ew-conditions whose level is l.

By λ (W ), we denote the set {l | (T,w;c@ℓ) ∈Z } of all levels associated with ew-system W .

For a level l ∈ λ (W ) by l↑ we denote the least level in λ (W ) that is greater than l (it is obvious

that for the greatest level in λ (W ), l↑ is undefined). For example, for levels in {2,6,8,9}, 2↑ = 6,

6↑ = 8, and 8↑ = 9.
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Definition 10 (Optimal models of ew-systems)

For level l ∈ λ (W ), a model I∗ of ew-system W is l-optimal if I∗ satisfies equation

I∗ = argmax
I

∑
B∈Wl

[I |= B], (8)

where

• I ranges over models of W if l is the greatest level in λ (W ),

• I ranges over l↑-optimal models of W , otherwise.

We call a model l-min-optimal if max is replaced by min in (8) (and occurrences of word op-

timal are replaced by min-optimal in the definition; we drop this remark from the later similar

definitions).

A model I∗ of W is optimal if I∗ is l-optimal model for every level l ∈ λ (W ). A model I∗

of W is min-optimal if I∗ is l-min-optimal model for every level l ∈ λ (W ).

We now provide intuitions for sub-expression

∑
B∈Wl

[I |= B] (9)

of the formula (8). Given an interpretation I, formula (9) can be seen as a cost of this interpreta-

tion with respect to level l of ew-system W . This cost is computed by summing all the weights of

the ew-conditions of Wl for which this interpretation I is a model. When ew-system W contains

only ew-conditions of a single level then formula (9) equips us with the cost of the considered

interpretation with respect to the overall system.

Definition 11 (Extended Optimal Models of Ew-systems)

For level l ∈ λ (W ), an extended model (I∗,ν∗) of ew-system W is l-optimal if (I∗,ν∗) satisfies

equation

(I∗,ν∗) = arg max
(I∗,ν∗)

∑
B∈Wl

([I |= B]+ [(I,ν) |= B]), (10)

where

• (I,ν) ranges over extended models of W if l is the greatest level in λ (W ),

• (I,ν) ranges over l↑-optimal extended models of W , otherwise.

We call a model l-min-optimal if max is replaced by min in the equation above.

An extended model (I∗,ν∗) of W is optimal if (I∗,ν∗) is l-optimal model for every level l

in λ (W ). An extended model (I∗,ν∗) of W is min-optimal if (I∗,ν∗) is l-min-optimal model for

every level l in λ (W ).

We now provide intuitions for sub-expression

∑
B∈Wl

([I |= B]+ [(I,ν) |= B]) (11)

of the formula (10). Given an extended interpretation (I,ν), formula (11) can be seen as a cost of

this interpretation with respect to level l of ew-system W . This cost is computed by considering

all the ew-conditions of Wl for which this extended interpretation is a model and summing all

their weights together with the values provided by linear expression formed within cost expres-

sion provided at the first line of (6). When ew-system W contains only ew-conditions of a single
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level then formula (11) equips us with the cost of the considered extended interpretation with

respect to the overall system.

If we compare the notion of a optimal/min-optimal model versus a optimal/min-optimal ex-

tended model then the former does not take into account the numeric values associated with

evaluations corresponding to extended models associated with the considered model; whereas

the latter combines the quality of both parts of extended model.

Lierler (2022) noted that the definition of optimal models in terms of “argmax”-equation

comes from the traditions of literature related to MaxSAT problem. In answer set (logic) pro-

gramming community, the conditions on optimality of answer sets is stated in terms of “domina-

tion” relation. Here we follow the steps by Lierler (2022) and provide an alternative definition to

optimal models of ew-systems in terms of domination.

Definition 12 (Optimal models of ew-systems)

Let I and I′ be models of ew-system W . Model I′ min-dominates I if there exists a level l ∈ λ (W )

such that following conditions are satisfied:

1. for any level l′ > l the following equality holds

∑
B∈Wl′

[I |= B] = ∑
B∈Wl′

[I′ |= B]

2. the following inequality holds for level l

∑
B∈Wl

[I′ |= B]< ∑
B∈Wl

[I |= B]

Model I′ max-dominates I if we change less-than symbol by greater-than symbol in the inequality

of Condition 2.

A model I∗ of W is optimal if there is no model I′ of W that max-dominates I∗. A model I∗

of W is min-optimal if there is no model I′ of W that min-dominates I∗.

Definition 13 (Optimal extended models of ew-systems)

Let (I,ν) and (I′,ν ′) be extended models of ew-system W . Extended model (I′,ν ′) min-

dominates (I,ν) if there exists a level l ∈ λ (W ) such that following conditions are satisfied:

1. for any level l′ > l the following equality holds

∑
B∈Wl′

([I |= B]+ [(I,ν) |= B]) = ∑
B∈Wl′

([I′ |= B]+ [(I′,ν ′) |= B])

2. the following inequality holds for level l

∑
B∈Wl

([I′ |= B]+ [(I′,ν ′) |= B])< ∑
B∈Wl

([I |= B]+ [(I,ν) |= B])

Extended model (I′,ν ′) max-dominates (I,ν) if we change less-than symbol by greater-than

symbol in the inequality of Condition 2.

An extended model (I∗,ν∗) of W is optimal if there is no extended model (I′,ν ′) of W that

max-dominates (I∗,ν∗). An extended model (I∗,ν∗) of W is min-optimal if there is no extended

model (I′,ν ′) of W that min-dominates (I∗,ν∗).

Proposition 1

Definitions 10 and 12 are equivalent. Definitions 11 and 13 are equivalent.
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5 Instances of Ew-Systems

5.1 MaxSMT-family and Optimization Modulo Theories

Lierler (2021; 2022) illustrated the utility of w-systems — a precursor of ew-systems — by using

these to capture the definitions of MaxSAT, weighted MaxSAT, and partially weighted MaxSAT

(or, pw-MaxSAT) (Robinson et al., 2010). Here we look into capturing weighted MaxSMT and

pw-MaxSMT.

We start by introducing some useful notation. For a vocabulary σ , a specification [V,D], and

an e-logic L+ so that σL+ = σ , ∆L+ = D, ϒL+ =V , an e-module TL+ is called σ ,V,D-

theory/σ ,V,D-module when sem(TL+) = Int(σ ,V,D). In other words, any extended interpreta-

tion in Int(σ ,V,D) is an extended model of a σ ,V,D-theory, and, consequently, any interpretation

in Int(σ) is a model of a σ ,V,D-theory. Note how specific language of e-logic of a σ ,V,D-theory

becomes immaterial. Thus, we allow ourselves to denote an arbitrary σ ,V,D-theory by Tσ ,V,D

disregarding the reference to its e-logic. Also recall that the (extended) interpretations/models

of any theory are generalized to signatures that go beyond original signature of the considered

theory.

Definition 14 (Weighted MaxSMT problems and their solutions)

A weighted MaxSMT problem (Nieuwenhuis and Oliveras, 2006) over vocabulary σ , class C of

constraints and (σc,C )-denotation is defined as a set S of pairs (F ,w), where F is an SMT

formula over σ , C , and (σc,C )-denotation so that F is a clause, and w is a positive integer2.

An interpretation I∗ ∈ Int(σ) is a solution to weighted MaxSMT problem S, when it satisfies the

equation

I∗ = argmax
I

∑
(F ,w)∈S

w · [I |= F ], where

[I |= F ] =

{

1 when I |= F

0 otherwise
(12)

and I ranges over all interpretations in Int(σ).

Example 4

Consider specification s1, class C1 of constraints consisting of c1 and its complement, vocabu-

lary σ1, and (σ1c,C1)-denotation from Example 2. Set

{(a∨b,2),(¬a,3),(¬a∨¬|x 6= 0|,1)}

exemplifies a weighted MaxSMT problem. Its solutions are {b} and {b, |x 6= 0|}.

Proposition 2

Let S be a weighted MaxSMT problem. The optimal models of ew-system (TσS,ϒS,∆S
,S) — where

each element in S is understood as an ew-condition, whose theory is in SMT-logic — form the

set of solutions for weighted MaxSMT problem S.

Proposition 2 allows us to view ew-systems as a mean to state definitions of semantics of various

formalisms captured by e-logics with optimizations in a uniform way. Indeed, we can formulate

a definition of semantics of weighted MaxSMT problem by means of its relation to a respective

2 Nieuwenhuis and Oliveras (2006) allow w to be a positive real number.
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ew-system: For a weighted MaxSMT problem S over vocabulary σ , class C of constraints and

(σc,C )-denotation, an optimal model of ew-system (TσS,ϒS,∆S
,S) is a solution to S. In the sequel,

we often take this approach to present the definitions of various optimization formalisms and

their possible extensions. This allows us to bypass the complexity of varying terminology and

notation coming from papers that introduce these formalisms. It is also worth to reiterate that we

speak of papers stemming from various research communities that have their own traditions.

Note how in ew-system (TσS,ϒS,∆S
,S), where S is a weighted MaxSMT problem,

• levels of all ew-conditions are identical (set to 1) and

• the coefficients function assigns all variables to 0.

These observations lend themselves to a natural generalization of weighted MaxSMT problem.

Definition 15 (Generalized weighted MaxSMT problems and their (extended) solutions)

A generalized weighted MaxSMT problem over class C of constraints is defined as a set S of ew-

conditions in SMT-logic over C . Optimal models and optimal extended models of ew-system

(TσS,ϒS,∆S
,S) form solutions and extended solutions of S.

Note how extended solutions of S take into account the quality of evaluation that is part of

extended model. Also, levels become naturally incorporated into the framework.

Example 5

Let us continue Example 4. Let fx be a coefficients function defined as fx(0) = 10, fx(1) = 100,

fx(2) = 1000. The following set {(a∨ b,2),(¬a,3),(¬a∨¬|x 6= 0|,1; fx)} over σ1, C1, and

(σ1c,C1)-denotation forms a generalized weighted MaxSMT problem. Its solutions are {b} and

{b, |x 6= 0|}. Its extended solution is ({b, |x 6= 0|},ν2), where ν2 is introduced in Example 2. If

we redefine fx as follows fx(0) = 1000, fx(1) = 100, fx(2) = 10, then the extended solution to

considered problem is ({b},ν0).

We now define/generalize partially weighted MaxSMT (pw-MaxSMT) problem inspired by

the notion of partially weighted MaxSAT problem (Robinson et al., 2010).

Definition 16 (Generalized partially weighted MaxSMT problems and their (extended) solutions)

A generalized partially weighted MaxSMT (or gpw-MaxSMT) problem over vocabulary σ , class

C of constraints over specification [V,D] and (σc,C )-denotation is defined as ew-system (H,S),

where H is a theory in SMT-logic over C and S is a collection of ew-conditions whose theories

are in SMT-logic over C . Formula H is referred to as hard problem fragment, whereas S forms

soft problem fragment. Optimal models and optimal extended models of ew-system (H,S) form

solutions and extended solutions of (H,S).

5.1.1 νZ approach

As mentioned in the introduction, often the complete spectrum of capabilities of automated rea-

soning systems is described in papers and tutorials by means of examples appealing to intuitions

of the readers. We argue that the presented framework provides convenient means to make such

presentations formal. For example, Bjørner et al. (2015), the authors of SMT solver νZ, state that

νZ extends the functionality of Z3 (de Moura and Bjørner, 2008) to include optimization objectives. It

allows users to solve SMT constraints and at the same time formulate optimality criteria for the solutions.

. . .
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They then specify that νZ adds to SMT-LIB (Barrett et al., 2016; Barrett et al., 2010) – standard

descriptions/language of background theories used in SMT systems – a command of the form

(assert-soft F [:weight n]).

This command is said to assert soft constraint F , optionally with an integer weight n.3 If no

weight is given, the default weight is 1. Code similar to the one presented in LHS of Figure 1

and the respective output of system νZ presented in RHS of the figure are used by Bjørner et al.

(2015) to illustrate a use of soft constraints.

LHS:

(declare-fun x () Int)

(declare-fun y () Int)

(define-fun a1 () Bool (> x 0))

(define-fun a2 () Bool (< x y))

(assert (=> a2 a1))

(assert-soft a2 :weight 3)

(assert-soft (not a1) :weight 5)

(check-sat)

(get-model)

RHS:

sat

((define-fun a1 () Bool

(not (<= x 0)))

(define-fun x () Int

0)

(define-fun a2 () Bool

(not (<= y x)))

(define-fun y () Int

0))

Fig. 1: LHS: SMT-LIB code suggesting to maximize 3 ·a2+5 ·a1. RHS: νZ finds a solution where x= y= 0.

We now elaborate on this example by Bjørner et al. (2015) to uncover its implicit assumptions

about readers intuitions and interpretations of the seen code and its behaviour. Given code in

Figure 1 (LHS) as an input, system z3-4.8.12 produces a model where x and y are both assigned

to 0 suggesting that a1 and a2 are assigned to f alse. The authors of νZ informally state that code

in Figure 1 (LHS) maximizes expression

3 ·a2+5 ·a1. (13)

To make this claim precise we recall that system νZ looks for models of a provided SMT formula

specified in its assert statements — an implication a2→ a1 in this running example, where a1

and a2 are constraint atoms associated with (via define-fun statements) integer constraints

x > 0 and x < y, respectively. Expressions a2 and a1 in (13) should be interpreted in relation with

some model X for the encoded SMT formula so that, for instance,

• a2 is mapped to 0 if model X assigns a2 to f alse, and 1 otherwise; similarly

• a1 is mapped to 1 if model X assigns a1 to f alse, and 0 otherwise.

It is easy to see that there are three models to the implication a2→ a1. Furthermore, for each of

these three models there is an evaluation that maps integer variables x and y into values that sat-

isfy integer constraints associated with constraint atoms a1 and a2. Thus, all these models form

solutions to the SMT formula specified in Figure 1. These models together with the respective

3 The authors also allow a keyword for decimal weights, yet at the time of writing this paper the system z3-4.8.12, the
latest available incarnation of z3 with the functionality of νZ gave out an error message ”invalid keyword argument”
suggesting that this feature is no longer supported.
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value of expression (13) follow:

a1 a2 3 ·a2+5 ·a1

f alse f alse 5

true true 3

true f alse 0

It is easy to see that the model listed first maximizes value of expression (13) in comparison to

other models.

Generalized partially weighted MaxSMT problems and their solutions can be seen as formal

specification of the language supported by the SMT solver νZ. Indeed, the statements that fol-

low the key word assert correspond to hard problem fragment; whereas the statements that

follow the key word assert-soft form soft problem fragment. In other words, we view νZ

code as a specification of a gpw-MaxSMT problem, whereas we consider system νZ to com-

pute solutions for given gpw-MaxSMT problems. Let us go back to the νZ code in Figure 1. It

specifies the gpw-MaxSMT problem over vocabulary {a1,a2}, class of integer constraints over

specification [{x,y},Z], and denotation that maps a1 and a2 into integer constraints x > 0 and

x < y, respectively; so that hard problem fragment consists of propositional formula a2→ a1,

and soft problem fragment consists of ew-conditions (a2,3) and (¬a1,5). It is easy to see that

interpretation mapping a1 and a2 to f alse forms a solution to the constructed gpw-MaxSMT

problem.

Above, we complemented an earlier description of νZ input-output provided by an example

with formal specification of these entities. It is also due to note that gpw-MaxSMT problems are

more general than SMT-LIB specifications supported by νZ. For example, the notion of a level

is present in gpw-MaxSMT specifications of its soft fragment. Also, the notion of an extended

solution is defined for gpw-MaxSMT problems. This may provide inspirations for possible ex-

tensions to system νZ.

5.1.2 Cost-variable approach

Sebastiani and Tomasi (2012) observed that MaxSMT and its variants encapsulated by gpw-

MaxSMT when (non-extended) solutions are considered support optimizations that focus on

”propositional part” of a problem encoded within SMT framework. They then proposed an alter-

native approach that ranks extended models of an SMT formula by value of one of its variables

occurring in constraints associated with an SMT formula disregarding any information of a model

from a propositional side. In particular, the value of that variable is to be minimized.

We now use ew-systems to capture an optimization satisfiability module problem (OMT)

by Sebastiani and Tomasi (2012). To proceed to the definition recall the notion of a

σ ,V,D-theory, denoted Tσ ,V,D, introduced in the beginning of Section 5.1.

Definition 17 (OMT problems and their solutions)

An OMT problem over vocabulary σ , class C of constraints over specification [V,D] and (σc,C )-

denotation and variable v occurring in V is defined as ew-system (H,S), where H is a theory in

SMT-logic over σ , C , and (σc,C )-denotation and S consists of a single ew-condition of the form

(T/0,{v},D,0;(v) 7→ 1); We call min-optimal extended models of this ew-systems solutions to OMT.

The use of ew-condition (T/0,{v},D,0;(v) 7→ 1) in this definition as the only criterion for optimiza-

tion captures the idea of OMT that relies on the choice of a single variable in constraints to be
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minimized. Indeed, the first component T/0,{v},D of this ew-condition is such that any (extended)

interpretation of theory H in SMT-logic with variable v occurring in it is a model of T/0,{v},D. The

cost of any extended interpretation will be identified with the value of x assigned by this inter-

pretation based on formula (11) used in the definition of the min-optimal extended model (for

this instance, Wl in (11) is a singleton composed of T/0,{v},D). Indeed, take (I,ν) be an arbitrary

model of B = T/0,{v},D, then [I |= B] = 0 and [(I,ν) |= B] = ν(x); the sum of these values used

within formula (11) amounts to ν(x). This value is then used to decide on min-optimality of the

model within expression (10), where max is replaced by min.

Example 6

Example 3 defines an SMT-logic theory H that has three extended models

({b},ν0), ({b, |x 6= 0|},ν1), ({b, |x 6= 0|},ν2),

where valuations ν0,ν1,ν2 are chosen to assign x to 0, 1, 2, respectively. A sample OMT problem

follows
(

H,
{(

T/0,{x},{0,1,2},0;(x) 7→ 1
)}

)

A solution for this OMT problem is an extended interpretation ({b},ν0) – the one that minimizes

the value of x.

5.2 Integer Linear Programming

An integer linear program (IL-program) (Papadimitriou and Steiglitz, 1982) was given in the

introduction in (1). It is easy to see that the statement after the word maximize is an integer

expression, whereas statements after the words subject to are integer constraints. We now

provide an alternative definition to integer linear programs.

Definition 18

An IL-program is an ew-system of the form (H,S), where H is a theory in a nonnegative I-CSP-

logic and S is an ew-condition (T/0,ϒH ,Z+ ,0;c), where c is a coefficient function mapping variables

in ϒH to integers Z. Extended optimal models to this system form solutions to an IL-program.

Intuitively, theory H corresponds to statements following subject to in (1), while the ew-

condition S captures a statement following the word maximize in (1).

5.3 Optimizations in CAS Programs

We now turn our attention to constraint answer set programming. At first, we review optimization

statements of answer set programming. We illustrate how they can be understood within CASP

framework. For this task we utilize ew-systems: just as we utilized ew-systems to capture gen-

eralization from pw-MaxSAT to pw-MaxSMT realm. We then look into CLINGCON style opti-

mization statements native to CASP framework. We illustrate that ew-systems are general enough

to encapsulate CLINGCON programs with optimizations. Systems CLINGCON-2 (Ostrowski and

Schaub, 2012) and CLINGCON-3 (Banbara et al., 2017) vary in the syntax of the languages they

accept and algorithmic/implementation details. In case of this paper it is interesting to look at

these systems in separation as they provide different support for optimization statements.
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5.3.1 Optimizations in Logic Programming

We now review a definition of a logic program with weak constraints following the lines of Cal-

imeri et al. (2013). A weak constraint has the form

:∼ a1, . . . ,aℓ, not aℓ+1, . . . , not am[w@ℓ], (14)

where m > 0 and a1, . . . ,am are atoms, w (weight) is an integer, and l (level) is a positive integer.

In the sequel, we abbreviate expression

:∼ a1, . . . ,aℓ, not aℓ+1, . . . , not am (15)

occurring in (14) as D and identify it with the propositional formula

a1∧ . . .∧aℓ∧ ¬aℓ+1∧ . . .∧ ¬am. (16)

An optimization program (or o-program) over vocabulary σ is a pair (Π,W ), where Π is a logic

program over σ and W is a finite set of weak constraints over σ .

Let P = (Π,W ) be an optimization program over vocabulary σ (intuitively, Π and W forms

hard and soft fragments, respectively). By λ (P) we denote the set of all levels associated with

optimization program P constructed as {l | D[w@ℓ] ∈W}. Set X of atoms over σ is an answer

set of P when it is an answer set of Π.

Definition 19 (Optimal answer sets)

Let X and X ′ be answer sets of P . Answer set X ′ dominates X if there exists a level l ∈ λ (P)

such that following conditions are satisfied:

1. for any level l′ that is greater than l the following equality holds

∑
D[w@ℓ′]∈W

w · [X |= D] = ∑
D[w@ℓ′]∈W

w · [X ′ |= D]

2. the following inequality holds for level l

∑
D[w@ℓ]∈W

w · [X ′ |= D]< ∑
D[w@ℓ]∈W

w · [X |= D]

An answer set X∗ of P is optimal if there is no answer set X ′ of P that dominates X∗.

We now exemplify the definition of an optimization program. Let Π1 be logic program (3). An

optimal answer set of optimization program

(Π1,{:∼ a,not b.−2@1}) (17)

is {a}.

It is worth noting that an alternative syntax is frequently used by answer set programming

practitioners when they expresses optimization criteria:

#minimize{w1@ℓ1 : lit1, . . . ,wn@ℓn : litn}, (18)

where liti is either an atom ai or an expression not ai. This statement stands for n weak constraints

:∼ lit1[w1@ℓ1] . . . :∼ litn[wn@ℓn].

Similarly, statement

#maximize{w1@ℓ1 : lit1, . . . ,wn@ℓn : litn}, (19)
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stands for n weak constraints

:∼ lit1[−w1@ℓ1] . . . :∼ litn[−wn@ℓn].

Lierler (2021) illustrated how o-programs can be identified with w-systems – a pre-cursor of

ew-systems.

5.3.2 CLINGCON-2 style optimizations

Recall minimize statement (18). System CLINGCON-2 allows a user to write such statements

using the following restrictions. All of these statements occurring in a program must either

• come with expressions liti (1≤ i≤ n) constructed from regular atoms of CAS program, or

• come with expressions liti (1≤ i≤ n) constructed from constraint variables stemming from

irregular atoms of CAS program. Also, wi@ℓi expressions are dropped in this case.4

Thus, a user might either impose optimization criteria that pertain regular atoms or constraint

variables associated with irregular atoms but not both. At the same time we note that the

CLINGCON-2 authors provide no declarative semantics for programs with optimizations, but

rather explain the behavior of the systems by means of examples. In what follows we capture the

semantics of two variants of CLINGCON-2 formally. We refer to programs of CLINGCON-2 sup-

porting optimization statements over regular atoms CLINGCON-2.1 programs. We refer to pro-

grams of CLINGCON-2 supporting optimization statements over constraint variables CLINGCON-

2.2 programs.

CLINGCON-2.1 programs. We now extend CAS programs with weak constraints in a similar

way as MaxSMT extends SMT with ”soft SMT clauses”.

Definition 20 (Optimization CAS program and their optimal (extended) answer sets)

An optimization CAS program (or oCAS-program) over vocabulary σ , class C of constraints,

and (σc,C )-denotation is an ew-system (P,W ), where P is a CAS program over σ , C and

(σc,C )-denotation, and W is a finite set of weak constraints over σ , where we identify weak

constraints of the form D[w@ℓ] with ew-condition (D,w@ℓ) in RSMT-logic over σ , C , and

(σc,C )-denotation. We call oCAS-program CLINGCON-2 style, when there is an additional re-

striction on its weak constraints W to be over signature σr. Min-optimal models and min-optimal

extended models of ew-system (P,W ) form optimal answer sets and optimal extended answer

sets of oCAS-program (P,W ).

Note how the syntax of weak constraints supports optimizations that consider “propositional

part” of a problem encoded within CASP. Indeed, coefficients functions of ew-conditions in

oCAS-programs are assumed to be the zero functions. Thus, it is easy to see that any optimal

extended answer set (X ,ν) of some CAS program is such, whenever X is an optimal answer set

of this program; the quality of evaluation ν of the extended answer set is immaterial. Recall how

“minimize” statements (18) are abbreviations for the set of weak constraints (see Section 5.3.1).

In this regard, CLINGCON-2.1 programs are captured by CLINGCON-2 style oCAS-programs, in

other words, the definitions of optimal answer sets and optimal extended answer sets of oCAS-

program capture formally the semantics of CLINGCON-2.1 programs.

4 In case, when this restriction is not satisfied the system CLINGCON-2 outputs the following message ERROR: Can not

optimize asp and csp at the same time!
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We also note that this observation allows us to utilize pw-MaxSMT solvers (such as, for ex-

ample, solver νZ discussed here) for finding solutions to CLINGCON-2.1 programs. Indeed, the

essential difference between CLINGCON-2.1 programs and pw-MaxSMT formalism boils down

to the first component of the pairs capturing these objects. In one case we deal with CAS pro-

grams, in another with SMT formulas. Theory behind SMT-based CASP solver EZSMT (Lierler

and Susman, 2017; Shen and Lierler, 2018) relies on the established link between these two.

Here, we paved the way at enhancing EZSMT with the support for optimization statements.

CLINGCON-2.2 programs. We now elaborate on CLINGCON-2.2 programs. We start by quot-

ing Ostrowski and Schaub (2012), who provide examples of optimization statements with con-

straint variables and informal discussions in order to illustrate their behavior. We supplement this

quote with additional comments using square brackets to ease the understanding of the narrative.

The CLINGCON-2.2 programs allow expressions of the kind

$maximize{work(A) : person(A)}.

and its developers say that this is an instance of

a maximize statement over constraint variables. This is also a new feature of clingcon. We maximize the

sum over a set of variables and/or expressions. In this case, we try to maximize

work(adam) $+work(smith) $+ work(lea) $+ work(john).

[During grounding (see, for instance, an account for grounder GRINGO (Gebser et al., 2007b)) – a process

that is a common first step in solving ASP programs, where ASP variables are instantiated for suitable

object constants – it was established that ASP variable A may take four values, namely, adam, smith, lea

and john.] ... To find a constraint optimal solution, we have to combine the enumeration techniques of

CLASP [by Gebser et al. (2007a) – answer set solver within CLINGCON] with the ones from the CP solver.

Therefore, when we first encounter a full propositional assignment, we search for an optimal (w.r.t. to the

optimize statement) assignment of the constraint variables using the search engine of the CP solver. Let us

explain this with the following constraint logic program.

$domain(1..100).

a :- x $* x $< 25.

$minimize{x}.

Assume clasp has computed the full assignment {Fx$∗x$< 25,Fa} [irregular atom named x$∗x$< 25 and

regular atom a are assigned value false; intuitively the mentioned irregular atom is mapped into inequality

x ∗ x < 25 with constraint variable x]. Afterwards, we search for the constraint optimal solution to the

constraint variable x, which yields {x→ 5}. Given this optimal assignment, a constraint can be added to

the CP solver that all further solutions shall be below/above this optimum (x < 5). This constraint will

now restrict all further solutions to be “better”. We enumerate further solutions, using the enumeration

techniques of CLASP. So the next assignment is {T x$ ∗ x$ < 25,Ta} and the CP solver finds the optimal

constraint variable assignment {x→ 1}. Each new solution restricts the set of further solutions, so our

constraint is changed to (x$ < 1), which then allows no further solutions to be found.

To formalize the claims of this quote let us capture CLINGCON-2.2 programs as a CAS pro-

gram P extended with an expression of the form

$minimize{lit1, . . . , litn}, (20)

where liti (1 ≤ i ≤ n) is a constraint variable stemming from irregular atoms of the considered

CAS program. Ew-systems can be used to characterize CLINGCON-2.2 programs as follows.
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Definition 21 (CLINGCON-2.2 programs and their optimal answer sets)

A CLINGCON-2.2 program P (where P is a CAS program over σ , C and (σc,C )-denotation) ex-

tended with minimization statement (20) is ew-system (P,W ), where W is a single ew-condition

(TσP,ϒP,∆P
,0;c) so that c is a coefficients function that to every constraint variable in ϒP assigns 1

when it appears in (20) and 0 otherwise. Models of this ew-systems are called answer sets of P,

while min-optimal models are called optimal answer sets of P.

Note how CLINGCON-2.1 and CLINGON-2.2 programs allow the user to either optimize

propositional side of a problem or constraint side of the problem but never both. We now pro-

vide a definition for CAS programs with optimizations restoring to the method adopted earlier in

stating the definition for gpw-MaxSMT problem. This allows us to incorporate quality of “con-

straint” part of the solution into assessment of overall quality of considered solution. This way

quality of propositional and constraint part of solution is taken into account.

Definition 22 (CAS program with generalized optimizations; their optimal (extended) answer sets)

A CAS program with generalized optimizations over vocabulary σ , class C of constraints, and

(σc,C )-denotation is defined as ew-system (H,S), where H is a theory in CAS-logic over σ , C ,

and (σc,C )-denotation and S is a collection of ew-conditions, whose theories are in RSMT-logic

over σ , C , and (σc,C )-denotation. Min-optimal models and min-optimal extended models of

ew-system (H,S) form optimal answer sets and optimal extended answer sets of CAS program

with generalized optimizations (H,S).

Note how in this definition ew-conditions are more general than in oCAS-programs or CLING-

CON 2.2 programs.

5.3.3 CLINGCON-3 style optimizations

Banbara et al. (2017) introduce optimizations supported within CLINGCON-3. They propose min-

imize statements for CAS programs that have the form

$minimize{b1 · x1 + c1@ℓ1, . . . , bn · xn + cn@ℓn}, (21)

where bi and ci are integers, xi are variables stemming from the constraint part of the program,

and ℓi is a level – positive integer. In addition, for any two expressions b · x+ c@ℓ and b′ · x′+

c′@ℓ occurring in (21) variables x and x′ are distinct. Such minimize statements induce optimal

extended answer sets as follows. For the remainder of this subsection, let P be a CAS program

P′ extended with minimize statement of the form (21). Any (extended) answer set of P′ is an

(extended) answer set of P. For a variable assignment ν and an integer l,

ν

∑
l

= ∑
b·x+c@ℓ∈(21)

b ·ν(x)+ c.

Definition 23 (Optimal answer sets of CAS programs due to Banbara et al. (2017))

Let (X ,ν) and (X ′,ν ′) be extended answer sets of P. Extended answer set (X ′,ν ′) dominates

(X ,ν) if there exists a level l ∈ {ℓ1, . . . , ℓn} (ℓ1, . . . , ℓn are levels occurring in (21)) such that
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1. for any level l′ ∈ {ℓ1, . . . , ℓn} that is greater than l the following equality holds

ν

∑
l′

=
ν ′

∑
l′

,

2. the following inequality holds for level l

ν ′

∑
l

<
ν

∑
l

,

Extended answer set (X∗,ν∗) of P is optimal if there is no extended answer set (X ′,ν ′) that

dominates (X∗,ν∗).

For every level l appearing in (21), by

• wl we denote the sum ∑
b·x+c@ℓ∈ (21)

c of constant terms in integer expressions associated

with each level;

• cl we denote coefficient function from ϒP′ to Z that maps each variable x occurring in ϒP′

and in expression b · x+ c@ℓ in (21) to b, while all other variables in ϒP′ are mapped to 0.

As earlier we can identify any CAS program with the CAS-logic module. For the CAS pro-

gram P′ extended with the minimize statement (21), we identify (21) with the set consisting of

the following ew-conditions

• for every level l appearing in (21), ew-condition (TσP′ ,ϒP′ ,∆P′
,wl@ℓ); and

• for every level l appearing in (21), ew-condition (TσP′ ,ϒP′ ,∆P′
,0;cl@ℓ).

Once more we can use ew-systems to provide an alternative definition for CAS programs with

minimization statements of the kind introduced in this subsection.

Proposition 3

Let P be a CAS program P′ extended with minimize statements of the form (21) over vocab-

ulary σ , class C of constraints, and (σc,C )-denotation. Min-optimal extended models of ew-

system (P′,S) — where S is a collection of ew-conditions identified/associated with (21) of P —

are optimal answer sets of P.

6 Formal Properties of Ew-systems

Lierler (2021) stated many interesting formal results for the case of w-systems; Lierler (2022)

presented proofs for these results. Many of these results/proofs can be lifted to the case of ew-

systems. Here we present a series of formal results about ew-systems. Word Property denotes the

results that follow rather immediately from the definitions of a model/optimal (extended) model.

Property 1

Any two ew-systems with the same hard theory have the same models/extended model.

Due to this property when stating the results for ew-systems that share the same hard theory, we

only focus on optimal and min-optimal (extended) models.

Property 2

Any model/extended model of ew-system of the form (H , /0) is optimal/min-optimal.

22



Property 3

Optimal/min-optimal models of the following ew-systems coincide

• ew-system W and

• ew-system resulting from W by dropping all of its w-conditions whose weight is 0.

Property 4

Optimal/min-optimal models of the following ew-systems coincide

• ew-system W and

• ew-system resulting from W by replacing each of its ew-conditions of the form (T,w,c@ℓ)

with ew-condition (T,w@ℓ).

This property points at the fact that c component of ew-conditions are only relevant when opti-

mality of extended models is considered.

We now state simple properties that pertain extended models of ew-systems.

Property 5

Let W be an ew-system, whose ew-conditions have special form (T,w@ℓ). An extended model

(I,ν) of W is optimal/min-optimal if and only if I is an optimal/min-optimal model of W .

Property 6

Optimal/min-optimal extended models of the following ew-systems coincide

• ew-system W and

• ew-system resulting from W by dropping all of its ew-conditions whose form is (T,0@ℓ)

We call an ew-system W level-normal, when we can construct the sequence of numbers

1,2, . . . , |λ (W )| from the elements in λ (W ). Lierler (2021) stated propositions in spirit of Propo-

sitions 4 and 5 presented below for the case of w-systems. Here we lift these results to the case

of ew-systems.

Proposition 4

Optimal/min-optimal models/extended models of the following ew-systems coincide

• ew-system W and

• the level-normal ew-system constructed from W by replacing each level ℓi occurring in its

ew-conditions with its ascending sequence order number i, where we arrange elements in

λ (W ) in a sequence in ascending order ℓ1, ℓ2, . . . ℓ|λ (W )|.

Proposition 5

For an ew-system W = (H ,Z ), if every level l ∈ λ (W ) is such that for any distinct models I

and I′ of W the equality

∑
B∈Wl

[I |= B] = ∑
B∈Wl

[I′ |= B] (22)

holds then optimal/min-optimal models of ew-systems W and (H , /0) coincide. Or, in other

words, any model of W is also optimal and min-optimal model.

The proposition above formulated for the case of extended models follows.

23



Proposition 6

For an ew-system W = (H ,Z ), if every level l ∈ λ (W ) is such that for any distinct extended

models (I,ν) and (I′,ν ′) of W the equality

∑
B∈Wl

([I |= B]+ [(I,ν) |= B]) = ∑
B∈Wl

([I′ |= B]+ [(I′,ν ′) |= B]) (23)

holds then optimal/min-optimal extended models of ew-systems W and (H , /0) coincide. Or, in

other words, any extended model of W is also optimal and min-optimal model.

Let W = (H ,Z ) be an ew-system. For a set S of ew-conditions, by W [\S] we denote the

ew-system (H ,Z \S).

Proposition 7

For a ew-system W = (H ,Z ), if there is a set S ⊆ Z of ew-conditions all sharing the same

level l such that for any distinct l↑-optimal/min-optimal models I and I′ of W (or any distinct

models I and I′ of W in case l↑ is undefined) the equality (22), where Wl is replaced by S, holds

then W has the same optimal/min-optimal models as W [\S].

We can formulate a similar claim for the case of extended models.

Proposition 8

For an ew-system W = (H ,Z ), if there is a set S ⊆Z of ew-conditions all sharing the same

level such that for any distinct l↑-optimal/min-optimal extended models (I,ν) and (I′,ν ′) of W

(or any distinct extended models (I,ν) and (I′,ν ′) of W in case l↑ is undefined) the equality (23),

where Wl is replaced by S, holds then W has the same optimal/min-optimal extended models

as W [\S].

For a coefficients function c mapping variables into reals by c−1 we denote a function on the

same set of variables as c defined as follows

c−1(x) =−1 · c(x).

For ew-condition (T,w;c@ℓ), we define two mappings into related ew-conditions

(T,w;c@ℓ)−1· = (T,−1 ·w;c@ℓ),

(T,w;c@ℓ)−1·−1· = (T,−1 ·w;c−1@ℓ).

For ew-system (H ,{B1, . . . ,Bn}), we define two mappings into related ew-systems using con-

cepts above

(H ,{B1, . . . ,Bn})
−1· = (H ,{B1

−1·, . . . ,Bn
−1·})

(H ,{B1, . . . ,Bn})
−1·−1· = (H ,{B1

−1·−1·, . . . ,Bn
−1·−1·})

With this newly introduced notation we can now claim the relation between optimal and min-

optimal (extended) models of ew-systems.

Proposition 9

For an ew-system W , the optimal models (min-optimal models) of W coincide with the min-

optimal models (optimal models) of W −1·.

Proposition 10

For an ew-system W , the extended optimal models (extended min-optimal models) of W coin-

cide with the extended min-optimal models (extended optimal models) of W −1·−1·.
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Eliminating Negative (or Positive) Weights We call e-logics L and L ′ compatible when their

vocabularies, domains, and variables coincide, i.e., σL = σL ′ , ∆L = ∆L ′ , and ϒL = ϒL ′ . Let

L and L ′ be compatible logics, and T and T ′ be theories in these logics, respectively. We

call a theory T (and a w-condition (T,w;c@ℓ)) equivalent to a theory T ′ (and a w-condition

(T ′,w;c@ℓ), respectively), when sem(T ) = sem(T ′).

Property 7

Models and optimal/min-optimal models/extended models of ew-systems

({T1, . . . ,Tn},{B1, . . . ,Bm}) and ({T ′1 , . . . ,T
′

n},{B
′
1, . . . ,B

′
m})

coincide when (i) Ti and T ′i (1≤ i≤ n) are equivalent theories, and (ii) Bi and B′i (1≤ i≤ m) are

equivalent ew-conditions.

For a theory T of e-logic L , we call a theory T in e-logic L ′, compatible to L , complemen-

tary when (i) sem(T )∩ sem(T ) = /0, and (ii) sem(T )∪ sem(T ) = Int(σL ,ϒL ,∆L ).

Let (T,w;c@ℓ) be an ew-condition; consider the following definitions:

(T,w;c@ℓ)+ =

{

(T,w;c@ℓ) when w≥ 0, otherwise

(T ,−1 ·w;c@ℓ)

(T,w;c@ℓ)− =

{

(T,w;c@ℓ) when w≤ 0, otherwise

(T ,−1 ·w;c@ℓ)

(T,w;c@ℓ)+;+ =

{

(T,w;c@ℓ) when w≥ 0, otherwise

(T ,−1 ·w;c−1@ℓ)

(T,w;c@ℓ)−;− =

{

(T,w;c@ℓ) when w≤ 0, otherwise

(T ,−1 ·w;c−1@ℓ)

where T denotes some theory complement to T .

For an ew-system (H ,{B1, . . . ,Bm}), we define

(H ,{B1, . . . ,Bn})
+ = (H ,{B1

+, . . . ,Bn
+}),

(H ,{B1, . . . ,Bn})
− = (H ,{B1

−, . . . ,Bn
−}),

(H ,{B1, . . . ,Bn})
+;+ = (H ,{B1

+;+, . . . ,Bn
+;+}),

(H ,{B1, . . . ,Bn})
−;− = (H ,{B1

−;−, . . . ,Bn
−;−}).

(24)

Proposition 11

Optimal/min-optimal models of ew-systems W , W +, W −, W +;+, W −;− coincide.

This proposition can be seen as an immediate consequence of the following result and Property 4:

Proposition 12

Optimal/min-optimal models of ew-systems

• (H ,{(T,w@ℓ)}∪Z ) and

• (H ,{(T ,−1 ·w@ℓ)}∪Z )

coincide.
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Proposition 13

Optimal/min-optimal extended models of ew-systems W , W +;+, W −;− coincide.

This proposition can be seen as an immediate consequence of the following result:

Proposition 14

Optimal/min-optimal extended models of ew-systems

• (H ,{(T,w;c@ℓ)}∪Z ) and

• (H ,{(T ,−1 ·w;c−1@ℓ)}∪Z )

coincide.

The notation and results of the section on Eliminating Levels by Lierler (2021; 2022) can

be lifted to the case of ew-systems and their optimal/min-optimal models in a straightforward

manner (similar as the results for eliminating negative/positive weights are lifted here). Hence,

we omit the review of these results. Yet, the “cost” expression associated with the second member

of extended model is more complex so that the role of the levels seem to go beyond syntactic

sugar when extended models are considered.

7 Proofs

Many of the formal properties of ew-systems presented in Section 6 echo similar results for w-

systems — a precursor of ew-systems introduced by Lierler (2021). Lierler (2022) presented

proofs for these results for w-systems. The logic and structure of proofs for the case of ew-

systems follows the proofs for the case of w-systems. In this section, we often remark on the

connection to the proofs by Lierler (2022) and point at any details worth noting.

Just as in case for w-systems, we focus on results for optimal (extended) models only, as

the arguments for min-optimal (extended) models follow the same lines. Given recursive Defini-

tions 10 and 11 of l-(min)-optimal (extended) models, inductive argument is a common technique

in proof construction about properties of such models. In particular, the induction on levels of a

considered ew-system W , where we assume elements in λ (W ) to be arranged in the descend-

ing order m1, . . .mn (n = |λ (W )|); so that the base case is illustrated for the greatest level m1,

whereas inductive hypothesis is assumed for level mi and then illustrated to hold for level mi+1.

Note how, mi+1
↑ = mi.

Proof of Proposition 1

The statement of Proposition 1 echos the statement of Proposition 1 by Lierler (2022) for the

case of w-systems. The proofs of the two claims (i) Definitions 10 and 12 are equivalent; and

(ii) Definitions 11 and 13 are equivalent follow the lines of the proof provided for Proposition 1

by Lierler (2022). In fact, for the claim (i) we can repeat the proof practically verbatim modulo

the understanding that in place of w-system W we consider ew-system W as well as in place

of w-conditions of W we consider ew-conditions of W . For the claim (ii), in addition to the

proof of Proposition 1 by Lierler (2022) will have to refer to extended interpretations in place of

interpretations and to summations of the form

∑
B∈Wl

([I |= B]+ [(I,ν) |= B])
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in place of summations of the form

∑
B∈Wl

([I |= B].

Claims of Lemmas 1, 2, and 3 by Lierler (2022) hold for the case of ew-systems and their l-

optimal models and l-optimal extended models.

Proof of Proposition 2

Let S be a weighted MaxSMT problem and WS = (TσS,ϒS,∆S
,S) be a respective ew-system —

where each element in S is understood as an ew-condition, whose theory is in SMT-logic. Con-

sider an arbitrary interpretation I∗ ∈ Int(σS). We show that I∗ is a solution to weighted MaxSMT

problem S if and only if I∗ is an optimal models of WS. Per Definition 14, interpretation I∗ is a

solution to S if and only if

I∗ = argmax
I

∑
(F ,w)∈S

w · [I |= F ],

where I ranges over all interpretations in Int(σS). By the definition of TσS,ϒS,∆S
, any interpretation

in Int(σS) is its model. Per Definition 10, interpretation I∗ is an optimal model of WS if and only

if

I∗ = argmax
I

∑
(F ,w)∈S

[I |= (F ,w)],

where I ranges over all interpretations in Int(σS).

Taking definitions (7) and (12) into account and an understanding that each element in S can be

seen as an ew-condition, whose theory is in SMT-logic, we conclude that for any interpretation I

in Int(σS)

∑
(F ,w)∈S

w · [I |= F ] = ∑
(F ,w)∈S

[I |= (F ,w)].

Proof of Proposition 3

Let P be a CAS program P′ extended with minimize statements of the form (21) over vocabu-

lary σ , class C of constraints, and (σc,C )-denotation. Consider an extended answer set (X∗,ν∗)

of P. We show that (X∗,ν∗) is optimal extended answer set of P if and only if (X∗,ν∗) is min-

optimal extended model of ew-system (P′,S) — where S is a collection of ew-conditions identi-

fied/associated with (21) of P.

It is easy to see that any extended answer set of P is an extended model of (P′,S). Thus, the

proof focuses on optimality condition.

Per Definition 19, (X∗,ν∗) is an optimal extended answer set if and only if there is no extended

answer set (X ′,ν ′) that dominates (X∗,ν∗). In other words, any answer set (X ′,ν ′) is such that

for every level l occurring in (21) either

1. there exists a level l′ occurring in (21) that is greater than l and the following inequality

holds
ν∗

∑
l′

6=
ν ′

∑
l′

,

or

27



2. the following inequality holds for level l

ν ′

∑
l

≥
ν∗

∑
l

,

Per Definition 13, (X∗,ν∗) is min-optimal extended model of ew-system (P′,S) if and only if

there is no extended model (I′,ν ′) of (P′,S) that min-dominates (X∗,ν∗). In other words, any

extended model (X ′,ν ′) is such that for every level l ∈ λ ((P′,S)) either

1. there exists a level l′ ∈ λ ((P′,S)) that is greater than l and the following inequality holds

∑
B∈(P′,S)l′

([X∗ |= B]+ [(X∗,ν∗) |= B]) 6= ∑
B∈(P′,S)l′

([X ′ |= B]+ [(X ′,ν ′) |= B])

or

2. the following inequality holds for level l

∑
B∈(P′,S)l

([X ′ |= B]+ [(X ′,ν ′) |= B])≥ ∑
B∈(P′,S)l

([X∗ |= B]+ [(X∗,ν∗) |= B])

We first observe that by the construction of S any level l occurs in (21) if and only if

l ∈ λ ((P′,S)). Recall that any extended answer set of P is an extended model of (P′,S). It is

now sufficient to show that given any extended model (X ,ν) of (P′,S), the following equality

holds for arbitrary level l ∈ λ ((P′,S)):

ν

∑
l

= ∑
B∈(P′,S)l

([X |= B]+ [(X ,ν) |= B]). (25)

Indeed, per definition of ∑
ν
l

ν

∑
l

= ∑
b·x+c@ℓ in (21)

(b ·ν(x)+ c) = ∑
b·x+c@ℓ in (21)

b ·ν(x)+ ∑
b·x+c@ℓ in (21)

c. (26)

Per S construction, (P′,S)l consists of two ew-conditions

• (TσP′ ,ϒP′ ,∆P′
,wl@ℓ); and

• (TσP′ ,ϒP′ ,∆P′
,0;cl@ℓ).

It is easy to see that

[(X ,ν) |= (TσP′ ,ϒP′ ,∆P′
,wl@ℓ)] = 0,

[X |= (TσP′ ,ϒP′ ,∆P′
,0;cl@ℓ)] = 0.

Per definitions of wl and cl , we derive that

[X |= (TσP′ ,ϒP′ ,∆P′
,wl@ℓ)] = wl = ∑

b·x+c@ℓ in (21)

c,

and

[(X ,ν) |= (TσP′ ,ϒP′ ,∆P′
,0;cl@ℓ)] = ∑

x∈ϒP′

ν(x) · cl(x) = ∑
b·x+c@ℓ in (21)

b ·ν(x).

Consequently,

∑
B∈(P′,S)l

([X |= B]+ [(X ,ν) |= B]) = ∑
b·x+c@ℓ in (21)

b ·ν(x)+ ∑
b·x+c@ℓ in (21)

c. (27)

Equality (25) follows immediately from (26) and (27).
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Proof of Proposition 4 follows from the fact that the numeric value of any level itself is inessen-

tial in the key computations associated with establishing optimal (extended) models. Rather, the

order of levels with respect to greater relation matters (recall the definition of (·)↑ operation).

It is easy to see that changing levels of the w-conditions using the procedure described in this

proposition preserves original order of the levels with respect to greater relation.

Propositions 5 and 6 follow immediately from Propositions 7 and 8, respectively. The state-

ment of Proposition 7 echos the statement of Proposition 8 by Lierler (2022) for the case of

w-systems. The statement of Proposition 8 lifts the statement of Proposition 7 from the case of

models to the case of extended models. The proofs of Propositions 7 and 8 follow the lines of the

proof provided for Proposition 8 by Lierler (2022) modulo similar provisions as pointed at in the

beginning of this section in Proof of Proposition 1 (sketch).

The statement and proof of Proposition 9 echos the statement and proof of Proposition 9

by Lierler (2022) for the case of w-systems. The structure of the following proof is in spirit

of the proof of Proposition 9 by Lierler (2022) and, yet, we state some of its details here as

mapping (·)−1·−1· is unique to this work.

Proof of Proposition 10

To show that the extended optimal models of W coincide with the min-optimal extended models

of W −1·−1·, it is sufficient to show that for any level in λ (W ), l-optimal extended models of W

coincide with l-min-optimal extended models of W −1·−1·. We first note that extended models of

W and W −1·−1· coincide. By induction on levels of W .

Base case. l is the greatest level. An extended model (I∗,ν∗) of W is l-optimal if and only if

(I∗,ν∗) satisfies equation (10), where (I,ν) ranges over extended models of W . It is easy to see

that we can rewrite this equation as

(I∗,ν∗) = argmin
(I,ν)

∑
B∈Wl

(

−1 · [I |= B]+ (−1 · [(I,ν) |= B])
)

.

It immediately follows from the construction of W −1·−1· that this equation can be rewritten as

(I∗,ν∗) = argmin
(I,ν)

∑
B∈W −1·−1·

l

([I |= B]+ [(I,ν) |= B]).

Thus (I∗,ν∗) is an l-min-optimal extended model of W −1·−1· as the equation above is exactly the

one from the definition of l-min-optimal extended models of W −1·−1·; plus recall that extended

models of W and W −1·−1· coincide.

Inductive case argument follows similar lines.

Propositions 11 and 13 follow from Propositions 12 and 14, respectively. Proofs of Proposi-

tions 12 and 14 follow the lines of proof of Proposition 11 stated by Lierler (2022).

8 Conclusions and Acknowledgments

We trust that the proposed unifying framework of ew-systems will allow developers of distinct

automated paradigms to better grasp similarities and differences of the kind of optimization

criteria their paradigms support. In practice, translational approaches are popular in devising

solvers. These approaches rely on the established relationships between automated reasoning

paradigms. In particular, rather than devising a unique search algorithm for a paradigm of inter-

est, researchers propose a translation from this “source” paradigm to another “target” framework.
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As a result solvers for the target framework are used to find solutions for a problem encoded in the

source paradigm. This work is a stepping stone towards extending these translational approaches

with the support for optimization statements. We proposed the extension of abstract modular sys-

tems to extended weighted systems in a way that modern approaches to optimizations stemming

from a variety of different logic based formalisms can be studied in unified terminological ways

so that their differences and similarities become clear not only on intuitive but also formal level.

These ew-systems allowed us to provide generalizations for the family of MaxSMT problems

that incorporate optimizations over theory/constraint elements of these problems in addition to

their propositional side. The framework also provides immediate support for the concept of lev-

els of optimization criteria. We also provided formal semantics for two variants of CLINGCON-2

programs that mimic the behavior of their informal descriptions in the literature. We trust that es-

tablishing clear link between optimization statements, criteria, and solving in distinct automated

reasoning subfields is a truly fruitful endeavor allowing a streamlined cross-fertilization between

the fields. The EZSMT (Shen and Lierler, 2018) system is a translational constraint answer set

solver that translates its programs into satisfiability modulo theories formulas. We trust that re-

sults obtained here lay the groundwork for extending a “translational” solver EZSMT with the

support for optimization statements.
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viewers for valuable comments on this paper.
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