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B 1 am HoONORED, grateful, and humbled to
receive the 2019 Eckert-Mauchly award (https://
awards.acm.org/award_winners/hill_2155109). I
am humbled to have my name associated with
the luminaries that have preceded
me. | have known many prior
recipients, from Sir Maurice
Wilkes to my graduate student
officemate Susan Eggers. Although

Although I am the
recipient of this award,
the work is really “our”

Reflections and
Research Advice Upon
Recelving the 2019
-ckert-Mauchly Award

mauchly_2019.pptx (and .pdf) with unofficial
audio http://www.cs.wisc.edu/~markhill/papers/
markhill_eckert-mauchly_2019.m4a and almost-
complete video https://youtu.be/kqrhBTK6SHE. | —
gives forward-looking advice on
methods that we find valuable for
doing research, illustrated with past
examples.

work, as it stems from

I am the recipient of this award,
the work is really “our” work, as it
stems from the creativity and per-
spiration of more than 160 co-
authors. Figure 1 shows a word
cloud with the co-author’s names sized roughly
logarithmically with the number of papers.
Rather than a historical tour, this essay—and
the talk it is based on [Slides at http://pages.cs.
wisc.edu/~markhill/papers/markhill_eckert-
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the creativity and per-
spiration of more than
160 coauthors.
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SIMULATION FOR TESTING
AND REFINING
HYPOTHESES

A theme of our work is develop-
ing simulators to explore questions
previously out of reach of existing tools. First, as
PhD student with co-advisors David Patterson
and Alan Jay Smith, we developed the Dinero uni-
processor trace-driven simulator (1980s Dinero
predated web pages but was later re-released:
http://www.cs.wisc.edu/~larus/warts.html). Its
ease of use and license facilitated its distribution
to dozens of universities and a few companies.
Second, as mostly assistant professors, we
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Figure 1. Word cloud of coauthors with Mark D. Hill.
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created the Wisconsin Wind Tunnel.'* WWT simu-
lated a cache coherent shared memory computer
on a non-shared memory Thinking Machine CM-5.
It was execution-driven—so that memory behav-
ior could influence program execution—but had
three flaws (in retrospect): the CM-5 did not get
faster while Moore’s Law accelerated software-
only simulators; we could not share it much as the
CM-5 was rare; and the simulator did not model
operating system behavior. Third, we developed
GEMS,” which booted an OS (initially Solaris) and
included [/O devices. We did this hard task,
because repeated feedback at our annual indus-
trial affiliates meetings strongly advocated for full-
system simulation. To ease work and speedup
development, we implemented the performance
model of GEMS but had it do functional simulation
by working symbiotically with initially beta com-
merical Virtutech SimICS. This symbiosis was a
blessing—it worked—but also a curse as it limited
the spread of our influence, as not all wanted or
could license SimICS. Fortunately, the (former)
Michigan folks had implemented full-system func-
tionality in their m5 simulator and proposed that
we merge GEMS+mb5 to form gem5.

Our simulators have helped many do better
research and have been cited 5000 times, including
some citations where authors explain why they are
not using them. We achieved difficult innovations,
but we were also “creatively lazy” (which we advo-
cate) wherein we did only what was needed after
leveraging the work of others, e.g., SimICS and mb.
After Dinero, wrote approximately zero lines of

code for these amazing simulators. Key con-
tributors can be found in the author lists at
the end of this essay.

You might think that simulation is the
most important method in computer
architecture, based on both the above
paragraph and what you find reading in
many papers. In fact, simulation is impor-
tant for testing and refining hypotheses.
While it is often the step most visible in
papers, this is only one step in the Scien-
tific Method (https://en.wikipedia.org/
wiki/Novum_Organum)?:

Pick a good problem.

Develop insight and first hypothesis.
Test and refine hypotheses.

Repeat steps as needed.

W=

The Scientific Method’s use underlies modern
science, and its value to computer architecture
is no less, even as we sometimes seem to only
implicitly apply it. Let us discuss its other steps
in reverse order.

DEVELOP INSIGHT AND FIRST
HYPOTHESIS

1980s 3C Cache Misses

In the 1980s, we were fascinated by the mem-
ory hierarchy. The good news for these hierar-
chies is that—if properly designed—they provide
cost-performance that far exceeds that of the
technology levels they are created from. The bad
news is that their proper design requires setting
numerous parameters, often informed by a data
deluge. How could we channel the deluge, follow-
ing Hamming who said, “The purpose of comput-
ing is insight, not numbers”? Our intuition said
that this was a good problem and turned out to be
correct. It is not clear if we were good, lucky, or
both. Still, in our experience, intuition matters
for choosing research directions among many
options.

In my PhD dissertation? (or easier to find
subset®) with co-advisors David Patterson and
Alan Jay Smith, we sought a taxonomy or model to
give insight into cache misses and used a thesau-
rus to develop a memorable name. The result was
the 3C Model with conflict misses for too little
associativity, capacity misses for too small cache
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size, and compulsory misses for never previously
accessing a block/line. The 3Cs had explicit influ-
ence on Norm Jouppi developing victim caches
and stream buffers a year later,® and went on to
join the undergraduate canon. It did so, in part,
because my Ph.D. coadvisor cowrote a popular
textbook (Patterson). While the 3C Model was
simple relative to other contemporary cache
models, this simplicity is a factor in its longevity.
We thus learned to prize simplicity.

1990s Memory Consistency With Sequential
Consistency (SC) for Data-Race Free Programs

In the 1990s, we were sure that shared-mem-
ory multiprocessors had “arrived.” It turns out we
were off by a decade as Moore’s Law facilitated
microprocessor performance improvements that
allowed most markets to avoid multiprocessors,
but we were correct that it would eventually hap-
pen. This illustrates that good research should
anticipate trends, but need not get timing right,
as is required for products. Sarita Adve and [—
and others—wanted to put the correctness of
multiprocessors on a firmer foundation. We saw
that cache coherence could make caches invisi-
ble, but what then? Leslie Lamport’s SC model
was elegant, but most real machines did not obey
it. These multiprocessors exposed write buffers,
out-of-order execution, and what we now call non-
atomic stores. We instead wished to follow Ein-
stein who said, “Everything should be made as
simple as possible, but not simpler.”

A breakthrough started with a talk by Bart
Miller on software datarace detection—and
there is a lesson here about how attending talks
can lead to new connections. We developed
new intuition that there might be a connection
between dataraces and the weak or relaxed
memory models of the era. Nevertheless, it took
hard thinking to make the connection both
explicit and simple: specify a system to provide
SC to data-race-free (DRF) programs. The SC for
DRF model enabled a “have your cake and eat it
too” situation. Hardware could do aggressive
reordering for performance between synchroni-
zation operations, while almost all programmers
could reason with relatively simple SC. Adve and
others subsequently used SC for DRF as the cor-
nerstone of the Java and C++ high-level lan-
guage memory models, and many of us still use
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it when specifying memory consistency in het-
erogeneous systems with both CPUs and gen-
eral-purpose GPUs. All this from insight from a
talk plus three decades of work.

2000s LogTM Transaction Memory

In the 2000s, we were again sure that shared-
memory multiprocessors had “arrived.” It turns
out that this time we were right, but for a reason
whose timing we did not predict: the end of Den-
nard scaling causing a “right turn” to multicore
chips. We—initially Kevin Moore, David Wood,
and I|—were interested in multiprocessor
programmability, now that correctness was argu-
ably under control. The prevailing programming
method coordinated threads using locks that
were known to not compose and are subject
to deadlock. For deadlock, consider a simple
method that moves an item between two data
structures by obtaining a lock first at the source
and then a second lock at the destination. If one
thread sought to move an item from A to B while
a concurrent thread sought to move it from B to
A, deadlock could occur with each thread holding
one lock and unable to get the other. Transac-
tional memory (TM) offered a potentially elegant
solution. With TM, each thread could ask that a
method be an atomic transaction and the TM
system would “make it so,” sometimes having
to abort and retry transactions. Existing TM
systems, however, allowed micro-architectural
elements (e.g., write buffer size and cache asso-
ciativity) to affect what transactions could
commit, required substantial changes to conven-
tional systems, or both.

We sought a TM solution where the micro-
architecture would not limit which transactions
could commit and required at most a modest
change to existing cache-coherent multiproces-
sors. To drive thinking on what to do, we first
developed a taxonomy, recreated in Figure 2. In
one dimension, TM systems had to detect con-
flicts among concurrent transactions, either
when a transaction sought to commit (lazy) or
earlier when reads and writes first occur (eager).
Orthogonally on a write, all TM systems must do
“version management” to keep the new value for
possible commit and the old value for possible
abort. Lazy version management puts the new
value “on the side” (e.g., in a write buffer) and
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Version Management
Lazy Eager
Laz DBMSs w/ optimistic CC none
y Stanford TCC
Conflict
Detection MIT LTM DBMSs w/ locking CC
Eager Intel/Brown VTM MIT UTM
Wisconsin LogTM [new]

Figure 2. 2006 taxonomy of hardware transactional memory
systems (adapted from the article by Moore et al.?).
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leaves the old value “in place” (in coherent mem-
ory) until commit. Conversely, eager version
management saves the old value “on the side”
and puts the new value “in place.”

This taxonomy assisted us in developing
LogTM.® In particular, we decided to focus on the
quadrant that modeled commercially successful
database management systems with locking con-
currency control. Consequently, LogTM combined
eager conflict detection (using coherence) with
eager version management (a per-thread log).
LogTM—and its successor LogTM-SE'> —enabled
unbounded transactions with modest core
changes and trivial memory system changes.
While LogTM and other academic papers devel-
oped many promising ideas, and limited TM hard-
ware is supported by Intel, IBM, and recently ARM,
it is not universal. This is, in part, because,
although multicore use is now ubiquitous (e.g., in
the cloud), only a relatively few experts program
directly with thread-level parallelism. Neverthe-
less, we should take the long view, as ideas can
take time to flourish. For example, SIMD and vec-
tors developed over decades of niche successes
before their broader success with general-
purpose GPUs and the SIMT model. More gener-
ally, we recommend developing taxonomies to
structure deep thinking, recalling the “mother of
all scientific taxonomies”: Mendeleev’s periodic
table of the elements that focused efforts for
uncovering missing elements.

2010s System-of-a-Chip (SoC) Gables and
Accelerator-Level Parallelism (ALP)

In the 2010s, SoCs grew up to have heteroge-
neous CPUs, GPUs, dozens of accelerators, inter-
connects, coherence, virtual memory, and even
virtualization. Accelerators make specific compu-
tations faster, more predictable, and more energy-

efficient. As a Google intern (during my 2017-2018
sabbatical), my host Albert Meixner charged that
we should make SoC design “more scientific.”
Gasp! Thus, I fell into SoCs by luck after deciding
to do another mind-expanding sabbatical in indus-
try, putting myself in a position to get lucky.

To make some progress on this grandiose
charge and frame early SoC thinking, Vijay Janapa
Reddi developed a simple SoC model called
Gables? for SoC hardware and software use cases.
Specifically, Gables models each accelerator with
a “roofline” (previously used for a whole multi-
core chip), including the important parameter of
“operational intensity” that speaks to whether
communication or computation is the bottle-
neck. George Box said, “All models are wrong;
some are useful.” The community has yet to
decide if the newly proposed Gables is useful.
Nevertheless, it has already led to the important
hypothesis that mobile SoCs, in particular—and
arguably computing, more generally—must now
deal with ALP wherein multiple accelerators are
concurrently active. Broad ALP success will
require the research community—maybe you!—
to develop better “best practices” for targeting
accelerators, managing accelerator concurrency,
choreographing inter-accelerator communica-
tion, and productively programming them.

PICK A GOOD PROBLEM

A greatly underappreciated aspect of influen-
tial research is the first step of picking a problem
from the infinite set of possible problems. This is
creative and important, but rarely discussed.
Good research problems fall at the intersection of
two criteria, “If you can do it, people will care.” and
“You can do (some of) it,” as illustrated in Figure 3.

In our experience, one should devote consid-
erable thinking and time to picking problems to
work on. One should not play Jeopardy! which is
an American TV game show in which contestants
are shown the answer and challenged to develop
the question. You may laugh, but we have seen
this in research: “I have a cool mechanism, so let
me figure out what it is good for.” In our experi-
ence, this approach rarely produces ground-
breaking and lasting research. Ask first, “What
problem am I trying to solve and why?”

Operationally, we recommend looking for
change. You can do good work without change,
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but you have to be smarter and more creative
than all that have preceded you, which is hard
for important problems. In computer architec-
ture, change arises from 1) software and appli-
cations above, e.g., exploding machine learning
and augmented reality; 2) technology changes
below, e.g., 3-D chip stacking and emerging non-
volatile memory technologies; and 3) influences
from other (sub)fields, e.g., miraculous progress
in SAT solvers and using ML to optimize
hardware.

For a concrete example, consider the work of
David Patterson, Garth Gibson, and Randy Katz
on redundant arrays of inexpen-
sive disks or RAID' that I
observed as a graduate student.
You might think that the most
creative part of the work was tak-
ing erasure codes, applying them
to blocks, and rotating parity to
avoid bottlenecks. Although this
was creative, in our opinion, the
greatest creativity in the project
came first in recognizing the problem. Histori-
cally, the most cost-effective way to store large
data was on large washing-machine-sized disks.
When personal computers exploded into the
world, they soon adopted small disks, and the
sales volume made these disks the most cost-
effective place to store data. The problem: Can
we use small PC disks to store large data? The
problem within the problem: Without innova-
tion, an array of PC disks is too unreliable. A sin-
gle PC disk is not that reliable (the market
wanted inexpensive), and an array of these disks
will lose data in days. With this setup, the inno-
vation of RAID now seems creative but not
superhuman. The hard thinking to pick a good
problem was well rewarded with a seminal paper
with over 4000 citations and three test-of-time
awards.

We conclude this section with four other com-
ments regarding picking problems. First, spend
considerable time and energy on picking the prob-
lem. Avoid jumping to solutions too fast, as you
might solve the wrong problem. Second, seek sim-
ple ideas, especially for interfaces. In computer
architecture and systems, even simple ideas get
more complex when actually deployed. Be
proud of simple ideas, as I tout with a web page
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Don’t unduly worry
about dividing credit, as
credit often multiplies
and collaboration
usually enables
something worthy of
greater credit.

You can do
(some of) it

Figure 3. Pick problems at the smile.

(http://pages.cs.wisc.edu/~markhill/includes/
simple.html). Woe to those in industry who have to
deploy something that was already complex in the
academic paper. Third, collaborate broadly with
professional colleagues and students. It is not clear
[ ever unilaterally developed an idea
that did not benefit from interac-
tions with one or more of my 160
coauthors. Don’t unduly worry
about dividing credit, as credit often
multiplies and collaboration usually
enables something worthy of
greater credit. Fourth, keep aca-
demic-industry connections strong,
as computer architecture and systems are about
influence, not intrinsic beauty. Impact and effort
seem to vary proportionally from the smaller—
talking to people at conferences and holding indus-
trial affiliate meetings—to the larger—student
internships and sabbaticals in industry (for me at
Sun, AMD, and Google).

THANKS AND GIVING FORWARD

I have been blessed to work with many great
people—beginning with my PhD coadvisors David
Patterson and Alan Jay Smith—and continuing
with 160 coauthors, with the biggest word cloud
font sizes in Figure 1 going to David Wood,
Daniel Sorin, Michael Swift, James Larus, and Milo
Martin. This work has occurred at three great pub-
lic universities—Michigan for undergraduate,
Berkeley for graduate, and Wisconsin where I am
faculty—with funding largely from the U.S.
National Science Foundation, most recently with
grants CCF-161782, CCF-1734706, and CNS-1815656.
As Newton said, “We can see further, because we
stand on the shoulders of giants.” For my students
and me, we have discovered that these giants
go back at least as far as 990 AD in Constantinople
(http://pages.cs.wisc.edu/~markhill/Academic/
Genealogy_Hill_Mark.pdf).

123


http://pages.cs.wisc.edu/&sim;markhill/includes/simple.html
http://pages.cs.wisc.edu/&sim;markhill/includes/simple.html
http://pages.cs.wisc.edu/&sim;markhill/includes/simple.html
http://pages.cs.wisc.edu/&sim;markhill/Academic/Genealogy_Hill_Mark.pdf
http://pages.cs.wisc.edu/&sim;markhill/Academic/Genealogy_Hill_Mark.pdf
http://pages.cs.wisc.edu/&sim;markhill/Academic/Genealogy_Hill_Mark.pdf

124

Awards

For this, one cannot give back, but one can—
and should—give forward. I have sought to give
forward through more than thirty years of teach-
ing, three years as department chair, and through
service in several ways, including with ACM
SIGARCH and, mostly recently, the Computing
Community Consortium (https://cra.org/ccc/).
Your opportunities and predilections may be dif-
ferent, but please give forward to honor those who
gave to you.

I conclude by thanking my family: wife Sue,
children Nicole and Greg, granddaughter Zey-
nep, sister Kathryn, and parents Toivo and
Maria. My strong mother Maria passed away the
morning after [ received the 2019 Eckert-Mauchly
award. She learned of the award a few weeks
before, valued it, but cared more that her chil-
dren sought to live with integrity and to follow
the golden rule. May Maria rest in peace.
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