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Urban air mobility (UAM) using electrical vertical take-off and landing (eVTOL) aircraft is
an emerging way of air transportation within metropolitan areas. A key challenge for the success
of UAM is how to manage large-scale flight operations with safety guarantee in high-density,
dynamic and uncertain airspace environments in real time. To deal with these challenges, in this
paper we combine the concept of geofence and chance constraints to obtain chance-constrained
geofences under data-driven uncertainties, which can guarantee that the probability of potential
conflicts between eVTOL aircraft is bounded given a general empirical distribution. To evaluate
the chance-constrained geofences in an online fashion, Kernel Density Estimation (KDE) based
on Fast Fourier Transform (FFT) is adopted and customized to model data-driven uncertainties.
Comprehensive numerical simulations demonstrate the feasibility and efficiency of the online
evaluation of chance-constrained geofence through the algorithm of FFT-based KDE.

I. Introduction

A. Motivation
The applications of urban air mobility (UAM) are increasingly drawing great attention from many institutes such as

NASA, the Federal Aviation Administration (FAA), and airlines [1], [2]. The vision of UAM is to use revolutionary
electrical vertical take-off and landing (eVTOL) aircraft to provide efficient and on-demand air transportation service
between places previously underserved by the current aviation market. Companies such as Airbus, Boeing, Bell, Joby,
Archer, Lilium, and Aurora Flight Sciences are competing to build and test their newly designed eVTOL aircraft [3],
[4]. To well serve a significant proportion of urban transportation demand, UAM will introduce a large number of
eVTOL aircraft in the limited urban airspace [5], [6], where the environment is also highly uncertain due to inaccurate
localization with disturbances from high buildings, such as strong Global Positioning System (GPS) [7] noise and high
wind disturbance around those buildings. Therefore, a key challenge for the success of UAM is how to ensure operation
safety in high-density, dynamic and uncertain airspace environments in real time. This paper will introduce a concept
called chance-constrained Geo-fences which can guarantee that the probability of potential conflicts is bounded and low.
To efficiently evaluate the chance-constrained Geo-fences in an online fashion, a data-driven method is developed for
any general empirical distribution.

B. Related work
As numerous eVTOL aircraft are permitted to enter the airspace, the airspace will become congested, which

surpasses the capacity of the current air traffic control system. To address this issue, capable UAM Traffic Management
(UTM) will be needed to manage UAM traffic. A key component of UTM is the presence of geofences, reserving
airspace volumes as a practical alternative to strictly route-based reservations [8]. The airspace is partitioned into usable
airspace and no fly zones through the introduction of geofences. To enforce geofence boundaries, a geofence system
monitors the positions of eVTOL aircraft with respect to geofence boundaries, determines whether the eVTOL aircraft
is violating the geofence, and responds according to the status of geofence violation. Currently, many researches on
UAM are proposed based on structured airspace, where static geofences are specified and the eVTOL aircraft need to
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follow the fixed routes inside the geofences for conservative safety concerns [9]. This is a safe way but not efficient for
UAM because the traffic density of UAM will be quite high. To increase the airspace’s capacity, the FAA and NASA
are investigating the free-flight airspace framework with trajectory-based operations [10], which can handle higher air
traffic density even in uncertain environments [11]. Without the protection of structured airway, aircraft need to rely
on accurate localization provided by navigation technologies such as Automatic Dependence Surveillance-Broadcast
(ADSB) and GPS [7]. Thus the location uncertainty or error of an aircraft is a critical issue to ensure safety.

Ideally, for safe and reliable flying, the requirement of collision avoidance should be realized. However, various kinds
of uncertainty may be present in realistic scenarios, which may highly increase the chance of infeasibility for operations
based on the current collision avoidance system. Under this circumstance, it is impossible to find a guaranteed-feasible
solution. Alternatively, we can switch to identify trajectories which ensure the probability of conflict occurrence is
within a prescribed bound if following such trajectories [12]. Thus, accounting for the knowledge of uncertainty in path
planning is regarded as an essential step to achieve safety assurance. In [13], a probabilistic map is constructed using a
likelihood function and a safe UAV path is then generated by solving a probability minimization problem. In [14], [15],
the sampling-based Monte Carlo method is accurate enough to estimate conflicts between aircraft stochastically, but it
sacrifices computation efficiency since it takes much computation time to figure out the probability of conflict occurrence.
To achieve the balance between planning conservatism and efficiency, the stochastic constraints can be reformulated
as tightened deterministic constraints through chance constraints formulation [16], [17]. Blackmore et al. [18], [19]
proposed chance-constrained programming model to consider various uncertainties for conflict avoidance problem, but
such formulations are often computationally expensive, which may scale poorly as the dimensions of configuration
spaces increase. Wu et al. [20] present a chance-constrained algorithm CCRRT which uses sampling-based methods to
identify paths for linear systems subject to uncertainty. Sampling-based algorithms like CCRRT scale well because they
perform trajectory-wise constraint checking [21]. However, all the aforementioned works adopt the assumption that the
uncertainty obeys Gaussian distribution, which may not be consistent with the engineering practice [22], [23].

C. Contributions and structure
In this paper, we will combine the concept of geofence and chance constraints to present a way of online data-driven

evaluation to capture chance-constrained geofence. On the one hand, the captured chance-constrained geofence can
guarantee that without violating the geofence, the probability of potential conflicts between eVTOL aircraft in UAM
is within a bound. Compared with the existing works which evaluate chance constraints by assuming Gaussian
uncertainties, our proposed method applies to general data-driven distributions, not limited to Gaussian distributions.
On the other hand, the data-driven distribution is based on online sampled data points of location, so the distribution is
also updating with more data samples coming in. This poses a great challenge to deal with data-driven distributions in
real time. Through the implementation of Fast Fourier Transform (FFT) algorithm to speed up the computation of
Kernel Density Estimation (KDE), the proposed method can reduce time-consuming evaluations and thus make real
time computation feasible.

The major contributions of this paper are highlighted as follows:
1) To model high-dimensional data-driven distributions through online data samplings, FFT is encoded into traditional

KDE to greatly accelerate the computation. Although most kernel estimators can use KDE to approximate probability
density function (PDF) of the data-driven distribution, the direct approach to evaluate KDE can be computationally
expensive, especially when the number of data samplings becomes very large [24]. Instead, we present an alternative
way to replace performing kernel evaluation on data points by that on grids. Further, FFT can be implemented to reduce
computational complexity owing to the structure of discrete convolution of kernel evaluation. Numerical study shows
this indirect approach can dramatically increase the speed of computation.

2) According to the results of KDE evaluation, a search method is developed to identify the chance-constrained
geofence for the data-driven distributions, not limited to Gaussian distributions, at any confidence level. The identification
of chance-constrained geofence can help translate the data-driven uncertainty into deterministic constraints for the path
planning of eVTOL aircraft in UAM applications. Numerical study demonstrates the evaluation of chance-constrained
geofence can be achieved in an online fashion.

The content of the paper is organized as follows: in Section II, we are going to formally set up the problem and
define the chance-constrained geofences; in Section III, we will develop an online computational algorithm to capture
the chance-constrained geofences; in Section IV, we will conduct some numerical simulations to verify the feasibility
and efficiency of the proposed algorithm; last but not least, we will conclude this paper in Section V.
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II. Problem Formulation
For an eVTOL in UAM, its location 𝒙𝑡 at a particular time 𝑡 may be stochastic, due to uncertainty arising from the

inaccurate sensor of self-position or environmental disturbance like wind. We can assume that the location 𝒙𝑡 obeys a
data-driven distribution.

To operate safely in a dynamic environment, each eVTOL should try to avoid conflicts with other eVTOLs in the
system. This can be achieved by introducing the following constraints

𝒙𝑡 ∉ X𝑡 ∀𝑡

where X𝑡 :=
( 𝑛⋃
𝑖=1

X𝑡𝑖

) (1)

In the above constraints, we use X𝑡𝑖 to denote the area in which aircraft 𝑖 may be located at time 𝑡 due to aircraft location
uncertainty, where 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑛 is the total number of all the other aircraft. We call such a region as the
possible region for all the other aircraft 𝑖 at time 𝑡. Note that, from the perspective of a particular aircraft, all the other
aircraft in the system actually can be viewed as obstacles to avoid. The time dependence of X𝑡𝑖 allows the inclusion of
either static or dynamic obstacles. In this paper, for a particular aircraft in the system, all the other aircraft need to be
treated as dynamic ones.

From the perspective of a particular aircraft, the possible region of another aircraft 𝑖 at time step 𝑡 can be modeled by
the following equation

X𝑡𝑖 = {𝒙 ∈ R𝑑 | ∥𝒙 − 𝒄𝑡𝑖 ∥ ≤ 𝑟𝑖} ∀ 𝑡, 𝑖. (2)

where 𝑟𝑖 is the minimum safety range for the particular aircraft to stay away from the 𝑖th aircraft to ensure safety. In
addition, 𝒄𝑡𝑖 represents the position of the 𝑖th aircraft at time 𝑡, which obeys the data-driven distribution.

We hope that the probability of collision between any two aircraft in the system at any time is less than a certain
threshold, i.e.,

Pr(collision) ≤ 1 − 𝛼 (3)

where 𝛼 is the confidence level of the data-driven distribution.
We aim to quantify the probability of an aircraft to avoid conflicts with other aircraft considering location uncertainty

as presented in eq. (3). To realize this goal, we can define the chance-constrained geofence D as
Definition (Chance-Constrained Geofence) A set D ⊂ R𝑑 that satisfies

Pr(𝑿 ∈ D) ≥ 𝛼 (4)

is called a chance-constrained geofence at confidence level 𝛼 of a random variable 𝑿 which obeys a data-driven
distribution.

Accordingly, we can convert the possible region X𝑡𝑖 introduced in eq. (2) into a chance-constrained geofence D at
a given confidence level 𝛼. The task of this paper is to quantitatively identify the chance-constrained geofence for a
data-driven distribution at any confidence level 𝛼.

III. Online Evaluation of Chance-Constrained Geofence
In this section, we are going to develop an online algorithm to capture the chance-constrained geofence defined in

last section. Kernel Density Estimation (KDE) is a classical way to handle data-driven distributions, we can directly
perform evaluations to figure out KDE values based on all samples. However, a significant issue that arises in the
practice of traditional KDE is its computational intensity, the direct KDE approach runs slowly because it needs to
have a kernel on every data point. Alternatively, we will present a way to speed up the computation of KDE at the
cost of replacing kernel estimators by their approximations. The essential idea behind the operation is to perform
kernel estimators on the grid points instead of the sampled data points. Further, the algorithm of FFT can be integrated
to speed up the computation of discrete convolution to evaluate KDE values. This proposed method applies to any
𝑑-dimensional data-driven distributions.
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A. Traditional kernel density estimator
A traditional method of KDE can be formulated through placing a kernel function 𝐾 (·) on every data point 𝑥𝑖

𝑓 (𝑥) = 1
𝑁

𝑁∑︁
𝑖=1

𝐾 (𝑥 − 𝑥𝑖) (5)

where 𝑁 represents the number of data points.
Taking the bandwidth ℎ of 𝑓 (𝑥) into consideration and assigning different weights 𝑤𝑖 to different data points 𝑥𝑖 ,

eq. (5) can be rewritten as

𝑓 (𝑥) = 1
ℎ

𝑁∑︁
𝑖=1

𝑤𝑖𝐾

( 𝑥 − 𝑥𝑖
ℎ

)
(6)

where
𝑁∑
𝑖=1
𝑤𝑖 = 1.

The discretized form of traditional KDE can be obtained through evaluating the values of KDE over a mesh
composed of 𝑀 grid points 𝑔1, . . . , 𝑔𝑀 in each dimension

𝑓 𝑗 =
1
ℎ

𝑁∑︁
𝑖=1

𝑤𝑖𝐾

(𝑔 𝑗 − 𝑥𝑖
ℎ

)
, 𝑗 = 1, . . . , 𝑀 (7)

An extension of eq. (6) to 𝑑-dimensional scenarios is to write

𝑓 (𝑥) = ℎ−1
𝑁∑︁
𝑖=1

𝑤𝑖𝐾

(
ℎ−1 (𝑥 − 𝑥𝑖)

)
(8)

where
𝑁∑
𝑖=1
𝑤𝑖 = 1, and 𝐾 (·) is a 𝑑-variate kernel function. Also, its discretized form can be derived as

𝑓 𝑗 = ℎ
−1

𝑁∑︁
𝑖=1

𝑤𝑖𝐾

(
ℎ−1 (𝑔 𝑗 − 𝑥𝑖)

)
, 𝑗 = 1, . . . , 𝑀 (9)

For simplicity, eq. (8) and eq. (9) can be denoted as the following form

𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖𝐾ℎ (𝑥 − 𝑥𝑖) , 𝑓 𝑗 =

𝑁∑︁
𝑖=1

𝑤𝑖𝐾ℎ

(
𝑔 𝑗 − 𝑥𝑖

)
, 𝑗 = 1, . . . , 𝑀 (10)

B. Online identification of chance-constrained geofence
The computational intensity of traditional KDE is very high. Instead of direct evaluation, we can go through 𝑁 data

points and assign weights to 𝑀 equidistant grid points [25]. To speed up the evaluation of traditional KDE, the kernel
function 𝐾 (·) performed on 𝑁 data points 𝑥𝑖 can be replaced by that on 𝑀 grid points 𝑔𝑙 .

The idea is to go through every data point and then assign weights to its neighbour grid points. We need to obtain
the grid weights 𝑐𝑙 . The weights are determined by the proportion of the volume of a hyper-cube that is enclosed by the
data point. For bi-variate kernel estimators, as shown in fig. 1, the mass associated with the data point 𝑋 is distributed
among each of the four surrounding grid points according to areas of the opposite sub-rectangles induced by the position
of the data point. By doing so, we can obtain the approximation of eq. (9)

𝑓 𝑗 =

𝑀∑︁
𝑙=1

𝐾ℎ

(
𝑔 𝑗 − 𝑔𝑙

)
𝑐𝑙 , 𝑗 = 1, . . . , 𝑀 (11)

where 𝑐𝑙 , 𝑙 = 1, . . . , 𝑀 are the grid weights assigned to every grid point 𝑔𝑙 , which is determined by the amount of data
points 𝑥𝑖 in the neighbourhood of 𝑔𝑙 . In this way, the number of kernel evaluations is only 𝑂 (𝑀), which greatly saves
running time, especially for large samples of data points.
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Further, let 𝐿 = 𝑀 − 1 and then eq. (11) can be reformulated as

𝑓 𝑗 =

𝐿∑︁
𝑙=−𝐿

𝑐 𝑗−𝑙𝑘𝑙 , 𝑗 = 1, . . . , 𝑀 (12)

where
𝑘𝑙 = 𝐾ℎ

(
𝑔 𝑗 − 𝑔𝑙

)
(13)

Note that 𝑐𝑙 = 0 for 𝑙 not in the index set {1, . . . , 𝑀}. By the symmetry of the kernel function 𝐾ℎ (·), it’s only required
to figure out 𝑘𝑙 for 𝑙 = 0, 1, . . . , 𝐿 where 𝐿 = 𝑀 − 1. Therefore, it is clear that no more than 𝑀 kernel evaluations
are required to obtain 𝑘𝑙 . This is because there are only 𝑀 distinct differences among different grid points. Indeed,
eq. (12) can be viewed as the discrete convolution of 𝑐𝑙 and 𝑘𝑙 . This means the approximation we use has a discrete
convolution structure which can be computed quickly using FFT. Let 𝐶 and 𝐾 be the discrete Fourier transform of
𝑐𝑙 and 𝑘𝑙 respectively using FFT, and let 𝐹 be the element-wise product of 𝐶 and 𝐾. Then the values of KDE 𝑓 𝑗 can
be extracted from the inverse FFT of 𝐹. By doing so, we can obtain KDE which approximates PDF function of the
data-driven distribution in real time.

There are two roles that grid points play in this process: the KDE function is evaluated on grid points; grid weights
𝑐𝑙 are assigned to every grid point.

After obtaining KDE values, we can identify chance-constrained geofence at any confidence level 𝛼 for the
data-driven distribution. Without violating the identified geofence, the probability of potential conflicts between eVTOL
aircraft in UAM is within the bound 1 − 𝛼.

Fig. 1 Diagram of assigning weights to grid points [24]

C. Online evaluation algorithm
The details of the proposed algorithm are stated in Algorithm 1.
In the pseudo codes, 𝑁 is the number of sampled data points. 𝑀 is the number of grid points in each dimension.

𝛼 represents the confidence level of the data-driven distribution. 𝜖 represents the error of threshold. In Line 9 and
10, FFT is employed to speed up the computation of discrete convolution to obtain KDE values. In Line 20, the
chance-constrained geofence at the confidence level 𝛼 of the data-driven distribution can be returned if successfully
identified.

In summary, we present an alternative way to replace performing kernel evaluation on data points by that on grids.
Further, FFT can be implemented to reduce computational complexity owing to the structure of discrete convolution of
kernel evaluation. Based on the results of KDE evaluation, we propose an algorithm of online data-driven evaluation
to capture chance-constrained geofence. The identification of chance-constrained geofence can help translate the
data-driven uncertainty into deterministic constraints for the path planning of eVTOL aircraft in UAM applications.
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Algorithm 1 Online Evaluation of Chance-Constrained Geofence
1: function DataGenerate(𝑁)
2: generate 𝑁 data points randomly
3: return 𝑑𝑎𝑡𝑎
4:
5: function KernelDensityEstimator(𝑑𝑎𝑡𝑎, 𝑀 , 𝛼)
6: mesh with 𝑀 grid points in each dimension
7: obtain grid weights 𝑐𝑙 according to 𝑑𝑎𝑡𝑎
8: evaluate kernel functions 𝑘𝑙 on grids
9: 𝐶 = FFT(𝑐𝑙); 𝐾 = FFT(𝑘𝑙)

10: 𝑘𝑑𝑒 = iFFT(𝐶 ∗ 𝐾)
11: return 𝑘𝑑𝑒
12:
13: function GeofenceSearch(𝑘𝑑𝑒, 𝛼)
14: 𝑙𝑜𝑤 = min(𝑘𝑑𝑒); ℎ𝑖𝑔ℎ = max(𝑘𝑑𝑒)
15: while 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ do
16: 𝑚𝑖𝑑 = (𝑙𝑜𝑤 + ℎ𝑖𝑔ℎ)/2
17: 𝑔𝑒𝑜 𝑓 𝑒𝑛𝑐𝑒 = (𝑘𝑑𝑒 > 𝑚𝑖𝑑)
18: 𝑃𝑟 = sum(𝑔𝑒𝑜 𝑓 𝑒𝑛𝑐𝑒) / sum(𝑘𝑑𝑒)
19: if | 𝑃𝑟 − 𝛼 | < 𝜖 then
20: return 𝑔𝑒𝑜 𝑓 𝑒𝑛𝑐𝑒
21: else
22: if 𝑃𝑟 < 𝛼 then
23: ℎ𝑖𝑔ℎ = 𝑚𝑖𝑑
24: else
25: 𝑙𝑜𝑤 = 𝑚𝑖𝑑
26: return 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

IV. Numerical Study

A. Test settings
In this section, we are going to capture the chance-constrained geofence of a given bi-modal distribution using

the algorithm of Online Evaluation of Chance-Constrained Geofence. Numerous data points are sampled obeying
the bi-modal distribution. There are several crucial parameters which can impact the performance of the proposed
algorithm: the number of data points 𝑁 , the number of grid points in each dimension 𝑀, and the confidence level 𝛼.
The tests were implemented in Python 3.8 and on an Intel(R) Core(TM) i5-8400T 1.70GHz PC with 8GB RAM.

B. Impact of confidence levels
In this part, tests are conducted under three different confidence levels: 𝛼 = 80%, 𝛼 = 90%, and 𝛼 = 95%. The

number of data points 𝑁 = 104 and grid points 𝑀 = 128 ∗ 128.

1) Confidence level 𝛼 = 80%
The chance-constrained geofences obtained by both FFT-based KDE and traditional KDE are displayed in fig. 2.
For FFT-based KDE, the ratio of the number of the data points bounded by the geofence to that of all the generated

data points is 80.7%. For traditional KDE, the ratio is 81.6%. This means both methods can guarantee that without
violating the geofence, the probability of conflicts will not exceed 𝛼 = 20%, and the geofence obtained by FFT-based
KDE is tighter than traditional KDE.

In addition, for FFT-based KDE, the ratio of the number of cells bounded by the geofence to the total number of
cells is 14.4%, while the ratio for traditional KDE is 15.2%. This also demonstrates the tightness of online evaluation of
chance-constrained geofence through FFT-based KDE.

The Jaccard score compares members for two sets to see which members are shared and which are distinct. It’s a
measure of similarity for the two sets of data, with a range from 0% to 100%. The higher the percentage, the more
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similar the two populations. Formally, for any two sets 𝐴 and 𝐵, the Jaccard score is defined as

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| (14)

where | · | is the cardinality of a set. The Jaccard score between the geofence obtained by FFT-based KDE and by
traditional KDE is 94.1%. This illustrates that the chance-constrained geofences identified by both methods are almost
the same.

Fig. 2 Confidence level = 80%

2) Confidence level 𝛼 = 90%
The chance-constrained geofences obtained by both FFT-based KDE and traditional KDE are displayed in fig. 3.
For FFT-based KDE, the ratio of the number of the data points bounded by the geofence to that of all the generated

data points is 91.1%. For traditional KDE, the ratio is 91.3%. Thus, both methods can ensure that following the
identified geofence lead to the conflict probability not exceeding 10%.

Also, for FFT-based KDE, the ratio of the number of cells bounded by the geofence to the total number of cells is
20.4%, while the ratio for traditional KDE is 21.3%. The geofence obtained by traditional KDE is more conservative
than FFT-based KDE. Compared with confidence level 𝛼 = 80% in 1), the number of cells obtained from confidence
level 𝛼 = 90% becomes larger to cover more sampled data points.

The Jaccard score between the geofence obtained by FFT-based KDE and traditional KDE is 95.2%, indicating the
overlapping part of two geofences is very large.

3) Confidence level 𝛼 = 95%
The chance-constrained geofences obtained by both FFT-based KDE and traditional KDE are displayed in fig. 4.
For FFT-based KDE, the ratio of the number of the data points bounded by the geofence to that of all the generated

data points is 95.6%. For traditional KDE, the ratio is 96.1%. This ensures that either method can provide an accurate
bound for flying safety.

In addition, for FFT-based KDE, the ratio of the number of cells bounded by the geofence to the total number of
cells is 26.0%, while the ratio for traditional KDE is 26.9%, which shows FFT-based KDE provides a tighter bound.

Also, the Jaccard score between the geofence obtained by FFT-based KDE and by traditional KDE is 95.6%.

4) Confidence level 𝛼 = 99.9999%
In real applications, for the safety guarantee of aviation, the confidence level 𝛼 ≥ 99.9999%. The number of data

points is still 𝑁 = 104, the number of grid points in each dimension is still 𝑀 = 128. The chance-constrained geofences
obtained by both FFT-based KDE and traditional KDE are displayed in fig. 5.

For FFT-based KDE, the ratio of the number of the data points bounded by the geofence to that of all the generated
data points is 100%. In other words, all the generated data points have been bounded by the established geofence. For
traditional KDE, as shown in fig. 5, the established geofence is more conservative than FFT-based KDE and therefore it
can also bound all the generated data points.
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Fig. 3 Confidence level = 90%

Fig. 4 Confidence level = 95%

In addition, about 63.7% of the total cells are bounded by the geofence obtained through FFT-based KDE. For
traditional KDE, the ratio is 72.3%. This result is consistent with the observation that the area of the geofence from
FFT-based KDE is smaller than that of traditional KDE.

Also, the Jaccard score between the geofence obtained by FFT-based KDE and by traditional KDE is 87.9%.
The comparisons between two methods are summarized in Table 1.

C. Evaluation time comparison in terms of data points 𝑁
In this part, we are going to make a comparison in terms of the evaluation time of online evaluation of chance-

constrained geofence between FFT-based KDE and traditional KDE, with respect to the increasing number of data
points 𝑁 . The number of data points 𝑁 ranges from 103 to 106. The number of grid points 𝑀 in each dimension is fixed
to be 128, and the confidence level 𝛼 is fixed to be 95%.

As illustrated in fig. 6, FFT-based KDE greatly outperforms the traditional one in terms of the evaluation time. This
demonstrates that the proposed algorithm of online evaluation of chance-constrained geofence using FFT-based KDE
can run in an online fashion.
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Fig. 5 Confidence level = 99.9999%

Table 1 Method comparisons

Confidence Level Method Ratio of Point Ratio of Area Jaccard Score

𝛼 = 80%
FFT-based 80.7% 14.4%

94.1%
Traditional 81.6% 15.2%

𝛼 = 90%
FFT-based 91.1% 20.4%

95.2%
Traditional 91.3% 21.3%

𝛼 = 95%
FFT-based 95.6% 26.0%

95.6%
Traditional 96.1% 26.9%

𝛼 = 99.9999%
FFT-based 100% 63.7%

87.9%
Traditional 100% 72.3%

Fig. 6 Evaluation time comparison

V. Conclusions
How to ensure operation safety in high-density, dynamic and uncertain airspace environments in real time is a key

challenge for the success of UAM. This paper introduces a concept called chance-constrained Geo-fences that can
guarantee that the probability of potential conflicts is bounded and low. To efficiently evaluate the chance-constrained
Geo-fences in an online fashion, a data-driven method is developed for any general empirical distribution.

In specific, we present an alternative way for kDE method to replace performing kernel evaluation on data points
by that on grids. Further, FFT can be implemented to reduce computational complexity owing to the structure of
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discrete convolution of kernel evaluation. Numerical study shows this indirect approach can dramatically increase
the speed of computation. Based on the results of KDE evaluation, we propose an algorithm of online data-driven
evaluation to capture chance-constrained geofence. The identification of chance-constrained geofence can help translate
the data-driven uncertainty into deterministic constraints for the path planning of eVTOL aircraft in UAM applications.
Numerical study demonstrates the evaluation of chance-constrained geofence can be achieved in an online fashion.

The chance-constrained geofence identified in this paper is not convex, which brings difficulty to the path planning
of multi-agent systems in real applications. In the future, we are going to formulate a optimization-driven problem
whose solution can provide a convex approximation for the chance-constrained geofence evaluated in this paper.
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