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& I AM HONORED, grateful, and humbled to

receive the 2019 Eckert-Mauchly award (https://

awards.acm.org/award_winners/hill_2155109). I

am humbled to have my name associated with

the luminaries that have preceded

me. I have known many prior

recipients, from Sir Maurice

Wilkes to my graduate student

officemate Susan Eggers. Although

I am the recipient of this award,

the work is really “our” work, as it

stems from the creativity and per-

spiration of more than 160 co-

authors. Figure 1 shows a word

cloud with the co-author’s names sized roughly

logarithmically with the number of papers.

Rather than a historical tour, this essay—and

the talk it is based on [Slides at http://pages.cs.

wisc.edu/�markhill/papers/markhill_eckert-

mauchly_2019.pptx (and .pdf) with unofficial

audio http://www.cs.wisc.edu/�markhill/papers/

markhill_eckert-mauchly_2019.m4a and almost-

complete video https://youtu.be/kqrhBTK6SHE.]—

gives forward-looking advice on

methods that we find valuable for

doing research, illustratedwith past

examples.

SIMULATION FOR TESTING
AND REFINING
HYPOTHESES

A theme of our work is develop-

ing simulators to explore questions

previously out of reach of existing tools. First, as

PhD student with co-advisors David Patterson

and Alan Jay Smith, we developed the Dinero uni-

processor trace-driven simulator (1980s Dinero

predated web pages but was later re-released:

http://www.cs.wisc.edu/�larus/warts.html). Its

ease of use and license facilitated its distribution

to dozens of universities and a few companies.

Second, as mostly assistant professors, we
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created the Wisconsin Wind Tunnel.11 WWT simu-

lated a cache coherent shared memory computer

on a non-shared memory Thinking Machine CM-5.

It was execution-driven—so that memory behav-

ior could influence program execution—but had

three flaws (in retrospect): the CM-5 did not get

faster while Moore’s Law accelerated software-

only simulators; we could not share it much as the

CM-5 was rare; and the simulator did not model

operating system behavior. Third, we developed

GEMS,7 which booted an OS (initially Solaris) and

included I/O devices. We did this hard task,

because repeated feedback at our annual indus-

trial affiliates meetings strongly advocated for full-

system simulation. To ease work and speedup

development, we implemented the performance

model of GEMS but had it do functional simulation

by working symbiotically with initially beta com-

merical Virtutech SimICS. This symbiosis was a

blessing—it worked—but also a curse as it limited

the spread of our influence, as not all wanted or

could license SimICS. Fortunately, the (former)

Michigan folks had implemented full-system func-

tionality in their m5 simulator and proposed that

wemerge GEMSþm5 to form gem5.1

Our simulators have helped many do better

research and have been cited 5000 times, including

some citationswhere authors explainwhy they are

not using them. We achieved difficult innovations,

but we were also “creatively lazy” (which we advo-

cate) wherein we did only what was needed after

leveraging the work of others, e.g., SimICS and m5.

After Dinero, wrote approximately zero lines of

code for these amazing simulators. Key con-

tributors can be found in the author lists at

the end of this essay.

You might think that simulation is the

most important method in computer

architecture, based on both the above

paragraph and what you find reading in

many papers. In fact, simulation is impor-

tant for testing and refining hypotheses.

While it is often the step most visible in

papers, this is only one step in the Scien-

tific Method (https://en.wikipedia.org/

wiki/Novum_Organum)9:

1. Pick a good problem.

2. Develop insight and first hypothesis.

3. Test and refine hypotheses.

4. Repeat steps as needed.

The Scientific Method’s use underlies modern

science, and its value to computer architecture

is no less, even as we sometimes seem to only

implicitly apply it. Let us discuss its other steps

in reverse order.

DEVELOP INSIGHT AND FIRST
HYPOTHESIS

1980s 3C Cache Misses

In the 1980s, we were fascinated by the mem-

ory hierarchy. The good news for these hierar-

chies is that—if properly designed—they provide

cost-performance that far exceeds that of the

technology levels they are created from. The bad

news is that their proper design requires setting

numerous parameters, often informed by a data

deluge. How could we channel the deluge, follow-

ing Hamming who said, “The purpose of comput-

ing is insight, not numbers”? Our intuition said

that this was a good problem and turned out to be

correct. It is not clear if we were good, lucky, or

both. Still, in our experience, intuition matters

for choosing research directions among many

options.

In my PhD dissertation4 (or easier to find

subset5) with co-advisors David Patterson and

Alan Jay Smith, we sought a taxonomy ormodel to

give insight into cache misses and used a thesau-

rus to develop a memorable name. The result was

the 3C Model with conflict misses for too little

associativity, capacity misses for too small cache

Figure 1.Word cloud of coauthors with Mark D. Hill.
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size, and compulsory misses for never previously

accessing a block/line. The 3Cs had explicit influ-

ence on Norm Jouppi developing victim caches

and stream buffers a year later,6 and went on to

join the undergraduate canon. It did so, in part,

because my Ph.D. coadvisor cowrote a popular

textbook (Patterson). While the 3C Model was

simple relative to other contemporary cache

models, this simplicity is a factor in its longevity.

We thus learned to prize simplicity.

1990s Memory Consistency With Sequential

Consistency (SC) for Data-Race Free Programs

In the 1990s, we were sure that shared-mem-

orymultiprocessors had “arrived.” It turns out we

were off by a decade as Moore’s Law facilitated

microprocessor performance improvements that

allowed most markets to avoid multiprocessors,

but we were correct that it would eventually hap-

pen. This illustrates that good research should

anticipate trends, but need not get timing right,

as is required for products. Sarita Adve and I—

and others—wanted to put the correctness of

multiprocessors on a firmer foundation. We saw

that cache coherence could make caches invisi-

ble, but what then? Leslie Lamport’s SC model

was elegant, but most real machines did not obey

it. These multiprocessors exposed write buffers,

out-of-order execution, andwhat we now call non-

atomic stores. We instead wished to follow Ein-

stein who said, “Everything should be made as

simple as possible, but not simpler.”

A breakthrough started with a talk by Bart

Miller on software datarace detection—and

there is a lesson here about how attending talks

can lead to new connections. We developed

new intuition that there might be a connection

between dataraces and the weak or relaxed

memory models of the era. Nevertheless, it took

hard thinking to make the connection both

explicit and simple: specify a system to provide

SC to data-race-free (DRF) programs. The SC for

DRF model enabled a “have your cake and eat it

too” situation. Hardware could do aggressive

reordering for performance between synchroni-

zation operations, while almost all programmers

could reason with relatively simple SC. Adve and

others subsequently used SC for DRF as the cor-

nerstone of the Java and Cþþ high-level lan-

guage memory models, and many of us still use

it when specifying memory consistency in het-

erogeneous systems with both CPUs and gen-

eral-purpose GPUs. All this from insight from a

talk plus three decades of work.

2000s LogTM Transaction Memory

In the 2000s, we were again sure that shared-

memory multiprocessors had “arrived.” It turns

out that this time we were right, but for a reason

whose timing we did not predict: the end of Den-

nard scaling causing a “right turn” to multicore

chips. We—initially Kevin Moore, David Wood,

and I—were interested in multiprocessor

programmability, now that correctness was argu-

ably under control. The prevailing programming

method coordinated threads using locks that

were known to not compose and are subject

to deadlock. For deadlock, consider a simple

method that moves an item between two data

structures by obtaining a lock first at the source

and then a second lock at the destination. If one

thread sought to move an item from A to B while

a concurrent thread sought to move it from B to

A, deadlock could occur with each thread holding

one lock and unable to get the other. Transac-

tional memory (TM) offered a potentially elegant

solution. With TM, each thread could ask that a

method be an atomic transaction and the TM

system would “make it so,” sometimes having

to abort and retry transactions. Existing TM

systems, however, allowed micro-architectural

elements (e.g., write buffer size and cache asso-

ciativity) to affect what transactions could

commit, required substantial changes to conven-

tional systems, or both.

We sought a TM solution where the micro-

architecture would not limit which transactions

could commit and required at most a modest

change to existing cache-coherent multiproces-

sors. To drive thinking on what to do, we first

developed a taxonomy, recreated in Figure 2. In

one dimension, TM systems had to detect con-

flicts among concurrent transactions, either

when a transaction sought to commit (lazy) or

earlier when reads and writes first occur (eager).

Orthogonally on a write, all TM systems must do

“version management” to keep the new value for

possible commit and the old value for possible

abort. Lazy version management puts the new

value “on the side” (e.g., in a write buffer) and
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leaves the old value “in place” (in coherent mem-

ory) until commit. Conversely, eager version

management saves the old value “on the side”

and puts the new value “in place.”

This taxonomy assisted us in developing

LogTM.8 In particular, we decided to focus on the

quadrant that modeled commercially successful

database management systems with locking con-

currency control. Consequently, LogTMcombined

eager conflict detection (using coherence) with

eager version management (a per-thread log).

LogTM—and its successor LogTM-SE12 —enabled

unbounded transactions with modest core

changes and trivial memory system changes.

While LogTM and other academic papers devel-

oped many promising ideas, and limited TM hard-

ware is supported by Intel, IBM, and recently ARM,

it is not universal. This is, in part, because,

although multicore use is now ubiquitous (e.g., in

the cloud), only a relatively few experts program

directly with thread-level parallelism. Neverthe-

less, we should take the long view, as ideas can

take time to flourish. For example, SIMD and vec-

tors developed over decades of niche successes

before their broader success with general-

purpose GPUs and the SIMT model. More gener-

ally, we recommend developing taxonomies to

structure deep thinking, recalling the “mother of

all scientific taxonomies”: Mendeleev’s periodic

table of the elements that focused efforts for

uncoveringmissing elements.

2010s System-of-a-Chip (SoC) Gables and

Accelerator-Level Parallelism (ALP)

In the 2010s, SoCs grew up to have heteroge-

neous CPUs, GPUs, dozens of accelerators, inter-

connects, coherence, virtual memory, and even

virtualization. Accelerators make specific compu-

tations faster, more predictable, andmore energy-

efficient. As a Google intern (during my 2017–2018

sabbatical), my host Albert Meixner charged that

we should make SoC design “more scientific.”

Gasp! Thus, I fell into SoCs by luck after deciding

to do anothermind-expanding sabbatical in indus-

try, puttingmyself in a position to get lucky.

To make some progress on this grandiose

charge and frame early SoC thinking, Vijay Janapa

Reddi developed a simple SoC model called

Gables2 for SoC hardware and software use cases.

Specifically, Gables models each accelerator with

a “roofline” (previously used for a whole multi-

core chip), including the important parameter of

“operational intensity” that speaks to whether

communication or computation is the bottle-

neck. George Box said, “All models are wrong;

some are useful.” The community has yet to

decide if the newly proposed Gables is useful.

Nevertheless, it has already led to the important

hypothesis that mobile SoCs, in particular—and

arguably computing, more generally—must now

deal with ALP wherein multiple accelerators are

concurrently active. Broad ALP success will

require the research community—maybe you!—

to develop better “best practices” for targeting

accelerators, managing accelerator concurrency,

choreographing inter-accelerator communica-

tion, and productively programming them.

PICK A GOOD PROBLEM
A greatly underappreciated aspect of influen-

tial research is the first step of picking a problem

from the infinite set of possible problems. This is

creative and important, but rarely discussed.

Good research problems fall at the intersection of

two criteria, “If you can do it, people will care.” and

“You cando (some of) it,” as illustrated in Figure 3.

In our experience, one should devote consid-

erable thinking and time to picking problems to

work on. One should not play Jeopardy! which is

an American TV game show in which contestants

are shown the answer and challenged to develop

the question. You may laugh, but we have seen

this in research: “I have a cool mechanism, so let

me figure out what it is good for.” In our experi-

ence, this approach rarely produces ground-

breaking and lasting research. Ask first, “What

problem am I trying to solve and why?”

Operationally, we recommend looking for

change. You can do good work without change,

Figure 2. 2006 taxonomy of hardware transactional memory

systems (adapted from the article by Moore et al.8).
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but you have to be smarter and more creative

than all that have preceded you, which is hard

for important problems. In computer architec-

ture, change arises from 1) software and appli-

cations above, e.g., exploding machine learning

and augmented reality; 2) technology changes

below, e.g., 3-D chip stacking and emerging non-

volatile memory technologies; and 3) influences

from other (sub)fields, e.g., miraculous progress

in SAT solvers and using ML to optimize

hardware.

For a concrete example, consider the work of

David Patterson, Garth Gibson, and Randy Katz

on redundant arrays of inexpen-

sive disks or RAID10 that I

observed as a graduate student.

You might think that the most

creative part of the work was tak-

ing erasure codes, applying them

to blocks, and rotating parity to

avoid bottlenecks. Although this

was creative, in our opinion, the

greatest creativity in the project

came first in recognizing the problem. Histori-

cally, the most cost-effective way to store large

data was on large washing-machine-sized disks.

When personal computers exploded into the

world, they soon adopted small disks, and the

sales volume made these disks the most cost-

effective place to store data. The problem: Can

we use small PC disks to store large data? The

problem within the problem: Without innova-

tion, an array of PC disks is too unreliable. A sin-

gle PC disk is not that reliable (the market

wanted inexpensive), and an array of these disks

will lose data in days. With this setup, the inno-

vation of RAID now seems creative but not

superhuman. The hard thinking to pick a good

problem was well rewarded with a seminal paper

with over 4000 citations and three test-of-time

awards.

We conclude this section with four other com-

ments regarding picking problems. First, spend

considerable time and energy on picking the prob-

lem. Avoid jumping to solutions too fast, as you

might solve the wrong problem. Second, seek sim-

ple ideas, especially for interfaces. In computer

architecture and systems, even simple ideas get

more complex when actually deployed. Be

proud of simple ideas, as I tout with a web page

(http://pages.cs.wisc.edu/�markhill/includes/

simple.html).Woe to those in industrywhohave to

deploy something that was already complex in the

academic paper. Third, collaborate broadly with

professional colleagues and students. It is not clear

I ever unilaterally developed an idea

that did not benefit from interac-

tions with one or more of my 160

coauthors. Don’t unduly worry

about dividing credit, as credit often

multiplies and collaboration usually

enables something worthy of

greater credit. Fourth, keep aca-

demic-industry connections strong,

as computer architecture and systems are about

influence, not intrinsic beauty. Impact and effort

seem to vary proportionally from the smaller—

talking to people at conferences and holding indus-

trial affiliate meetings—to the larger—student

internships and sabbaticals in industry (for me at

Sun, AMD, andGoogle).

THANKS AND GIVING FORWARD
I have been blessed to work with many great

people—beginning with my PhD coadvisors David

Patterson and Alan Jay Smith—and continuing

with 160 coauthors, with the biggest word cloud

font sizes in Figure 1 going to David Wood,

Daniel Sorin, Michael Swift, James Larus, and Milo

Martin. This work has occurred at three great pub-

lic universities—Michigan for undergraduate,

Berkeley for graduate, and Wisconsin where I am

faculty—with funding largely from the U.S.

National Science Foundation, most recently with

grants CCF-161782, CCF-1734706, and CNS-1815656.

As Newton said, “We can see further, because we

stand on the shoulders of giants.” For my students

and me, we have discovered that these giants

go back at least as far as 990 AD in Constantinople

(http://pages.cs.wisc.edu/�markhill/Academic/

Genealogy_Hill_Mark.pdf).

Figure 3. Pick problems at the smile.

Don’t unduly worry

about dividing credit, as

credit oftenmultiplies

and collaboration
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For this, one cannot give back, but one can—

and should—give forward. I have sought to give

forward through more than thirty years of teach-

ing, three years as department chair, and through

service in several ways, including with ACM

SIGARCH and, mostly recently, the Computing

Community Consortium (https://cra.org/ccc/).

Your opportunities and predilections may be dif-

ferent, but please give forward to honor thosewho

gave to you.

I conclude by thanking my family: wife Sue,

children Nicole and Greg, granddaughter Zey-

nep, sister Kathryn, and parents Toivo and

Maria. My strong mother Maria passed away the

morning after I received the 2019 Eckert-Mauchly

award. She learned of the award a few weeks

before, valued it, but cared more that her chil-

dren sought to live with integrity and to follow

the golden rule. May Maria rest in peace.
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