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Abstract

We introduce an asymptotic quantity that counts area-minimizing surfaces in nega-
tively curved closed 3-manifolds and show that quantity to only be minimized, among
all metrics of sectional curvature < —1, by the hyperbolic metric.

1. Introduction

A classical and beautiful result in geometry says that if (M, hg) is a closed locally
symmetric Riemannian manifold with strictly negative curvature (i.e., quotients of
either hyperbolic space, complex hyperbolic space, quaternionic hyperbolic space, or
Cayley plane) and 4 is another negatively curved Riemannian metric on M with the
same volume as /g, then the quantity

In#{length,,(y) < L : y closed geodesic in (M, h)}
L

8(h):= ngnoo

satisfies 6(%) > 6(ho) and equality implies that /4 is isometric to /.

This follows from combining a theorem of Margulis [23] which identified the
right-hand side in the inequality above as the topological entropy for negatively
curved metrics, a theorem of Manning [22] which says that the volume entropy and
topological entropy coincide for negatively curved metrics, and a theorem of Besson,
Courtois, and Gallot [5] which says that g¢ minimizes the volume entropy among all
metrics with the same volume.

Closed geodesics are a particular case of minimal surfaces, and in recent years
great progress has been made regarding the existence of minimal hypersurfaces. For
instance, for a closed Riemannian manifold M of dimension between 3 and 7, Irie
and the last two authors [14] showed that, for generic metrics, the set of all closed
embedded minimal hypersurfaces is dense in M ; jointly with Song [25], the last two
authors showed that, for generic metrics, there is a sequence of closed embedded
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minimal hypersurfaces that becomes equidistributed; Song [34] showed that for every
Riemannian metric on M, there are always infinitely many distinct closed embedded
minimal hypersurfaces; and Zhou [37] solved the Multiplicity One Conjecture made
by the last two authors, which when combined with [24] implies that, for generic
metrics, there is a closed embedded minimal hypersurface of Morse index p for every
peN.

The purpose of this paper is to study minimal surfaces in a closed orientable
3-manifold in the spirit of the entropy functional mentioned at the beginning of the
introduction.

Before we state the main theorem we need to introduce some concepts. Through-
out this paper, M will denote a closed orientable 3-manifold that admits a hyperbolic
metric. A closed immersed genus g surface ¥ C M is essential if the immersion
t: X — M injects m1(X) into w1 (M). In this case, the group G = 1 (71(X)) is
called a surface subgroup of genus g, and surface subgroups of immersions homo-
topic to ¢ are in one-to-one correspondence with conjugates of G by an element of
T (M ) .

Let S(M, g) denote the set of surface subgroups of genus at most g of 71 (M)
modulo the equivalence relation of conjugacy. We abuse notation and see an ele-
ment IT € S(M, g) as being either all subgroups of 71(M) that are conjugate to a
fixed surface group of genus at most g or the set of all essential immersions of sur-
faces ¢ : ¥ — M for which t4(71(X)) € I1. Kahn and Markovic [16], [17] showed
that surface subgroups exist for all large genera and estimated the cardinality of
S(M, g). _

Consider a Riemannian metric 7 on M, and denote the hyperbolic metric by 4.
Given I1 € S(M, g) we define

areay (I1) = inf{areah(E) NS H},

where areay, (X) denotes the area computed with respect to the metric t*/.
Given ¢ > 0, we define S(M, g, €) to be the conjugacy classes in S(M, g) whose
limit set is a (1 + ¢)-circle (see Definition 2.3) and set

Se(M)=|_J S(M.g.2).

geN

We are interested in the following geometric quantity:

In# M) <4m(L—1):T1 € S.(M
E(h) = lim liminf — fareay (IT) = 4 (L — 1) M)}
e—>0 L—>o0 LinL

(1)

Note that if ¢ < &', then S¢(M) C Sg/(M), and so the limit in the e-variable is well
defined. In this paper we show the following result.
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THEOREM 1.1
Given a Riemannian metric h on M with volume entropy denoted by Eq(h), we have
E(h) < 2E(h)>.

If the sectional curvature of h is less than or equal to —1, then

E(h)= E(h) =2 2)
with equality if and only if h is the hyperbolic metric.

As far as we know, this is the first result giving asymptotic rigidity for the areas
of minimal surfaces—meaning that if there are sufficiently many (in a precise sense to
be made in Section 5) minimal surfaces X; with genus g; so that areay (X;) /(47 (g; —
1)) — 1, then the metric /4 is hyperbolic.

One obvious challenge is that the results in [5], [22], and [23] rely on the dynami-
cal properties of the geodesic flow, which have no analogue for minimal surfaces. For
this reason we restricted our asymptotic counting invariant to the homotopy classes in
Se (M) so that the dynamical properties of the geodesic flow can be of use.

The fact that one can compute E (ﬁ) follows from [16] and from the work of
Uhlenbeck in [36]. The inequality (2) in Theorem 1.1 is a consequence of the Gauss—
Bonnet theorem. The statement in Theorem 1.1 that only I has E (l;) = 2 will follow
in two steps. First we combine minimal surface theory with the strong rigidity prop-
erties of totally geodesic disks proven independently by Shah [33] and Ratner [30]
to find, for every v € T, M, a totally geodesic hyperbolic disk in (M, g) containing
(p,v) in its tangent space. This will occupy most of the proof. Then we use the ergod-
icity of the frame flow due to Brin and Gromov [9] to show that the sectional curvature
of every plane is —1.

We now briefly review some previous results related to our work.

Shah [33] and Ratner [30] showed that a totally geodesic immersion of H?
in a compact hyperbolic manifold has its image either dense or a closed surface.
McMullen, Mohammadi, and Oh [26] recently generalized this result to the noncom-
pact case.

McReynolds and Reid [27] showed that arithmetic hyperbolic 3-manifolds
which have the same (nonempty) set of totally geodesic surfaces are commensu-
rable, that is, covered by a common closed 3-manifold. It is not expected that the
areas of all totally geodesic surfaces will determine the commensurability class of
the arithmetic hyperbolic 3-manifolds (see [19]). Jung [15] studied the asymptotic
behavior of the areas of totally geodesic surfaces for some arithmetic hyperbolic
3-manifolds.

Totally geodesic surfaces in hyperbolic manifolds have the attractive feature that
they are preserved by the geodesic flow, but their existence is not guaranteed. For
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instance, there are closed hyperbolic 3-manifolds which admit no totally geodesic
immersed closed surface (see [21, Chapter 5.3]) and even finite-volume hyperbolic 3-
manifolds which admit no totally geodesic immersed finite-area surfaces either (see
[10]). Recently it was shown that a closed hyperbolic 3-manifold having infinitely
many totally geodesic surfaces is arithmetic (see [3], [29]).

Finally, it was shown in [28] that the commensurability class of closed hyperbolic
3-manifolds is determined by their surface groups.

2. Notation and preliminaries
We set up the basic notation and then discuss several results, all of which are well
known among experts.

There is a discrete subgroup I' C Isom™* (H?) = PSL(2,C) so that M = H3\ I’
is a closed orientable 3-manifold and we fix an isomorphism between 7r;(M) and T".
A Riemannian metric on M is denoted by /, and the hyperbolic metric is denoted by
h. Geometric quantities with respect to the metric 4 will usually have the subscript
h, while the same quantities will have no subscript if computed with respect to the
metric /. For instance, the distance between two points p, ¢, the area of an immersed
surface ¢ : ¥ — M, or the Hausdorff distance between sets A, B with respect to
the metric ¢*/i and ¢*h, respectively, are denoted by d(p.q), du(p.q), area(%),
arean(X), or dg (A, B), dg n(A. B). Note that if X is a k-cover of a surface 3, then
areay (X) = k areay,(3).

Let (B3, h) denote the universal cover of (M, h), and let SOZo denote its sphere at
infinity, which is defined as the set of all asymptote classes of geodesic rays, where
two geodesic rays y; : [0, +00) — B3, i = 1,2, define the same asymptote class,
denoted by y;(400), if lim;— o0 dp(y1(t), y2(t)) < +o00. There is a natural topology
on B = B3U S2, the cone topology (see, e.g., [1]), for which B3 is homeomorphic
to a 3-ball. Given a set Q@ C B3 we denote by 2 its closure in B and 0o €2 stands
for @ N S2,. We follow convention and denote (B3, /) simply by H?.

An essential immersion ¢ : ¥ — M must have genus > 2 (by the Preissman
theorem), and thus ¢ admits a lift ¢ : D — H? from a disk D onto H3. To ease
notation, we will often identify the immersions of ¥ or D with its images in M or H3,
respectively. This will create an ambiguity when X is a k-cover of another surface 3,
but it will be clear from the context whether we are referring to the immersion (when
we compute area, for instance) or to the image set in M (when we compute Hausdorff
distances, for instance). Given an essential surface > C M with surface group G < T,
there is a lift D C H? that is invariant under G. Any other disk D’ C H? lifting X is
invariant under a group G’ < T that is conjugate to G. Necessarily we have (with an
obvious abuse of notation) D \ G = D'\ G' = X.
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The Grassmanian bundle of unoriented 2-planes in M or H? is denoted by
Gry (M) or Gr,(H?3), respectively. An immersed surface ¥ in M (or its lift D in H?3)
induces a natural immersion into Gra(M) (or Gry(H?)) via the map p — (p, T, %)
(or p > (p,TpD)).

2.1. Fundamental domains and Cayley graphs
Given a subgroup G < PSL(2, C) acting properly discontinuous on H?>, a fundamen-
tal domain A C H? for H3 \ G is a closed region so that
(i) Upeg $(8) =1
(i) ¢eGandp(A)NintA#0 — ¢ =1d.
Because the manifold M is compact, we can choose its fundamental domain A to
be a convex polyhedron with finitely many totally geodesic faces. Such domains
are called Dirichlet fundamental domain. Each compact set K C H? intersects only
finitely many elements of {¢(A)}ger.

Given a subgroup G < I', we consider the set ' \ G = {¢G : ¢ € '} and pick a
representative ¢ in each coset ¢G.

LEMMA 2.1
Ag = Ud,eF\G 9_1 (A) is a fundamental domain for H3 \ G.

Proof

The reader can check that Ag is closed and that | J pec P(Ag) = H?3. Suppose there
is ¥ € G and x € Y (Ag) Nint Ag. Because x € int Ag we can find a finite set
A CT\ G and an open set U so that x € U C U¢EA Q_I(A). Likewise, we have

x € ¥ (a~1(A)) for some g € T' \ G. We must have

(et a)n (Jg ™) #0

¢eA

and thus (g ~)™! = ¢~' for some ¢ € A. Hence o = ¢ and ¢ = Id. O

Fix p € H3. Choosing R large enough, the set A = {¢ € ' : d(p,¢(p)) < R}
generates I'. The Cayley graph Gr(I', A) of I generated by A is defined as having
vertices {¢(p)}per, and two vertices ¥ (p), ¢ (p) are connected by an edge if 1 €
A. The graph Gr(I", A) admits a distance function «, where d (¢, ) is the word length
of ¢!, and the norm of ¢ € T is given by |¢| = d(¢,1d). The Hausdorff distance
between two sets Ay, A, is denoted by

dp(Ay, Ay) :=max{ sup inf d(x,y), sup 1nf d(x,y)}.

)CEA]y€ 2 y€AL X
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We will need the following lemma (where B, (p) denotes the geodesic ball of radius
r centered at p € H3).

LEMMA 2.2
There is a constant ¢ > 0 depending on the Dirichlet domain A containing p so that

Bn/c—c(p) C U ¢(A) - Bnc-‘rc(p) foralln e N.
lpl<n

Proof

The Svarc—Milnor lemma says that the map I' — H?3, ¢ — ¢ (p) is a quasi-isometry,
meaning there is a constant K so that

@) H=Uger Bx(9(p)),

(i) forall y,¢ €T,

K'd(¢(p). ¥(p)) — K < d($.¥) <Kd(¢(p).¥(p)) + K.

and there are constants n; € N, K; > 0 so that Bk, (p) C U|¢|§nl ¢(A) and A C
Bk, (p). The constant ¢ can be computed in terms of n, K, K;, and we leave it to
the reader. O

The Svarc—Milnor lemma mentioned above also says that choice of a generating
set or different basepoints would give another Cayley graph that is quasi-isometric to
Gr(T", A). We abuse notation and simply denote the Cayley graph by I.

2.2. Morse’s lemma
A curve y : R — H?3 is a (K, ¢) quasi-geodesic if

K_ld(y(t),y(s)) —c<|t—s|< Kd(y(t), y(s)) +c¢ foralls,t eR.

A geodesic in B3 with respect to the metric & is a (K, 0) quasi-geodesic for some
K = K(h).

Morse’s lemma (see, e.g., [ 18, Theorem 2.3]) gives the existence of ro = ro(K, ¢)
such that for every (K, c¢) quasi-geodesic y in H?> there is a unique (up to reparame-
terization) geodesic o in H? so that the Hausdorff distance between o (R) and y(R)
is bounded by ry.

2.3. Limit sets and quasi-Fuchsian manifolds

Given a discrete subgroup acting properly discontinuously G < PSL(2, C), the limit
set A(G) C SZ is defined as being the set of accumulation points in S2 of the orbit
G x, where x € H3. It is well known that the definition is independent of the point x €
H? chosen and that the limit set is closed. Elements ¢ € PSL(2, C) induce conformal
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maps of S2, and one has that A(pG¢~') = ¢(A(G)). From this, one deduces that
A(G) is G-invariant.

Quasiconformal maps F : S% — S2, with dilation bounded by some K €
[1,400) (see [35, Section 5.9] for a definition) have the property that are Lipschitz,
and at points p of differentiability, DF, sends circles into ellipses whose eccentricity
(ratio between major axis and minor axis) is bounded by K. Furthermore, conformal
maps are quasi-conformal maps with K = 1.

If A(G) is a geometric circle, then G is called a Fuchsian group, and if A(G) is
a Jordan curve, then G is called a quasi-Fuchsian group. In this case, it is known (see
[35, Proposition 8.7.2]) that A(G) is a K-quasicircle, meaning there is a quasiconfor-
mal map F with dilation bounded by K that maps the equator to A(G).

Definition 2.3
A discrete subgroup acting properly discontinuously G < PSL(2, C) is e-Fuchsian if
A(G) is a (1 + &)-quasicircle. This notion is invariant under conjugacy.

The normal bundle of an orientable surface S C M is denoted by 7+S ~ S x R.
When the background metric is the hyperbolic metric, Uhlenbeck proved the follow-
ing result in [36, Theorem 3.3].

THEOREM 2.4

Let S C M be an orientable minimal surface with principal curvatures |A(x)| < Ao <

1 forall x € S. Then:

(1) The exponential map exp : T+S — M is a covering map, and thus G :=
exp, (71(S)) is a surface group.

(i1) G is a quasi-Fuchsian group and N :=H?\ G ~ TS is a complete hyper-
bolic manifold.

(i) S is embedded, area-minimizing, and the only closed minimal surface in N.

(iv)  For all t > tanh™Y(Ao), the region S x [—t,t] C N is strictly convex and its
boundary has principal curvatures bounded from above by

sinh# + coshtAg
cosht +sinhtAg

The last property is not explicitly stated in [36, Theorem 3.3], but from its proof
one sees that the surface S x {t} C N has principal curvatures

sinht & cosh#A(x)

A (x) =
+(%) coshz & sinhzA(x)’

which readily implies property (iv).
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2.4. Totally geodesic planes
Consider € to be the set of all geometric circles (of varying radii) in S2,. This set is
noncompact and in one-to-one correspondence with the totally geodesic disks in H?
because given any y € € there is exactly one totally geodesic disk C(y) C H? such
that 30, C(y) := S2, N C(y) is identical to y.

Every ¢ € PSL(2,C) induces a map from € to € (still denoted by ¢) such that
¢ (C(y)) = C(¢(y)). Hence, the group I' acts naturally on €.

The following result was proven independently by Ratner [30] and Shah [33].

THEOREM 2.5
Given y € €, either C(y) covers a closed surface in M = H?> \ T or its natural
immersion into Grp(H?) projects to a dense set in Gro(M).

Given y € €, consider the orbit I'y :={¢(y): ¢ € '} C €.

Using the fact that {y; };en € € converges to y € € if and only if C(y;) converges
to C(y) on compact sets of H>, we leave to the reader to check that I'y is dense in €
if and only if the natural immersion of C(y) into Gr, (H?) projects to a dense set in
Gr, (M)

The next theorem was essentially proved in [26, Theorem 11.1]. We provide the
modifications that need to be made.

THEOREM 2.6
Consider £ C € a closed set that is ' -invariant.

Suppose that no element in £ has a dense I'-orbit in €. Then every y € £ is
isolated and has C(y) projecting to a closed surface in M.

Proof
Every y € &£ must have C(y) projecting to a closed surface in M, because otherwise
Theorem 2.5 would say that I'y is dense in €.

We argue by contradiction and suppose there is y; € £ converging to y in £ as
i — oo with y; # y. Set

" ={¢el:¢p(y) =y}

The action of I'” preserves C(y), and C(y) \ I'V corresponds to a closed surface
because C(y) projects to a closed surface in M.

Choose a disk 2 C S2 so that 9Q = y. Either ' preserves € or it contains a
normal subgroup of index 2 that preserves 2. If the latter occurs, relabel I'? to be that
subgroup. By swapping Q with its complement in S2 if necessary and after possibly
passing to a subsequence of {y; };en, we can assume that y; N Q £ @ forall i € N.
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The disk D carries a natural hyperbolic metric g conformal to the round metric
in S2, and each map in I'? is an orientation-preserving isometry of € with respect
to the metric hg. Finally, Q2 \ T'? is isometric to C(y) \ T'Y and so the group I'? is
a nonelementary, convex, cocompact Fuchsian group as defined in [26, Section 3].
Hence we can apply Corollary 3.2 of [26], which says that if we consider the set
H (D) of all horocycles in (2, hg), that is,

H(Q)=1{0ecC€:0CQoNIN#D),

then the closure of | JI'?y;, and hence &£, contains J (2).

From [26, Theorem 4.1] there exists a dense set Ay C Sgo such that if 0 € €
intersects A, then I'o is dense in €. Necessarily, Ay must intersect some element of
H(2), and so there is o € £ for which o is dense in €. Thus C (o) does not project
to a closed surface in M, which is a contradiction. O

2.5. Frame flow
We denote the bundle of oriented orthonormal frames of M with respect to horh by
F (M) and ¥ (M) (h), respectively.

The frame flow Fy; : F (M)(h) — F (M)(h) is defined in the following way:
given an oriented frame (ey, ez, e3) for T, M,

Fi(p.(e1.e2.€3)) = (y(1). (' (1), e2(2). e3(1))).

where y (1) = exp,(te1), and ex(7), e3(7) denote the parallel transport of ez, 3 along
y. An important result which we will use, due to Brin and Gromov [9], says that when
(M, h) is negatively curved, the frame flow is ergodic and, in particular, has a dense
orbitin ¥ (M) (h).

3. Convex hulls
In this section we assume that (M, h) has sectional curvature less than or equal to —1.
Given a closed set A C S2., its convex hull Cp(A) C B3 denotes the smallest
geodesically closed set of B3 (with respect to the metric /) that contains A.
The goal of this section is to prove the following result.

THEOREM 3.1

Let S C M be a minimal surface (with respect to h ) with principal curvatures
[A(x)| < Ao <1 forall x €S, and let ¥ C M be a minimal surface with respect to
h in the homotopy class of S. Then, denoting by D, C H3 the lifts of S and X,
respectively, that are invariant by the same surface group, we have

dg(D,Q2) <R

for some constant R = R(h, Ag).
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Bangert and Lang proved similar results to the theorem above (see [4] and refer-
ences therein) under the conditions that D and 2 are quasi-minimizing. While that
will be true for D, it is not necessarily true for €2, and so the result cannot be straight-
forwardly applied. It is conceivable that their proof could be extended to our setting,
but we choose a different argument.

Given p € B3, the cone over A centered at p with respect to the metric 4 is given
by

Cop,(A) = clo{y(t) .y a geodesic with y(0) = p,y(c0) e A,0<t < oo},

where the closure is taken with respect to the cone topology. One has Co,(A) N
S2 =A.

The space (B3,h) has sectional curvature less than or equal to —1 and is thus
§ -hyperbolic for some universal constant 8, meaning that a side in any geodesic trian-
gle (with vertices possibly in S2) is contained in the S-neighborhood of the union of
the other two sides. Thus if p,q € B3, x € S2, and y, o denote geodesic rays (with
respect to i) staring at p, ¢, respectively, with y(c0) = 0(c0) = x, then, with / denot-
ing the geodesic connecting p to g, we have that y is contained in the § -neighborhood
of the union of o and /. Therefore

dpp(Cop(A),Coqg(A)) <8+ di(p.q). 3)
Likewise, Co,(A) is g—quasiconvex, meaning that given any x, y in Co,(A), the

geodesic connecting x to y is contained in a S—neighborhood of Cop(A).

PROPOSITION 3.2
There is R = R(h) so that given a closed set A C S2,, we have Cp(A) N S2, = A
and

d (Ch(A). C(N) < R.

Proof
The key step in the proof is the following claim, which was proved in Proposi-
tion 2.5.4 of [7] using the existence of certain convex sets constructed by Anderson
in [2].

CLAIM 3.3
There is R = R(h) so that for every p € Cp(A),

dp.i(Ca(A).Cop(A)) < R.

In particular, Cp(A) N S2 = A.
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If y, y are two geodesics with respect to & and h, respectively, that connect p €
H3 (oryesS go) tox € Sgo, then Morse’s lemma gives the existence of a constant rg
depending only on % so that dg (y, ) < ro. From this we deduce that

dist(Cr(A),C;(A)) <ro  and  dg(Cop(A,h),Cop(A,h)) <ro,

where Co, (A, h) denotes the cone with respect to 4. Combining these inequalities
with (3) and Claim 1 we deduce the desired result at once. O

Let G be a quasi-Fuchsian surface group, and set N := H?>\ G. Because A(G) C
S2 is G-invariant, C,(A(G)) is also G-invariant and C,(N) := C,(A(G)) \ G is a
compact subset of the N (see [35, Section 8.2]).

PROPOSITION 3.4
Every closed immersed minimal surface in (N, h) is contained in Cp,(N).

Proof
Letd : N — [0, 00) be the distance function to C (N). If & denotes the covering map
from (B3, h) to (N, h), then we have that 7~ (C,(N)) = C,(A(G)) is a geodesically
convex set, and so Proposition 4.7 in [6] says that d is a continuous convex function
(Theorem 4.7 in [6] is misstated because it requires the subset of N to be geodesically
convex instead of requiring the inverse image of the set under the covering map to be
geodesically convex).

Given X a closed connected minimal immersion, there is [ > 0 so that ¥ C
d=100,1), and we set K = d 1[0, + 1].

The function d does not have to be smooth, but we can apply [11, Theorem 2] to
obtain a sequence of smooth functions {¢; };en so that ¢; tends to d uniformly in K
as i — oo and, setting

A(¢i) =min{D?¢;(v,v) : x € K,v € Ty N, |v| = 1},

we have liminf; ., A(¢;) > 0. Hence Ax¢; > A(¢;) on X because ¥ is a minimal
surface.
Set ¢i+ = max{¢;,0}. We have

/ |Vei|> dAp = —/ ¢ Api dA, < —k(¢i)/ ¢;" dAp,
{xeX:¢; >0} by )
and so

lim |V |>dAy = 0.

i—>00 Jixex:¢; >0}
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Suppose that £ N d {8} # @ for some [ > § > 0. Note that d € W'2(X) and
the functions ¢; converge weakly to d in W12(X) as i — oo, and so

[ |Vd|*>dAy, < liminf/ |V |>dAy = 0.
d—1[5,11n= 1= J{xeX:$;, >0}

Thus there is some ¢ > § so that £ C d ! (t). An inspection of the proof of Proposi-
tion 4.7 of [6] shows that {c? <t} is actually geodesically strictly convex, because the
ambient curvature is strictly negative and so it cannot contain the minimal surface ¥
in its boundary 8{d <1} =d~'(¢). O

Proof of Theorem 3.1
Without loss of generality we can assume that S is orientable.

Let G be the surface group that preserves both D and €2 so that S = D \ G and
> =Q\G. Set A to be the Jordan curve A(G). From Theorem 2.4 there is 7 = #(Ag)
so that

and, for all x € D, if y, denotes the unit speed hyperbolic geodesic with y,(0) = x
and y;.(0) orthogonal to Ty D, then we have

dist(y(1).C;(A)) = R+ 1 forall|t| >7 + R, (5)

where R = R(h) is the constant given by Proposition 3.2.

From Proposition 3.4 we have that Q2 C Cj,(A), and thus we obtain from (4) and
Corollary 3.2 that €2 is contained in the (f + R)-neighborhood of D.

To deduce the other inclusion, pick x € D. We have that y, (4+00), yx(—00) lie
in different connected components of S2 \ A. Because Q C B’ is a disk with the
same boundary as D, y, must intersect $2 in at least one point y(t) € Q N y. From
(5) and Proposition 3.2 we have that || <7 + R, and so d(x,Q) <7 + R. O

4. Almost-Fuchsian surface groups

Let s(M, g, €) denote the cardinality of S(M, g, €), the set of e-Fuchsian surface sub-
groups of genus at most g, modulo the equivalence relation of conjugacy. Recall that
we defined S.(M) = S(M, g,¢) and that A denotes the second fundamental
form of a surface of M.

geN

PROPOSITION 4.1
Suppose we have a sequence I1; € S5, (M), where §; — 0 as i — oc. For eachi € N,
there is an essential minimal surface S; in the homotopy class I1; so that area(S;) =
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area(Il;) and
lim || A% =0. 6
lim (1417 s, ©)

Moreover; if D; is a disk lifting S; to H? that is preserved by the surface group G; < T’
induced by S; and intersecting a fixed compact set in H> for all i € N, then there is a
totally geodesic disk D C H? such that, after passing to a subsequence, D; converges
smoothly to D on compact sets and A(G;) converges in Hausdorff distance to 0o D
in SZ.

Proof

For each i € N, consider the essential immersion S; C M that minimizes area with
respect to the hyperbolic metric in the homotopy class I1; (using [31], for instance). If
D; is the minimal disk lifting S; to H? that is preserved by the surface group G; < I'
induced by S;, then we have from Theorem 1 in [32] that ||A||ioo (D)) tends to zero
as i — oo. Actually, in our setting, we only need to apply [32, Theorem 1] to surfaces
which minimize area in their homotopy class, and so the same result could be obtained
applying simpler arguments.

Assume that all the disks D; intersect a compact set. We now argue that, after
passing to a subsequence, the disks D; converge to a totally geodesic disk with multi-
plicity 1. From Theorem 2.4 we know that, for all i sufficiently large, D; is embedded
and that S; is the unique closed embedded minimal surface in M; = H3\ G; ~ TLs;
and therefore area-minimizing in M; among all mod 2 cycles representing the same
element in H,(M;;Z,). As a result, D; is locally area-minimizing among mod 2
cycles as well. Pick p; € D; which converges, after passing to a subsequence, to
some p € H3. From the fact that for all i sufficiently large, the embedded disks D; are
locally area-minimizing among mod 2 cycles, we obtain from standard compactness
theory for minimal surfaces the existence of a totally geodesic disk D C H? contain-
ing p such that, after passing to another subsequence, D; converges graphically to D
on compact sets.

Consider ¢; € A(G;), o; C H? the geodesic ray with 0;(0) = p;, 0;(+00) =
qi, and y; C D; the geodesic ray (for the induced metric on D;) with y;(0) = p;,
i (+00) = ¢;. The geodesic curvature of y; in H? is a fixed amount below 1 for all
i sufficiently large, and so, using tubular neighborhoods of o; as barriers, we deduce
the existence of r > 0 so that y; is contained in an r-tubular neighborhood of o; for
all i € N. Thus, after passing to a subsequence, both curves converge on compact sets
to the same geodesic ray 0 C D. Using this fact, the reader can deduce that A(Gj;)
converges in Hausdorff distance to doo D in S2.. O
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Using the above proposition, we now show the following improvement to the
main results of [16] and [17].

THEOREM 4.2
There are positive constants ¢1 = c1(M,¢), c; = ca(M), and k = k(M,¢) € N so
that for all g > k we have

(c18)* <s5(M.g.¢) < (c28)*%.

Moreover, there is a subset G(M, g, &) C S(M, g, &) with more than (c18)*¢ elements
so that any sequence of homotopy classes 11; € G(M, gi,1/i),i € N, has a represen-
tative ¢ . S; — M so that

(a) S; is a minimal immersion with area(S;) = area(I1;) and

lim sup |A| = 0;
i—00 S;

(b) after passing to a subsequence, the Radon measure

1
area(S;) /Si JSegdd

converges to a measure v which is positive on every open set of M.

[eC' M) pi(f)=

Proof

If s(M, g) denotes the cardinality of S(M, g), then, as shown in [16, Theorem 1.1],
¢ > 0 exists so that s(M, g) < (c2g)?® for all g large. Since s(M, g,¢) <s(M.,g),
the upper bound is verified.

We now verify the lower bound. In [17] the authors show that for all & > 0 there
is a Fuchsian group K (preserving a totally geodesic plane C(y) for some geodesic
circle y) and a (1 + ¢)-quasiconformal map @ : S2 — S2 sothat G = ®o K o !
is a surface subgroup of I'. The map ® admits an extension F : H> — H?3 that is
equivariant with respect to K and G and a (1 + 0.(1), 0.(1))-quasi-isometry, where
0¢(1) denotes a quantity depending only on M and ¢ that tends to zero as ¢ — 0. As
a result, the essential surface ¥, = F(C(y) \ K) C M induces an element of S;(M).
3 has the property that geodesics with respect to the intrinsic distance are (1 + ¢, €)-
quasigeodesics, and we denote such surfaces by (1 + ¢€)-quasigeodesic surfaces.

Let go denote the genus of X.. If 3, denotes a degree n cover of X, then its
genus is g =n(go—1) + 1 and so X, induces an element in s(M, g, €). The Miiller—
Puchta formula says that the number of index n subgroups of a genus g¢ orientable
surface grows like 272(n!)260=2(1 +0(1)), and so (using Stirling’s approximation) we
get the estimate
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s(M,g,e) > (c18)*,

where ¢; > 0 depends on gg, which in turn depends only on M and ¢.
We set G(M, g, €) to be the homotopy classes that come from finite covers of X,
and have genus less than or equal to g.

Description of X,

We now describe in more detail the properties of ¥. In [13] Hamenstadt extended
the results of [17] to some rank 1 locally symmetric spaces, building on the work of
Kahn and Markovic. We follow the geometric description and the notation of [13].
The words in italics have precise definitions in [13].

The basic building blocks are called (R, §)-geometric skew-pants P (or simply
geometric skew-pants), and they are defined in Sections 4 and 6 of [13]. The boundary
of P consists of three closed geodesics in M, and P decomposes into five polygon
regions with geodesic boundary (two center triangles and three twisted bands using
the notation in [13, Section 6]). Each polygon is a smooth immersion whose principal
curvatures depend uniformly on (R, §) and can be made arbitrarily small by choosing
R sufficiently large and § sufficiently small. Regions that share a common geodesic
side have the property that the corresponding conormals make an angle as close to
7 as desired by choosing R large and § small. Given any 0 < < 1 there is d > 0
(independent of R and §) so that the set of points K¥ in P that are at an intrinsic
distance less than or equal to d from one of the center triangles has

(1 —n)27 <area(K¥) <area(P) < (1 + n)2n (7)

for all R large and 6 small. The seams of a geometric skew-pants P are three short-
est geodesic arcs in M (in the homotopy class defined by P) that connect the three
boundary geodesics of P. The endpoints of the seams define two distinguished points
on the geodesic geodesic boundary of P and are called the feet of P.

For our purposes it will be important as well to control the location of the geo-
metric skew-pants in M. Given a point x = (p, (e1, e2,e3)) € ¥ (M) we get a natural
orientation in the 2-plane V = span{e;,e,} C T, M and an oriented ideal triangle
T C V whose vertices are the endpoints of the geodesic ray based at p with initial
velocity eq and its 25t /3 consecutive rotations in V' (see [13, Section 4] for definitions:
in the codimension 1 setting, framed tripods and frames can be identified). This ideal
triangle 7' contains in its interior an equilateral geodesic triangle 75 (called center
triangle) whose vertices are the projection of the ideal vertices of 7" onto its opposite
sides (see [13, p. 849]).

In [13, Section 4] it is defined what it means for two frames x,y € ¥ (M) to
be (R, 8)-well connected. When that occurs, in Sections 5 and 6 of [13] a (R, §)-
geometric skew-pants P(x, y) is constructed such that its center triangles can be made
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uniformly close to the two center triangles T, T),. In particular, for all R sufficiently
large and § sufficiently small, we have that if x, y,z € M and r = d(x,z)/2, then

area(Tyx N By, (2)) - 5

area(P(x,y) N Byr(2)) = 3 wor”, ®)

where wy is constant depending only on M .

An oriented (R, §)-skew-pants is defined as being the homotopy class of some
oriented (R, §)-geometric skew-pants immersion f : P — M, where the homotopies
preserve the image and orientation of the boundary geodesics. The space P (R, §) of
all such homotopy classes contains only finitely many elements. Given x,y € ¥ (M)
it is possible that they are (R, §)-well connected in several different ways which would
give rise to geometric skew-pants in different homotopy classes. On the other hand,
for all R large enough and § small, it is shown in Lemma 7.4 of [13] (combined with
Lemma 4.3 [13]) that every pair (x,y) € ¥ (M)? is (R, §)-well connected and that,
even if there are several parameters involved in the construction of the correspondent
(R, 6)-geometric skew-pants, their homotopy class only depends on (x, y), R, and §.
As a result, we obtain a map

P:F(M)?> = P(R,S),

where P (x, y) denotes the homotopy class of any of the (R, §)-geometric skew-pants
P(x,y) given by [13, Lemma 7.4].

Let A2 denote the normalized Lebesgue measure in F (M)?2. For each (R,§)
consider the measure 4 in (M )? that is obtained by integrating dju defined in [13,
p. 849] along the fiber # (M)3. From Lemma 7.4 of [13] we have that u is abso-
lutely continuous with respect to A2, and its Radon—-Nikodym derivative has order
1 + O(1/R). In particular, for every open set 2 C % (M)? and every R large enough
we have

A2(Q)

n(E) = ——. )

For each P € P(R.$), set h(P) = u(P~(P)).

In Lemma 7.2 and Proposition 7.3 of [13] the quasigeodesic surface X, is
constructed by attaching several elements of #(R,§) along a common boundary
geodesic. Moreover, if n p denotes the number of times that P € (R, §) appears in
Y., then

h(P)
npz—— > no. (10)
QeP(R,5)

The attaching of the (R, §)-geometric skew-pants is made so that if P, P’ € P(R,§)
share a common boundary geodesic 8 (with opposite induced orientations), then the
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tangent planes of P and P’ along B can be made uniformly close to each other as
R — oo and § — 0, and the distance between the feet of P and P’ that belong to
is close to 1. This last property is important to ensure that a surface constructed this
way will be (1 4 €)-quasigeodesic if R and § are, respectively, very large and very
small (see [13, Proposition 6.2]). Note that necessarily area(X;) >~ 4w (g — 1), where
g is the genus of X, and that in [13, Lemma 3.1] it is shown that 3, is a locally
CAT(—1/2) space for all ¢ sufficiently small.

The pants decomposition of 3, is centrally co-thick for some universal constant
co (see [13, Section 3]) for definition and proof of [13, Proposition 6.2]), and this
implies the existence of r > 0 (depending only on cg) so that for all d > 0, all R
sufficiently large, and all § sufficiently small (both depending on d), if x € X, is at
distance d from any of the center triangles coming from the geometric skew-pants,
then the intrinsic ball E’L (x) in X, of radius r centered at x intersects at most a finite
number of the polygonal regions with geodesic boundary. In particular, by making R
large and § small, we have éL (x) arbitrarily close to a totally geodesic disk.

With 0 < < 1 fixed, choose d so that (7) holds, and consider the set of points
K, in X, that are at an intrinsic distance less than or equal to d from any of the center
triangles coming from the geometric skew-pants. We have

area(Ky) > (1 —n)(1 + ) ™" area(Te). (11)

Consider the minimal representatives S; in the homotopy class I1; € G(M, g;,
1/i), i € N, given by Proposition 4.1, from which Theorem 4.2(a) follows immedi-
ately.

Proof of Theorem 4.2(b)

Each S; is homotopic to a (1 + 1/i)-quasigeodesic surface X;, and we choose disks
D;,Q; C H3 that cover S; and X;, respectively, and such that 0o D; = 0508, . For
all i sufficiently large, 2; is a CAT(—1/2) space (see [8, Theorem I1.4.1]) for which
every geodesic arc can be extended (see [8, Proposition I1.5.10]). Combining with the
fact that the principal curvatures of S; tend to zero and that geodesics in %; lift to
(1 4 0;(1))-quasigeodesics in H?3, we obtain

dg(D;,Q;)—0 asi— oo. (12)

Let p;, v; denote the unit Radon measure of M induced by integration over S; and
%;, respectively. After passing to a subsequence we can assume that both measures
converge.

LEMMA 4.3

lim; o0 i = lim; .00 v;.
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Proof

Fix 0 < n < 1. We saw in Proposition 4.1 that D; is locally area-minimizing mod 2 in
H?3, and so we have from (12) that for all i sufficiently large and every geodesic ball
B C H3 of small radius,

area(D; N B) < (1 4 n)area(2; N B),
and thus from the fact that area(S;) area(Z;)~! — 1 as i — oo we have
lim p; <(1+n) lim v;.
1—>00 1—>00

Denote the set K ; C X; simply by K;, and let K; C Q; denote its preimage. We
have from (11) that for all i sufficiently large, v; (M \ K;) < 2n. From the definition
of r and (12) we have that for all i sufficiently large and all x € K, By (x) N, is
very close to a geodesic disk of radius r in D;. Thus for every geodesic ball B C M
of radius smaller than r /2 we obtain

lim p; (B) > lim p; (BN K;) = lim v;(BNK;) > lim v;(B) — 2.
i—>00 1—>00 1—>00 1—>00
Making n — 0, we deduce the result. O

The claim below and Lemma 4.3 prove Theorem 4.2(b).

CLAIM 4.4
For every geodesic ball B C M, we have liminf;_, o v; (B) > 0.

It suffices to consider the case where each X; is one of the surfaces constructed in
[13] (the finite covering case follows immediately). If r denotes the radius of B, then
choose BC M a geodesic ball with the same center as B but radius r/2. Consider
the open set U of all frames in ¥ (M) with basepoint in B. From (8) we have that for
all R large and § small,

area(P(x,y) N B) > wor?/4 forallx €U,y € F(M). (13)
Set
A={PeP(R,S):P7H(P)N(UxF(M))+#0}.

Each time P € A choose its geometric representative to be P(x,y), where x € U.
Therefore, for all i sufficiently large, we have using (13) that

2
wor
area(X; N B) > E nparea(P N B) > (; E np.
PeA PeA
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From (7) we have that for all R sufficiently large and § sufficiently small, area(P) >
37,ands0 Y pep(r.s) o = area(E;)/3m, which when combined with (10), the way
h(P) was defined, and (9) implies that

2
area(X; N B) > a)(;r Z h(P) Z no
PeA QeP(R,5)

wor?

>
- 24r

area(Z;) > h(P)
PeA

wO:: area(Z;)u(U x ¥ (M))

wor?

071 area(E,-)/lz(U X ?(M)).

>

Thus for all i sufficiently large we have

vi (B) > wO—rZAZ(U x F(M)) >0
! ~ 487 ’

which proves the claim. O

5. Asymptotic inequality
Consider {S; }ien to be a sequence of minimal essential immersions given by Theo-
rem 4.2, each inducing a surface group G; < I'. For each i € N consider as well the
minimal essential immersion ¥; C M that minimizes area with respect to the metric
h in the homotopy class of S; (using [31], for instance).

The goal of this section (and the next) is to prove the following result.

THEOREM 5.1
Assume the metric h has sectional curvature < —1. Then

E.
lim su 7areah( i) <1
i—00 area(Si)

If equality holds, then the metric h is hyperbolic.

Proof
Let g; denote the genus of S;. From the Gauss equation we have that

1
arca () = dm(gi — 1) + f (Kia + 1)y — 3 f APdA,,  (14)
5, 5,

where K15 (x) is the ambient sectional curvature of 7y X;. Using the fact that Kj, <
—1 and (6) we have that
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. areay (X;)
limsuyp ———— <1,
i—00 area(Si)

with equality implying that

1
lim 7/ |A]? = (K12 + 1)dAj, = 0.
i—00 areah(Ei) =
Consider the nonnegative smooth function f; = |A4|?> — (K12 + 1) on X;. We then
have

1

1% arean (=) fz | ildAn =0

In Section 6 we show (see Corollary 6.2) the existence of a group H; < I" conju-
gate to G; so that if D;, Q2; denote, respectively, the lifts of S; and X; to H3 that are
preserved by H; we have, after passing to a subsequence, that
(1) A(H;) converges in Hausdorff distance, as i — oo, to y € € with 'y dense

in €, and

(ii) for all R > 0,

lim | fildAp = 0. (15)
100 JQ;NBR(P)
From (i) we have that all D;’s must intersect a compact set in H3, and so Proposi-
tion 4.1 implies that { D; };en converges to a totally geodesic disk D for the hyperbolic
metric with doo D = y.

Because the ambient curvature is negative, 3; is negatively curved and so, in
virtue of being essential, its injectivity radius has a uniform lower bound for all i € N.
Hence, standard stability estimates imply that the second fundamental form of ; is
uniformly bounded for all i € N along with all its derivatives. As a result, we have
from (15) that

lim sup{|A|(x) + |Ki2(x) + 1| :x € Q; N Br(p)} =0, allR>0.  (16)
1—>00

We recall for the reader that a smooth surface has vanishing second fundamental
form if and only if intrinsic geodesics coincide with extrinsic geodesics (i.e., is totally
geodesic).

PROPOSITION 5.2
There is a totally geodesic disk Q in (B3, h) with 0002 = y and such that the sec-
tional curvature of T2 is —1 for all x € Q2.
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Proof

From Theorem 3.1 we obtain the existence of a compact set K that intersects €2; for
alli € N. Choose x; € ; N K and denote by B;a (x;) C Q; the intrinsic ball of radius
R centered at x;. Note that €2; is negatively curved, and thus B}'Q (x;) is diffeomorphic
to a disk for all i sufficiently large. Standard compactness of minimal surfaces with
uniform bounds on the second fundamental form gives the existence of a complete
minimal surface Q C B3 so that, after passing to a subsequence, intrinsic disks in ;
centered at x; converge strongly to intrinsic disks in €2. Furthermore, from (16), we
have that |A] = 0 on 2 (thus being totally geodesic), and the sectional curvature of
T2 is —1 for all x € Q. As a result, 2 is diffeomorphic to a disk. We have from
Proposition 3.4 that Q; C C,(A(H;)) for all i sufficiently large and s0 05022 C y. On
the other hand, 0,2 is homeomorphic to a circle and so it must be equal to y. O

Consider the following circle bundles:
SP:={(p.v):peD,veT,D, h(v,v)=1}
and
SlQ = {(p,v) peQueT,Q h(v,v) = 1}.

Denote by S1 M (h) and S; M (h) the unit tangent bundle of M with respect to h and
h, respectively, and let SP (M) C S1M (h), S S8 (M) C Sy M (h) denote, respectively,
the projection to Sy M(h) and S1M(h) of SID and SIQ. From (i) we have that SID (M)
is dense in SlM(}_z).

We now argue that the sectional curvature of every 2-plane in (M, k) is —1.

CLAIM 5.3

For every (p,v) € S1(M)(h) there is a totally geodesic hyperbolic disk Q(p ) in
(B3, h) whose projection in M contains the geodesic passing through p with direc-
tion v.

From the geodesic rigidity proven in Gromov [12] there is a homeomorphism
T from S;M(h) to Sy M(h) that maps geodesics onto geodesics, meaning that if y
is a geodesic in (M, h), then there is a geodesic o in (M, h) so that for all € R
there is s € R so that T(y(¢),y’(t)) = (o(s),0’(s)). Moreover, from its proof (see,
e.g., [18, Theorem 2.12]), T' can be chosen so that if y(400), y(—o0) € S2, are the
asymptotes of y, then o has the same asymptotes in S2,. Thus, from the fact that
000S2 = doo D and that both D and Q2 are totally geodesic, we have that T is also
a homeomorphism from § 1D (M) onto S IQ (M). Therefore, because S ID (M) is dense
in S; M (h) we obtain that SlQ (M) is also dense in S; M (h). As a result, for every
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(p,v) € S M (h) we can find a sequence of points {w; }jen in S IQ whose projection to
S1 M (h) converges to (p, v), and so applying the same reasoning as in Proposition 4.1
to a suitable sequence {¢; (2)};en, Where ¢; € I, we obtain a totally geodesic hyper-
bolic disk Q(,.) C B* whose projection in M contains the geodesic passing through
p with direction v.

Recalling the discussion in Section 2.4, choose (p,(e1,ez2,e3)) € F(M)(h)
whose orbit under the frame flow

Fi((p. (e1.e2.€3))) = (v(0). (¥' (1), e2(1). e3(1))). =0,

is dense in % (M)(h). We abuse notation and denote the lift of y to B3 by y. By
applying a rotation if necessary, we can prescribe the vector e, to be any unit vector
orthogonal to e; that we still obtain a dense orbit in & (M )(h). Hence we assume
that {e1, ez} span T}, 0)2(p,e,), in which case the fact that Q(, ) is totally geodesic
implies that span{y’(¢),e2(t)} = Ty (:)Q(p,e;) for all £ > 0. Therefore, the set of 2-
planes with sectional curvature —1 is dense in Grp (M), and this implies the desired
result. O

6. Nearly totally geodesic minimal surfaces
We continue assuming the setup of the last section. Namely, we have a sequence of
minimal essential immersions {S; }; ey given by Theorem 4.2, each inducing a surface
group G; < I and lifting to a disk D; C H? that is preserved by G;.

For each i € N consider as well the minimal essential immersion ¥; C M that
minimizes area with respect to the metric / in the homotopy class of S; with the
smooth function f; defined in the previous section so that

1
lim —— |dAy, = 0. 17
z—l>nolo areay (X;) Li | fild An an

Let Q; denote the disk lifting X; to B> that is preserved by G; < T', i € N. To make
notation easier, it is understood that the function f; on ¢(2;), ¢ € I', means f; o
TQ; © ¢!, where mg; is the projection from €2; to X;.

Fix p € H?3, consider for every &, R > 0

E(s,R)={¢eF:/

|filday < e,
¢(Q;)NBR(p)

and define £ C € as
L= {y € € :3¢; € Fi(s;, R;) with g — 0, R; — o0 so that,
after passing to a subsequence, A(¢; G;¢p; 1) converges to y}.

The goal of this section is to show the following.
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THEOREM 6.1
£ =€, and so there is y € £ so that Ty is dense in €.

This result has the following corollary.

COROLLARY 6.2

There is a conjugate group H; = ¢; Gip; 1 ¢i €T, so that, after passing to a subse-

quence,

(a) A(H;) converges in Hausdorff distance, as i — oo, to y € € with I'y dense
in'€, and

(b) forall R >0,

lim | fildAp = 0.
100 J ¢, (2;)NBRr(p)

Proof of Theorem 6.1
We start by showing the following lemma.

LEMMA 6.3
The set £ is closed and T -invariant.

Proof
The fact that it is closed follows by extracting a diagonal subsequence.

With ¥ € T, set @ = d(p, ¥ (p)). Using the fact that 1 (Br—a(p)) C Br(p)
the reader can check that, for all R > 0 and all € > 0,

¢ € Fi(e,R) = ¥ € Fi(s. R — ). (18)

Combining this with the fact that ¥ (A(H)) = A(YHy ') for every discrete sub-
group H C T, it follows at once that if y € €, then ¥ (y) € €. O

Hence, it suffices to find y € £ so that I'y is dense in €. Before we provide
the details we describe first the general idea. The key step is to show that for every
compact set K C H? there is y € &£ so that C(y) intersects K. Indeed, if no dense
orbit exists, then every point in &£ is isolated (Theorem 2.6), and so we can find a
compact set K so that C(y) never intersects K for all y € &£, which is a contradiction.

Consider a Dirichlet fundament domain p € A for M so that 0A is transverse to
both ¢(D;) and ¢(2;) for all ¢ € I'. We now consider I'Si, I'Si (K) to be the set of
all lifts of S; that intersect A, K, respectively, I'Zi to be the set of all lifts of 3; that
intersect A, and T'Zi (g, R) to be the lifts in T'>i for which the function | f;| is small
in L' on a ball of radius R. More precisely,
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ISt ={pel:¢(D;))NA#0),

ISi(K)={¢ €T :¢(Di) N K # 0},

¥ ={peT:¢(Q)NA#0},
I'®i(e,R)=F;(e, R)NT¥.

We want to find & — 0, R; — oo, so that I'Si(K) N F(e;, R;) is always
nonempty.

The strategy is the following: The sets described above are all invariant by right
multiplication with G; because G; preserves both D; and 2;. We denote the projec-
tion of these sets in " \ G; by Lsi, in, LS" (K), and in (e, R). We will see that,
for all i very large, #0051 is proportional to area(S;), use the fact that dg (2;, D;) is
bounded to conclude that T'Si and T'Z are at a finite Hausdorff distance from each
other, deduce from Theorem 4.2(b) that % is bounded below away from zero,

z;
and use (17) to deduce that #ET(;;R)

then conclude that I'Si (K) N F(e, R) # @ for all i very large. We now provide the
details.

~ 1. Putting all these facts together one can

Referring to the notation set in Section 2.1, we fix a representative Q for each
coset ¢G; € I' \ G;. Recall that v is the measure given by Theorem 4.2(b)

PROPOSITION 6.4

There are constants n =n(M,h) e N, « =a(M) >0, and B = B(v, K) > 0 so that
for all i sufficiently large,

(@  du(T% T%)<n;

(b) o larea(S;) <#I'Si < aarea(S;);

#I'Si (K)
T -
s 2P

(c) liminf; o

Proof

From Theorem 3.1 we have the existence of ¢; = ¢;(h) so that dg (¢ (D;), $p(21)) <
cy forall ¢ €T for all i sufficiently large, and from Lemma 2.2 we have the existence
of n=n(M,c1) € Nso that B¢, (x) C Up|<, #(A) forall x € A.

Choose ¥ € I'Si, and pick x € ¥(D;) N A. There is y € ¥(R2;) N B, (x), and
thus some ¢ € I' with |¢| < n for which ¢~ (¥ (2;)) N A # @. Hence I'Si is in a
n-neighborhood of T'Zi (for the distance ), and reversing the roles of X; and S;
proves (a).

Recall from Section 2.1 that for all ¥ € I', A; = Uyer\g, Q_I(W(A)) is a
fundamental domain for H3 \ G;. Thus, -
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area(S;) = Z area(g(D,-) N w(A)). (19)

QEF\GI‘

Choose A C I' a finite set so that a neighborhood of radius 1 of A is contained in
the interior of Ull,e AV (D). If x € ¢(D;) N A, then we have from the monotonicity
formula that, for some ¢, = ¢(M),

¢z <area(¢(D;) N By(x)) < Y area(¢(Di) NP (A)),
YeA
and so, using (19),

TS < 3" N area(g(Di) Ny (A))

WEAQEESi
<Y > area(¢(Di) Ny (A))
WEAQEF\G,j
= #A area(S;).
Applying Proposition 4.1 to any sequence qb (Dj) with gbi € I'Si, we obtain

the existence of a constant c3 = c3(M) so that for all i sufficiently large, we
have

area(p(D;) NA) <c3 forallg e s, (20)
Thus,
area(S;) = Z area(¢p(D;) N A) = Z area(¢p(D;) N A) < cs#lS
¢€l'\G; QeESi

and hence for all i sufficiently large,
1 s,  #A
—areaS; <#I['? < —area ;.
c3 C2

This proves (b).
Let f € C%(M) be a function with 0 < # < 1 and support contained in K. Using
(20) we have that for all i sufficiently large,

[oran= 3 [ gaa= 3 [ gaasesrsi,

e, JHPNNA perst (i) 2PINA

which means that
Si
#°1 (K) _ 1

c
? #0051 ~ area(S;) Js,

fdA,

and this proves (c). O
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In light of Proposition 6.4(a) we can construct, for all i sufficiently large, a map
P; :TSi — T'Zi g0 that
(i)  d(Pi($).¢) <nforall ¢ € T'Si;

(i)  Pi(¢g) = Pi(p)g forallp e %, g € G;.
Set I'Si(g, R) = Pi_l(I'E" (e, R)). Because the map P; is G;-invariant, we have that
I'Si (¢, R) is also G;-invariant, and P; descends to map P; IS ¥

PROPOSITION 6.5
Foralle >0, R> 0,

#I5 (e, R)
liminf ————— =
i—o00 #FS

Proof
Due to the fact that both S; and ¥; minimize area in their homotopy class, there is a
constant ¢; = ¢ (h) so that

cl_1 areay (X;) <area(S;) <cjarea,(X;)

for all i € N, and so we deduce from Proposition 6.4(b) the existence of ¢, =
c2(h, M) so that, for all i sufficiently large,

02_1 areay (X;) < #I05 < ¢, areap (X;). 20D

Set L¥i (e, R) :=T% —TZi(e, R),i €N, and denote its projection to "\ G; by
L% (&, R). From Lemma 2.2 there is ng = ng(R, M) so that

Br(p)C | ().

[¥I<nr

and set c3 = #{iy € I" : || <ng}. Then, recalling that

A= o7 (v ()

¢€l'\G;

is a fundamental domain for H3 \ G; for all ¢ € I', we have

c3/ flan= Y > | fild Ay

¥ |<ng geT\G; Y 22NV (A)

- ¥

¢€\G; |¥|<npr

/ | fild A
@ (Q2;)NY(A)
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>

| fild An

 pemnG: /g(szi)mBR(p)

-y | |fldA,

$€Li (&.R) 9(Q;)NBR(p)
> e#L” (¢, R).
Hence,

#LE[ (8, R) - C3 /
areap(X;) ~— eareap(X;) Jy;

and we deduce from (17) and (21) that

| fildAp,

Set, for all i sufficiently large, LSi (¢, R) = Pl._1 (L¥i (g, R)), which has its projection
to '\ G; satisfying L5 (¢, R) = P71 (L (¢, R)).

Define ¢4 = #{¢p € I" : || < n}, where n is the constant in Proposition 6.4(a).
From property (i) of the map P; we have that #Pi_l(W) < ¢4 for all ¥ e T'%i,
Hence from property (ii) we deduce that #L5i (g, R) < c4#L%i (e, R), and we
obtain

The desired result follows because the reader can check that ESZ' (&,R) = ES" —
L5 (¢, R). O

This proposition allows us to choose ¢; — 0 and R; — oo as i — 0 so
that

. #TSi(e, Ry)
liminf —s =
: 4TS

1. (22)
LEMMA 6.6

There is a constant ¢ = ¢(M, h) so that for every compact set K contained in A we
can find {¢; }ien C T so that for all i sufficiently large, ¢; € T'Si(K) N F;(ei, Ri —
c).
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Proof
From Proposition 6.4(c) and (22) we can choose {¢;}iey C I' so that for all i
sufficiently large,

¢i € TS5 (¢;, R;) N T5 (K).

Thus, from the definition of P; thereis g; € I' with |g;| < n so that g;¢; € F;(e;, R;).
Set ¢ = max{d(p,d(p)) : |¢| <n}. Then from (18) we have that ¢; € F;(e;, R; — )
for all i sufficiently large. O

Suppose that £ has no element with a dense I'-orbit in €. Then Theorem 2.6
implies that every point in &£ is isolated, and so the set

{reL:Cly)nA+#0}

is finite. Thus, because every y € £ has C(y) projecting to a closed surface in M,
we can choose a compact set K C A so that C(y) N K = @ for all y € £. On the
other hand, applying Theorem 4.1 to ¢;(D;), where the sequence {¢;}ieny C I is
the one given by Lemma 6.6, we obtain y € £ for which C(y) N K # @, which is a
contradiction. (]

7. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Given a closed Riemannian man-
ifold (N, g), denote by Br (p) and d , respectively, the geodesic balls and distance
function induced by g in the universal cover N of N. The following limit exists (as
first observed in [22]) and defines the volume entropy of (N, g):

_ Invol(Bg(x))
Eva(g) = Jlim ——p=—

Let A C N be a Dirichlet domain of N containing x € N with diameter d. We have

Bgr_a(x) C U y(A) C Bria(x),
{yem (N):d (x,y(x))<R}

and this implies that

Invol(Bgr(x)) T In#{y € 1 (N) :d(x,y(x)) < R}
R " R—>oo R .

Bus(e) = i,

Proof that E(h) < 2Eq(h)?
Suppose we have an essential immersion ¥ C M which lifts to a disk €2 in the uni-
versal cover M of M. In this case 71 () acts naturally by isometries in M, and if dg
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denotes the intrinsic distance in €2, then we have d (x,y) < Cigz (x,y) forall x,y € Q.
Thus,

#ly e m(2) 1da(x.y(n) < R} <#{y e mi (D) :d(x,y(x)) < R}
5#{)/ em(M): dA(xs J’(X)) = R}‘

Hence Ey(hs) < Ey(h). From [5] we have E,(hx)?area,(X) > 4m(g — 1),
where g is the genus of X, and so by minimizing area in the homotopy class IT of ¥
we deduce that

areay,(I) > Eyoi(h) 247 (g — 1).
Thus, denoting by | x | the integer part of x,
area,(T1) <4w(L —1) = Il € S(M. | Eva(h)*L]).
and so, for all £ > 0 and all L sufficiently large, we have from Theorem 4.2 that

In#{area), (1) < 4w (L —1): 1 € Se(M)} <Ins(M. | Eyo(h)*L].¢)
<2E.(h)*L1n(cs Ev(h)*L),

which implies that E(h) < 2E,(h)?.

Proof that E(h) =2

Given I1 € S;.(M), consider the essential minimal surface S € IT so that area(S) =
area(IT). From Theorem 4.1 we have |A|i°°(S) = 0,(1), meaning that if ¢ is very
small, then the quantity on the left-hand side will also be small. Let g be the genus
of S. The integrated form of Gauss’s equation (14) gives

area(S) =4 (g — 1) + o.(1) area(S),
and so for all & uniformly small we have
area(S) = 4n(g — 1)(1 +05(1))- (23)

One immediate consequence is that, given § > 0, for all ¢ small and all L large
(depending on § but independently of IT), we have both

area(I) <4n(L—1) and MeS(M) = NeS(M,|(1+3)L]¢),
NeS(M,|(1-8)L|,.e) = area(Tl) <4m(L —1),

and so, recalling the notation set in Section 4,
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Ins(M,[(1-8)L].e) < In#{area(IT) <4m(L —1): T € Se(M)}
<Ins(M.[(1+8)L].¢).
Combining with Theorem 4.2 we deduce that for all ¢ small,

In#{area(I1) <4n(L —1):I1 € S, (M)}
LinL

2(1 — 8) < liminf <2(1+39).
L—o0

The arbitrariness of § shows that E (h) = 2.

Proof that E(h) > E(h)

Suppose now that the sectional curvature of / is less than or equal to —1. From the
integrated form of Gauss’s equation (14), we have that every genus g minimal surface
has area; (X) < 4m(g —1). Thus IT € S(M, | L], ¢) implies that areay, (IT) < 4w (L —
1). Hence,

#{areap (1) <4n(L —1): T € Se(M)} > s(M, | L].¢),

and so Theorem 4.2 implies that E(h) > 2 = E(h).

Proof that E(h) = E(h) = h=h
Suppose now that E(h) = E(h) = 2. Consider the set G(M, g,¢) C S(M, g, ¢) given
by Theorem 4.2.

CLAIM 7.1
For all § > 0, there is j € N so that for all i > j we can find g € N and Tl €
G(M,g,1/i) so that

area, (IT) > 47 ((1+8)'g —1).

Suppose not. In that case there is an increasing sequence of integers {i;}jen SO
that forall g e Nand [T € G(M, g, ij_l), we have

area, (IT) <4x((1+8)"'g—1),
and hence, for all L >0,
MeG(M,|(1+8L)|.i;") = areay(IT) < 4m(L —1).
Thus, for all j € N,

In#{area, (IT) <4n(L —1):I1 € S,-1 (M)}
liminf 4
L—>00 LinL
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In#G(M, [(1+8)L],i7")
> liminf
L—oo LinL
>2(1+59),

which contradicts £ (h) = 2.
Therefore, we can find an increasing sequence of integers { j; };en and a sequence
I; € G(M, gi. ji '), i €N, so that

areay,(IT;) > 4w ((1—1/i)gi —1) foralli eN. (24)

Denote by S;, ; the minimal surfaces that minimize area in the homotopy class I1;
with respect to & and h, respectively. We have area(S;) < 4m(g; — 1), and so we
deduce from (24) that

. . An((=1/i)gi—1)
liminf > liminf =
i»oo area(S;) i—>00 dr(gi—1)

areay (X;) -

1. (25)

Thus Theorem 5.1 implies that /4 is hyperbolic, and so & = h from the Mostow rigidity
theorem.
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