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ABSTRACT

Owing to growing feature sets and sluggish improvements to smart-
phone CPUs (relative to mobile networks), mobile app response times
have increasingly become bottlenecked on client-side computations.
In designing a solution to this emerging issue, our primary insight is
that app computations exhibit substantial stability over time in that
they are entirely performed in rarely-updated codebases within app
binaries and the OS. Building on this, we present Floo, a system that
aims to automatically reuse (or memoize) computation results during
app operation in an effort to reduce the amount of compute needed to
handle user interactions. To ensure practicality — the struggle with any
memoization effort — in the face of limited mobile device resources
and the short-lived nature of each app computation, Floo embeds sev-
eral new techniques that collectively enable it to mask cache lookup
overheads and ensure high cache hit rates, all the while guaranteeing
correctness for any reused computations. Across a wide range of apps,
live networks, phones, and interaction traces, Floo reduces median
and 95th percentile interaction response times by 32.7% and 72.3%.
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1 INTRODUCTION

Mobile apps continue to surge in popularity, accounting for upwards
of 70% of user interactions with digital media services and 80% of
user attention on smartphones [48]. A governing factor to the success
of apps is their ability to respond to user interactions quickly. Indeed,
recent reports highlight that users will abandon apps whose response
times regularly exceed 2-3 seconds, and grow frustrated with even
100 ms of added delays [6, 8, 28, 49]. Yet, despite their global
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importance [66, 68, 93], apps continue to trail user expectations in
the wild, with nearly half of interaction response times exceeding 3
seconds even on state-of-the-art phones and mobile networks (§2.2).

A recent wave of studies and optimizations have highlighted and
addressed network bottlenecks in the process that apps follow to
handle user interactions [13, 23, 41, 46, 55, 62, 111]. Due (in part)
to these efforts, we now find that client-side computations are a major
contributor to suboptimal app responsiveness, accounting for 63.4%
and 43.8% of median response times on WiFi and LTE networks,
respectively. Worse, this compute bottleneck is slated to persist and
worsen (§2.2) as mobile network improvements [22] continue to
outpace those of energy-constrained smartphone CPUs [34, 82]
(especially with the advent of 5G [69, 106]), and apps continue to
become more feature-rich (and thus, computationally intensive).

To tackle this emerging bottleneck, our key insight is that app
computations are entirely performed in the source code of (rarely
updated [17, 101]) app binaries and operating systems — not files and
programs downloaded during each interaction, as in the traditional
web [63, 71, 103, 104] — and thus exhibit substantial stability across
user interactions and over time. Building on this, we pursue a concep-
tually simple, yet historically difficult to realize approach: reduce the
computations required to handle user interactions by reusing results
from past computations, i.e., computation memoization. As with
prior memoization efforts across other domains [36, 78, 95, 96], the
overarching challenges are in (1) ensuring correctness when reusing
any computations, and (2) minimizing the overheads associated with
reusing those results. However, unlike prior efforts, we additionally
seek automation (i.e., no developer effort) and compatibility with the
existing app ecosystem. Further, we require especially high computa-
tion cache hit rates because app interactions typically involve millions
of short function invocations, rather than a few lengthy ones (§3.2).

Our solution, Floo, begins by automatically analyzing and
instrumenting app and platform bytecode prior to installation to
extract insights about function behavior, i.e., state accesses. During
operation, apps respond to interactions as normal. However, prior to
each function invocation, Floo queries its cache of past computation
results in search of an entry that identically matches the context (i.e.,
input values) of the upcoming invocation. Hits result in foregoing
function execution and instead applying the external effects listed
in the cache entry, while misses result in normal function executions
and the additions of new cache entries. Atop this basic workflow,
three main techniques guide the design of Floo, bringing collective
adherence to the goals above.

First, Floo embeds a novel caching strategy that programmatically
guarantees correctness while preserving most potential cache hits.
To ensure that any introduced memoization leaves app behavior
unaltered, cache queries list all possible state that a function might
access during its upcoming invocation based on Floo’s offline static
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analysis. However, such conservatism can unnecessarily forego
cache hits by mandating matches across all of the function’s potential
control flows, rather than only the ones that will actually be traversed.
To safely regain those precious hits, cache entries with Floo only
list information about the state accessed during each invocation, but
do so in a manner that implicitly captures the precise set of control
flows that were (and were not) traversed. Floo then uses a new cache
hit criterion that remedies the discrepancies in state listed between
queries and entries to aggressively memoize invocations in a control-
and data-flow aware manner (ensuring correctness).

Second, to reduce the overheads of querying the cache for the
many sub-millisecond invocations in apps, Floo judiciously performs
cache queries ahead of time for upcoming invocations that are
predicted using the app’s (static) call graph. Key to Floo’s lookahead
queries is the careful handling of potential state dependencies
between upcoming invocations, and the resultant uncertainty in
specific values to embed in each query. Further, to speed up each
query and keep prediction horizons short, cache entries are oriented
using a custom data structure that enables aggressive pruning of the
number of records to consider and the ability to fail fast on each one.

Third, to cope with resource restrictions on mobile devices in light
of the millions of invocations (and thus, queries and entries) in app
interactions, Floo introduces domain-specific cache admission and
eviction policies; both are based on several empirical observations
that highlight the consistency in each function’s memoization behav-
ior over time. For admission, Floo quickly identifies the sizeable set of
functions that consistently yield low hit rates or net slowdowns with
memoization, and deactivates them from the caching process, thereby
freeing compute threads for more useful queries. For eviction, Floo
eschews generic policies such as LRU in favor of a new utility metric
per entry that estimates hit counts and predicted speedups from mem-
oization using only (lightweight) passive observations on the cache.

Floo does not require app source code (or developer support), and
instead works by modifying app binaries and Android bytecode; it
only makes client-side changes, enabling direct and secure deploy-
ment in the wild. As a result, we evaluated Floo using a wide range of
50 popular Android apps, real phones, live mobile networks and origin
servers, and realistic user interaction traces. Overall, we find that Floo
reduces median and 95th percentile computation overheads by 43.8%
and 77.6% (0.55 and 0.98 seconds), which translates to speedups in
app responsiveness of 32.7% and 72.3%. Further, Floo outperforms
(1) computation offloading systems [42] by 6-22% while sidestepping
the security and management issues of proxy servers, and (2) recent
(complementary) network optimizations [86] by 1.1-1.7X. The
source code for Floo is available at https://github.com/muralisr/floo.

2 BACKGROUND AND MOTIVATION

We first detail the procedure that apps follow to respond to user
interactions (§2.1), and then present measurements highlighting
the significant negative effects that on-device computations have on
app responsiveness (§2.2). §6.1 explains the experimental setup and
methodology used to collect all results in this section.

2.1 App Interaction Handling

Post installation, mobile apps operate in an event-driven manner,
whereby users interact with the app via device sensors (e.g., the
screen, microphone), and those interactions trigger computations and
network fetches that recursively resolve until the interaction is fully
handled. The overarching performance goal for apps is to minimize
interaction response times (IRTs) which characterize the end-to-end

169

1.00

0.751
[T
5 0.501 WiFi
0.25 — LTE
0.00 : : , , :
0 1 2 3 4 5 6

IRT (seconds)
Figure 1: App interaction response times on WiFi and LTE.

delay between an interaction being initiated and the final screen for
that interaction being rendered to the user [20, 42, 86].

From a network perspective, apps operate much like the traditional
web[16,70,75,91]. Requests are typically issued using the HT TP pro-
tocol, and response times are governed by both network transmission
and server-side delays, e.g., from dynamically generating or locating
responses. To mitigate network overheads, apps routinely maintain
local HTTP caches housing both up-to-date resources and recently
expired files that enable data-saving conditional requests [39, 86].

App computations, on the other hand, deviate from the traditional
web, and employ a multi-process and multi-threaded execution model.
‘When an app is spawned, it generates one Linux foreground process
that houses the main (or Ul) thread. The main thread is responsible
for ingesting user interactions, resolving and managing the corre-
sponding computations, and displaying the effects back to the user.
To remain responsive and able to absorb new user actions at any time,
the main thread may (1) offload tasks to other threads in the same pro-
cess [29], or (2) spawn new (background) processes for asynchronous
tasks that do not influence immediate updates to show the user.

The computations performed in response to a user interaction
are defined by a call graph that is specified entirely by code in the
app binary (or APK) and the underlying computation stack, i.e., the
Android codebase. More specifically, the call graph embeds event
handler functions that are defined to fire in response to specific user
interactions, e.g., onTouch () . The subgraphs beneath those event
handlers list the complete series of nested function invocations and
callbacks that might be traversed to ultimately resolve the interaction.
Interactions involve resolving the entire subgraph rooted at the
corresponding event handler unless explicitly preempted by code in
an intermediate invocation or by a subsequent user action. Note that
a function may appear at multiple places in the call graph depending
on its utility to different interaction handling paths.

For Android apps (our focus), each function in the call graph
can pertain to one of two classes: app-defined code or code that
is part of the Android Open Source Project (AOSP). App-defined
code includes the source code written by app developers, including
that embedded in linked third-party libraries, e.g., for locking or
network management. Unsurprisingly, app-defined code can issue
API calls that interact with the underlying Java Virtual Machine
or device hardware; such APIs invoke code that is part of AOSP.
For example, creating a new String variable tmp and invoking
tmp.hashcode() entails calling constructors and functions defined
as part of the St ring class in OpenJDK. Similarly, displaying a list
of items involves constructing a Li st View object using elements
of android.view.ViewGroup in the Android source.

2.2 The Problem: Client-Side Computation Delays

App speeds trail user expectations. As shown in Figure 1, app
response times in the wild often exceed the 2-3 seconds that users are
willing to tolerate [8, 28, 49]. For example, 45.9% and 81.6% have
IRTs >2 seconds on WiFi and LTE; 95th percentile IRTs reach 4.0
and 6.1 seconds on the two networks.
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Figure 4: Distributions of median and 95th percentile per-app compute

delays for app versions across three different years. Bars list medians,
with error bars for 25-75th percentiles.

Compute delays are a primary bottleneck. To understand (and
quantify) the role that on-device computations play in the IRTs
reported above, we evaluated the same set of interactions in an
environment where network delays were set to ~0 ms. To create such
an environment, we performed each interaction back-to-back and
recorded the IRTs from both runs. Note that the second run leveraged
a warm network cache to minimize fetch delays; any cache misses
that arose were preferentially addressed using safe URL rewriting
to point to a local file [76], and if still missing, were serviced over
fast wired networks.

Figure 2 compares the IRTS per interaction with compute and
compute+network delays. As shown, compute delays account for
63.4% (100%) and 43.8% (100%) of IRT for the median (95th
percentile) interaction on WiFi and LTE. Moreover, compute delays
for 13% of interactions exceed user tolerance levels on their own.
Analysis of the Android in-built profiler revealed that app-defined
and AOSP functions each contribute substantially to compute delays
(Figure 3), and collectively account for 100% of the compute delays
for each interaction.

The problem will persist (and worsen). To understand the long-term
outlook of the computation bottleneck in apps, we performed two
experiments that longitudinally analyzed the evolution of apps and
their execution environments, respectively. First, for each app in our
corpus, we collected the binaries that were available on the app store
2 and 4 years ago. For the 14 apps whose binaries were still functional
on today’s phones, and could communicate with live origin servers,
we generated and applied interaction traces in the same way as
described in §6.1. As Figure 4 shows, per-interaction compute delays
have steadily increased across app versions, e.g., median compute
time for the median per-app interaction has more than doubled over
the past 4 years, growing from 0.6 to 1.3 seconds.
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Figure 5: % of IRTs contributed by compute delays when using
representative phones and LTE networks from 2017 and 2021.

Second, we characterized the fraction of IRTs accounted for by
compute delays when existing apps are running in two different
execution environments: those representative of today’s app usage
and that of 4 years ago. Execution environments are influenced by
both network speeds and device compute resources. For network
speeds, we leveraged Mahimahi LTE network traces captured in
2017 and 2021 [76]. For compute speeds, we considered two devices
from those same time periods: Google Pixels v2 and v5.As shown
in Figure 5, the impact of compute delays is steadily growing, with
median contributions to IRT increasing from 30.9% to 43.8% over
the past 4 years. The result is in line with two recent trends: mobile
networks have rapidly improved [22], while speedups to phone CPUs
continue to be hindered by energy restrictions [34, 82].

3 APPROACH: AUTOMATIC MEMOIZATION

A natural solution to tackling the compute overheads presented in
§2.2 is to reduce the amount of computation needed to support each
interaction. Along these lines, we advocate for the local reuse of
client-side computations during and across user interaction sessions
with apps, i.e., computation memoization [36, 64]. A key driver for
our proposal is that app computations remain largely stable over time
because they entirely involve traversing call graphs and executing
source code defined by app binaries and the platform (§2.2); both
are rarely (on the order of months) updated in practice [17, 101]. This
is in contrast to the web where computations predominantly pertain
to executing programs downloaded during each interaction, e.g.,
JavaScript files [63, 71, 103]. Further, user interaction patterns with
apps exhibit high degrees of repetition over time [50].

Of course, not all workloads are amenable to memoization. In
particular, computations must inherently repeat over time for results
to be reused. Further, the effects of reusing a computation should be
indistinguishable from running the computation inline in that the user-
perceived app operation and generated app state should be identical
— we refer to this property as correctness, and elaborate on it in §4.5.
We next demonstrate the promise of memoization in accelerating app
interactions while preserving correctness (§3.1), and the challenges
associated with realizing those potential benefits in practice (§3.2).

3.1 Potential Benefits

To estimate potential memoization speedups on compute delays, we
analyzed the computations that the apps in our corpus performed to
support realistic user interaction traces in an environment with no
network delays (§6.1). In line with the structure of app call graphs,
we focus our analysis on computation reuse for function invocations,
i.e., making memoization decisions independently for each node
traversed in the graph during interaction handling. For each function
invocation, we follow the methodology detailed in §4.1 to record
a unique ID for the corresponding function, the set of values that
the function’s code read during execution (from the global heap and
arguments), and the runtime of the invocation.

Using these logs, we estimated an upper bound on memoization
benefits by joining the resultant list of invocations with the subgraph



[e)]
o
—

o
o
'_
—
—

N
o
L

memoizable %
of compute delays

Back-tb-back 4 héurs 12 hvours 24 hours
Figure 6: Potential computation speedups from memoization across

interactions carried out with different time gaps between them. Bars list
medians, with error bars for 25-75th percentiles.

[1<0.1ms [ 0.1ms-0.4ms @ >0.4ms
v 108 {
C
Lo
107 5
3
> 106 4
£
G 10° 4
H*
BBC eBay Weather  CricBuzz Imgur

Figure 7: Function invocation runtimes for 5 exemplar apps.

of the call graph that was traversed for each interaction. More
specifically, we applied maximal reuse of computations while
ensuring correctness such that if a given invocation inov had the same
function ID and the exact same read state as a prior invocation, then
inv’s runtime was set to 0 ms. Computation speedups were then
determined by comparing the runtime on the critical paths of the
original and post-memoization call graphs for each interaction.

As shown in Figure 6, existing apps are largely amenable to
reaping memoization benefits over time. For instance, potential
computation reductions were 55.1% and 67.3% for the median and
75th percentile interactions in the second of back-to-back interaction
sessions. These benefits remain largely unchanged (within 6.7%) for
interactions carried out 24 hours later, highlighting the stability in
app computations alluded to earlier.

3.2 Goals and Challenges

In aiming to realize the potential benefits shown above, we target
practicality by focusing on ease of adoption and compatibility
in existing app ecosystems. Consequently, unlike prior efforts
that require developers to manually (1) add annotations to guide
memoization [89], or (2) rewrite their apps (or Java programs) to
leverage memoization opportunities [25], we seek a fully automated
solution that operates with any legacy app and without any developer
effort. Moreover, our solution must guarantee correctness —1i.e., being
indistinguishable from unmodified apps in terms of user-perceived
functionality and generated state — at all times. Finally, we aim to
match the potential benefits as closely as possible by pursuing all
(correctness-preserving) memoization opportunities that arise during
user app sessions. This is in contrast to prior memoization systems
that either target testing environments with pre-determined execution
patterns [35], or operate only on pure functions [90].

Achieving these goals for real apps and phones in the wild
involves numerous challenges. The heart of the issue is that the high
computation overheads that apps present manifest in the form of many
short invocations, rather than a few long invocations. For instance,
across the representative apps in Figure 7, 98-99% of invocations last
for fewer than 0.1 ms, with the longest per-app invocations consuming
only 5.1-7.4 ms. Further, user interaction sessions for these apps
each involve 15-100 million invocations, with 0.4-0.8 million for
the median per-app interactions alone. Taken together, these patterns
lead to the following complexities for automatic memoization.
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Challenge 1: high lookup overheads. Determining whether the
results of a prior invocation can be safely reused involves collecting
the input values for the current invocation and comparing them
fully (e.g., potentially using deep object comparisons) with those
from the prior invocation. Worse, owing to the massive number of
invocations that apps carry out over time, this analysis may need to be
performed on a large number of cache entries. The net is that lookup
overheads can quickly dwarf the low runtimes for certain invocations,
eliminating benefits (and in fact introducing slowdowns).

Challenge 2: limited device resources. Mobile devices present
restricted computation resources along multiple axes: CPU threads,
memory, and energy [31, 54, 102]. Unfortunately, the large number of
invocations in apps can quickly stress these resources by generating
a commensurate number of queries in search of memoization
opportunities (each of which consumes a thread and energy), and
a significant number of cache entries that consume device memory,
i.e., one entry per cache miss.

Challenge 3: correctness-speedup tension. As noted above, our
first-order goal is to ensure correctness for any memoization that is
applied. The main difficulty is that each function can exhibit diverse
behavior across its invocations by following different control and
data flows based on interaction orderings, nondeterministic APIs,
or downloaded resources. And yet, memoization decisions must be
made prior to invocations to yield benefits. The natural solution is
to bake in a degree of conservatism into the decision-making process,
e.g., by reusing a result only if all possible inputs identically match
the values for the current invocation. However, doing so inherently
brings the potential for missed cache hit opportunities — something
we cannot afford with app memoization since each invocation is
short, and thus the benefit of each hit is small. Instead, practical (and
fruitful) memoization mandates a method to guarantee correctness
while foregoing as few cache hits as possible.

4 DESIGN OF FLOO

Figure 8§ illustrates the high-level components and operation of Floo,
from its offline static analysis on app binaries and platform code
(§4.1) to its online attempt to memoize each function invocation
involved in responding to a user interaction. To bolster practicality,
Floo incorporates several optimizations that enable it to realize the
achievable high cache hit rates while ensuring correctness, adhering
to resource constraints, and masking lookup overheads (Table 2).
In the rest of this section, we first describe the general approach to
memoization, and then detail these optimizations in turn.

4.1 Offline Instrumentation for Memoization

Employing memoization for a given invocation (i.e., populating or
querying the cache) requires knowledge of the reads and writes that
the function performs on state that will be externally visible after
the invocation is complete, e.g., class fields on the Java heap, values
passed through nested invocations or return statements, and updates to
the screen or file system. To extract this information, Floo statically an-
alyzes the Java bytecode in app binaries (APKs) and the Android plat-
form prior to installation on a user’s phone. The same analysis could
be performed on source code, but targeting APKs obviates the need for
developer support and enables operation on any app in the app store.

In line with prior static data flow trackers for Android and Java [10,
40, 105], Floo iterates over each line of code to extract lists of read and
write operations. For instance, for assignment statements, reads and
writes are extracted by processing RHS and LHS components, respec-
tively. Similarly, branches are parsed to extract reads and writes in
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Figure 8: Overview of Floo. App binaries and platform code are instrumented prior to installation on a user device. During operation, each function
invocation opportunistically queries a small, per-app microcache (via the cache manager) with the goal of skipping execution. In the background, two
optimizations asynchronously churn: (1) the lookahead engine predicts upcoming invocations to pre-warm the microcache, and (2) the cache manager
periodically evicts low-utility entries and halts memoization for functions with low hit rates.

both predicates and bodies. This static analysis also records function
arguments, return values, and nested invocations. Tracking is done at
the finest granularity possible, e.g., a.b.c rather than the entire object a.

Aliasing. Within each function, Floo tracks aliasing across reads and
writes to different variables (i.e., where variables point to the same
underlying object) by simply following assignment statements. How-
ever, to handle nested invocations and ahead-of-time cache queries
(84.3), Floo also supports cross-function alias tracking. To do so stat-
ically, Floo performs (conservative) points-to analysis [40, 94] by
propagating reads and writes backwards in potential call graphs to con-
servatively determine if they might point to the same memory object.

External visibility. The above analysis operates at a variable level,
collecting read and write information on each variable accessed within
the scope of a function. However, recall that from the perspective
of memoization, Floo must record accesses only to externally-visible
state; variable-level tracking does not directly elucidate this subset of
state accesses. Digging deeper, within the scope of a function, values
(primitives or objects) can be accessed in one of three ways, each of
which warrants a different process to determine external visibility.

o Class fields. Fields of different classes represent the only ‘global’
variables in Java in that they persist beyond the scope of a given
invocation without explicitly needing to be passed out of the
function. Thus, setting aside arguments, all accesses to class fields
(both static and instance) are externally visible and must be tracked.
Note that although reinstantiations for objects in class fields (i.e.,
via new) generate objects at new memory locations, they also up-
date externally-visible pointers for the original object; accesses to
class fields thus remain externally visible beyond reinstantiations.

o Arguments. Primitive arguments enter functions as pass-by-value,
so accesses to them are only externally visible if the underlying
values ultimately exit the function via a return, nested invocation,
or class field. Object arguments are also passed in by value, with
the argument being a pointer to the object’s underlying memory
location. Writes to that object are generally externally visible, with
one exception. If the object is reinstantiated, then the argument
variable’s pointer will be updated to the memory location for the
newly created object; further accesses will not be externally visible
unless the new object exits the function via the above mechanisms.
Note that updates to an object prior to reinstantiation must still be
recorded because the original object is not overwritten in memory
and its pointer may be accessible elsewhere.
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API Category | Examples

Randomness Random, SecureRandom

Time Date, LocalTime

File System File, Paths

Network URLConnection, ContentHandler
Device Sensors | SensorManager, GnssAntennalnfo

Table 1: Categories of nondeterminism that Floo detects. Functions
using these APIs are excluded from the memoization process.

e Local values. Updates to variables that are assigned to new
primitive or object values (created in the function) only become
externally visible when those updates exit the function via return
statements, invocations, or addition to class fields.

Once only reads and writes for externally visible state remain,
Floo iterates over the per-function records and consolidates nested
functions that pertain to the same class as the parent functions that
invoke them. Consolidation involves adding the nested function’s
reads and writes to the corresponding sets for the parent function, and
removing the invocation from the parent’s write set. Floo does not
consolidate nested functions belonging to different classes as those
functions may access private class variables that the parent could
not access. Lastly, Floo instruments each function with lightweight
statements to collect read and write state, and issue the appropriate
query or population messages to the computation cache (§4.2).

App-level nondeterminism. Certain functions may embed calls to
nondeterministic APIs, e.g., for logging the current date/time, generat-
ing random numbers, etc. [47]. To safely preserve this behavior, Floo
detects such API calls and excludes the housing functions from the
memoization process; Table 1 lists the specific API categories that our
current implementation detects. A more aggressive approach would
attempt to memoize finer-grained compute blocks on either side of the
nondeterministic call. However, Floo opts against this for two reasons:
(1) as per §3.2, function runtimes are low and can tolerate minimal
memoization overheads, and (2) across our apps, only 4.3% of func-
tions use nondeterministic APIs, accounting for only 1.8% of runtime.
§4.5 describes Floo’s relation to nondeterminism lower in the stack.

4.2 Online Memoization

Basic computation caching. Floo’s cache manager runs on a
dedicated thread, and operates in a multi-threaded manner to handle
incoming messages. At the start of each invocation, functions
issue a blocking query to the cache manager that includes (1) the
function’s Floo-assigned unique identifier, and (2) a list of the {name,



Goal [ Techniques ] Section ]
Ensure correctness without | Control flow-aware cache entries and cache hit criteria. §4.2
degrading hit rates
Reduce+mask query over- | (1) Trie-like cache structure to prune entries to consider and fail fast on each, and (2) Cache lookaheads | §4.2
heads to avoid slowdowns that safely perform ahead-of-time cache queries for upcoming invocations. §4.3
Maximize benefits with | Domain-specific cache admission and eviction policies to eliminate low-probability queries and low-utility | §4.4
limited device resources entries from the perspective of memoization.

Table 2: Overview of the main techniques that Floo uses to address the challenges outlined in §3.

current value, type} three-tuple for each variable that is part of the
function’s read state based on Floo’s offline analysis. For objects,
queries list references and the cache manager generates a new copy
for query execution. From there, a hit requires that a cache entry
and the incoming query identically match on the function id and
the three-tuple for all listed variables. Note that hash codes from
developer-defined serialization functions are used when present to
compare object values; else, (expensive) deep comparisons are used.

Upon a cache miss, the function executes as normal and prior to
terminating its context, Floo aggregates the above three-tuples for
each variable and nested invocation in the function’s predetermined
write state. This information (along with the function id) is sent to
the cache to form a new entry that reflects this invocation. In contrast,
upon a hit, the cache manager returns the three-tuples for all variables
in the corresponding entry’s write set. The function eschews normal
execution in favor of directly applying each write, i.e., by executing
assignments or the listed invocations. Importantly, when pooling read
or write state to issue cache messages, Floo applies readers-writer
locks to objects until the cache manager has generated copies in its
context, thereby precluding races with other threads.

Fast query execution. To execute a given query efficiently, the
computation cache is organized using a custom data structure. At
the highest level, cache entries are partitioned based on whether their
functions reside in AOSP or app-defined code. Within each, there
exists a single map that is keyed by function ids, with each id pointing
to a group of cache entries. Each function’s entries are represented as
a trie-like structure whereby links are maintained across entries when
their values for a specific variable are identical. Using those links,
Floo’s cache manager prunes the set of entries to consider per query
and the set of variables+values to compare per entry. More specifi-
cally, once a value for a variable is compared with that in the query, (1)
if it does not match, we can quickly eliminate all entries that contain
the mismatched value without further analysis, and (2) if it matches,
we do not need to compare it again and can immediately remove all
other entries with a different value. The cache manager also navigates
the trie-like structure by prioritizing lightweight comparisons to fail
quickly, i.e., primitives, then hash codes, and then deep comparisons.

To ensure consistency in cache accesses, the cache manager main-
tains reader-writers locks for all entries pertaining to each function
id. The reason is that, although an entry cannot be overwritten by
app execution (since we consider only deterministic functions), the
corresponding trie could be modified via cache eviction (§4.4) or a
cache miss (new entry). The overhead of such locks is low in part
because Floo steadily deactivates memoization for functions with
low hit rates (§4.4).

Control flow-aware caching. Although the online memoization
approach described thus far is functionally correct, it can forego
precious cache hits due to its conservative nature. The issue is that,
as described, cache entries list all possible reads and writes that a
function could make based on offline static analysis, rather than the
subset of those accesses that were actually carried out during the
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populating invocation. Consequently, if a function could read a, b,
and c, but an invocation only reads a and b, then the value of ¢ should
not influence the usability of a given cache entry for that invocation.

To tackle this, cache entries with Floo are control flow-aware in
that they only list the reads and writes actually made during each
invocation. However, this presents a challenge for queries: at the
start of a function, Floo does not know the precise control flows that
will be taken, and discovering this would entail similar overheads
to executing the function. Thus, cache queries must still include the
conservative set of all possible read state for a function, posing a
mismatch with control flow-aware entries that list invocation-specific
read state. To resolve this, Floo defines a new cache hit criterion: if
all variables in the intersection between the query and a given entry
have identical values, then the entry can safely be considered a hit
and query execution can halt without considering any other entries.

The underlying idea is that any invocation can only pertain to (and
traverse) one set of control flows in a function. Further, the initial
values for any variables actually read during a function will uniquely
map to the specific set of control flows (i.e., branches) that are taken
and not taken. The reason is that branches are defined by predicates
involving reads (or constants) and are explored hierarchically based
on pre-defined source code (recall that we exclude nondeterministic
functions). Thus, matching on all variables in a cache entry ensures
that the set of control flows match, and that no other entry could
match. For example, consider the following code snippet:

if (a==5) { // branch 1: {a: 5}

else if (b == 10) { // branch 2: {a: !5, b: 10}
a=2>5;
X = a;

} else { // branch 3: {a: !5, b: !10}

}

There are three possible control flows in this branching sequence,
each of which is annotated with the read state in its cache entry. As
shown, each entry not only specifies which branch was taken, but it
also elucidates which branches were not taken, e.g., branch 2’s entry
precludes branch 1 from being taken due to a’s value (of something
other than 5). The example also highlights the importance of consid-
ering the initial read values for each accessed variable, e.g., if branch
2 was taken, there would also be a read on a with a value of 5 (line 5);
considering this read would incorrectly imply that branch 1 was taken.

Floo’s approach is conceptually similar to symbolic execution [11],
whereby branch traversals (and control flows) are characterized using
symbolic expressions on read state. However, with Floo, branch
traversal is represented using concrete values for an invocation’s
read state. This distinction is paramount for memoization. On the
one hand, using concrete values fails to account for the fact that a
set of control flows may pertain to multiple read states (and thus,
multiple cache entries), e.g., invocations with read state a ==7 and
a == 8 will both traverse a branch with predicate a > 5; symbolic
expressions would capture this similarity. On the other hand, cache



hits involve not only finding entries with matching control flows,
but also applying the corresponding writes. Consequently, matching
control flows is insufficient for correctness. Data flows (and thus,
the precise read state values) must also be matched to ensure that the
write values match those from normal execution.

4.3 Cache Lookaheads

Though optimized, blocking cache queries often exceed the
sub-millisecond runtime of most app invocations (§3.2). To overcome
this, Floo incorporates a lookahead engine that opportunistically
performs queries ahead of time for upcoming function invocations.
The key challenge is in coping with uncertainty in downstream
computations and state accesses.

Determining upcoming invocations. During offline analysis (§4.1),
Floo extracts the call graph for the app and stores it in the lookahead en-
gine’s memory; recall from §2.1 that call graphs specify inter-function
relationships (including invocation ordering). Call graphs are ex-
tracted using Gator [108, 109], and Floo adds additional annotations
to each function listing its conservative read/write sets, and whether or
not each child is dependent on specific branches being traversed or not.

To determine the set of upcoming invocations at any point in
time, the lookahead engine must understand where in the call graph
execution currently is. Unfortunately, simply observing function ids
for current cache queries does not suffice because a given function
can appear in multiple locations in the call graph (§2.1). Instead,
during offline analysis, Floo identifies the first function fired in
response to each user interaction, e.g., the onTouch () handler.
These functions each appear only once in the app’s call graph, and
Floo modifies them such that, when fired, they embed in their cache
queries information indicating that a new interaction is being handled,
and they are the root of the corresponding subgraph that is about to
be traversed. This information is passed from the cache manager to
the lookahead engine, which maintains (and updates) a pointer in
its in-memory call graph indicating where computation currently is.
Localized within that subgraph, the pointer is subsequently updated
based on the function ids embedded in cache queries.

Even with an up-to-date pointer in the call graph, the lookahead en-
gine can only identify the set of potential upcoming invocations. The
uncertainty is rooted in the fact that functions will traverse specific
control flows based on their specific input values and nondetermin-
ism, and each set of control flows may invoke only a subset of the
function’s children in the call graph. To bound the risk of performing
queries for functions that will not be invoked, the lookahead engine
limits the number of uncertain functions (and their children) that it
queries for using the annotations described above about branching.

Performing lookahead queries. The main challenge with lookahead
queries is that other functions will be executed before the predicted
one, and those functions may modify state that the predicted one
accesses. Thus, values for certain read state may not be known at
the time the lookahead query is performed. To handle this, upon
deciding to perform a query for a downstream invocation of function
func, the lookahead engine conservatively traverses the call graph
from the current pointer up until func and aggregates the write
state across all passed functions. The conservative nature of the
traversal manifests in two ways: (1) any uncertainty in the call graph
resolution is resolved by considering all possible traversals, and
(2) the execution of any registered but unexecuted asynchronous
handlers are considered possible at any time, e.g., network handlers.

The aggregate write set represents the state that may be modified
by the time func is invoked, and the lookahead engine compares it
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with the (conservative) read set for func. Any variables in func’s read
set that do not appear in the aggregate write set will use values that
are known and can be collected immediately; the lookahead engine
uses Floo accessor methods to extract values from the appropriate
contexts. All other variables that intersect across the two lists are
assigned a wildcard value of *.The lookahead engine then packages
the query in its normal form and issues it to the cache manager.

Query execution operates as normal, but with one change to
handle wildcards: variables with * can match an entry on any value.
Thus, queries without wildcards can return at most one result, while
queries with wildcards can return multiple matches. Return entries
are stored in a small section of Floo’s cache called the microcache; in
our current implementation, the microcache size is limited to 10™4x
the size of the entire compute cache. The cache manager maintains
a list of function id’s whose lookahead results currently reside in the
microcache. Upon receiving a standard query, the cache manager
first consults the id list to determine if the function has been part of a
lookahead. If so, the query is executed on the few microcache entries,
resulting in a near-instantaneous lookup; wildcards are resolved
based on the actual values in the query. If not, the normal cache
is queried. Upon a microcache hit, the entries for that function are
evicted and the id list is updated.

4.4 Cache Management

Floo embeds custom cache admission and eviction policies that aim
to maximize speedups within a resource budget by leveraging several
empirical observations about app computations (and memoization
benefits). We describe these policies in turn.

Intelligent admission. To reduce the stress on cache memory and
thread resources, Floo leverages our observation (Figure 9) that
certain functions almost never hit in the cache across their invocations.
To detect such functions, Floo’s cache manager keeps track of the
hit rate for each function after its initial entry is added to the cache.
If that hit rate ever drops below a pre-defined threshold (5% in our
implementation), Floo deactives that function from the memoization
process, i.e., the function stops querying or populating the cache, and
its existing entries are removed. Floo periodically reactivates such
functions and restarts tracking to cope with app or user changes.

Intelligent eviction. To handle scarcity in cache space, Floo eschews
generic policies such as LRU, and instead opts for a custom one that
directly ties entry utility to memoization speedups. More specifically,
the expected speedup that a given entry yields is governed by the (1)
runtime of the original function, (2) query execution delay, (3) time
to apply the write set, and (4) number of hits. Given the periodicity
in user interaction patterns with apps [50] and the stability in app
codebases, Floo uses previously delivered speedups for an entry as an
approximate indicator of expected future benefits. The key focus is
then on how to collect past speedup information with low overhead.
Floo’s lightweight eviction strategy is rooted in the observations
shown in Figure 10. Despite variations in incurred control and data
flows, function runtimes are stable both with and without memoiza-
tion (i.e., across cache entries). For instance, standard deviation and
CV across runtimes for the median function in our corpus were only
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of each function with and without memoization.

7 ps and .08 without memoization. Building on these findings, rather
than recording all invocation runtimes, Floo’s cache manager records
the runtimes for each function with and without memoization by
analyzing only the first cache query and hit for that function; speedup
per hit for the function is defined as the difference in these values.! In
addition, Floo records the number of hits and the time of the last hit
per entry by passively observing cache messages and updating only
on hits. Per-entry speedups are then computed as the product of the hit
count for the entry and speedup per hit for the function, and per-entry
utilities normalize those values by space consumed in the cache.
Using the above information, Floo employs a tiered eviction
strategy. As cache space is required, Floo first determines if any entry
has not been part of a cache hit over a predefined time window (900
seconds in our implementation). If so, those entries are first removed
in the order of increasing utility. This ensures that entries which once
delivered high speedups but no longer do (e.g., due to app updates)
are eventually cycled out of the cache. If more cache space is required,
additional entries are then removed in order of increasing utilities.

4.5 Verifying Correctness

Recall the correctness definition from §3, i.e., indistinguishability in
user-perceived app operation and generated app state. Preserving cor-
rectness is central to Floo’s design, manifesting via the use of offline
(conservative) static analysis, control/data-flow aware caching, lock-
ing semantics on the cache, and the exclusion of functions using non-
deterministic APIs. However, we note that Floo’s efforts to preserve
correctness come at the app level, not lower parts of the computation
stack. For example, race conditions across runs of an app could arise
due to variations in thread scheduling decisions by the OS, resulting
in a violation of the correctness definition above [73]. We deem such
discrepancies as acceptable from a correctness perspective as they
could arise across runs of an app without Floo. Floo does replay the
most common app-level locking mechanisms that developers include
to protect against races (via standard reads and writes to Android
Locks and Java synchronization monitors), but it does not provide
protection to applications that use lower-level synchronization tech-
niques such as Java atomic classes (Java.Util.Concurrent. Atomic).
While this is a fundamental limitation of Floo, future improvements
in program analysis techniques to detect arbitrary synchronization
mechanisms may be leveraged to improve Floo.

To study Floo’s ability to preserve this definition of correctness,
we performed multiple experiments in which we recorded content
downloads while loading all of the apps and traces in our corpus
(§6.1), and then replayed that content (and those interactions) with and
without Floo [47]. The experiments (described in turn, below) force
the same return values for the nondeterministic APIs in Table 1 across
both runs during replay. Additionally, to enable more fine-grained
correctness analysis, we record all reads and writes to global variables
in each function invocation during replay; note that performance is
not considered in this experiment, enabling the use of such costly
dynamic instrumentation. Correctness was measured by comparing

!Functions with negative speedups are deactivated as with admission.
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runs with and without Floo on two metrics: (1) pixel-wise screen
comparisons and identical Android views [7] after each interaction,
and (2) full heap equivalence after each trace.

In our first experiment, we forced computations during replay to
operate on a single thread. This avoids scheduling races from lower
in the computation stack, and thus implies that any observed heap
variations could be attributed to errors with Floo. For all apps and
traces, we verified that Floo always met both parts of the correctness
definition described above. To understand why, we used the read/write
logs collected during each trace to investigate the efficacy of Floo’s
correctness techniques described above. First, recall that Floo uses
static analysis to determine the potential read state for each function
which, although not precise to a particular run, aims to be comprehen-
sive. As a stress test of our implementation, we confirmed that the set
of variable reads made during each invocation was always a subset
of the static analysis output, i.e., the function’s signature. Second,
to ensure that Floo’s cache entires were complete and that its cache
lookup logic (i.e., deep comparisons and object hashCodes when
available) was properly enforced, we verified that the writes applied
after each cache hit matched those made during the run without Floo.

The setup for our second experiment matched that from the first,
except that we relaxed the single-threading requirement, and instead
allowed apps to operate across as many threads as they normally
would. Out of the 50 apps in our corpus, Floo achieved both screen
and heap equivalence on 33 apps. The remaining 17 apps all exhibited
some form of heap divergence; 11 of the 17 also involved screen
differences. Using our fine-grained logs, we dug deeper into the
causes of these divergences, and have categorized them below and
provided representative examples.

Variations in cross-thread compute schedules (14 apps): The first
category of divergence occurs as the thread schedule across multiple
runs of an app may be different. For instance, PicsArt (S00M+ down-
loads) is a video editing app for Android. In this app, the camera is
activated briefly during one of our interaction traces. The app receives
a sequence of byte arrays (Byte [ ]) corresponding to the sequence
of frames captured when the camera is active. Each Byte [ ] is pro-
cessed by a background worker into a Bitmap and stored in memory.
The next interaction in the trace deactivates the camera, upon which
the app cancels any lingering frame processing operations (by send-
ing kil1 signals to the corresponding threads). With Floo, due to
compute speedups, more frame processing operations have been com-
pleted successfully by the time the next interaction is issued (although
the same number of frames were sent to both versions deterministi-
cally), leading to a Bitmap vector with more entries. A similar heap di-
vergence could also occur as threads may complete in a different order
across runs. For instance, WebToon (100M+ downloads) is a comic
book reader for Android. When displaying the list of books available,
since the item-ordering is unimportant, the app uses fork-join paral-
lelism to load the cached comic books, causing the order of entries
on the screen, as well as in the data structure on the heap, to differ.

We note that divergences of this type arise even without Floo. In-
deed, when applying every trace 20 times on the unmodified versions
of these 14 apps (while also forcing determinism for the APIs in
Table 1), we found at least one such heap divergence per app.

Modified spin lock behavior leading to app alterations (3
apps): This category of divergence pertains to scenarios in
which app logic is altered by Floo’s use of memoization. For
example, U-Dictionary (100M+ downloads) is a translation and
dictionary app for Android. The app busy-waits in a loop using
an AtomicBoolean until a wordList variable is initialized and



loaded by another thread. With Floo, the busy-wait is eliminated,
causing a NullPointerException crash when the wordList
is accessed before being initialized. Such behavior need not always
cause a crash — for instance, in the Hopper Travel app (10M+
downloads) a similar Exception has been handled with a retry
by the developer, preventing a crash. Note that such cases are not
observed in a single-threaded setting as event-ordering is maintained.
Further, Floo correctly handles other forms of locking that make use
of Android or Java primitives.

5 IMPLEMENTATION

For each app, we extract Java bytecode by disassembling the app’s
APK into .smali files using apktool [98]. Bytecode files for AOSP
code (including for the Android platform and OpenJDK) are extracted
from the corresponding dex files. The bytecode from both sources
is then passed through Soot [99] and converted into an intermediate
representation called Jimple [100], on which we perform static
analysis and instrumentation. The decision to run on Jimple was
purely a pragmatic one: it is a typed, 3-address, statement-based
IR that involves only tens of statement types compared to the >200
possible instructions in Java bytecode. Across these steps, our offline
analysis components comprise ~1100 lines of Java code.

Updated app-defined code is combined into a new APK with byte-
code versions of Floo’s cache manager and lookahead engine that are
generated using AndroidStudio. Post re-assembly, the APK for the me-
dian app in our corpus grew from 29 to 34 MB with Floo. In contrast,
updated AOSP code is directly flashed onto the target smartphone.
AOSP code grew by 71 MB; however, we note that this would be
incurred only once per device (rather than once per app). Importantly,
AOSP code is modified to include a registration function that points
cache accesses to the appropriate caching classes inside each APK.

During operation, the cache manager and lookahead engine each
run on a dedicated background thread, and they were collectively im-
plemented in #4600 lines of Java code. Cache entries and callgraphs
are stored in memory (siloed across apps), and Java ExecutorServices
are used as background workers to service cache operations. Between
app sessions, cache entries are persisted to the disk using Kyro v5 [4].

6 EVALUATION

We evaluated Floo across a wide range of popular apps, live mobile
networks (and origin servers), real phones, and realistic user
interaction traces. Our key findings are:

e Floo reduces median and 95th percentile compute delays by
43.8% and 77.6% (0.55 and 0.98 seconds) for the median per-app
interaction in each case, which translates to overall interaction
response time improvements of 32.7% and 72.3%.

o Floo delivers larger speedups than recent app optimizations that (1)
offload computations to cloud servers (by 6-22%), and (2) reduce
network delays via caching and prefetching (by 1.1-1.7x); Floo
is complementary to the latter, and running them together lowers
response times by 40.3-43.9%.

o Floo does not inflate energy usage, and its speedups are within 3.6-
15.2% of the unachievable optimal that performs zero-overhead
and perfect memoization; both findings are due to Floo’s ability
to efficiently mask query overheads and preserve (and enforce)
most potential cache hits.

e Floo is amenable to partial deployment: computation improve-
ments are 24.1% and 11.2% when only performing memoization
on platform code (Android modifications) or app-defined code
(app APK modifications).
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6.1 Methodology

Apps. We crawled the Google Play Store [38] lists for popular An-
droid apps in a wide range of categories such as entertainment, sports,
lifestyle, weather, and shopping. Our crawl took place in October
2021 and returned 75 apps. From this set, we focus our experiments
on the 50 apps that the Soot bytecode analyzer (which Floo builds
atop, §5) could run on without error, as the other 25 apps crash during
static analysis or launch due to known limitations of Soot [1, 2].

Smartphones and networks. Our experiments consider two
smartphones: a Google Pixel 5 (Android 11) [32] and a less powerful
Samsung Galaxy Note 9 (Android 10) [33]. We ran all experiments
on both phones; trends for any results shown for only one phone
(due to space constraints) hold for the other phone. Experiments were
run over live (campus) WiFi and Verizon LTE mobile networks with
strong signal strength.

Interaction traces. As in recent studies [86], to generate realistic
user interaction traces for our apps, we use the Humanoid app testing
framework [56]. In particular, we generated 20 traces per app using the
default Humanoid deep neural network that was trained on real user
traces over the Rico dataset [24]. Each trace lasts for 3 minutes (match-
ing prior reports about user sessions with apps [30, 111]), and specifies
an ordered list of timestamped actions to perform (e.g., taps, scrolls)
that accounts for user think time. In our traces, taps (53%) and swipes
(39%) comprise the majority of interactions, with long presses ac-
counting for the rest. These traces trigger meaningful parts of the app;
for instance, an interaction trace on the BBC News app opens two arti-
cles from the app’s main screen in succession, and swipes through the
embedded gallery of images in the second article. Following this, the
trace navigates to the “Popular” tab, then taps and scrolls on an article.

Performance metrics. We evaluated Floo on two metrics: (1) total
computation time (TCT), or the critical path of time spent only execut-
ing app binary or platform code (i.e., no network operation) during an
interaction, and (2) interaction response time (IRT) measured as the
time an interaction is performed to the time when the final response
screen is fully rendered. IRTs are measured in a manner analogous
with the Speed Index web performance metric [37, 74], i.e., by record-
ing the phone’s screen using ffmpeg [3] and tracking when visual
changes for non-dynamic pixels (i.e., excluding videos) have halted.

Experimental workflow. Matching recent testbeds [20, 86] and
studies about user-app interaction patterns [50], in each experiment,
we randomly select and apply an interaction trace, wait § minutes,
and repeat this for a total of 5 traces per app. We consider § values
ranging from 0 mins (i.e., back to back) to 1 day. In each experiment,
to ensure fair comparisons despite using live origin servers, networks,
and app content, we run each trace back-to-back using each system
under test. Unless otherwise noted, Floo was granted access to 32
device threads and 512 MB of memory.

6.2 Interaction Speedups

Figure 11 shows Floo’s ability to reduce app compute delays.
Median TCT speedups were 36.9-43.8% (0.46-0.54 sec) and
68.6-77.6% (0.86-0.98 sec) for the median and 95th percentile
per-app interactions across all considered conditions. There are two
main trends to note. First, for a given network, Floo’s speedups are
slightly larger on the Note 9 than the Pixel 5 as the former possesses
a slower CPU, thereby increasing the effective time savings for each
cache hit that Floo brings. For example, on WiFi, TCT improvements
for the median per-app interactions are 39.1-42.9% to 41.2-43.8%
on the two devices. Second, for a given phone, TCT speedups are
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larger on WiFi than LTE, e.g., median speedups grow from 36.8%
to0 42.9% with the Pixel 5. The reason is the lower round trip times on
WiFi which result in additional time blocked on client-side compute.

Figure 12 shows how these compute speedups translate into faster
interaction response times. Overall, median IRT improvements were
19.3-32.7%, while 95th percentile speedups were 44.8-72.3%. The
same cross-device and cross-network trends as discussed above for
TCT hold for IRT.

Figures 11-12 also highlight that Floo’s improvements marginally
decrease as the time between interaction sessions (i.e., §) increases.
For instance, with LTE and a Note 9, TCT speedup for the median
per-app interaction drops from 37.8% to 35.2% as § grows from O to
12 hours. The reason is that, although app computations are entirely
in stable app binary code, downloaded content can influence the
specific set of functions invoked during interaction handling (i.e.,
the path through the call graph), and the control/data flows traversed
in each invocation. For example, in the BBC News app, a launch
of a category screen operates differently depending on whether a
downloaded JSON file embeds a ‘breaking news’ heading. Content
changes grow with larger § values, resulting in previously unseen
traversals, and thus fewer cache hits (Table 3).

6.3 Comparison with State-of-the-Art

Network optimizations. We first compared Floo with the recent
Marauder app accelerator [86] that alleviates network overheads in
interaction handling by using intelligent and lightweight caching and
prefetching strategies. Our comparison focused on the 27 apps in our
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) Median (95th percentile) cache hit rate
Back-to-back 83.1% (89.4%)
4 hours 80.9% (85.3%)
12 hours 79.9% (83.7%)
24 hours 77.5% (82.6%)

Table 3: Overall cache hit rates with varying & values.
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Figure 13: Comparing Floo and Marauder [86] on a Pixel 5. Bars list
medians, with error bars for 25-75th percentiles.

corpus that used the OkHttp caching library (and are thus compatible
with Marauder).

As shown in Figure 13, Floo delivers larger IRT speedups than
Marauder. For instance, on the LTE network with a § of 0, median
and 75th percentile IRT improvements (compared to default apps)
are 1.2x and 1.14x larger with Floo than Marauder. Floo’s relative
benefits compared to Marauder grow as experiments (1) shift to WiFi,
e.g., median speedups jump to 1.7%, or (2) use smaller § values, e.g.,
median speedups on LTE drop to 1.08x when § grows to 12 hours.
The former trend occurs due to WiFi’s lower round trip times, which
lead to more interactions being bottlenecked by compute. The second
trend occurs because larger § values entail more (unnecessary) cache
misses (e.g., due to suboptimal TTLs), and thus more opportunities
for Marauder to accelerate requests. In contrast, as noted above,
Floo exhibits slightly lower cache hit rates as § increases (Table 3).
Importantly, Figure 13 also confirms that Floo and Marauder are
largely complementary to one another, with the combined systems
outperforming each in isolation.

Compute optimizations. We compared Floo with Tango [42], an
app accelerator that offloads certain compute tasks to powerful cloud
servers. Unlike prior offloading approaches [23, 52], Tango opts to
replicate (not partition) all computations across the phone and cloud.
During app operation, Tango shares user interactions with the cloud,
and then flip flops between the replicas on a per-invocation basis,
aiming to display each screen update to the user based on whichever
(leader) replica generates it first. Deterministic replay techniques
are used to keep the two replicas in sync, and the functions that
issue network requests are pinned to the cloud to leverage its fast
wired links. Note that only screen updates are shared (in a pipelined
fashion) from the cloud to the phone; the phone still executes all
interaction handling as it may become the leader at any time.

Tango is not publicly available, so we instead use an in-house
version. Prior to the experiment, our Tango variant executes
interaction traces and records all nondeterministic values from
Android APIs and network fetches. These values are served at both
the phone and cloud server (a 32 core, 128 GB RAM server) during
replay; network fetches are handled by a server that is co-located with
the Tango cloud server, which sits on the other side of the phone’s
mobile access link. This represents a favorable scenario for Tango
for two reasons. First, network fetches incur near-zero latency from
the cloud server. Second, all (blocking) coordination for exchanging
nondeterministic values from the leader to follower is eliminated.

As shown in Figure 14, speedups with Floo are 1.06-1.14x and
1.19-1.22x larger than those with Tango on WiFi and LTE; for
context, Floo’s speedups come without the management and security
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Figure 14: Floo vs. Tango [42] on Note 9. Bars list medians, with error
bars for 25-75th percentiles.
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Figure 15: Floo’s speedups with varying mobile device resources.

Caching results compare with a generic LRU policy. Results are for the
Pixel 5 and LTE, and list median IRT wins across all apps.

overheads of running a proxy server (§7). The reason is that, in
scenarios where the cloud is deemed the leader (the only ones where
Tango can provide a speedup), Tango must share updates from each
invocation that alters the screen. 0.3% (1800) of invocations on the
median interaction update the screen, adding substantial blocking
delays to those already incurred from sharing interactions with the
cloud. Floo’s larger wins on LTE versus WiFi are because each
blocking delay with Tango involves a larger round trip time on LTE.

We also considered recent memoization efforts for An-
droid [83, 90] by comparing Floo with a version of itself that only
enables reuse of computations for pure functions, i.e., those whose
only external effects are return values that are influenced solely by
function arguments. This is a favorable comparison since prior efforts
do not consider platform code that accounts for a large fraction of
compute delays (§2). Overall, we find that Floo delivers 15-21.3x
larger speedups than these efforts across all phones and 6 values. The
underlying reason is straightforward: only 1.4% of invocations and
2.1% of runtime in our apps come from pure functions.

6.4 Analyzing Floo

Varying device resources. We stress-tested Floo’s ability to
maximize the utility of limited smartphone resources by (separately)
varying the compute threads it had access to, and the memory
available for its compute cache. Figure 15 illustrates the trends
in Floo’s performance, highlighting two takeaways. First, fewer
compute threads result in lower speedups as fewer lookaheads can
be performed, which in turn leads to more blocking cache queries and
a larger number of functions being deactivated from memoization.
Second, Floo’s performance (unsurprisingly) degrades as cache sizes
decrease and fewer results can be stored for reuse. However, owing
to Floo’s memoization-specific eviction policy, the degradation is
minimal and far slower than when generic caching policies are used,
e.g., cutting the cache from 512 to 32 MB drops speedups by 2.0x
and 15.5x with Floo’s eviction strategy and LRU.

Importance of each technique. Table 4 shows the performance
impact of selectively disabling Floo’s optimizations: (1) control flow-
aware caching, (2) lookahead queries, and (3) memoization-centric
cache admission (Figure 15 studies eviction). As shown, all three
techniques are core to Floo’s speedups, with raw degradations in

178

Disabled feature
None (complete Floo)
Control flow-aware caching
Lookahead queries
Intelligent cache admission

Median (95 %ile) IRT improvement
29.0% (65.4%)
11.2% (21.4%)
2.3% (12.1%)
20.1% (39.1%)

Table 4: Importance of Floo’s optimizations. Results are for the Pixel
5and LTE.

Computation Raw compute Floo’s TCT Potential TCT
type time (ms) speedup (%) speedup (%)
AOSP (platform) 894 24.1 39.3
App-defined 371 11.2 14.8
Total 1265 36.9 55.9

Table 5: Speedups from Floo and (unachievable) potential memoization
when run on different types of app computations. Results are for the
median interactions across apps, LTE, and the Pixel 5.

median IRT wins of 17.8%, 26.7%, and 8.9% when they are disabled,
respectively. Cache lookaheads and control flow-aware caching are
most crucial due to the many short invocations in apps; blocking
lookups would exceed runtimes for most invocations, while reduced
hit rates would yield minimal compute savings. When lookahead is
enabled, the microcache is populated 83ps prior to the median lookup.
Floo’s cache admission policy importantly deactivates functions that
do not benefit from memoization; removing this feature increases
the invocations slowed down by Floo from 3% to 31%.

Dissecting Floo’s speedups. Table 5 breaks down Floo’s TCT wins
when running on different types of app computations. As shown, both
AOSP platform code and app-defined code are amenable to Floo’s
memoization optimization, with median TCT speedups of 24.1%
and 11.2%, respectively. Table 5 also highlights that Floo’s benefits
are within 3.6-15.2% of the potential memoization savings from §3.
Recall that those savings represent an unachievable upper bound
in that they assume perfect hit rates, and zero delay for querying
the cache and applying the writes for each hit. Thus, these results
illustrate Floo’s ability to effectively mask cache management delays
and deliver most potential hits in an entirely online fashion.

Case studies. After studying the nature of apps and interactions in
our corpus, we identify two broad categories of apps based on their
client-side computations. The characteristics of these computations
influence the impact of Floo’s optimizations. The first category of
apps embed a significant amount of client-side computations, while
the second category of apps act as a “thin-client” with minimal client-
side computations, or load their computations dynamically at runtime.
Results in §3.1 indicate that apps in the first category are expected
to be amenable to Floo’s optimizations — examples include the Pic-
sArt video editor (500M+ downloads), and shopping apps such as
Nike (10M+ downloads) and Bath&Body Works (1M+ downloads).
Specifically, in the Nike app, interactions that open product details
were largely accelerated by Floo. In these interactions, we found that
the app used an image processing library to apply transformations
(decode, crop, blur or rotate) on a series of product images. These
transformations repeatedly impose significant computational over-
heads every time a product page is reopened, allowing such interac-
tions to be largely accelerated by Floo. In the second category of apps,
due to the offline analysis adopted by Floo (§4.1), apps that load their
computations dynamically are not amenable to Floo’s optimizations.
Examples for this category of apps include NewsBreak (50M+ down-
loads) and RSS Reader (100K+ downloads). Specifically, we found
that Floo was unable to accelerate a large portion of interactions in
the NewsBreak app. In this app, we found that articles were loaded in



a WebView, with JavaScript computations being downloaded and ex-
ecuted at runtime. Such computations are beyond Floo’s purview, and
remain entirely unoptimized, leading to unaccelerated interactions.

Impact on device resources. We executed all interaction traces per
app with and without Floo, and recorded the CPU usage with Android
Profiler [26] and total energy usage with Android BatteryStats [27].
Overall, while Floo increases the peak CPU usage of the median app
in our corpus by 1.07x , itis ‘net neutral’ on energy usage, with mild
savings of 2% and 5% for the median and 95th percentile apps. In
other words, the additional compute used for cache management and
lookaheads is negated by computation reductions from memoization,
1.e., Floo can boost IRT and TCT for a given energy usage. Key to
this is the judiciousness with which Floo performs lookaheads; only
4.1% of lookahead queries go unused by downstream invocations.

Cross-app benefits. Our implementation currently siloes apps
and their caches to preserve existing privacy and data sharing
semantics. However, apps involve significant computations that
are part of the (shared) plattorm AOSP code, and also often build
on third-party libraries (§2). Further analysis reveals promise for
reusing computations across apps: 6.3% and 19.2% of invocations
and runtime for the median app overlapping with the computations
in at least one other app in our corpus.

7 RELATED WORK

App network optimizations. Numerous systems address network
bottlenecks in app operation using prefetching and caching. For
prefetching, one line of systems uses static analysis on app source
code to identify resources to fetch early, either one callback early via a
local proxy [112] or in batches via a remote proxy [20]. Other systems
generate prefetching strategies by passively monitoring issued
requests to identify inter-resource dependencies [45], or by tuning
app-specified prefetching policies according to network conditions
or past hit rates [13, 46]. For caching, many studies have documented
the inefficiencies of HTTP caches [59, 61, 72, 84, 85, 110, 112], and
provided solutions in the form of finer-grained caching [65, 81, 104]
and prefetching to refresh TTLs [86]. As shown in §6.3, Floo
delivers larger (but complementary) speedups than network-focused
accelerators since apps are increasingly compute-bottlenecked (§2.2).

App compute optimizations. Multiple systems tackle smartphone
resource limitations by offloading app tasks to well-provisioned cloud
servers [21, 23, 43, 58]. For example, MAUI [23] offloads functions
based on an optimization engine that considers energy usage,
compute delays, and state sharing costs. More recently, Tango [42]
eschews task partitioning in favor of replication. Floo provides
larger speedups than offloading by avoiding costly phone-server
coordination overheads (§6.3). More importantly, by focusing purely
on client-side memoization, Floo sidesteps the scalability, cost, and
security issues of using a proxy server [75, 92].

SmartlO[77] accelerates app computations by carefully reordering
disk accesses to cater to the large number of (concurrent) reads made
during app startup and interaction handling. These I/O optimizations
are enforced via a modified operating system. Floo and SmartIO
share the same goal — improved app responsiveness — and can run
alongside one another as both operate in a purely reactive manner
relative to the computations that are actually triggered at runtime.

A slew of systems improve the performance of specific classes
of mobile apps using domain-specific optimizations, e.g., lowering
inference overheads for vision recognition [14, 19, 44, 57]. In
contrast, Floo aims to reduce app compute delays in any Android
app by maximally reusing Java computations.
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App energy optimizations. Certain frameworks profile app
operation offline, and leverage the garnered insights to lower energy
usage by tuning knobs in the computation stack (e.g., CPU frequency,
memory bandwidth) [87] or refactoring/reorganizing API calls [12].
Other efforts automatically detect and bundle HTTP requests to lower
energy usage via longer radio idle times [55]. Floo is complementary
to these efforts, and instead focuses on maximizing user-perceived
performance for a fixed amount of energy usage (§6.4). Floo can
work on the energy-optimized code output by these frameworks.

Predicting user behaviors in apps. Falcon [107] and PREPP [80]
predict (and preload) app launches based on observations about
user location, access patterns, and device sensors. Floo eschews
(error-prone [79, 88]) prediction and instead applies memoization
to already-issued computations. That said, Floo could reduce the
overheads of preloading apps, enabling more preloads in a fixed
resource budget. Relatedly, other efforts predict user interactions for
improved analytics [60, 97]; these works are orthogonal to Floo, but
could enable longer-term predictions for lookahead queries.

Java program optimization. Floo is inspired by a larger body
of prior work that optimize Java programs, but instead targets the
Android framework (not general Java), and integrates new techniques
to tackle the computation patterns and resource restrictions in
mobile apps and phones. Beyond memoization [5, 25], other
efforts automatically parallelize Java programs to take advantage
of multi-core platforms [9, 15, 18, 51, 53, 67]. Though conceptually
complementary to Floo, we note that our results highlight substantial
state sharing across invocations in app interaction handling, thereby
limiting the potential for safe parallelism (§3).

8 CONCLUSION

Computation delays from executing source code in mobile app
binaries and OSes increasingly govern the responsiveness that apps
deliver to end users. To address this worsening bottleneck, we pre-
sented Floo, a system that automatically integrates memoization into
app binaries to reduce the amount of computation required to respond
to latency-sensitive user interactions. Key to Floo are its techniques
to simultaneously ensure correctness for all reused computations
while reaping most potential speedups via masked cache lookup
overheads and high cache hit rates. Overall, Floo reduces median
and 95th percentile interaction response times by 32.7% and 72.3%.
More broadly, we hope that the adaptation mechanisms that Floo
employs help promote next-generation optimizations that explicitly
(and more directly) cater to the increasingly heterogeneous device
and network profiles that global mobile app users provide.
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