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Abstract—This study aims to demonstrate reinforcement learn-
ing tracking control for automatically configuring the impedance
parameters of a robotic knee prosthesis.While our previous studies
involving human subjects have focused on tuning the impedance
control parameters to meet a fixed, subjectively prescribed target
motion profile to enable continuous walking with human-in-the-
loop, in this paper we develop a new tracking control solution for
a robotic knee to mimic the motion of the intact knee. As such,
we replaced the prescribed target knee motion by an automat-
ically generated profile based on the intact knee. As the profile
of the intact knee varies over time due to human adaptation,
we are presented with a challenging tracking control problem in
the context of classical control theory. By formulating the “echo
control” of the robotic knee as a reinforcement learning problem,
we provide a promising new tool for real-time tracking control
design without explicitly representing the underlying dynamics
using a mathematical model, which can be difficult to obtain for a
human-robot system. Additionally, our results may inspire future
studies and new robotic prosthesis impedance control designs that
can potentially coordinate between the intact and the robotic limbs
toward daily use of the robotic device.

Index Terms—Reinforcement learning, prosthetics and
exoskeletons, compliance and impedance control, physical
human-robot interaction.

I. INTRODUCTION

A POWERED lower limb prosthesis promises to help lower
limb amputees to restore normative gait by mimicking

the function of biological joints [1]. One of the limitations in
current prosthesis control is a lack of adaptation to human users
who have different physical conditions and show different gait
compensation patterns. Often, the control parameters of these
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devices, such as joint impedance parameter values within a finite
state impedance setting, must be manually tuned to provide
personalized gait assistance [2]–[4]. This is a challenging control
task. First of all, one has to decide what the robot control objec-
tive is as it is difficult to describemathematically a control design
objective due to a lack of understanding of human-prosthesis
system [5]–[7]. In addition, it is very difficult to model the
interacting dynamics of human-prosthesis systems, an issue
further complicated by large variations between and within
humans. Another challenge stems from a physical constraint that
taking measurements of human performance such as metabolic
cost takes long evaluation time [8], and these measurements
are affected by confounding factors such as limb loading and
socket fit, and thus unpractical to be used for controlling a robotic
prosthesis for long-term and daily use.
To address these challenges yet still making the problem

tractable, we first tested the feasibility of automatically tuning of
12 impedance parameters of a prosthesis knee by using model-
free reinforcement learning (RL) to meet a prescribed prosthesis
knee movement profile in gait, which is time invariant [7], [9],
[10]. These algorithms successfully learned the tuning policy
and completed the tuning procedure while a human walked
with the prosthesis. Yet, a serious limitation is that prescribing
knee movement profiles for each person and for each task is not
realistic or even possible. And also, as humans adapt to walking
with a prosthesis, a fixed robotic knee profile potentially hinder
the coordination between the human and the robot.
Now the question is how to formulate realistic and feasible

target movement profiles for robotic limb control. An interesting
approach determined prosthesis joint gait pattern ismirroring the
contralateral joint motion in the intact limb as bilateral lower
limb coordination is essential for human locomotion. Grimes
et al. developed a mirror control scheme for the stance phase
only [11]. In order to control a complete gait cycle, the echo
controller tracked the sound limb’s knee angle trajectory while
a prescribed trajectory was applied for the swing phase only.
Bernal-Torres et al. applied a Kalman filter based approach to
realize echo control [12]. However, the prosthesis prototype
was suspended from above the test bench without touching
the ground. The result of this approach was not demonstrated
on human subjects for continuous walking. As shown, these
approaches focused on a segment of a complete gait cycle.
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Another potential idea is to make use of a known coordi-
nation mechanism from unamputated joint motions, which in
turn, to guide the prosthetic joint movement pattern. Several
previous studies examined this concept centering on ipsilateral
hip-knee-ankle coordination defined in gait biomechanics to
control prosthesis knee and ankle by monitoring residual hip
motion [13]. Note that, all the above studies utilized position
control at low level joint operation. This may be of safety
concerns. Instead, the finite state impedance control strategy is
a more feasible approach in comparison, and is usually adopted
to meet compliance requirements for user safety [14].
Inspired by both previous research onmulti-joint coordination

for prosthesis control and our own success in using model-free
RL for high-dimensional impedance control parameter tuning,
we aimed to control a robotic knee by mirroring the intact knee
motion. Thus the contributions of this study include the fol-
lowing. For the first time, we achieved real-time human testing
of RL tracking control for tuning impedance parameters of a
robotic knee to mirror a time varying movement profile of an
intact knee during human-prosthesis co-adaptation.Weprovided
a successful implementation procedure for a RL tracking con-
troller to advance from simulation [15] to realistic continuous
walking. We demonstrated real-time RL tracking control as
a viable solution approach beyond classical tracking control
designs. Lastly, we contributed initial yet important knowledge
on human adaption to powered prosthesis, a phenomena that
could potentially facilitate understanding of physical human-
prosthesis interaction.
The rest of the paper is organized as follows. Section II

introduces detailed methods to facilitate this study. Section III
describes experimental set up to carry out the study. Section IV
includes systematic processing and testing results,while thefinal
section concludes our major findings and discusses implications
of the results.

II. METHODS

The finite state machine (FSM) impedance controller (IC), or
FSM-IC, is the most adopted framework for intrinsic control of
prosthetic devices. We also rely on FSM-IC with its impedance
parameter settings automatically tuned by a reinforcement learn-
ing tracking controller to enable stable, continuous walking. We
carry out the investigations using human subject testing.

A. Finite State Machine Impedance Control

Fig. 1 depicts the RL based solution approach of automatic
tracking control for a robotic knee to mirror the intact knee
joint motion. Refer to Fig. 2(a), a gait cycle is divided into four
phases in the FSM-IC: stance flexion (STF), stance extension
(STE), swing flexion (SWF) and swing extension (SWE). The
phase transitions are determined by knee motion and gait events
(heel strike and toe-off) that are obtained from vertical ground
reaction forces of both legs. In each phase of the FSM, three
impedanceparameters (stiffnessK, dampingB, and equilibrium
position θe) are provided as inputs to the FSM-IC for impedance

Fig. 1. Schematic of RL-based tracking control of a robotic knee.

parameter update cycle k:

Ik = [Kk, Bk, θek ]. (1)

The knee joint torque is consequently generated by the fol-
lowing first principle equation

Tk = Kk(θ − θek) +Bkω. (2)

The RL tracking controller will adjust these parameters, i.e.,

uk = [ΔKk,ΔBk,Δθek ] (3)

so that the updated impedance parameters, Ik+1 = Ik + uk, are
applied to the FSM-IC to generate knee torque and thus enable
walking.

B. Reinforcement Learning Tracking Control

Even though we have successfully demonstrated regulation
control of a robotic prosthesis to meet a fixed motion profile [7],
[9], [10], tracking a moving target profile has not been demon-
strated especially when we need to tune a large number of
impedance parameters to achieve safe human machine inter-
action. To formulate a reinforcment learning control problem,
we need to clearly define the states, control, and cost objective
function to be optimized by tuning control variables which in
this case are the impedance parameters (a total of 12, 3 for each
of the 4 phases). Refer to Fig. 2(a) by which we will define the
state variables of the RL controller. For an impedance parameter
update cycle index k, the intact knee motion featured by the
peak knee angle P i

k (degrees) and duration Di
k (seconds) are

measured. Similarly, we measure the peak knee angle P p
k and

duration Dp
k of the prosthesis. Let ΔPk and ΔDk (Fig. 2(a))

denote the peak value error and duration time error, respectively,
i.e.,

ΔPk = P p
k − P i

k,

ΔDk = Dp
k −Di

k. (4)

We have thus formulated the state xk as

xk = [ΔPk,ΔDk]. (5)

We denote a RL state feedback tracking control policy as

uk = h(xk). (6)

Then we consider the instantaneous cost in a quadratic form

U(xk, uk) = xk
TRxxk + uk

TRuuk, (7)
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Fig. 2. (a) Two complete gait cycles with each divided into 4 phases. To realize echo control, the peak error and duration time error were obtained based on the
intact knee profile and the half-cycle delayed prosthetic knee profile. Red: Prosthetic knee angle profile. Dashed Blue: Intact knee angle profile. Solid blue: intact
knee angle shifted half cycle to provide a tracking reference for the prosthetic knee. (b) Human testing environment. (c) Feature extraction from the intact knee. It
was based on the trajectory of the intact knee profile. Two peaks and troughs were used to determine the feature angles and phase transitions.

whereRx ∈ R2×2 andRu ∈ R3×3 are positive definitematrices.
An infinite horizon discounted cost was used as tracking control
objective. This allows the tracking controller to minimize the
error between intact knee profile features and the measured
prosthesis profile features. Refer to Fig. 1, four respective PICE
controllers were trained for each of the four phases of a gait. The
four controllers were of the same structure and used the same
procedure to train. We applied our previously developed policy
iteration with constraint embedded (PICE) [9] reinforcement
learning algorithm for tracking.
The following steps iterated until tuning termination condition

described in Section IV was met. First, the peak knee angle
and duration [Pk, Dk] were measured after every gait cycle
using the feature selection rule described in Section IV. Second,
the tracking error xk = [ΔPk,ΔDk] was obtained using (6)
which served as states of the RL control implemented by PICE.
Third, the PICE controller was updated based on (14) in [9] to
solve a quadratic programming (QP) problem. The impedance
parameter increments ΔI = [ΔK,ΔB,Δθe] were thus obtain
as the output of PICE.
The updated impedance parameters were then used as shown

in Fig. 1 to enable the next gait cycle(s). Specifically, the
knee torque was computed based on (2) given the impedance
parameters, which would be used in the intrinsic controller to
compute τ(t). The control torque τ(t) results in the kinematic
gait profiles as shown in Fig. 2(a). In turn, state variables are
exacted according to (5) for gait cycle k. These steps were
repeated until meeting termination condition.

III. EXPERIMENT SETUP

The experimental protocol was approved by the Institutional
ReviewBoard at theUniversity ofNorth Carolina at Chapel Hill.
During the experiment, subjects wore a powered knee prosthesis
andwalked on a treadmill at a constant speed of their preferences
as shown in Fig. 2(b).

A. Human Data Collection

Human experiment setup is as shown in Fig. 2. Prior to an
experiment, a subject was equipped with a fall-arrest harness
for safety assurance. An ‘L’ shaped socket was used to allow

an able-bodied subject to fit into the prosthetic knee and walk
with the powered prosthesis. Subjects were trained to walk with
the powered prosthesis for approximately 5 hours to become
accustomed to and feel confident to walk on a treadmill wearing
a prosthesis. Each experiment session lasted about 2 hours.
After 10 or so impedance updates taking about 20 minutes of
experimentation, subjects took a 5–10minute break. Or subjects
took breaks as needed.
The robotic knee prosthesis used in this experiment was

designed based on [4]. This prosthesis used a slider-crankmech-
anism, where the knee motion was driven by the rotation of
the moment arm powered by the DC motor through the ball
screw. An embedded potentiometer was used to record the
robotic knee kinematics and an embedded load cell was used
to trigger the phase transition. The ground reaction force was
also recorded through the instrumented treadmill (1000 Hz;
Bertec Corp., Columbus, OH, USA) during the experiments to
help determine the intact limb phase transition. The prosthesis
was controlled by a LabVIEW andMATLAB integrated system
in a desktop PC with a 100 Hz sampling rate of kinematic
signals [4]. To acquire the intact knee kinematics, a goniometer
provided by Biometrics Ltd. was used to measure the knee
angle (Fig. 2(b)).

B. Human Data Pre-Processing

In this study, we recorded experimental data of two able-
bodied human subjects and a transfemoral amputee subject.
Kinematics of both knee profiles were collected to derive knee
angle and phase duration for each of the four phases for each
subject so that state variables as in (5) were obtained. The
recorded ground reaction force measurements were segmented
using an alignment with the start of each tuning iteration. Note
that the impedance parameters were updated every 4 gait cycles,
during which the prosthetic knee was controlled by the same
set of impedance parameters. Specifically, the ground reaction
force measurements and the knee kinematics were filtered by
a low-pass filter with a cutoff frequency of 20 Hz. Then we
identified the gait events of heel strike and toe off using vertical
ground reaction forcewith a threshold value of 30N to determine
gait transitions. A Dempster-Shafer based state transition rule
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Fig. 3. Target feature extraction from intact knees of AB1 (blue) and AB2 (red), respectively. The Peak angle (Left) and duration (Right) for 4 phases were
calculated as described in Section IV A.

was applied [4]. The phase transitions were then determined by
combining decision factors including the ground reaction force,
the knee angle and angular velocity.

C. Intact Knee Feature Extraction

Extracting intact knee profile features is a new challenge for
tracking control in this study. The intact knee features to be
tracked by the robotic knee are denoted as [P i

k, D
i
k] in (4) which

were obtained from recorded kinematic data described above.
In human experiments, unlike the robotic knee with embedded
sensors to reliably measure knee kinematics and thus to parse
phase transitions in FSM, the intact limb kinematics can only be
determined from measured knee angle waveforms and ground
reaction force measurements.
Specifically, first, the knee profile was segmented into gait

cycles according to heel strike events. Let [P̃ i
k, D̃

i
k] denote

peak/trough feature points as shown in Fig. 2(c). They corre-
spond to the four characteristic points of a gait cycle where, for
the swing phase, the maximum point was the feature point for
SWF and the minimum point between maximum point and next
gait is the feature point for SWE. For the stance phases, the peak
and the trough between gait start and maximum point were the
feature points for STF and STE, respectively.
The next challenge is to overcome human variances. Tracking

the intact knee motion can only take place with a delay of one
gait cycle. Also as expected, significant human variance and
measurement noise can corrupt intact knee measurements to be
tracked by the robotic knee. To capture the key timing varying
features of the intact knee during human adaptation, we placed
a bound between two consecutive features of the intact knee
and used a running average to generate the target profile for the
robotic knee to track. Specifically, for an impedance parameter
update cycle k, the peak angle and duration from the intact limb
P̃ i
k and D̃

i
k was averaged every L (L = 10 in this study because

the convergence criteria required the error within the tolerance
bounds for 8 out of 10 steps) consecutivemeasurements to obtain

P̄ i
k and D̄i

k. For initialization, features of the first gait was used.

P̄ i
k =

∑L−1
m=0 P̃

i
k−m

L
,

D̄i
k =

∑L−1
m=0 D̃

i
k−m

L
. (8)

Then as summarized in (9) below, P̄ i
k was compared to the

previous target features P i
k−1. If the two does not differ greatly

(i.e., within a threshold ε = 1.5 degree which must be smaller
than tolerance bound) compared to the tracking error tolerance,
then P̄ i

k and D̄i
k remained at their respective previous target

values. Otherwise, new intact knee features were to be used for
tracking.

[P i
k, D

i
k] =

{
[P i

k−1, D
i
k−1] if|P i

k−1 − P̄ i
k| ≤ ε,

[P̄ i
k, D̄

i
k] if|P i

k−1 − P̄ i
k| > ε

(9)

Fig. 3 demonstrates intact knee target features over time
(impedance update index) as a result of processing by (8) and
(9). Specifically, the solid lines are features directly from mea-
surements

IV. RESULTS

Two able-bodied (AB) and one transfemoral amputee (TF)
subjects participated in the human experiments. Two AB sub-
jects walked with the robotic knee prosthesis via an L-shaped
adapter. The three subjects walked at different speeds of their
own preference, 0.65 m/s for AB1, 0.7 m/s for AB2 and 0.8 m/s
for TF, respectively.The tracking error tolerance was 2 degrees
for peak error and 3% for duration error for 8 out of 10 con-
secutive impedance updates. A safety bound was placed on the
robotic knee to physically prevent it from causing harm to test
subjects. It was 1.5 times the standard deviations of the knee
kinematic peak values observed in each of the four phases [16]
corresponding to [10.5,7.5,9,6] degrees for peak angle errors
and [12%, 12%, 12%, 12%] for duration errors.
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Fig. 4. Test results: A: AB1, B: AB2. C:TF. Knee profiles of the intact limbs
and prosthetic limbs for both test subjects update by update. Colors from light
to dark indicate time progression of control tuning.

Fig. 4 represents adaptation of both the intact and the robotic
knee profiles of all subjects. The initial knee profiles of the intact
and the robotic knee profiles (light blue and light red, respec-
tively) were quite far from one other as the initial robotic knee
impedance parameters were randomly generated. As learning
proceeded, the robotic knee profile approached that of the intact
knee. Both the intact and the prosthetic knee profiles eventually
met at the timewhen the robotic knee tracking control terminated
updates as error tolerance criteria were met.
Fig. 5 are peak angle and duration errors for all subjects. Con-

verging behavior associatedwith both peak angle and duration is
shown for all four phases and for all subjects where convergence
is defined for the errors to stay within tolerance bounds for 8 out
of 10 consecutive impedance updates.When inspecting the peak
errors and duration errors as defined in Equ. (6), for AB1, peak
errors reduced from−4.6 to−1.7 degrees for STF and from 3.6
to−0.7 degree for STE. In the swing phases, peak errors reduced
from 13.8 to −0.9 degrees for SWF and from −4.7 to −0.8
degrees for SWE. For AB2, peak errors of STF and STE reduced
from 10 to 0 and from 3 to−0.2 degrees, respectively, while the
other two phases initially were within tolerance and remained
in the range. For the duration errors, AB1 was consistent during
testing so that all four phases remained within tracking error
tolerance range. For AB2, an apparent decrease during STE and
SWF was observed from 6% to 1.8% and from−6% to−2.5%,
respectively, while the other 2 phases maintained a small phase
duration error.
Testing results on the amputee subject reveal consistent

outcomes as those in tests involving AB subjects. Fig. 5
shows convergence in tracking error to within the tolerance
bounds for both peak angle error, from [−3.1,−5.6, 8.76, 2.4]

degrees to [−0.8, 0.1,−0.5,−0.9] degrees, and duration er-
ror which remained within tolerance bounds most of the
time.
Convergence of learning the control policy is shown in Fig. 6

which reveals how the impedance parameters evolved during
tuning for the TF subject testing. Converging behavior of the
impedance parameters was observed as they met convergence
criteria in last ten updates.
T-test was performed to verify the significance of the results.

The three test samples were prepared as follows. For a complete
trial of several impedance parameter updates, one test sample
contains the first 10 peak errors or duration errors during the first
10 impedance tuning updates, and the other sample contains the
last 10 errors during the last 10 impedance updates from conver-
gence. The peak errors of AB1 and TF decreased significantly
(p < 0.01) while the duration time errors were not significant
(p > 0.01) as it remained within the tracking error tolerance
bound during experimental testing. For AB2, both peak errors
and duration time errors decreased significantly (p < 0.01).

V. CONCLUSIONS AND DISCUSSION

The three subjects showed different adaptation patterns
(Fig. 4): AB1 tends to increase flexion in the STF phase but
AB2 and TF tends to reduce flexion. This may suggest that
individuals use different approaches to collaborating with the
robotic device. This in turns shows that learning based control
designs are necessary.
The amputee subject reflected on the test experience of using

the echo control strategy in the robotic knee. The subject felt
stable during the entire testing procedure and that the echo
control was more comfortable than using a prescribed knee
profile as target in previous studies the subject had experienced.
The subject preferred less flexion during the stance phase which
was also shown in the result Fig. 4 under echo control. This
has given him more confidence walking with the robotic knee.
Interestingly,weobserved that the peak angle of STFof the intact
side decreased during testingwhich resulted in less flexion of the
prosthetic leg. This may be due to co-adaptation that helped the
subject find a more comfortable way to walk. Yet more tests
are required to investigate this hypothesis. The echo control
developed in this study will enable futures studies of this issue.
In our study, a device such as a goniometer was required

to record the intact knee angle. Such a use may not be the
best option for practical use. As the first end-to-end study of
echo control tested on human subjects for continuous walking
in a laboratory, we adopted this approach to demonstrate the
concept. Note, however, our control strategy framework and
the control algorithm proposed in this work can be directly
applied to any approach of specifying a target knee profile. For
instance, consider virtual constraints [17], [18] which were used
for robot control to coordinate with its human user. Biomimetic
virtual constraints describe the joints’ geometric relationships
and coordinate the kinematics among lower limb joints to drive
prosthesis motion. It can be a potential alternative to specifying
movement profile for the prosthesis to follow. Furthermore,
the rapid development of wearable device makes it possible to
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Fig. 5. Tracking errors of all subjects: A: AB1, B: AB2. C:TF. The peak angle errors (top) and duration errors (bottom) during impedance control parameter
tuning. Green dashed line indicates the tolerance bounds. The x-axis is the total tuning steps performed to reach the convergence criteria.

Fig. 6. Evolution of the impedance parameters: stiffness (left), dumping
(middle), and equilibrium point (right).

measure joint motion accurately and reliably on a daily basis in
the near future [19], [20]. In essence, any approach that properly
represents the human intact side kinematics can be implemented
using the echo control framework developed in this study.
A reinforcement learning solution framework is a more ap-

propriate approach than supervised learning to addressing the
automatic control problem of a robotic knee. Imagine to use
supervised learning, collecting training data pairs is a prohibitive
task. To fully explore the resulting states, an impractically large
set of impedance parameter settings need to be tested, based
on which we need to observe the respective states from a hu-
man subject. This is not only physically exhausting for human
subjects, and it may also cause safety concerns as we do not
know how to set the impedance parameters to keep all states and

controls within safety bounds. Implementing a reinforcement
learning control usually requires a good exploration.
To provide such exploration, we randomly initialized critic

network weights. The actor network weights were either
randomly initialized to achieve a broad range of exploration
or using a pre-trained policy network with further exploitation
in nearby regions. We also applied a small learning rate (less
than 0.01) in both networks to encourage exploration as they
consequently resulted in extensive updates of parameters. As
reported by the TF subject, the learned policy from a randomly
initialized one enabled comfortable, stable, and easy to adapt
walking for the subject. This may be viewed as a validation of
exploration of the policy space.
In this study, the prosthesis was implemented by impedance

controller which is a well-established control design frame-
work as a safe and reliable control strategy for lower limb
prosthesis [21], [22]. Almost all the commercially available
computer-controlled prostheses incorporate impedance control.
However, to address daily challenges such as changing from task
to task continuously (for example, from level ground walking
to stair climbing), in addition to real time control within the
finite state impedance control framework, we will also need to
include a task planning module, which is not the focus of the
current study. Researchers, including those in our own group,
have developed different user intent recognition methods. As
a future study, these two modules can be integrated and tested
toward continuous walking for daily use.
Designing this tracking control system was a major under-

taking as it is the first time that human behavior was directly
included in our robotic knee control design objective. With
the success of this initial study, we will be able to further
investigate human adaption when fitted with a prosthetic leg.
Although we chose bilateral coordination as the mechanism
to determine knee profiles in this study, our approach is also
valid for other coordination mechanisms such as ipsilateral joint
coordination or full-body coordination. This provides an op-
portunity to further investigate important human-robot walking
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performance measured by, for example, walking symmetry and
balance stability as a powered prosthesis can be controlled to
directly track intact knee profiles either by spatial measures or
by temporal measurements.
Symmetrical walking is not our explicit design objective in

this study as our goal is to demonstrate echo control mechanism
in robotic knee control. However, reducing gait asymmetry
has often been used as the rehabilitation goal in amputee gait
training. For this study by mimicking the intact knee, we expect
that symmetry is affected. Interestingly, after amputee test, we
did a quick inspection on temporal symmetry and found out that
the symmetry index decreased from 20% to 10% (improved).
This implies that echo control may result in improved symmetry.
Yet, further systematic study is needed to test this hypothesis.
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