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ABSTRACT

Advances in sensing technology enable the monitoring of critical operating parameters of complex engineering
systems. However, having sensor measurements does not necessarily imply that one has observed the true
system health states, which are often hidden and need to be estimated from observable sensor signals. This
paper proposes a physics-regularized data-driven approach for the health prognostics of complex engineered
systems with multiple hidden and dependent health states. The framework consists of a data layer and a
physics layer. The data layer captures the statistically-correlated temporal dynamics of hidden system states
(such as degradation), while the physics layer imposes regularizations among observed system operating
parameters and system health states through system working principles and governing physics. The proposed
approach addresses some common challenges arising from the health prognostics of complex engineered
systems, including the integration of engineering domain knowledge and sensor data streams, the estimation
of hidden system health states from monitored system operation parameters, and the statistical dependency
among the temporal dynamics of multiple system state variables. A case study based on a real dataset is
presented to illustrate the proposed physical-statistical approach. It is shown that the interpretability of data-
driven system prognostics can be significantly strengthened if a solid connection is established between sensor

data and system physics.

1. Introduction

Sensor data play an instrumental role in system health prognostics,
degradation, fault detection, maintenance and control [1-8]. Sensor
monitoring signals, arising from a complex engineering system, are
not only statistically-correlated but also physically-dependent through
unequivocal system working principles, governing physics, system con-
figuration, etc. Very often, true system health states are not directly
observable and need to be estimated from sensor monitoring signals.
Known system physics imposes fundamental constraints and regulariza-
tions on how sensor data can be used to estimate hidden system health
states. When a solid connection is established between sensor moni-
toring data and system hidden health states through system working
principles, the interpretability of data-driven system prognostics can be
significantly strengthened. The objective of this paper is to propose a
physics-regularized data-driven approach for the health prognostics of
complex engineered systems with dependent health states, using sensor
monitoring data and system working principles.
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1.1. Motivating application: Hidden health state degradation of cooling
systems

A motivating example is firstly presented. Data Centers (DC) are
the backbone of cloud services hosting zillions of mobile apps, online
transactions and searches. Among the sub-systems of a DC, the cooling
system plays a critical role that significantly impacts the DC reliability
(availability). For example, at 09:29 UTC on 04 Sep 2018, a number
of South Central U.S. customers connecting to Microsoft cloud services
(including Office 365, Azure Active Directory and Visual Studio Team)
experienced a major service outage due to the failure of Microsoft’s
South Central U.S. DC at San Antonio, Texas. Engineers later isolated an
issue with cooling in one part of the DC, which caused a localized spike
in temperature and an automated DC shutdown when unsafe operating
thresholds were met [9].

A chiller removes heat from a liquid (say, water) via a vapor-
compression or absorption refrigeration cycle. In air conditioning sys-
tems, chillers are utilized to provide cooling water which is distributed
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Fig. 1. A typical DC cooling system with its critical operating parameters being monitored by multiple sensors.

to cool the air in server rooms of a DC. Used water is re-circulated
back to the chiller to be cooled again. Fig. 1 shows the schematic of
the reciprocating chiller—one of the most common commercial chillers.
The essential components of a chiller system include the compressor,
expansion device, condenser and evaporator. In a refrigeration cycle,
low pressure and low temperature vapor is fed to the compressor.
The compressor increases both the pressure and temperature of the
vapor. High pressure and high temperature vapor is then passed to the
condenser and is cooled by giving up its latent heat. As a result, the
vapor condenses back to its liquid form. The high pressure liquid from
the condenser is then expanded through an expansion valve. At this
point the refrigerant is at a low pressure and is mostly liquid with low
boiling point. When the low-pressure liquid refrigerant enters the evap-
orator coils, it boils and absorbs the latent heat of evaporation from
the surrounding air. The vapor at low pressure and low temperature
then passes to the compressor and the whole refrigeration cycle repeats
itself.

Due to the importance of DC cooling systems, critical operating
parameters of chillers in DC are closely monitored by sensors. For
example, Fig. 2 shows the observed daily Coefficient of Performance
(COP), condenser coolant inlet temperature 7,, evaporator coolant
outlet temperature 7,, and cooling capacity Q, over a 57-day study
period (the data are provided by a major DC operator). Here, COP
is an overall indicator of a chiller’s energy efficiency, defined as the
ratio, COP = Q, - P!, between the cooling capacity 0, (.e., the rate
of heat withdrawn from the data center server room) and the power
input P (i.e., energy consumption rate of a cooling system) [10]. It
is seen from Fig. 2 that the daily COP gradually degrades over the
57-day period (a higher COP equates to higher energy efficiency and
lower operating cost). The daily condenser coolant inlet temperature
T, varies between 297.5K to 300K. This parameter is often affected
by not only the temperature of the chilled water produced by the
chiller, but also other external factors such as room temperature and
computing load of the servers in the computer room. The variation of
the daily evaporator coolant outlet temperature 7, is extremely small
(less than 0.5K) because 7, is the temperature of the cooled water that
the cooling system is supposed to supply. The cooling capacity O, varies
between 200KW and 250K W . Hence, there exist both practical need
and theoretical interest to answer a fundamental question: how can the
temporal dynamics (e.g., degradation) of hidden system health states be
estimated from multiple sensor monitoring data?

1.2. The problem and challenges to be addressed
Addressing the question above is confronted with multiple chal-

lenges (which apply to not only the motivating application above, but
also many other health prognostics problems for engineering systems):

+ System physics imposes fundamental modeling constraints and
regularization, which need to be integrated into data-driven sys-
tem health prognostics. In the motivating example, the governing
physics between COP and other critical operating conditions can
be described by the first law of thermodynamics [11]:

L ——1+£—yL+y£—y—Tc (€]
CcoP T, ‘o, "o, T,

where the condenser coolant inlet temperature 7, gives the tem-
perature of the water cycled back to the cooling system from
the computer room, the evaporator coolant outlet temperature 7,
gives the temperature of the cooled water produced by the chiller,
and the cooling capacity Q, measures the rate of heat withdrawn
from the computer room which can be calculated from other
parameters such as the measured water flow rate, pipe diameter,
etc. The three parameters of the governing physics, (v,7.73),
characterize the internal irreversibilities states of a particular
chiller. Hence, the thermodynamics model (1), as a fundamen-
tal system working principle, determines the critical relation-
ship between COP (i.e., energy efficiency) and multiple observed
operating parameters. Such a relationship can hardly be faith-
fully recovered by black-box approaches driven by the statistical
correlation among sensor signals, calling for physics-informed
statistical health prognostics approaches.

The true health states of a complex engineering system are usually
hidden and not directly observed by sensors. Having sensor mea-
surements does not automatically imply that one has measured
the right variables. It is often necessary to properly define and
estimate hidden system health states from observable sensor sig-
nals which are dependent on each other due to some fundamental
system physics. In the motivating example, it is meaningful to
treat the internal irreversibility states (y,,7,,73) in (1), or some
functions of these parameters as system health state variables, and
estimate the defined health state variables from multiple sensor
signals by invoking the system physics (1). In this case, each
system state variable possesses an interpretable physical meaning.
In fact, individual sensor signals are rarely ideal measures of
the health state of an engineering system. Each sensor monitors
a single parameter (dimension) which only reflects the “local
behavior” of the chiller. The energy efficiency (COP) of a chiller
depends on various external environmental factors and internal
system health state. The change of working load and outdoor
temperature may cause the drop of the observed COP, which does
not necessarily imply that the system health state has degraded.
Hence, instead of focusing on a single monitored parameter, a
much more meaningful approach is to incorporate multiple sensor
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Fig. 2. The observed daily COP, condenser coolant inlet temperature 7, evaporator coolant outlet temperature 7,, and cooling capacity Q,.

data streams and investigate if the deteriorated COP is due to
the degradation of system internal health state, rather than the
variation of some uncontrollable external factors. Incorporating
system physics into data-driven models is essential to address this
challenge.

System health state variables are correlated and subject to com-
plex temporal dynamics. During the operation of an engineering
system, the internal health states of the system gradually deviate
away from their nominal values. In the thermodynamic model (1),
for example, although the nominal values of the system health
states (y,,7,,73) are designed into the system, the actual values
of (yy.7,,73) inevitably degrade over time, leading to deterio-
rated system performance. Hence, advanced stochastic models are
needed to capture the correlated temporal dynamics among multi-
ple system states in the absence of sufficient physical knowledge.
The correlation among system states is often relevant when the
temporal dynamics of these states are driven by some common,
but unknown, underlying operating conditions, environmental
process, or external shocks [12,13].

The aforementioned challenges are commonly faced by the health
prognostics of a wide range of engineering systems, where the integra-
tion of fundamental system physics with data-driven models is essential
for generating transparent, interpretable and actionable engineering
insights.

1.3. Literature review and contributions

The modeling of degradation data has been extensively investigated
when degradation signals are directly observed. Meeker et al. [14]
described the random-coefficients General Path Model (GPM) for degra-
dation data. Based on GPM, Hong et al. [15] proposed a statistical
method for degradation data modeling with dynamic covariates and
presented an application to outdoor weathering data. Recently, Kim
and Liu [16] proposed a deep learning framework that incorporates

the general characteristics of degradation processes and provides the
interval estimation of remaining useful life. Following the early work
of Birnbaum and Saunders [17], Bhattacharyya and Fries [18], Doksum
and Hoyland [19], stochastic processes have also been utilized to
approximate real-world degradation processes; see e.g., [20-24]. The
modeling of degradation data under dynamic environments has also
received much attention [15,25-30]. Comprehensive reviews of exist-
ing models are available from [30,31]. In our case, however, system
health states are not directly observed and need to be estimated from
sensor signals while invoking system working principles (i.e., the first
and second challenges above). Hence, the above-mentioned degrada-
tion models do not automatically apply. If the degradation of hidden
system state can be firstly estimated, then, one may apply the existing
approaches for follow-up actions. For example, [32] investigated the
optimization of on-condition failure thresholds and inspection inter-
vals for multi-component systems with each component experiencing
multiple failure processes due to simultaneous exposure to degradation
and shock loads. We also note that, there exist approaches to fuse
multiple signals to construct a composite Health Index that can then
be modeled by degradation models [33-35]. In our case, however,
different signals monitor different system operating parameters with
different physical meanings. Hence, it is no longer appropriate to
directly fuse these sensor signals into a univariate health index, and
the physical connections among these sensor signals are lost during this
process.

To tackle the first two challenges above, this paper proposes a
physics-regularized framework for health prognostics of complex en-
gineered systems with multiple hidden health states. The approach
consists of two layers: a data layer and a physics layer. The data
layer captures the temporal dynamics (e.g., possible degradation or
drift) of multiple system health states by a nth order Linear Time-
Invariant (LTI) Stochastic Differential Equation. The physics layer, on
the other hand, imposes regularization over system health states, by
invoking the governing relationship among the distributions of ob-
servables (i.e., sensor monitoring data) and system health states. In
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Fig. 3. A physics-regularized data-driven approach for the health prognostics of complex engineered systems with dependent health states.

particular, this layer establishes the conditional distribution of (ob-
served) system performance, given (hidden) system health states as
well as (observed) operation parameters. The idea is sketched in Fig. 3.
Under this framework, the integration of system physics and sensor
data is achieved in a non-intrusive manner in the sense that system
physics serves as a soft constraint or regularization.

The framework above leads to a dynamic model (or, state-space)
model to be described in the next Section. In the literature, [36] pro-
posed a second-order polynomial dynamic linear model to characterize
the growth of the depth of corrosion defects on energy pipelines. The
model does not consider multiple sensor signals and is purely data-
driven. Wang et al. [37] investigated the modeling and forecasting of
temperature-induced strain of a long-span bridge using an improved
Bayesian dynamical (state-space) linear model that involves autore-
gressive, trend, seasonal and regression components. This approach is
not used for estimating hidden system health degradation by utilizing
multiple sensor signals and does not require system governing physics
to be integrated. Li et al. [38] proposed a two-factor state-space model
for remaining useful life prediction under time-varying operating con-
ditions. A single state variable is considered and the governing physics
is not explicitly used to construct the state-space model. Veloso and
Loschi [39] utilized a dynamic linear degradation model to deal with
the heterogeneity in degradation paths. The model can be applied to
degradation modeling where a univariate degradation signal is directly
observed (which is not our case), and does not consider multiple sensor
signals and the physics that links the monitored parameters. Skordilis
and Moghaddass [40] proposed a novel generative framework for fail-
ure prognosis utilizing a hybrid state-space model that represents the
evolution of system operating condition and its degradation over time.
A single-layer feed-forward neural network is employed to model the
nonparametric relationship between the multi-dimensional observation
process and system dynamics.

Unlike the approaches reviewed above, the proposed physics-regula-
rized framework leverages the governing system physics to directly con-
struct the measurement equation that links multiple sensor signals. The
degradation of multiple hidden system states are captured by Stochastic
Differential Equations which give rise to the state equation. In addition,
we particularly consider the statistical dependency among multiple sys-
tem states, and model the dependency using a non-parametric approach
based on the Archimedean family of copulas [41]. Unlike the existing
work where a specific parametric copula function is often used [42,43],
the Archimedean family of copulas includes the most commonly used
copula functions (e.g., Clayton, Gumbel, Frank, Joe, etc.), and thus pro-
vide more flexible models considering potentially complex dependence
structures among hidden system states (which may not be adequately

captured by a specific parametric copula function). On the other hand,
the use of non-parametric copula functions increases the computational
complexity as more parameters need to be estimated. A hybrid Gibbs
sampler based on the Forward Filtering Backward Sampling (FFBS) is
developed to perform the statistical inference.

Finally, the connection between the proposed framework and the
Gaussian Process regression is presented, connecting the proposed ap-
proach to a large body of literature in machine learning. The proposed
approach is applied to solve a real problem with real datasets, demon-
strating the significant potential of physics-informed machine learning
for reliability and safety—the main theme of this special issue.

The remainder of the paper is organized as follows. Section 2
presents the proposed framework. A case study based on a real dataset
is presented in Section 3 to illustrate the application of the proposed
approach. Section 4 concludes the paper.

2. A physical-statistical modeling framework

This section presents the physics-regularized statistical modeling
framework for health prognostics of complex engineered systems with
multiple hidden health states, utilizing both system physics and sensor
monitoring data. In particular, we let «;(r), i = 1,2,...,m, denote the
ith hidden system health state, and let a(t) = (a;(1), 0y (1), ..., @, (D)7
be a m-dimensional continuous-time time-series that contains all state
variables. For any state variable i, we further define a vector a;(r) =
(o; (1), %a,-(t), . ﬁ—__]]a,-(t))T that consists of the ith state variable «;,(¢) and
its derivatives. A collection of a;(r) for all i = 1,2,...,m is denoted by
aw) = (a;(0,...,a,»7.

The proposed framework consists of two layers: a data layer and a
physics layer.

2.1. The data layer: Degradation of system health state

The data layer captures how the (unobserved) system health state
a(t) evolves over time during the operation of an engineering system.
Degradation, for example, is one of the main reasons that causes the
system health state variables to drift away from their nominal values,
leading to deteriorated system performance. If the system is properly
working, we consider a generic scenario where the temporal dynamics
of the ith hidden state, i.e., ;(t) for i = 1,2,...,m, is governed by a
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nth order Linear Time-Invariant (LTI) Stochastic Differential Equation
[44]:
n—1 n=2

d" d d d
Ea,-(t)+;4n_] Wa,~(1)+un_2 mai(1)+ ey Ea,~(t)+;40ai(t) = w;(1)
(2)

fori=1,2,...,m. Here, w;(t) ~ N(0, ai) is the Gaussian white noise, and
{1 };_';(1) are the coefficients. Note that, in Section 2.4, we will introduce
the statistical correlation among w;(r) for i = 1,2,...,m, such that
the degradation paths of multiple health variables are correlated. The
differential Eq. (2) captures the dynamics of the hidden system state
and has been widely applied to a spectrum of engineering applications
such as image processing, vibration, circuits, signal processing and
control [44,45]. In a special case when n = 1 and y, = 0, Eq. (2)
reduces to a simpler form of a stochastic model, ¢;(r) = w;(t), where
«;(t) becomes a Wiener process—a widely adopted model for univariate
degradation processes.

When the state dynamics drifts away from its nominal condition
during the operation of the system (such as aging, malfunction of
certain components, etc.), the system performance is expected to de-
teriorate. To capture such a drift, we introduce a term f;(r) on the right
side of (2), and obtain

[Abnormal state dynamics with shift]:
dan dn—l n—2
;ai(t) + Uy dtnﬁ“f(’) + Uy

= f;(t) + w; ().

It is important to note that, let

d d
ma[(l‘)_'_."+M]Eai(t)+ﬂoai(t) 3)

d dn—l T
a;(t) = <f1,-(1)7 Eai(t)’ . m%(ﬂ) “4)
for each system state i, i = 1,2,...,m, the nth order LTI differential

Eq. (2) has a state-space representation as follows:

%ai(t) = G;a;(t) + L(b;(t) + w;(1))

)]
o) = Ha;(t) + ¢,(), ¢;() ~ N0,5%)

where G; is the feedback matrix,

0 1 0

0 0 1
Gl = S (6)

0 0 1

—Hy TH “Hp-1

L = diag(0,0, ..., 1) is the noise matrix, b;(r) is a n-dimensional vector
that captures the potential deviation of state dynamics from the nom-
inal condition, w;(r) ~ N(0, 25,",)) is the n-dimensional Gaussian white
noise, and the system health state, «;(7), is recovered from a;(r) through
a 1 x n matrix H = [1,0,...,0]. Note that, the statistical dependency
between multiple system health state will be formally introduced in
Section 2.4.

Because G, linearly operates on a;(¢) in (5), the differential equation
in the first line of (5) can be solved at discrete times, and we obtain:

a;(t + 4) = exp(G;4)a;(t) + b;(1)A + q,;(1) 7

where exp(-) is the matrix exponential, b,(1)4 is the first-order approx-

imation of the total amount of shift ft'M b;(r)dz over a time interval

with length 4, g,(t) ~ N(0, 251”) and

2510 = / exp(G,;(4 - T))LZ(V’&LT(eXp(G‘-(A —o)ldr. (8)
0

2.2. The physics layer: Regularization

The physics layer imposes regularization on how individual system
health variables, «;(f) for i = 1,2,...,m, are physically connected
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following some fundamental system working principles. In particular,
the main goal of the physics layer is to link the distribution of the
(monitored) system responses to the (monitored) operating parameters,
given (unobserved) system health state and (known) system physics:

[y®)]x(®), a(n)] ©

where [-|-] represents the conditional density, y(¢) is a vector of system
responses (observed), x() = (x;(t), x,(t),", x,(t))T is the d-dimensional
streaming observations of critical system operating parameters (ob-
served), and a(t) = (;(t),ay(t), -, @, ()T is a m-dimensional system
health state at time ¢ (not observed). Eq. (9) outlines a generic case
which is universally relevant to almost all designed engineering sys-
tems.

The specification of the physics layer requires the construction of a
mapping, f, such that:

y(®) = f(a@®):; x(0) +v(@0), v@)~ N@O,Z,) 10

where v(t) captures the measurement error. The mapping f is con-
structed from known system physics and see Section 1.1 for a real
example.

2.3. The dynamic model

Let a(t) = (a,(1), ..., a7, b@t) = (b4, ...,b,"OAN" and g(t) =
(q;(®), ..., q,,®))T, we obtain a dynamic model by integrating the physics
layer and data layer:

a@t + 4) = Ga@) + b@t) + 4@,
a(t +A4) = Ha@t + A) + e(t + 4),
y(t + 4) = f(a(t + A); x(t + A)) + v(t + A),

4 ~ N0, Z5()
e(t+4)~ N(,X,) 11)
v(t) ~ N, X,)

where G = diag(exp(G 4), exp(G,4), ..., exp(G,,4)),
DFNGIE diag(:fln,zgf), ...,251"”), H = diag{diag(H)} and X, =
diag(c?).

If the mapping, f, is linear or can be approximately by a linear
operation such that y(t) = x” ()a(t) + v(t) = F()a(t) + v(t), we re-write
(11) as

a(t + 4) = Ga(t) + b(t) + §(t)

- 12)
y(t + 4) = F(a(t + 4) + vt + 4)

where F(1) = F()H.

In fact, by defining a mapping g(r) = Fa(t), the dynamic model (12)
is the state-space representation of a Gaussian Process (GP) regression
problem with the following form [45]:

g~ GP(, k(1,1), y(0) = g + v(). (13)

where the function, g(r), is a realization of a P random prior with a
specified covariance function k(-,-). From the function-space perspec-
tive, a GP is a collection of random variables and any finite number of
which have a joint Gaussian distribution [46]. The covariance function,
k(-,-), at the stationary state, can be computed by:

FP_E®TFE", ift—t20
k(1) =4 r a9
FE@PF", ift'—1<0

where E(t) = exp(G(7)) and P, solves the Riccati equation

%Pw =GP +P, G + ;. (15

Hence, the dynamic model proposed in this paper can be interpreted
as a GP regression problem (13) which provides a powerful modeling
approach in both statistics and machine learning. On the other hand,
the dynamic model (12) provides major computational advantages
rooted in its conditional structure.
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2.4. Dependent state dynamics

Finally, we establish the statistical dependency among hidden sys-
tem state variables, i.e., a;(?), a;(?), ..., a,(?). In the model above, the
dynamics of each system state is governed by the differential Egs. (3).
Hence, by introducing  statistical = dependency  between
w (1), wy (1), ..., w, (1), the statistical correlation among the system states
can be naturally established.

Theorem 1. Let X, X,, ..., X,, be random variables with joint distri-
bution function FU°") and marginals F,, F,, ..., F,, respectively. Then,
there exists a copula C such that

FOOM () x5, .00x,) = C(F (x)), Fy (%), ..., Fy(x,), - (x).%, ..., X,) €R™.

(16)

If the marginals are continuous, then, the copula C is unique; Otherwise, it
is uniquely determined on Ran(F,) X Ran(F,) X --- X Ran(F,,), where Ran(F)
denotes the range of F [41].

Based on the Sklar’s Theorem, we let w;(t), w,(1),...,w,(t) be m
random variables with joint distribution function FU°nY and contin-
uous marginals F, y, Fiyy(ys - » Fiu, 1) Tespectively. Then, there exists a
unique copula C such that

(w; @), ..., w, 1) € R™.

a7

FUOM (1, (1), ..., w0, (1) = C(Fyy (1, - » Fip 1))

As a tool for statistical analysis, copulas allow for the modeling
of marginals to be handled separately from the dependence structure
characterized by the copula, and represent a flexible alternative in
which one can bypass the complex specification and validation of
multivariate distributions. Although there exist many candidate copulas
in the literature, the choice of a particular parametric copula function
for a particular problem is still challenging. For potentially complex
dependence structures, a specific type of parametric copula may not be
adequate.

Hence, to make our model robust and general, we consider a large
family of copulas known as Archimedean [41]. Archimedean copulas
are an associative class of copulas that model the dependence in
arbitrarily high dimensions with only one parameter, which governs
the strength of statistical dependence. The most prominent bivariate
Archimedean copulas include Clayton, Gumbel, Frank, Joe, etc.

From the modeling point of view, one main advantage of
Archimedean copulas is that any Archimedean copula C admits the
following representation:

C(uy,uy, ... Juy,) € [0, 177

18)

Jiy) = @7 (@O + -+ Wy)), (), ty, ...

where ¢(u) is known as the generator function, which is strictly decreas-
ing and convex on (0, 1) such that (1) = 0. Suppose that it is possible to
approximate the generator ¢(u) by some function @(u). Then, we may
restrict our attention to the inference on the approximate function with-
out choosing a specific parametric form of the copula function. Instead
of directly approximating the generator function which is unbounded
at 0%, we adopt the idea proposed in [47] which approximates the
following function

19

o) = @(ug) exp < / ﬁ_l(s)ds> , (20)
o

using a cubic B-splines given by

Jwy=BIn, uelo0,1] (2D
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where B, contains the values of the B-splines at u based on k equidistant
internal knots on [0, 1], and 5 = (9, 7y, ..., Mg41) € R¥*2. Given a knot
sequence, uy = u; < -+ < uy = uy,, the ith B-splines of order n® at time
u is obtained using the standard recurrence: B,(i,n) = u,»_::l]‘i ” B,(i,n—
D+(1- %)BM(H lLn—1)fori=0,...,k+landn=1,...,nB [48].

In particular, [47] showed that the elements of  must satisfy the
following conditions for the approximation (21) to be valid:

o = N1 =0
m<0, i=12,..,k (22)
Iwy=Bn<l.

Introducing statistical dependency among a, (1), a,(?), ..., a,,(t) does
not alter the parametric structure of the dynamic model (12). However,
it does change the covariance matrix of g(z).

Let

%a(z) = diag(G,, G,. ..., G,)at) + LW () (23)

where L = diag(L,L,...,L) and W() = W1, Wi@),....Wr@)T.
Solving the linear stochastic differential Eq. (23) at discrete times, we
obtain

act + 4) = Ga(r) + b(1) + gt)

_ 24
y(t+4) = Fa(t + 4) + v(t + 4)

which maintains the same form of (12), but the covariance matrix of
q(1) is given by:

A
= / CA-Lzy L (G4 - o) dr, (25)
0

with G(t) = exp{diag(G,,G,,...,G,,) - t}. Given the special structure of
L defined under (5), iZWI:T is a mn x mn sparse matrix which has
non-zero entries only at its (i, n, i,n)th positions for i;,i, =1,2,...,m.

Hence, given the observation y(¢), it is possible to obtain the poste-
rior distribution (i.e., filtering distribution) of the hidden system health
variables [a(r), b(t)|y(t)] from the dynamic model (24). The obtained
posterior distribution enables one to monitor the temporal dynamics
of the critical system health conditions.

3. A case study: Reliability of cooling systems

In this case study, we re-visit the motivating example presented
in Section 1.1. The data used in this case study are shown in Fig. 2,
including the observed daily COP, condenser coolant inlet temperature
T,, evaporator coolant outlet temperature T,, and cooling capacity
Q, over a 57-day study period (see Section 1.1 for more detailed
descriptions). There exists a strong thermodynamics law that governs
the relationship among these critical operating parameters, ﬁ =-1+
% - Ly yzg—” -7 TL; also see (1) for more details. Here, the true
S}Efstem health steate, i.ef, the internal irreversibility states (y;,y,,y3), are
not directly observed and may gradually drift away from their nominal
values. Hence, the goal is to estimate the (statistically correlated)
degradation of the hidden system state variables from the monitored

operating parameters.
3.1. Model construction and inference

The physics layer is constructed from the governing physics (1).
Firstly, we note from Fig. 2 that the daily evaporator coolant outlet
temperature, 7,, presents very small variability over the 57-day obser-
vation period (less than 0.5K). In fact, 7, is pre-set and should remain
at a certain level. From the physics point of view, this observation
suggests that the chiller can still provide chilled water with the pre-
set temperature, although the energy efficiency in cooling the water
might have already decreased as indicated by the drop of COP. Hence,
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Fig. 4. Posterior distributions of the model parameter y.

by treating T, as a constant, we obtain from the governing physics (1)
a linear model:

(1) = L1 IO o0+ 00
Y=\ copq T.() ) =
= 11 + (1 = BT + o) 26)
= oy (1) + ap(O)x() + v(t)
where a; = —y; and @, = y,—y;T,(1)~" are the two hidden system states,

x; =T,(1), and v(t) ~ N(0, 0'5) is the observation error; see (10).

Following (3), the (marginal) temporal dynamics of the two system
states are modeled by a first-order LTI stochastic differential equation
such that @, (r) = f,(*) + w,(¢) and &, (1) = f,(t) + w,(r) where g, and p,
capture the drift of the two state variables from their nominal values.
In addition, we establish the statistical dependency between w(f) and
w, (1) by (17) through a copula C such that

FUOM (1, (1), 0(1)) = C(Fyy (1 Fupyy): - (w1 (1), w05(1) € R? 27)

where FU°In) and F respectively denote the joint and marginal distri-
butions. The function C corresponds to an Archimedean copula and its
generator function is modeled using cubic B-splines; see (18)-(21).

Note that, when the temporal dynamics of the two system states
are modeled by a first-order LTI stochastic differential equation, a(r)
and b(t) in (24) are respectively (a; (1), a,(1)T and (B,(t), (). Let
01) = (o)1), ay(t), B (), fo ()T, and let f,(H) and B,(f) be two AR(1)
processes, we obtain a dynamic model as follows:

0t +4)=GON+U®, U@~ N©O,XZy)

(28)
Y+ 4)=F(+ D01 + A) +v(t + 4), o(t+4) ~ N(0,02)
where
— o IZ IZ
F(t)=1[1,x(1),0,0], G= [0 Iz]’
oy 0 0 0 29)
0 o2 0 0
Zv=|, 82 N .
%5 aﬂliﬂz
0 0 54,5, %,

In (28), the observed response y(¢) is determined by the latent
process O(t) up to a Gaussian error. Note that, the drifts g, and g,

are also treated as auxiliary state variables, although they are not
the actual system health state variables [49]. The augmented state
variables evolve over time following a Markovian structure, and the
statistical dependency among the temporal dynamics of «; and «, is
captured by O,y Based on the Hoeffding’s Lemma [41]

(30)

C(u,v) —uv
o= | /[o T YT
: w () wy (1) wy (1) wy (1)

Let y = (0,,04,, 04,05, 0p,>0p, 5,) be a collection of the unknown
parameters. Note that, the last parameter o4 5 depends on a set of
unknown B-splines coefficient # that defines the copula function. Given
the observations y;.; = (¥(1),»(2),...,(T)), the posterior distribu-
tion of the parameter and unobservable states is 7#(0y.7,y;y,.7) =
z(0o.7|y1.7,¥)x(wly|.7), and the Gibbs sampling from z(6y.7,y;y;.7)
requires one to simulate from the full conditional densities
7(6y.7;¥1.7.w) and z(y; y;.7). Details are provided as follows.

It is noted that, although the parameters y;, = (o‘v,aal 10y aﬂl,aﬁz)
can be efficiently sampled leveraging the well-known conjugate inverse
Gamma priors, the sampling of o5 4, requires the drawing # that defines
the copula function; see (30). Because 7, = n;,,; = 0, one may sample
k —2 B-splines coefficients, i = (3, ...
described in [50].

Let u;(t) = p,(t + 4) — p;(t) and u,(¢) = p,(t + A) — B, (1), the likelihood
function of # is

, 1), using a Bayesian framework

T

LG 0. =]

t=1

w0101
Ouy Ouy

uy(t) ,_ -
efufm A~ Nslipds

_ T U= A ClAcii
L1 A OIAw @) (

B 2
L o )
(31)

where C = C(u, (1), uy(1); i) = @~ (@, (1); ) + @(uy(2); 7); ) and ¢ is the
generator function defined in (18).
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Fig. 7. Validation of the Normality assumption using Q-Q plots.

Adopting a non-informative prior for 7

1 if fe(-o,00

P (32)
0 otherwise

the posterior distribution of 7 is

p(; (uy (0), uz(f)),Tzl) o L(#; (uy (0), Mz(l)),T=1 )p(@). (33)

Once the unknown parameters have been sampled, the state vari-
ables can be efficiently drawn from #(6.r|y;.7.y) using the well-
known Forward Filtering Backward Sampling (FFBS) with linear com-
plexity in time and the number of state variables [51]. Algorithm 1
summarizes the steps that sample from the full conditional densities
(0.3 y1.7- W) and z(y; yy.1).

Applying the algorithm above to the dataset, Fig. 4 shows the pos-
terior distributions of the model parameters y = ("'v"’al’caz’”ﬂl"’ﬂz’
0p,.5,)- Fig. 5 shows the posterior means as well as the 95% bootstrap

confidence intervals of the state variable, 6(z). It is immediately seen
that both «,(r) and a,(r) gradually shift away from their initial values
over the 57-day monitoring period, indicating deteriorating system
internal health. In particular, the amount of daily shift «,(¢) is captured
by (1), while the amount of daily shift a,() is captured by f, ().

In our model, the statistical dependency of system state variables is
established through a copula function with its generator function being
modeled by non-parametric cubic B-splines. The purpose is to bypass
the difficulty of specifying a parametric copula function, and enhance
the modeling flexibility of our model. Fig. 6 shows the posterior mean
of the function, 4 in (19), estimated from the proposed model (black
thick line). The posterior mean is obtained by averaging the samples of
4 (the gray lines show 50 selected samples for visualization purposes).
For comparison purposes, we also re-fit our model using parametric
copula functions, Clayton, AMH (Ali-Mikhail-Haq) and Frank, as well
as assuming independent system health state. The idea is that, if the
shape of 1 obtained using the non-parametric approach is similar to
that obtained from a parametric approach, then, a parametric copula
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Fig. 8. Debris in the water pipe blocks the water flow, reduces the heat exchange rate drops and causes the drift of system internal irreversibility states.

Algorithm 1: FFBS in a hybrid sampler

Initialize w* and n° such that n° satisfies the convexity and sign
conditions in (22).
for/=1: N do
{ ! _ .
Draw BS?T from n(@é?T|y1:T,y/(’ ) using FFBS;
Draw q/(ll) from the posterior distribution assuming conjugate
inverse-Gamma priors;
Obtain (u, (t), “2(’))tT=1’ and set &, =
fori=1:mdo
for j=1:kdo
= — (D (D) (i—1) (i—1) (i—1)
Set Z;=(m .ty sty H 02N )
if = ; meets the convexity and sign conditions (22) then
P(E 3 D))

set £, = £, with probability —————=1—,
J J P y P13 D))

else
| set&; =¢&;
end
end
end
Set V) = & and compute o, 4 from (30);
end

should be used instead of the non-parametric one that increases the
computational complexity. However, this is not the case as shown in
Fig. 6. The comparison in Fig. 6 shows that the shape of 4 obtained
from the non-parametric approach is more complex and cannot be
well captured by any of these commonly used parametric copula func-
tion, showing an improved modeling capability using the Archimedean
family of copulas.

Finally, the normality assumption of the model is validated. The
first column of Fig. 7 shows the Q-Q plot of the residuals from the
observation equation in (28). The five Q-Q plots in this columns are
respectively based on five samples of 6 drawn from the FFBS. Columns
2 to 4 of Fig. 7 shows the Q-Q plots of the residuals from the state
transition equation in (28) for the four state variables within 6. Simi-
larly, the five Q-Q plots in this columns are respectively based on five
samples of 6 drawn from the algorithm. The normality assumption of
model (28) is well justified.

As discussed in Section 1, the decrease of COP does not necessarily
imply that the system internal health states (hidden) have degraded.
COP depends on various external environmental factors and internal
system health state. The change of working load and outdoor tem-
perature may cause the drop of the observed COP, while the system

10

is functioning properly. Hence, before DC engineers can stop the op-
eration of the cooling system, it is necessary to understand if the
deteriorated COP is indeed due to the degradation of system internal
health state, rather than the variation of uncontrollable external factors
(note that, it is often costly and risky to stop the normal operation of
DC cooling systems without convincing evidence). The proposed model
successfully addresses this question by revealing the degradation of
hidden system health states; see Fig. 5. It is worth noting that, the
estimated system health states possess well-defined physical interpreta-
tion and are related to system irreversibility states in (1). This finding
provides interpretable justifications that DC engineers could stop the
operation of the DC cooling system, and investigate the root causes
behind system state degradation. In our case study, DC engineers even-
tually located the root cause behind the observed cooling performance
deterioration: the debris in the water pipe (see Fig. 8). Note that, in
air conditioning systems, chillers are utilized to provide cooling water
which is distributed to cool the air in server rooms of a DC. Used
water is re-circulated back to the chiller to be cooled again. When the
debris blocks the water flow, the heat exchange rate drops, causing the
drift of system internal irreversibility states. The debris was brought to
the water pipe due to a design deficiency during the DC construction
phase and was later fixed. The discovery of such actionable insights can
be facilitated when system physics is incorporated into the proposed
health prognostics of complex engineered systems with multiple hidden
health states.

4. Conclusions

This paper proposed a physics-regularized data-driven approach for
health prognostics of complex engineered systems with multiple hidden
health states. The proposed methodologies enabled the integration
of critical system working principles with streaming sensor observa-
tions. The proposed framework consists of a data layer and a physics
layer. The data layer captures the statistically correlated temporal
dynamics of hidden system states, while the physics layer imposes
regularization on the system health states by invoking the physical
relationship between multiple observed system operating parameters.
The integration of physics and data-driven approaches is thus achieved
in a non-intrusive manner. The non-parametric cubic B-splines has been
successfully employed to describe the complex statistical correlations
among system state variables. The application and the effectiveness of
the proposed approach have been demonstrated by a case study based
on a real data set.
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