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If gravitational perturbations are quantized into gravitons in analogy with the electromagnetic
field and photons, the resulting graviton interactions should lead to an entangling interaction be-
tween massive objects. We suggest a test of this prediction. To do this, we introduce the concept
of interactive quantum information sensing. This novel sensing protocol is tailored to provable ver-
ification of weak dynamical entanglement generation between a pair of systems. We show that this
protocol is highly robust to typical thermal noise sources. The sensitivity can moreover be increased
both using an initial thermal state and/or an initial phase of entangling via a non-gravitational inter-
action. We outline a concrete implementation testing the ability of the gravitational field to generate
entanglement between an atomic interferometer and mechanical oscillator. Preliminary numerical
estimates suggest that near-term devices could feasibly be used to perform the experiment.

I. INTRODUCTION

If a particle is in a superposition of two locations, will
its gravitational field also be in a superposition, and can
this field generate entanglement with another system?
This foundational question [1, 2] has received consider-
able attention [3-13]. Proposed experimental tests to
detect entanglement due to gravity based on Bell tests
(or more generally, entanglement witnesses [14, 15]) re-
quire performing measurements on both subsystems and
are challenging in practice. As a result, there is still no
direct experimental evidence as to whether gravitational
interactions generate entanglement. Here, we propose
a test that only requires observing a single subsystem
[16-19]. We show that, if an interaction (such as grav-
ity) between two systems can cause both decoherence
(collapse) and recoherence (revival) of a subsystem, then
for restricted classes of systems the interaction is neces-
sarily capable of generating entanglement. We propose
a concrete implementation based on atom interferome-
try [20-23], in which an atom in a superpositon of be-
ing in one of two interferometer arms interacts with a
low-frequency mechanical resonator [24, 25]; the signal
for entanglement-generation is a collapse and revival of
the atomic interference fringes due to the periodic mo-
tion of the resonator. The experiment does not require
preparing a non-classical state of the oscillator and can
in fact be enhanced by placing the oscillator in a thermal
state, which appears to make this experiment feasible
with near-term devices.

The relation of such an experiment to the quantiza-
tion gravity is a subject of intense current study [26-29].
These experiments operate in a regime where the energy
density (or equivalently, spacetime curvature), is far be-
low the Planck scale p < mp1/£3) ~ 10'?3 eV /cm®. Thus
the non-linearity of the gravitational interaction is very
weak, and one can treat the metric g,, as a linear per-
turbation around flat spacetime. In this limit, one can
quantize the gravitational perturbations (“gravitons”) in

exact analogy with quantum electrodynamics; graviton
exchange generates a two-body Newton potential opera-
tor
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between a pair of masses, just as photons generate the
Coulomb potential [30-35]. We review some standard
demonstrations of this in appendix A. In equation (1),
12 are the position operators on a pair of masses,
and thus this interaction can generate entanglement.
However, there are dissenting opinions [4, 36-38] about
whether gravity should be quantized in this way, and
indeed one can produce models where classical gravita-
tional interactions can arise but without generating en-
tanglement [39-42], providing substantial motivation to
perform tests of (1).

The ability to test such a weak entanglement signal re-
lies entirely on our central technical result, a novel sens-
ing protocol which we refer to as interactive quantum
information sensing. This is a detection scheme tailored
specifically to the verification of weak dynamical entan-
glement generation. The traditional methods to detect
entanglement in bipartite systems Hy ® Hp use non-
local measurements [14, 15], and can be very difficult
in practice with noisy systems and weak entanglement.
However, in the past two decades, more sophisticated
methods have been developed to address these types of
problems [43, 44]. We suggest here a new protocol which
relies on time-dependent measurements on a single sub-
system. Within standard quantum mechanics, system A
will decohere—evolve from a pure to mixed state—if it
becomes entangled with another system B which is not
measured [16-19]. This loss of coherence can be observed
via an interference measurement on A alone. Simple de-
coherence could be explained by entanglement but also
by, for example, random classical noise [45]. However,
if the same interaction can cause both decoherence and
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FIG. 1. Implementation of the basic protocol using an atom interferometer and a suspended pendulum (see Section VI). A
trapped atom (labeled A) is prepared some distance L away from a mechanical resonator (B, here pictured as a pendulum).
The atom is then put into a superposition of two different locations separated by ¢, effecting a Hadamard gate H. This
generates a state-dependent force between the atoms and resonator, leading to motion in opposite directions for some time At.
Finally, the atom state is recombined using the inverse Hadamard gate and measured to check for decoherence caused by the
atom-mechanical interaction. When the resonator undergoes a complete period of motion, its state no longer depends upon

the atoms and coherence is recovered for the interferometer.

recoherence of A, in a manner controlled by B, then for
certain classes of systems we prove that the interaction is
necessarily capable of generating entanglement between
subsystems A and B. This protocol provides an indi-
rect test of the quantum communication capabilities of
the two systems, and is a limited probe of the family
of quantum channels associated with the interaction be-
tween the two systems. The interplay between the in-
formation theoretic channel properties and the physical
interaction provides our suggested nomenclature.

We outline the interactive sensing protocol in sections
IT and ITI. We find the remarkable result that using an ini-
tial state at high temperature can increase the sensitivity
of the protocol, because it can increase the rate of en-
tanglement generation and lead to a thermally-enhanced
collapse and revival signal. In section IV we demonstrate
that this conclusion is robust to typical sources of noise,
essentially because the test does not involve producing
large superpositions of the non-observed subsystem. In
section V we show how to further enhance the protocol
using pre-entangled initial conditions. Finally, we out-
line an experimental realization with gravitational entan-
glement generation between an atom interferometer and
a mechanical oscillator in section VI, before concluding
with a discussion of implications and loopholes in section
VII.

II. COLLAPSE AND REVIVAL DYNAMICS

To begin, we illustrate the basic idea of the collapse-
and-revival dynamics with an example. The setup is sim-
ilar to electron spin echo envelope modulation [46, 47]
and the cavity QED experiments of Haroche et al. [48].
Consider an harmonic oscillator B coupled to a two-state
system A through the Hamiltonian

H=wa'a+ g(a+a')o.. (2)

In section VI we give an implementation of this Hamil-
tonian where the oscillator B is a mechanical resonator,
the two-state system A corresponds to an atom located
in one of two spatial locations, and g < w is set by the
atom-oscillator gravitational interaction (1), so g is pro-
portional to Newton’s constant G . The essential idea
is to do an interferometry measurement on the two-state
system A (the “control”) in the presence of system B
(the “target”). The key is the dynamical response of the
target system B to a superposition of A.

To understand the entanglement dynamics generated
by (2), it is useful to note that the time evolution oper-
ator can be re-written

U(t) = e "t = DT (5,0) e ™" D (5,0)  (3)

up to an overall phase, where
D(«a) = exp {oza‘L —a*a} (4)

is the usual displacement operator.! Here and through-
out, we will use the dimensionless quantity

A %. (5)

This is the length, measured in units of the zero-point
length x, that the oscillator equilibrium is displaced un-
der the force from the atom. This ratio will set the scale
of all observables considered in this paper.

Observing the collapse-and-revival can be done with a
typical interferometric measurement. Consider starting
the full system in its decoupled ground state |0) , ®10) 5.
The interferometry experiment then proceeds by per-

1 To see this, note that Dt (a)afaD(a) = |a + a|? and expand the

free evolution operator e~watat in the middle of (3).
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forming a Hadamard gate (or any other beamsplitter{op-
eration) on the two-state system A, [0) — (|0) + 1)) /4
evolving the joint system for some time ft, performmg

the inverse Hadamard gate to recombine the two-levél-...

system, and then measuring its population. Mathemati-
cally, this proceeds as follows:
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erferometric visibility V' =
evolution operator (3), we have
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2 6 This is easy to show by working with explicit compongnts

Une, [0410)g+11)al=0)p 8 (6) in the o, basis, where o_ = |1) {8}, With an oscilfator

V2 initially in the ground state, this givés~-._¢..-*"
Hi 0)p +1-0)p 10)p — |=0)p 2
— 10— o= (o (mjw)) = (0-(0)) e, (o_(2m/w)) = (0_(0)).

Here, the conditionally-evolved states of the oscillator are
simply coherent states

|£6) 5 = D (£A(e” ™" — 1)) |0). (7)
If we now measure the two-state system A, we find for
example that the probability of being in the |0) state is

11 1
5 +5Re(d] =)=

Pa(0) = 5

<1 + 678/\2 sinQ(wt/Q)) )
(3)
We see that the interference term is reduced, with a pe-
riod set by the oscillator frequency w. In particular, at
half-period we have a maximum reduction of the phase
contrast, and after a full period the contrast is completely
restored, as in Fig. 2.

Before moving on, we mention for later use an alter-
native calculation of the same effect. Consider the Pauli
lowering operator o_ = (0, — i0y)/2 on the two-level
system. The expectation value (o_(t)) tracks the loss of

(10)
Here we see again the loss of phase contrast at half period
followed by the revival at a full period.

Up to this point, we have assumed that the oscilla-
tor was initialized in its ground state |0). In a realistic
implementation—particularly one where the oscillator is
a massive mechanical object—the oscillator will instead
start in a mixed state, such as a thermal state, due to
its coupling to an environment. Although one may be
concerned that this would destroy the revival of coher-
ence in the atom, it turns out that not only does the
revival persist, but in fact the relative contrast between
decoherence and revival is enhanced so long as the ther-
malization time scale remains very long. That the revival
persists is a consequence of the harmonic potential: after
a full-period, the state of the oscillator must return to its
initial condition.

To see this, consider first the oscillator initialized to an

3 Ufree (At)




arbitrary coherent state |«). Using (9), we have

(alo_(t)|a) = e~2Ma"(1=eD—a(i—e)]

(11)

« 678)\2 sin? (wt/2) <O'_ (O)> )

We see the complete revival after a full period, while
at half period we now pick up a phase involving the
initial oscillator momentum p, = «a + o*. To obtain
the thermal-state result, one can now average over the
coherent states (i.e. use the oscillator density matrix
Pth = fd2a6_|a|2/ﬁ/(7rﬁ) |a) (a|, with 7 the thermal
phonon occupancy). The result for the qubit visibility
is

Vin(t) = exp [—8A%(2n + 1) sin®*(wt/2)] . (12)

In particular, we have Vi, (27/w) = 1, showing a full re-
vival of the qubit coherence after a full oscillator period.
On the other hand, at half-period, we have Vi (7/w) =
exp [-8A% (27 + 1)], an enhancement to the loss of vis-
ibility by a factor of . Thus, starting with a thermal
state increases the contrast between the ‘dip’ of coher-
ence halfway through oscillation and the recovery at full
oscillation. The experiment is easier with a hot oscilla-
tor.

III. REVIVAL VERIFIES ENTANGLEMENT
GENERATION

As this example clearly shows, entanglement genera-
tion between two systems A and B can cause periodic
collapse and revival of A’s wavefunction. The crucial
question is then: does observation of this collapse and
revival mecessarily require entanglement generation be-
tween A and B?7 Our central result says that the answer
is yes, under some particular assumptions. We charac-
terize this with a theorem:

Theorem 1 Let L be a channel on Hq ® Hp, where H 4
is a two-state system and Hp is arbitrary. Assume that

(a) The channel L generates time evolution, in a man-
ner consistent with time translation invariance,
thus obeying a semigroup composition law L4 =
Ltﬂt/Lt/ﬂtU f01” all t < t < t”,

(b) The two-level subsystem Ha has its populations
preserved under the time evolution, o,(t) = 0,(0),
and

(¢) L is a separable channel [{9]: all of its Krauss
operators are simple products. In particular, this
means that any initial separable (non-entangled)
state evolves to a separable state: p(t) = L[p(0)] is
separable for all separable initial states p(0).

Then the visibility V (t) = | (o_(t)) | is a monotonic func-
tion of time.

Here, we have modeled the time evolution of the A-
B system as a quantum channel L, a map on density
matrices p(t) = L¢[p(0)]. For example, within standard
quantum mechanics, the unitary evolution of the universe
(A, B and their environment C, including the experimen-
talist) generates such a channel for the reduced A — B
evolution. Suppose that we can experimentally convince
ourselves that time-translation invariance in the form (a)
and population condition (b) hold. Then the theorem
says that if L cannot generate entanglement (c), then
the only possible evolution for the qubit A is to have its
interferometric visibility decay monotonically. Thus if we
observe non-monotonic visibility like the oscillatory sig-
nal described above, we can conclude that the channel
must be capable of generating entanglement.

We note that non-entangling channels still allow for
non-trivial interactions. For example, semiclassical grav-
ity G, = 87 (T,) (appropriately completed by a mod-
ified version of the Schrédinger equation) is of this form
[5]. On the other hand, the graviton model will produce
an entangling channel.

We now give a proof of this theorem. By assumption
(a), there exists a generator £ of L; of Lindblad form
[50, 51]:

p=_Lp=—ilH,pl—> 7 {EJEjPJrPE}Ej —2E;pE]|.
J

(13)
These Lindblad operators E; are highly constrained by
the separability assumption, because they cannot be used
to generate A — B entanglement. To make this precise,
we write the channel in its Krauss representation L[p] =
> >0 Lijj-. Expanding for small times and comparing
to (13), one finds that the Krauss operators L; take the
form, to lowest order in dt,

Lo=1—iHdt+Kdt, L;=E;Vdt, K = —% > ElE;.
§>0

(14)
See, for example, chapter 3 of [52]. Now we invoke the
separability criterion (c), which says that the Krauss op-
erators for j > 0 take the form of simple product opera-
tors, i.e. E; = A; ® B; [49]. Furthermore, the separabil-
ity of Lo to order dt means that Ly = (1 + Aodt) @ (1 +
Bydt) for some Ag, By, and this can only be satisfied if
both H and E;Ej can be written as sums of operators
acting either on H 4 or Hp. This in turn requires that
for each j > 0, either A;Aj =14 or B;Bj = 1p. Finally,
we impose the requirement (b) that the atom popula-
tions are invariant. This means that ¢, = 0. The only
possible non-trivial interaction term which satisfies these
requirements is £, = 0, ® B, with B any operator on
Hpg.

We are then left with the the very simple form of the



Lindblad generator:

Lp=—y [BTBp + pB'B — 2BJZ[)O'ZBT] +La+Lp.

(15)
Here £4(py are Lindblad operators (including Hamilto-
nians) acting only on H,(p), and L4(0.) = 0. With
this result for the channel’s structure, we can com-
pute the time derivative of the interferometric visibility
V(t) = |{o-(t))|. Since [H,o,] = 0, the most general
qubit Hamiltonian is a sum of o, and the identity. We
thus have, in the Heisenberg picture,

<d2t> = —i([H,0_]) +~ [(Elo_E.) — % <{E;(Ez,07}>
= 2(—iwy — ) (o-),
(16)

where the oscillatory term is generated by the qubit
Hamiltonian. Taking the absolute value to compute the

visibility V' = | (c_) | removes the oscillating phase and
we have
av
— = =27V, 17
o Wi (17)

so it is monotonically decreasing, as we set out to prove.

IV. EFFECTS OF NOISE DURING EVOLUTION

The sensing protocol is subject to errors caused by ran-
dom noise during the time evolution. In a typical realiza-
tion, the dominant sources of this continuous noise will
consist of thermal load on the oscillator and dephasing in
the atomic system (from, e.g., background fields and gas
weakly measuring the atomic position [18, 53]). These
sources of noise can be modeled by a Lindblad evolution
of the form

L 1
p=—ilH,p|=> §{LIL¢,p} — LipL},

(18)

K2

where the error operators are L, €
{VAyma®, /(i + 1)yma, /a0 }- The decay rates
of the oscillator and atom are ~,,,,, respectively, and
7 is the thermal phonon occupancy. This description
should be accurate for times similar to or shorter than
the damping time 1/7,,, and assuming only small
changes over time in the mechanical frequency.

It is possible to analytically solve for the atomic visi-
bility (9) in the presence of this noise, using an explicit
Ohmic heating model where the bath is taken to be an
infinite set of bosonic modes linearly coupled to the me-
chanical system. The same displacement-operator pic-
ture used in (3) generalizes to this linear bath (see ap-
pendix B). One finds that the visibility at half and full-

period evolution is given by

V(7/w) = exp[—m7,/w] exp[—8A\%(2n + 1)]

N (19)
V(27 /w) = exp[—27y, /w] exp[—8A% (27 + 1)/Q)].

Here we have assumed the mechanical damping factor
Q=w/ym > 1.

This recovers the previous result for the visibility (12),
up to an overall exponential damping from the atomic
dephasing and small correction from mechanical heating.
Neglecting atomic dephasing, the visibility at half period
is exactly the same as (12), while at full period, for @ >
1> A2, we have V(27 /w) ~ 1, i.e. we have full recovery
up to a correction at order 1/Q. Thus, with a sufficiently
high-@ oscillator, and with atomic coherence times longer
than the mechanical period v, < w, damping does not

~

pose a substantial barrier to the experiment.

Before moving on, we consider the effects of decoher-
ence from another inevitable source: blackbody radiation
of the oscillator. Here we are discussing position superpo-
sitions of the oscillator at distances of about Axy. With
the sorts of experimental parameters we suggest later,
this will be a length many orders of magnitude smaller
than a typical blackbody photon wavelength (or ambient
gas molecule’s de Broglie wavelength). Thus these in-
teractions will be incapable of efficiently decohering the
oscillator, because they are too long-wavelength to effi-
ciently measure the oscillator’s position [53].

V. PROTOCOL LINEAR IN THE WEAK
COUPLING

Our basic observable (8) is quadratic in the ratio
A = g/w, which for a weak coupling is a small dimen-
sionless number. Here we suggest a “boosted” method in
which linear sensitivity can be achieved by first prepar-
ing an entangled state of the atom-oscillator system (as
demonstrated, for example, in [54, 55]).

Let X = ¢’ /w, where g is the coupling of interest (e.g.,
gravity) and ¢’ is some other coupling. Consider per-
forming a 7 gate with the coupling Viny = (g + ¢')o.x.
This will produce an initial entanglement set by displace-
ment operators D(£(A+ X)), as in equation (9). Turning
off the non-gravitational ¢’ coupling then leads to only a
partial revival of the atomic signal at later times ¢ > 7 /w.
This leads to the visibility, for ¢ > 7 /w,

Vo(t) = exp {_8(2” +1) (/\/2 + 2\ sin? %t + A% sin? a;t)} .

(20)
A detailed calculation is given in appendix (C). For times
0 < t < m/w, the visibility is given by the previous result
(12) but with A — X+ X

The observable we are interested in is the difference in
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FIG. 3. Left: Experimental realization of the atomic system as a lattice interferometer. The lines marked “x” denote populations
that do not interfere. Right: Some example implementations with one or more mechanical masses connected rigidly. Small
black dots represent the atom. In each case, the mechanical system is restricted to oscillate along the z-axis. More masses
enable a stronger gravitational coupling. A natural limiting case would be to use a toroidal mass. In the example with a single

sphere, we have R = /L? + (£/2)? and k = 1.

visibility at half-period and full-period:

AV, = V(27 /w) — V(T fw)
~ exp[—8(2n + 1)N?](1 — 16(2n + DN X + O(\?)),
(21)

assuming A < X. We see again that using an initially
“hot” resonator increases the relative visibility. However,
here the observable is linear in the weak gravitational
coupling A\. We note that if 7 or A’ are too large, the sig-
nal will be destroyed by the overall prefactor e~8(2R+1AZ
The optimal solution is to tune the non-gravitational cou-
pling to satisfy A{,, = 1//8(27 + 1), in which case the
prefactor is order one, and the relative visibility is given
roughly by AV, ~ /8(27 + 1)A. Use of this boosted
protocol substantially improves the viability of an ex-
periment with a weak coupling g. We note that this
protocol does not violate our assumptions about time-
translation invariance in Theorem 1: once the extra ¢’
coupling is turned off, the entire system proceeds in a
time-independent fashion.

VI. EXPERIMENTAL IMPLEMENTATION
WITH ATOM INTERFEROMETRY

We now show how to apply our sensing protocol to a
test of quantum gravity. The idea is to realize the qubit
in the Hamiltonian (2) as an optical-lattice atom interfer-
ometer [23] with a hold-time 7 and splitting ¢ between the
matter wave packets. The majority of the interferometer
time sees the atoms trapped in one of two different poten-
tial wells created by the lattice. The atom position thus
becomes a two-state system with o,-eigenvalues corre-
sponding to the two locations. The mechanical oscillator
has a mass M and fundamental frequency w. Expand-
ing the Newtonian atom-oscillator potential (1), we then
have the total Hamiltonian

H =wa'a — go.(a+ ah). (22)

Here, a,a’ are oscillator operators, so the second term
represents the position-position coupling. The coupling

strength is

GNme.’EQ
—

hR @3)

where 29 = \/h/2Mw is the ground state oscillator un-
certainty, R parametrizes the distance between the os-
cillator and atom, and k is a dimensionless number of
order one which depends on the specific oscillator mass
geometry (see Fig. 3).

The information sensing protocol requires generation
of an initial state |0) + |1). This can be generated, e.g.,
by a pair of Raman pulses separated by a free evolution
time [23], by spin-dependent kicks [62], by optical lattice
techniques [63], or by rapidly splitting a single-well po-
tential to the double-well. Measuring in the o, basis at
the end of the protocol corresponds to closing the atom
interferometer and counting the atoms in the two output
ports. To implement the “boosted” protocol of section
V, we can use a number of non-gravitational interactions
to generate the initial entanglement. For example, a hy-
perfine or Rydberg atomic state could be magnetically
or optically coupled to the oscillator. Entanglement of
this type has been recently demonstrated experimentally
[54, 55].

Let us consider how we can obtain a visibility change
that is large enough to be measured. In order to observe
at least one full cycle of decay and revival, we choose
w = 27 /7 where 7 is the atom hold-time. In this case,
the visibility change is given by

2 2
AV=TONTL gy T g2
3v/20w3H, kpT/w—oo 34/2
21/4
AV;, = 24 TP g4+q) — L K
b nm 3&0371( +n) kT /w—00 \/3

(24)
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Technical challenge Examples

Possible strategies

Non-gravitational

interactions laser light

Van der Waals, stray fields, scattered

Superconducting shielding, place atoms in
waveguide [56]

Mean field shift

[57]

Parasitic atom-atom interactions
leading to inhomogeneous dephasing

Spin-echo techniques [58] (see also appendix
E), fermionic atoms (e.g., Yb-171 or 173)
59, 60]

Exponential decay of
signal

Atomic dephasing

Interleaved differential measurement, e.g. by
toggling the mass between near and far
positions [61]

Deviations from

harmonicity anharmonic perturbations

Time-dependent oscillator frequency,

Keep effective temperature below nonlinear
thresholds; change materials, mounting, or
frequency

TABLE I. Some systematic effects and other perturbations expected in a realistic implementation.

in the unboosted and boosted scheme respectively, where

o G?szpkBT
 lwth?

T / VAR,
~ -14(_ - - o
~ 104> 10 <3OOK) <1mm> (10s) '

(25)

KZ

Here we took a solid density p = 20 g/ cm3, cesium atoms
m = mgcs = 133 amu, used the four-sphere configuration
(Fig. 3) for definiteness, and maximized the coupling
g for a given splitting ¢ by choosing a sphere radius of
R, = £/(v/8). Longer atomic interrogation times 7 are
preferable. This would require a correspondingly low-
frequency oscillator, e.g. a mHz-scale torsional pendu-
lum. While 20s have been experimentally realized [23],
100 s may be a reasonable expectation for the future. Us-
ing a small matter-wave splitting £ is desirable, but sub-
ject to mechanical constraints. Choosing, e.g., £ = 1 mm,
L = 1/\/5 mm and R, = 0.35mm would leave about
0.15 mm free space between the spheres. For 7 = 100s
and T = 300K we obtain AV ~ 1071°; but for the
boosted scheme, it will be as large as AV = 7 x 107°
(see Fig. 4). At the standard quantum limit, this can be
detected with 5 — o significance by running the experi-
ment with ~ 5 x 10! atoms (see appendix D for details
on noise scaling with many atoms). Assuming that the

experiment has 107 atoms per run, and each run takes
2 minutes, this will be possible in two months total run
time.

Remarkably, this suggests that the experiment may be
feasible in the near future. A number of systematic effects
and technical issues will need to be understood. We post-
pone detailed discussion to future work, but flag some
likely issues and ways to handle them in Table I.

VII. IMPLICATIONS, LOOPHOLES, AND
CONCLUSIONS

Our interactive information sensing protocol is a novel
strategy for verification of dynamical entanglement gen-
eration. While a standard Bell-type test requires mea-
surements on both parts of a bipartite system, our proto-
col can verify entanglement generation with only single-
body measurements. Crucially, the test verifies the abil-
ity of an interaction channel to generate entanglement,
without needing to directly verify the entanglement of
the final state. However, it is important to note that this
test is subject to loopholes. Some are analogous to those
in standard Bell tests and others are particular to our
proposal. We suggest a few of these in Table II.

In our view, the most important loophole stems from
our time-translation invariance assumption, which we
used to write the atom-oscillator dynamics in Lindblad



Loophole or
pathology

Typical sources

Problematic behavior
allowed

Possible solutions

Non-gravitational
interactions between
atom and oscillator

Casimir/van der Waals
interactions

Can generate entanglement
(reproduce the full desired
signal), can generate extra
noise

Vary parameters (masses
and distance) to check
proper scaling with

V = Gymima/r law

Stationarity
assumption on bath
(and/or
experimentalist)
violated

Explicit time-dependence
introduced by
experimentalist (e.g.
spin-echo protocol);
low-frequency noise (e.g.,
gravity gradients, seismic
noise)

Violates assumption of
theorem in Sec. III. In
principle, could mimic
collapse and revival

Adjust theorem to allow for
bath relaxation timescale;
experimentally verify
Markovian nature of
oscillator noise

Non-locality

Time of interaction for
experiment is much longer
than light-crossing time
’Tint > Tcom

Allows for non-local,
hidden variable model
explaining the
entanglement (same as Bell
test)

Long baseline version?

TABLE II. Some loopholes and pathologies in our proposed test.

form (13). Non-Markovian time dependence introduced
by an experimentalist or Maxwell’s demon could, in prin-
ciple, reproduce the observed collapse and revival dy-
namics. One way to improve the situation would be to
reformulate the theorem to include some level of non-
Markovianity, for example a bath relaxation time scale.
A more robust option would be to prove experimentally
that it is simply the Markovian thermalizing channel act-
ing on the mechanical system. Methods for this include
precision quantum thermometry [64], which can support
the hypothesis of detailed balance. In any case, extending
the results here beyond the strictly Markovian assump-
tion will be a crucial next step.

The central technical advances suggested here are the
interactive sensing protocol and the use of atoms as a
sensor. The key advantage of the periodic collapse-and-
revival protocol is that it enables a huge enhancement
with a thermal state of the mechanical system; under-
standing if this can be extended beyond the specific con-
text here would be very interesting. While using trapped
atoms is perhaps counter-intuitive since it decreases the
strength of the signal (the Newton potential), we empha-
size that the extremely long coherence lifetime and ability
to generate spatially well-separated superpositions of the
atoms lead to similar parametric scaling of the overall
signal strength.

We have shown how the interactive sensing protocol
can be used to test the ability of the gravitational field
to communicate quantum information. If the answer is
yes, this would constitute the first direct evidence that
the gravitational field itself is a quantum mechanical de-
gree of freedom [13, 26-29]. On the contrary, if the an-
swer is negative, the existence of the graviton is ruled
out [13]. The simple estimates of section VI suggest that
this experiment is feasible with realistic devices, even in
the presence of noise. We will present a more detailed
proposal and analysis of systematic effects in a future

paper.
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Appendix A: Newtonian entanglement from
graviton exchange

For completeness, we review here some standard argu-
ments about the perturbative quantization of gravity and
its relation to entanglement generation via the Newton
potential (1). Our goal is to explain the standard logic
by which one treats small fluctuations of the metric as a
quantum field and uses this to make predictions in non-
relativistic systems. We do not mean to say that this
derivation somehow proves that this is the correct model
of low-energy quantum gravity—on the contrary, deter-
mining if this is the correct set of predictions is a central
objective of the experiment proposed in this paper.

By far the most common and efficient method to com-
pare a field theoretical description to the non-relativistic
setting relevant to these experiments is to do a “match-
ing” calculation. For example, one can compute scat-
tering amplitudes in the field theory, compare these to
the same amplitude computed in a potential scattering
model, and thus obtain the effective non-relativistic po-
tential. Since the scattering states form a complete ba-
sis for the Hilbert space (other than bound states), if
these two calculations agree for all scattering states, we
can conclude that the two descriptions are equivalent
quantum-mechanically in the regime in which the cal-
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reliable predictions at energy densities well below the
Planck scale.* However, we are well within this limit
in the kind of experiment envisaged here, as discussed in
the introduction.

Proceeding accordingly, the scattering of a pair of
masses (here modelled as single-particle excitations of a
massive spinless field) via gravitons is given by [34, 35]

4m Ngrav

/ /
T = .
(P1P5|T'|p1P2) o

(A11)
The numerator is more complicated due to the tensorial
nature of the interaction,

Ngrav - 2(171 : pll)(pQ . pl2) + 2(p1 : p/Q)(pll . p2)

+8(p1 - P +m?)(p2 - py +m?) (A12)
but reduces in the non-relativistic limit to the simple
value Ngray — m?. Recognizing that mp, = 1/Gy in
terms of the Newton constant, we can compare this again
to the Born approximation (A6), and determine the ef-
fective potential

~ 4G Ny m?
V@) = —5— (A13)
which again is just V(r) = G ym?/r in real space. In this
way, we see that “graviton exchange” leads to the Newton
potential operator (1) in the non-relativistic limit.
Finally, we note that can one directly obtain a Hamil-
tonian operator for the field theory and read off the non-
relativistic potential directly, without resorting to scat-
tering or other matching calculations. In contrast to
the gauge-invariant scattering amplitude approach, this
is complicated by the gauge symmetries of the model
(in both the electrodynamics and gravity cases). To
see how this works, consider the electrodynamical La-
grangian (Al). To perform the transformation from
the Lagrangian to Hamiltonian we have to fix a gauge,
say Coulomb gauge 9;A4° = 0. This gauge leads to
a second-class Dirac constraint 0;F® = —J° so that
V2A% = —JO ie., the A° part of the potential is non-
dynamical and simply fixed by the current
0
AO(iB7t) — _/d3yJ (yat)

r— (A14)

Performing the Legendre transformation to obtain the

4 To be more precise: the non-renormalizable nature of the in-
teraction means that we have to include all possible generally-
covariant terms, in particular curvature-curvature couplings, in
the action S = m2, [ d*zy/—g[R + mp_(c1R? + c2Ru R*) +
m;f‘C3R3 + ---]. Since this is an infinite series of terms each
with an unknown constant coefficient ¢;, the model becomes
non-predictive once these R"22 terms become important. In the
regime of these experiments R < m%l, so all of these terms are
extraordinarily small and the dynamics is determined entirely by
the first term R, i.e., the usual Einstein-Hilbert action.
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Hamiltonian, one then finds a coupling
HCoul = _/dSwAO(w)JO(m)

= / d3md3yw

(A15)

)

which is just the usual non-relativistic Coulomb inter-
action, since JY is the charge density. Again, every-
thing here is at the level of operators. In the case of
gravity, the exactly analogous calculation can be per-
formed and one finds an instantaneous Newton inter-
action H = mp! [ dzd>yT(x)T(y)/|xz —y|. See
chapter 8 of [69] for a thorough treatment of this kind
of Hamiltonian approach in the case of electrodynamics,
and e.g. [70] for the calculation in perturbative gravity.

The fact that the field component responsible for the
Coulomb/Newton interaction is non-dynamical (e.g., A°
in the above example) has led some authors to argue that
observing Newtonian entanglement would tell us nothing
about the quantization of the “physical” (i.e., dynamical)
degrees of freedom of the gravitational field; for a proto-
typical expression of this view, see [71]. There are, how-
ever, strong arguments against this [26-29], which essen-
tially say that there is no consistent way to have both an
entangling Newton interaction and non-quantized metric
fluctuations. We anticipate substantial further debate
on this topic, and will present a detailed discussion in a
separate paper [72].

Appendix B: Detailed calculation of oscillator noise

To get a quantitative estimate of the effects of thermal
loading on the oscillator, let us assume that we can safely
neglect atomic dephasing 7v,t < 1 for the experimental
timescale of interest. To develop an exact result, we will
use an input-operator method, in which we include an
explicit heat bath for the oscillator. The Lindblad system
(18) can be derived through this method by tracing out
the oscillator bath. See [73] for a lucid review of this
technique.

Let Hy denote the Hamiltonian for the oscillator and
its bath. The total time evolution operator is then

U(t) _ efi(HoJrgcrzm)t _ efiHotjwefigaz I :L*I(t’)dt" (Bl)
Here z;(t) is the oscillator position operator in the in-
teraction picture and 7 is the time-ordering operator.
For the case of a linear bath, such as that assumed in
quantum optics or in quantum Brownian motion, we can
explicitly find ;. Writing 2 = (a + a')/v/2, we have

ar(t) = exp[—i(w + vm/2)t]a(0)

I / expl—i(w + Yo /2)(t — )i (t')dt’
(B2)



where ai,(t) is the vacuum noise fluctuation operator,
satisfying [ain(t),al (#)] = 6(t — t/). Using the linear-

in

ity of this expression and the Baker-Campbell-Hausdorf
relation, we then have that

T exp (—igaz/ ml(t)dt>
0

= exp <igaz /OT x;(t)dt) exp(—ig?C(t)) o

where C(t) is a real, time-dependent number, arising
from the non-commuting elements of x(t).

Having dispensed with the time-ordering, we can now
explicitly perform the time integral (including a change of
integration order in the a;, term). Dropping the e~19°C®)
phase, which will cancel out of our observable, we find the
time evolution reduces to a simple product of displace-
ment operators, one for the oscillator and one for each
mode a;, (') for 0 < ¢’ <t¢, that is

U(t) = e "' Dofoza()] [ Dasonlozam(t)] (B4)
0<t'<t
where
alt) = P ji’m/?(l — llw=mm/2)ty, )
am(t’) = m(l — liwm/D(=¢)),
Finally, we can evaluate our visibility o_(¢) =

Ut(t)o_U(t), assuming an initial thermal state for the
oscillator and each bath mode and the |+) state for the
atom. Using the same results for coherent states as
above, one finds

(o-) = (Dal2a(D)]) [ [ (Dasn (o) [in (t)])
t (B6)

=exp [-8A*(2n + 1) f(t)]
with
B w?/4
w? 477, /4
_ 8% sin(wt)e "2 + 0(1/Q%))

f@) (2 — 2cos(wt)e T2 4yt

(B7)

where @ = w/7,, is assumed much larger than one. In
particular, at full and half-period this gives

V(m/w) = exp[—8A\2(27a + 1)],

_ (B8)

V(27 /w) = exp[—8A%(2n + 1)/Q)].

Here we have assumed the mechanical damping factor

Q = w/7m > 1. Re-inserting the exponential damping

factor for atomic dephasing then reproduces the results
in (19).

In Fig. 6, we compare this analytical model with a nu-
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FIG. 6. Examples of the signal of interest, the phase contrast
V = |{o—(t))|, compared with its initial value V(0) = 1/2.
Left: Direct simulation of the Lindblad evolution (18) in blue,
and we see good agreement with our analytic solution includ-
ing noise (B6) in orange, dashed. Normalizing all units to the
oscillator frequency w = 1, here we use values g = 1072 for
the gravitational coupling, ym = 5 x 107° for the mechanical
damping, and T' = 2 for the temperature. (Numerical simu-
lation with a much higher T' > w as discussed in the paper is
infeasible due to restrictions on the oscillator Hilbert space di-
mension). Same parameters as left figure, but with an initial
m-pulse using a non-gravitational coupling ¢’ = 107!, The
difference between the first collapse and revival is now much
larger than in the un-boosted protocol, as predicted in (21).

merical simulation of the Lindblad equation (13), show-
ing excellent agreement.

Appendix C: Detailed calculation of the boosted
protocol

Here we give the full computation of the visibility in
our entanglement-enhanced, “boosted” protocol of Sec-
tion V. The total evolution is a product of two unitaries,
one for the first half-period under the coupling g+ ¢’ and
the second under only g. We write these as

Ugtg = DT((A + X)a)e ™" D((A + X)o),

_ C1
U,(t) = D (A.)en(t=7/%) D(\q,). (1)

With this notation, the visibility of the atom, given some
initial coherent state |a) for the oscillator, is given by



(defining A = A + X for brevity)

(U, Ug()o_Ug()Uy g (1))

= (a| DY (=N)e™"/ " D(=NU{ (t)

x o _Uy(t) DT (X)e™ ™" D(}) |)
= <a|D(25\)ei“”/”UJ(t)a,Ug( )e_’“’"/”D(QS\)\a)
— (a|D {25\ AL+ eiwt)} D {2X AL+ ei“t)} la)

Vb,a( )

= (0] D(~a)D [2X = A(1 + €|
% D [gx A1+ em)} D(a)|0)

=e? (a0 — 22X+ A1+ ™) |a + 2% — A(1 + ™t))
624’@’|4:\2’2’\(1+em)|2/2.

(C2)

To go from the second to third line, we inserted a
pair of identity operators 1 = e~ iwn/meiwn/T and used
e“n/TD(N)e~n/™ = D(—X). From the third to fourth
we used the same trick and the more general time evo-
lution e D(\)e~ " = D(\e™?). In the last few lines
the “phase” is
¢ =a*(2h — A1 +e“"))/2 +cc.. (C3)
Note that we got two factors of this: one in the fifth line,
from the braiding relation D(a)D(B) = el —a"8)/2,
and then another in the subsequent line from the in-
ner product (8|a) = e~1#=o*/2¢(aB"=a"5)/2 Notice also
that the second exponential does not depend on the co-
herent state parameter . Thus we only need to average
this phase term over the Glauber representation, which
gives

/d @
i
= exp (8An(A + 2X) cos(tw) — 8n (A% + 2AN +2)"?))
(C4)

—lal?/7 520

where we used the explicit coefficient A=A+ ). Doing
the same with the second term in (C2), and simplifying
the terms, we finally obtain

/7Vba

t t
= exp [—8(271 +1) (X2 + 2\ sin? % + A2 sin? U;)] ,
(C5)

as quoted in (20). Note the limit A’ — 0 reproduces the
basic, un-boosted protocol. We show the form of this
visibility evolution in Fig. 6.
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Appendix D: Using many atoms

The sensitivity of the protocol can be substantially im-
proved by moving from using a single atom to use a col-
lection of atoms, as is typical in an atom interferometer
[20-22]. For simplicity, we will take g the same for all the
atoms, though that is not necessary in practice. In that
limit, we can define J, =}, ol and J_ = > 0L as the
collective variables that will enter.

Consider the extension of (9) to the case of N atoms
prepared in the initial state |+ + +---). The “observ-
able” of interest is (J_(¢)). This is easiest to calculate
term by term for each atom. The total time evolution
operator, following the same logic as in (3), is

U(t) = exp (=iBJ2) DI(AL)e™* ““D(AL),  (D1)
with
gt

This total J2 term is peculiar to the case of N > 1 atoms;
for N =1 it is just an overall phase which we dropped in
(3). Here, however, it is a non-trivial operator, physically
representing the ponderomotive squeezing of the spins
due to the gravitational coupling with the oscillator. At
time ¢ > 0 we have, for each i = 1,..., N, the operator
evolution

ol (t) = UT(t)o’ U(t).
If we define J? = J, — 0!, we can see that we can write
the J2 contribution to (D3) as

(D3)

exp (zﬁJf) ol exp (—iﬁJz) = exp (—Qiﬁjz> o'. (D4)
This prefactor then commutes with the rest of the oper-
ators in (D3). Using this and the same basic logic as in
(9), we find that all the ¢ # j spins will just give a phase
proportional to J,:

ol (t) = o' e 2T D(—\)D(2Ae™ ) D(— ).

(D5)

Acting on the initial state |0, + + + - - -) with the oscilla-
tor prepared in |0) and each atom in the |+) state, that
is to say with N unentangled atoms, we obtain

(ol (1)) = cos™1(26) (o (1)),

where the term (o_(t)); means the answer with a sin-
gle spin, as in equations (9) and (10). For N > 1
and 8 < 1 (recall B = g*t/w, so this condition is cer-
tainly satisfied for us), we can Taylor expand the co-
sine and match it to an exponential for convenience, i.e.,
osNV1(28) ~ e~2N8”. Thus since (J_) has N terms of

(D6)
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FIG. 7. Spin-echo variant of the basic protocol. After a half-period of evolution, the two pathways through oscillator phase
space are maximally distant. The atomic positions are then flipped (X gate), followed by another half-period of evolution.
This procedure can be repeated arbitrarily, leading to a net amplification of the basic protocol. The bottom-right figure shows

the resulting conditioned paths of the oscillator through phase space, through one iteration.

the form (D6), we finally get

(J-(1))

For example, at a half period and full period we then
have

= Ne 2N/ o @), (D7)

<J_ (7r/w)> _ Nef27r2N)\4ef8)\2,

2 54 (D8)

(J_(2m/w)) = Ne 4™ NA",
Note that this noisy phase is independent of the oscilla-
tor’s initial state, so for example we get the same answer
if the oscillator begins in a thermal state. We see the
basic N enhancement to the signal here as the prefactor.
The phase noise scales like NA*. For our particular im-
plementation with parameters like those quoted in (25),
we have A ~ 10713, so for N ~ 10'° atoms these phase
noise exponentials are completely negligible. The overall
N factor here represents the usual v/N statistical en-
hancement in the signal-to-noise, assuming uncorrelated
atom errors.

The same calculation extends directly to the
entanglement-enhanced, g-linear protocol (20). This is
clear by the algebraic structure of the argument given
above. Explicitly, we now have two time evolution oper-
ators of the form (D1), one with a coupling g + ¢’ from
t = —m/w to t = 0, followed by another with only the
gravitational g coupling from ¢ = 0 onward. In an obvi-
ous notation we can write

ol (t) = Uf (1)U}

- g+g’ai— UgtgUg(t).

(D9)

In these U operators, we have the same phase-noise
terms, namely e"#72 in the Uy and another factor i8Iz ,
with 8/ = —(g + ¢’)*n/w, from the Uy factor. These
depend only on the J, operator and thus commute with
the other terms (displacement operators and free oscilla-

tor evolution) in Uy and Uyq . Thus we get an expres-

sion

o' (t) ~ exp(i(B + B')J2)o" exp(—i(B + B)J2)

e (D10)
=exp(—2i(B+ B')J,)o",
just as in (D4) except now with 8 replaced by
2 "2
gip =9t _Lrd)m (D11)
w w

In particular, all the terms other than these phase noise
exponentials contribute as given by (20). The overall
signal is still increased linearly in N as in (D8), times a
negligible contribution from this ponderomotive squeez-
ing noise.

Appendix E: Spin-echo version for faster physical
oscillators

The physical oscillator frequency is crucially important
to the size of the observable effect. The interferometric
contrast scales as a power of A = g/w, so a low-frequency
oscillator is ideal. However, in practice, using a very
low-frequency (sub-Hz) oscillator would present substan-
tial technical problems. This can be alleviated by using
a high-frequency oscillator and a spin-echo like sequence
to mimic the effect of a low-frequency oscillator. Specifi-
cally, after every m/w half-period, we swap the two atom
locations, i.e. perform a o, operation (see Fig. 7). This
produces the evolution

U =g e HT/2g o=iHT/2
— o i(Hp=V)7/2 j—i(Hy+V)7/2
= D(\o,)e 72D (=N, ) D(= Ao, )e #2722 D (Mo )
= D(M\o.)D(2)\0.)D(\o,) = D(4)o.)
(E1)
where we used 7 = 2n/w for the final line. With

N, iterations of this, we produce the total evolution



U(N:) = D(4Nz)o,). Performing N, iterations, fol-
lowed by a o, operation, followed by N, further itera-
tions, we recover the revival:

Uspin—echo = UxD(4N7r)\0'z)o'zD(4N7r)\O'z)
= D(—=4N )o,)D(4N o) (E2)
=1L
In this spin-echo style variant, the wavefunction overlap

after a total time t = N7, i.e. to the halfway point, is
given by

w2

N2 2
O = exp {—32 i } . (E3)
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Thus we have an effect scaling like g% /w2, with the effec-
tive frequency weg = 27/t = w/N,. This means we can
have an effectively slow oscillator (which is beneficial for
the signal strength) while using a faster physical oscilla-
tor (beneficial for noise reasons), at the cost of having to
perform some o, operations on the two-state system.

We note that application of this spin-echo protocol
would violate the Markov assumption used to prove the
theorem in section III. Adjusting that proof to accommo-
date this specific type of non-Markovian control would be
necessary to draw the same conclusion, namely, that the
gravitational entanglement in this protocol is necessarily
due to the mass-atom entangling interaction.
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