
Flow rate–pressure drop relations for new configurations of slender
compliant tubes arising in microfluidics experiments⋆
Xiaojia Wanga, Shrihari D. Pandea and Ivan C. Christova,∗

aSchool of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

A R T I C L E I N F O
Keywords:
soft hydraulics
fluid–structure interaction
pressure drop
microfluidics

A B S T R A C T
We investigate the steady-state fluid–structure interaction between a Newtonian fluid flow and a de-
formable microtube in two novel geometric configurations arising in recent microfluidics experiments.
The first configuration is a cylindrical fluidic channel surrounded by an annulus of soft material
with a rigid outer wall, while the second one is a cylindrical fluidic channel extruded from a soft
rectangular slab of material. In each configuration, we derive a mathematical theory for the nonlinear
flow rate–pressure drop relation by coupling lubrication theory for the flow with linear elasticity for
the inner tube wall’s deformation. Using the flow conduit’s axial slenderness and its axisymmetry, we
obtain an analytical expression for the radial displacement in each configuration from a plane-strain
configuration. The predicted displacement field, and the resulting closed-form flow rate–pressure drop
relation, are each validated against three-dimensional direct numerical simulations via SimVascular’s
two-way-coupled fluid–structure interaction solver, svFSI, showing good agreement. We also show
that weak flow inertia can be easily incorporated in the derivation, further improving the agreement
between theory and simulations for larger imposed flow rates.

1. Introduction
Microfluidics, which concerns the transport of small

volumes of fluids at microscopic scales, has emerged as
a fundamental research field over the last several decades
[17, 26]. Fluid flows at small scales involve the coupling
of physical effects that are often not observable at larger
scales [5], and necessitate updating (or redevelopment) of
aspects of the basic continuum theories [27, 28]. More
specifically, recently, there has been a growing interest in
the topic of soft hydraulics [7], i.e., small-scale flows in
compliant conduits, due to the wealth of mechanical [10],
biological [12], physical [5] and technological [24, 18] prob-
lems involving such fluid–structure interactions. Typically,
the pressure drop required to maintain a steady flow within
compliant conduits varies nonlinearly with the flow rate, de-
viating from the classic Poiseuille (or Hagen–Poiseuille) law
for rigid conduits [13, 7]. Using perturbation methods, pre-
vious studies have successfully derived three-dimensional
solutions, leading to predictive theories that quantify this
nonlinear flow rate–pressure drop relation in rectangular
microchannels [8, 25, 30, 4] and in axisymmetric microtubes
with thin walls [11, 3, 1, 20].

Recently, two new configurations of compliant, axisym-
metric cylindrical geometries have been considered in ex-
periments: (a) a thick, elastic annulus constrained between a
fluidic channel and a rigid outer cylinder [15], and (b) a tall
and wide rectangular block of elastic material from which a
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cylindrical tube has been extruded creating a fluidic channel
[21, 14], as shown in Fig. 1. However, a complete theory of
the viscous fluid–structure interaction in these novel compli-
ant “microtube” configurations is lacking. To this end, in this
work, we derive the pressure–deformation and flow rate–
pressure drop relations for Newtonian fluid flow through
these configurations. We show that our theory, derived us-
ing the lubrication approximation and linear elasticity for
slender structures, agrees with three-dimensional, two-way
coupled direct numerical simulations performed using the
open-source software package SimVascular [29, 16].

Specifically, in section 2.1, we review lubrication theory
for axisymmetric flow in a slender cylindrical flow conduit.
In section 2.2, the pressure–deformation relation for each
configuration is derived from the theory of linear elasticity.
Then, in section 2.3, the closed-form flow rate–pressure
drop relation is obtained. In section 3, we describe the
methodology for performing direct numerical simulations
to validate our theory. Finally, in section 4, we discuss the
comparisons between theory and simulation.

2. Problem formulation and mathematical
analysis
We study the steady fluid–structure interaction between

a viscous flow and an elastic confining structure in two
geometric configurations of recent experimental interest de-
picted in Fig. 1. In the undeformed state, each fluidic con-
duit (tube) has a radius 𝑎0 and axial length 𝓁. For both
configurations, we assume the conduit is slender, such that
𝑎0 ≪ 𝓁; i.e., the aspect ratio 𝜖 = 𝑎0∕𝓁 ≪ 1. We assume
that the cross-section of the flow conduit remains circular
upon deformation. Specifically, the deformation 𝒖 remains
axisymmetric, such that 𝒖 = 𝑢𝑟(𝑟, 𝑧)𝒆𝑟, even after it expands
due to the flow within. This assumption is kinematic in
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Figure 1: Schematics of two configurations of a Newtonian fluid flowing through compliant fluidic conduits, with the first
row showing each three-dimensional configuration and the second row showing cross-sectional views. (a) The fluidic conduit is
surrounded by an annulus of soft material with a rigid outer wall (no-displacement condition at 𝑟 = 𝑑). (b) The fluidic conduit
is a cylindrical tube extruded from a soft material contained in a large rectangular slab (stress-free conditions at 𝑥 = ±𝑤∕2 and
𝑦 = ±ℎ∕2), with 𝑤 ≫ 𝑎0 and ℎ ≫ 𝑎0.

nature, based on the expectation of a state of plane strain
(with small and/or negligible axial displacement along 𝒆𝑧) in
a long slender structure (see, e.g., [30]). Thus, in cylindrical
coordinates, the deformed fluid domain is {(𝑟, 𝜃, 𝑧) | 0 ≤ 𝑟 ≤
𝑎0+𝑢𝑟, 0 ≤ 𝜃 < 2𝜋, 0 ≤ 𝑧 ≤ 𝓁}. In what follows, we denote
by 𝑎(𝑧) = 𝑎0 + 𝑢𝑟(𝑎0, 𝑧) the deformed radius of the tube.
2.1. Fluid mechanics

Similar to the deformation, we assume that the flow field
𝒗 and the pressure 𝑝 satisfy the assumption of axisymmetry
without swirl, such that 𝒗 = 𝑣𝑟(𝑟, 𝑧)𝒆𝑟+𝑣𝑧(𝑟, 𝑧)𝒆𝑧, 𝜕𝒗∕𝜕𝜃 =
0, and 𝜕𝑝∕𝜕𝜃 = 0. Then, for a Newtonian fluid of density of
𝜌𝑓 and dynamic viscosity of 𝜇𝑓 , the incompressible Navier–
Stokes equations at steady state take the form [32]:
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where𝑅𝑒 = 𝜌𝑓𝑐𝑎0∕𝜇𝑓 is the Reynolds number. In Eqs. (1),
the order-of-magnitude of each term is listed underneath,
based on the scales from Table 1.

Table 1
Scales for the variables in the incompressible Navier–
Stokes equations (1).
Variable 𝑟 𝑧 𝑣𝑟 𝑣𝑧 𝑝

Scale 𝑎0 𝓁 𝜖𝑐 𝑐 𝑐 =
𝜇𝑓𝑐𝓁
𝑎20

In Table 1, we have chosen 𝜖𝑐 and 𝑐 as the charac-
teristic scales for radial velocity 𝑣𝑟 and axial velocity 𝑣𝑧,
respectively, in order to ensure a balance in the conservation
of mass of Eq. (1a). We have then chosen the viscous
characteristic pressure 𝑐 in terms of 𝑐 to ensure a balance
between the viscous forces and the pressure gradient in
Eq. (1c). We are interested in the flow-controlled regime,
in which the volumetric flow rate, 𝑞, is prescribed at the
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conduit’s inlet, leading to the choice 𝑐 = 𝑞∕(𝜋𝑎20), so that
𝑐 = 𝜇𝑓 𝑞𝓁∕(𝜋𝑎40) and 𝑅𝑒 = 𝜌𝑓 𝑞∕(𝜋𝑎0𝜇𝑓 ).Next we assume 𝜖𝑅𝑒 ≪ 1, which is the well known
lubrication approximation [32, 5]. The inertia of the flow is
then negligible, and we are interested in the leading-order-in-
𝜖 solution to the hydrodynamic equations. Eq. (1b) becomes
𝜕𝑝∕𝜕𝑟 = 0 at leading order, which implies that 𝑝 = 𝑝(𝑧)
only. Then, the leading-order solution of Eq. (1c) is

𝑣𝑧(𝑟, 𝑧) =
1

4𝜇𝑓
d𝑝
d𝑧

(

𝑟2 − 𝑎2
)

, (2)

where we have imposed the no-slip boundary condition,
𝑣𝑟(𝑎, 𝑧) = 0, at the deformed fluid–solid interface, 𝑟 = 𝑎(𝑧).

Integrating Eq. (2) over the deformed cross-section, we
can relate the flow rate 𝑞 to the pressure gradient d𝑝∕d𝑧 as

𝑞 = ∫

2𝜋

0 ∫

𝑎(𝑧)

0
𝑣𝑧(𝑟, 𝑧)𝑟 d𝑟 d𝜃 = −

𝜋𝑎4(𝑧)
8𝜇𝑓

d𝑝
d𝑧

, (3)

which is, of course, Poiseuille’s law for a deformed tube.
Finally, observe that we can relate 𝑣𝑧 to 𝑞 via Eq. (2) and

Eq. (3) by eliminating d𝑝∕d𝑧. This relation can be used to
obtain a leading-order-in-𝜖 theory valid up to 𝜖𝑅𝑒 = (1).
The details of this derivation are given in Appendix A for
the interested reader.
2.2. Solid mechanics

Eq. (3) is a first-order ordinary differential equation
(ODE) for 𝑝(𝑧). In order to solve it, and obtain the relation
between 𝑞 and 𝑝, we need to first obtain an expression
for the deformed radius 𝑎(𝑧). To this end, we assume the
deformation gradient in the solid wall to be small, so that
the theory of linear elasticity applies [23]. Then, since the
cross-sectional dimension of the tube is much smaller than
its length (i.e., 𝜖 ≪ 1), the dominant balance of stresses
occurs in the conduit’s cross-section, reducing the three-
dimensional (3D) elasticity problem to a two-dimensional
(2D) plane strain problem in the (𝑟, 𝜃) plane. As mentioned
above, we assume the deformation is in the radial direction
and the displacement field is axisymmetric. Thus, the de-
formed radius can be written as 𝑎(𝑧) = 𝑎0 + 𝑢𝑟(𝑎0, 𝑧).Under the above assumptions, the relation between the
dominant stress components and the strains can be written
in terms of just 𝑢𝑟 [23]:

𝜎𝑟𝑟 = 𝜆1
𝑟
𝜕
𝜕𝑟

(𝑟𝑢𝑟) + 2𝐺
𝜕𝑢𝑟
𝜕𝑟

, (4a)
𝜎𝜃𝜃 = 𝜆1

𝑟
𝜕
𝜕𝑟

(

𝑟𝑢𝑟
)

+ 2𝐺
𝑢𝑟
𝑟
, (4b)

where 𝜆 and 𝐺 are the two Lamé constants in the linear
stress-strain relation of an isotropic elastic solid. For such
plane strain configurations, as shown in the bottom row of
Fig. 1, Cauchy’s balance of linear momentum (neglecting
any body forces) becomes [23]:

1
𝑟
d
d𝑟

(

𝑟𝜎𝑟𝑟
)

−
𝜎𝜃𝜃
𝑟

= 0. (5)

Substituting Eqs. (4) into Eq. (5) and rearranging, we obtain
1
𝑟
𝜕2

𝜕𝑟2
(

𝑟𝑢𝑟
)

− 1
𝑟2

𝜕
𝜕𝑟

(

𝑟𝑢𝑟
)

= 0. (6)
Eq. (6) can be solved by separation of variables. Let

𝑢𝑟(𝑟, 𝑧) = 𝑓 (𝑟)𝑔(𝑧) and substitute into Eq. (6). It is easy to
show that the general solution for 𝑓 (𝑟) is

𝑓 (𝑟) = 𝑐1𝑟 +
𝑐2
𝑟
, (7)

where 𝑐1 and 𝑐2 are two constants of integration to be
determined from suitable boundary conditions.

In configuration I, the outer surface rigid at 𝑟 = 𝑑
restricts the displacement, 𝑢𝑟(𝑑, 𝑧) = 0, while the radial
normal stress at the fluid–solid interface matches the hy-
drodynamic pressure [11, 3, 1, 20], 𝜎𝑟𝑟(𝑎0, 𝑧) = −𝑝(𝑧).
Imposing these boundary conditions yields 𝑐1 = −𝑐2∕𝑑2 and
𝑔(𝑧) = 𝑝(𝑧), with

𝑐2 =
𝑎20

2𝐺
[

1 +
(

𝜆+𝐺
𝐺

) 𝑎20
𝑑2

] =
𝑎20

2𝐺
[

1 +
(

1
1−2𝜈

) 𝑎20
𝑑2

] , (8)

where we have used the identity (𝜆+𝐺)∕𝐺 = 1∕(1−2𝜈) for
an isotropic linearly elastic solid, with 𝜈 being the Poisson’s
ratio. Finally, the radial displacement 𝑢𝑟 is found to be

𝑢𝑟(𝑟, 𝑧) =
𝑎20

2𝐺
[

1 + (𝑎0∕𝑑)2
1−2𝜈

]

(

1
𝑟
− 𝑟

𝑑2

)

𝑝(𝑧). (9)

Accordingly, for configuration I,
𝑎(𝑧) = 𝑎0 + 𝑢𝑟(𝑎0, 𝑧)

= 𝑎0

{

1 + 1

2𝐺
[

1 + (𝑎0∕𝑑)2
1−2𝜈

]

(

1 −
𝑎20
𝑑2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1∕𝑘

𝑝(𝑧)

}

.

(10)
Here, for convenience of notation, we have introduced the
constant 𝑘. Its physical relevance is discussed below.

In configuration II, we still have 𝜎𝑟𝑟(𝑎0, 𝑧) = −𝑝(𝑧)
on the fluid–solid interface, but now we do not have a
confinement that imposes a no-displacement condition at
𝑟 = 𝑑. Instead, to find the unique solution of the elasticity
problem, we require that the stress field decay away from the
fluid–solid interface: lim𝑟→∞ 𝜎𝑟𝑟(𝑟, 𝑧) = 0. This boundary
condition then gives 𝑐1 = 0, thus

𝑢𝑟(𝑟, 𝑧) =
𝑎20
2𝐺𝑟

𝑝(𝑧). (11)
Note that this solution was also obtained in [21, Eq. (8)],
however the prefactor of 1∕4 therein should be corrected to
1∕2. The deformed radius is now

𝑎(𝑧) = 𝑎0 + 𝑢𝑟(𝑎0, 𝑧)

= 𝑎0

[

1 + 1
2𝐺

⏟⏟⏟
1∕𝑘

𝑝(𝑧)

]

. (12)

X Wang et al.: Preprint submitted to Elsevier Page 3 of 8



Flow rate–pressure drop relations for slender compliant tubes

Note that Eq. (12) can be obtained from Eq. (10) by also
taking 𝑑 → ∞ (i.e., the rigid outer surface is located far
away compared to the initial radius, 𝑑 ≫ 𝑎0).

In both configurations, the fluid–solid interface’s dis-
placement 𝑢𝑟(𝑧) in Eq. (9) and Eq. (11) is linearly pro-
portional to the local pressure 𝑝(𝑧), at a given streamwise
location 𝑧, with the proportionality constant denoted as 1∕𝑘
in Eq. (10) and Eq. (12). Thus, 𝑘 can be interpreted as the
effective stiffness of the fluid–solid interface, in the sense of
a Winkler foundation [9], but without having assumed such
a model for the solid mechanics. Importantly, this derivation
shows that the different geometrical and material properties
of the two tube configurations considered (as well as the
different stress boundary conditions) give rise to different
stiffness expressions.
2.3. Fluid–solid coupling

Substituting 𝑎(𝑧) from either Eq. (10) or (12) into Eq. (3),
we can obtain a relation between 𝑞 and 𝑝 for both geo-
metric configurations considered. At steady state 𝑞 is con-
stant throughout the tube, and solving the ODE for 𝑝(𝑧) is
straightforward. Imposing gauge pressure at the outlet, i.e.,
𝑝(𝓁) = 0, as is common in experiments, we obtain

(𝓁 − 𝑧)𝑞 =
𝜋𝑎40𝑘
40𝜇𝑓

{

[1 + 𝑝(𝑧)∕𝑘]5 − 1
}

, (13)

which can be easily inverted to find the pressure as

𝑝(𝑧) = 𝑘

⎧

⎪

⎨

⎪

⎩

[

40(𝓁 − 𝑧)𝜇𝑓 𝑞

𝜋𝑎40𝑘
+ 1

]1∕5

− 1

⎫

⎪

⎬

⎪

⎭

. (14)

Note that Eq. (13) and Eq. (14) are valid for both geometric
configurations, taking the expression for 𝑘 to be the one
given in Eq. (10) or Eq. (12), respectively.

Obviously, a non-zero outlet pressure, 𝑝(𝓁) = 𝑝out , can
also be imposed. Modifying Eq. (13) and Eq. (14) for this
case is a straightforward exercise left to the reader.

The pressure drop is defined as Δ𝑝 ∶= 𝑝(0)−𝑝(𝓁). Then,
the flow rate–pressure drop relation is found by evaluating
Eq. (14) at 𝑧 = 0 for the chosen geometric configuration.
Finally, recall that both Eq. (13) and Eq. (14) are valid only
for 𝜖𝑅𝑒 → 0. For completeness, in Appendix A, we also
derive a flow rate–pressure drop relation for 𝜖𝑅𝑒 = (1)
(see Eq. (A.4)).

3. Numerical simulation methodology
We performed 3D, two-way coupled direct numerical

simulations using the open-source software package Sim-
Vascular [29, 16]. SimVascular has a fluid–structure in-
teraction solver, ‘svFSI’ [33], which employs an arbitrary
Lagrangian–Eulerian framework within the finite-element
method to solve the coupled 3D equations of incompressible
flow and elasticity. To test the small-deformation assumption
made in our theory, we allowed for large deformation of

the solid in the simulations by using the ‘Saint-Venant–
Kirchhoff’ constitutive model implemented in svFSI.

First, using the commercial computer-aided engineering
software ANSYS, we generated conforming, unstructured
fluid and solid meshes of both microtube configurations
depicted in Fig. 1. The fluid and the solid mesh were ex-
ported separately and independently converted to .vtu files,
which are suitable for svFSI simulations. Then, in svFSI, the
fluid and the solid domain were assigned constant material
properties as per Table 2, comparable to experiments.

A steady solver is not implemented in svFSI, there-
fore we performed unsteady simulations starting with initial
conditions corresponding to the fluid and solid being at
rest, with the tube’s initial state being of uniform radius
𝑎0. At the fluid domain’s inlet, a fully-developed parabolic
(Poiseuille) velocity profile matched to flow rates of 𝑞 =
50, 100, 125, 175, 300, and 400 µLmin−1 was imposed at
𝑡 = 0+. Meanwhile, at the fluid domain’s outlet, the pressure
was set to zero (gauge pressure), consistent with the theory.
For both configurations, the solid domain at the inlet and
the outlet was restricted by imposing a Dirichlet boundary
condition of zero displacement. The outer wall in configu-
ration I was also restricted to have zero displacement, while
the outer wall of configuration II was set to be stress-free by
imposing a Neumann boundary condition. We marched the
simulations to steady state with a time step ofΔ𝑡 = 10−5 sec.
The simulations were performed on a computational cluster.
The transients ‘die out,’ and a steady state was typically
achieved, after ≈ 1 000 time steps. We determined that
a steady state was achieved when |Δ𝑝𝑛+1 − Δ𝑝𝑛|∕Δ𝑝𝑛 <
0.01%, where Δ𝑝𝑛 represents the pressure drop at the 𝑛th
time step. The pressure drop was computed by taking the
area-averaged pressure at the fluid domain’s inlet.

To verify our simulations, we determined an appropri-
ate grid size to use via a grid-independence study at a
flow rate of 400 µLmin−1. Three different meshes, with
the total number of elements roughly doubling between
each (642 201, 1 329 806, 3 388 569, respectively) were em-
ployed. The pressure drop, computed as described above,
was compared across these three meshes. The relative error
between the coarse and medium mesh was found to be
1.01%, while the relative error between the medium and
fine mesh was found to be 3.05%, demonstrating grid con-
vergence of the numerical solution. Since the relative error
was small in all cases, the coarsest mesh was used for all
simulations reported in this work to minimize computational
time.

4. Results and discussion
We show the results for configuration I in Fig. 2. From

Fig. 2(a), we see good agreement in the value ofΔ𝑝, between
the theory and the 3D simulations, across a range of flow
rates 𝑞. For larger values of 𝑞, Δ𝑝 predicted by Eq. (14)
for 𝜖𝑅𝑒 → 0 begins to deviate from the simulations, while
Δ𝑝 predicted by Eq. (A.4), which accounts for the inertial
effects, agrees with the simulations even at 𝜖𝑅𝑒 = (1).
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Table 2
Geometrical and material properties for the fluid–structure interaction problems solved for the two configurations
shown in Fig. 1.

Quantity Variable Configuration I Configuration II Units
Fluidic domain (tube’s) length 𝓁 2.5 2.5 mm
Fluidic domain (tube’s) undeformed radius 𝑎0 25 25 µm
Outer/confinement radius 𝑑 50, 225 – µm
Outer/confinement width 𝑤 – 250 µm
Outer/confinement height ℎ – 250 µm
Young’s modulus of wall material 𝐸 0.5 0.5 MPa
Poisson’s ratio of wall material 𝜈 0.46 0.46 –
Corresponding shear modulus, 𝐸∕[2(1 + 𝜈)] 𝐺 0.1712 0.1712 MPa
Fluid viscosity 𝜇𝑓 0.89 × 10−3 0.89 × 10−3 Pa s
Fluid density 𝜌𝑓 998 998 kgm−3
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Figure 2: Comparison between the theory and the 3D direct simulation for configuration I. (a) Predicted flow rate–pressure drop
relation. The solid and dotted curves represent Δ𝑝 from Eq. (A.4) and Eq. (14), respectively. The symbols represent the simulation
data. The inset in (a) shows the 𝑞–Δ𝑝 relation predicted by Eq. (A.4) for 𝑑 = 35, 50, 75, 125, 225, 425 µm, while the dashed line
represents the linear Hagen–Poiseuille law (𝑞–Δ𝑝 relation) for a rigid tube (i.e., Δ𝑝 = 8𝜇𝑓𝑞𝓁∕(𝜋𝑎40)). (b) The radial displacement
𝑢𝑟 of the tube cross-section at 𝑧 = 0.1𝓁, for 𝑑 = 225 µm and 𝑞 = 175 µLmin−1. The left half of the figure is plotted using the
theory from Eq. (A.4) and Eq. (9), while the right half of the figure is plotted from the results of a SimVascular simulation.

Indeed, for 𝑞 = 400 to 500 µLmin−1, 𝜖𝑅𝑒 ≈ 1, which
necessitates the inclusion of fluid inertia.

In the inset of Fig. 2(a), we also show the effect of
the tube wall’s thickness 𝑑 on the flow rate–pressure drop
relation. With the increase of 𝑑, the nonlinear variation of
the pressure drop with the flow rate becomes more and more
prominent. This observation can be rationalized by observ-
ing that the effective stiffness 𝑘 of the fluid–solid interface
decreases with 𝑑 (recall Eq. (10)). Thus, a tube with larger 𝑑
is more prone to deformation, leading to more expansion of
the cross-sectional area and, consequently, a reduction of the
mean velocity (for a fixed flow rate). Therefore, the pressure
losses due to viscosity are decreased, ultimately leading to

a reduction in the total pressure drop (i.e., the total ‘effort’
required to drive the flow) at the imposed flow rate.

We also compare a representative predicted radial dis-
placement of a cross-section (left half) with the correspond-
ing 3D simulation result (right half) in Fig. 2(b) at 𝑧 = 0.1𝓁.
The simulated displacement at the fluid–solid interface in
this cross-section is, at most, about 8.5% larger than that
predicted by theory. This comparison shows satisfactory
agreement, although the simulated displacement at the fluid–
solid interface is slightly larger. The agreement between
theory and simulation in Fig. 2(b) justifies our assumptions
that (i) the deformation of the tube wall is axisymmetric
(ii) the 3D elasticity problem can be reduced to a 2D plane
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Figure 3: Comparison between the theory and the 3D direct simulation for configuration II. (a) Predicted flow rate–pressure drop
relation. The solid and dotted curves represent Δ𝑝 from Eq. (A.4) and Eq. (14), respectively. The dashed line represents the linear
Hagen–Poiseuille law (𝑞–Δ𝑝 relation) for a rigid tube (i.e., Δ𝑝 = 8𝜇𝑓𝑞𝓁∕(𝜋𝑎40)). The symbols represent the simulation data. (b)
The radial displacement 𝑢𝑟 of the cross-section at 𝑧 = 0.1𝓁, for 𝑞 = 175 µLmin−1. The left half of the figure is plotted using the
theory from Eq. (A.4) and Eq. (11), while the right half of the figure is plotted from the results of a SimVascular simulation.

Figure 4: The deformed fluid domain of configuration II at
steady state for a flow rate of 400 µLmin−1, obtained from
a SimVascular 3D numerical simulation. The color contours
show the hydrodynamic pressure distribution within the tube.

strain problem, thanks to the slenderness of the conduit’s
geometry.

Overall, the results for configuration II shown in Fig. 3
are similar to those for configuration I. Again, the flow rate–
pressure drop relation predicted by Eq. (A.4) agrees better
with the 3D simulations at higher flow rates, as shown in
Fig. 3(a), because 𝜖𝑅𝑒 = (1) for the larger flow rates
imposed. A representative predicted displacement field from
Eq. (11) also agrees well with the simulations, as shown
in Fig. 3(b). The simulated displacement at the fluid–solid

interface in the cross-section shown is, at most, about 8%
larger than that predicted by theory.

Importantly, although configuration II is not forced to
be axisymmetric in the 3D simulations (because the outer,
stress-free confinement is rectangular), the axisymmetry
of the displacement field near the fluid–solid interface is
maintained, consistent with the theory’s assumption. Near
the corners of the geometries, non-axisymmetric displace-
ments can be discerned in the simulation plot, so there the
displacement predicted by Eq. (11) is no longer valid, but
this has a negligible effect on the 𝑞–Δ𝑝 relation, as evidenced
by the results in Fig. 3(a).

Although we have demonstrated that our theory is pre-
dictive and quantitatively accurate across a substantial range
of flow rates (and, correspondingly, Reynolds numbers),
some limitations should be noted. For example, small dis-
crepancies between the theory and the 3D numerical simula-
tion (especially in the 𝑝(𝑧) distribution) arise systematically
as 𝑞 is increased. Of course, larger 𝑝 leads to larger 𝑢𝑟 in
the simulations compared to the theory. This discrepancy
can be partially explained by the fact that different boundary
conditions are used in the theory and the simulations. In the
theory, due to the plane strain reduction, we only (indirectly)
imposed 𝑢𝑟(𝑎0,𝓁) = 0 (via 𝑝(𝓁) = 0) and 𝑢𝑧(𝑎0,𝓁) ≡ 0
by assumption. Meanwhile 𝑢𝑟(𝑎0, 0) is unconstrained and
𝑢𝑧(𝑎0, 0) ≡ 0 again by assumption. Meanwhile, in the 3D
simulations, both 𝒖|𝑧=0 = 𝟎 and 𝒖|𝑧=𝓁 = 𝟎 are imposed
across the entire inlet/outlet solid regions. These conditions
lead to a short inflated section of the tube near the inlet, as
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can be observed in Fig. 4. Wang and Christov [31] ratio-
nalized this nonuniform deformation by introducing weak
tension on top of the dominant plane-strain deformation.
For weak finite tension, they showed that there is a positive
pressure gradient in the short diverging section near the
inlet when 𝜖𝑅𝑒 = (1). Therefore, the adverse pressure
gradient in the short diverging section could lead to further
viscous losses, increasing the total pressure drop above the
theoretical value, which may explain the remaining small
discrepancies between theory and simulations in the 𝑞–Δ𝑝
curves in Fig. 2(a) and Fig. 3(a). It would be challenging
to account for the adverse pressure gradient (and the short
expanding section) seen in the simulations using the theory
proposed in this work, which is based on plane-strain defor-
mation. A ‘boundary layer’ type of calculation would have
to be performed [1, 31], starting from the 3D equations of
elasticity.

In summary, our validated theory can provide important
guidance for experimentalists designing new microfluidic
channel configurations [21, 14, 15], which can be used in
reconfigurable lab-on-a-chip devices [18], for soft robotics
[24], as well as related problems in the pore spaces of
deformable porous media [22], such as membrane filters [6].
Future work could consider shear-thinning fluids along the
lines of [3, 1, 20], using the generalized Newtonian rheolog-
ical model available in svFSI and the theory’s extension to
power-law and Ellis viscosity models given in [7].
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A. Appendix: Flow rate–pressure drop
relation at 𝜖𝑅𝑒 = (1)

For 𝜖𝑅𝑒 = (1), the flow inertia terms in Eq. (1c) are no
longer negligible, and the resulting equation at the leading
order in 𝜖 cannot be integrated directly. However, 𝜕𝑝∕𝜕𝑟 = 0
remains true at the leading order, thus 𝑝 = 𝑝(𝑧) still holds.

We are thus motivated to build a 1D model by relating 𝑝(𝑧)
to the flow rate 𝑞 [19]. We can then make analytical progressin this case, following the derivation given in [31] for a 2D
(planar) channel.

To proceed, we assume that the axial velocity 𝑣𝑧 is still
parabolic along 𝑟. Specifically, we invoke the von Kármán–
Pohlhausen approximation [32, 19, 20]:

𝑣𝑧(𝑟, 𝑧) =
2𝑞

𝜋𝑎(𝑧)4
[

𝑎(𝑧)2 − 𝑟2
]

. (A.1)

The above equation is obtained by making use of Eq. (2) to
eliminate d𝑝∕d𝑧 from Eq. (3).

Next, we integrate Eq. (1c) over the deformed tube cross-
section to obtain

2𝜋𝜌𝑓 𝑟𝑣𝑟𝑣𝑧
|

|

|

𝑎(𝑧)

0
+ ∫

2𝜋

0 ∫

𝑎(𝑧)

0
𝜌𝑓

𝜕(𝑣2𝑧)
𝜕𝑧

𝑟 d𝑟 d𝜃

= ∫

2𝜋

0 ∫

𝑎(𝑧)

0
𝜇𝑓

1
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝑣𝑧
𝜕𝑟

)

−
d𝑝
d𝑧

𝑟 d𝑟 d𝜃. (A.2)

Note that the integration of the left hand side of Eq. (1c)
has been simplified by integration by parts and by invoking
conservation of mass, i.e., Eq. (1a). Note that the first term
in Eq. (A.2) vanishes because lim𝑟→0 𝑟𝑣𝑟 = 0 (axisymme-
try/finite flux at the centerline) and 𝑣𝑧

(

𝑎(𝑧), 𝑧
)

= 0 (no slip).
Next, substituting Eq. (A.1) into Eq. (A.2), we once again

obtain a first-order ODE for 𝑝(𝑧):
4𝜌𝑓
3𝜋

d
d𝑧

[

𝑞2

𝑎(𝑧)2

]

= −
8𝑞𝜇𝑓
𝑎(𝑧)2

−
d𝑝
d𝑧

𝜋𝑎(𝑧)2. (A.3)

Substituting 𝑎(𝑧) = 𝑎0[1+𝑝(𝑧)∕𝑘] into Eq. (A.3) and solving
the ODE subject to 𝑝(𝓁) = 0, we obtain

(𝓁−𝑧)𝑞 =
𝜋𝑎40𝑘
40𝜇𝑓

{

[1 + 𝑝(𝑧)∕𝑘]5 − 1
}

−
𝜌𝑓 𝑞2

3𝜋𝜇𝑓
ln[1+𝑝(𝑧)∕𝑘].

(A.4)
Eq. (A.4) is an implicit equation for the pressure variation
along the tube, in which the last term (∝ 𝑞2 like the so-
called Forchheimer correction to Darcy’s law for porous
media flow [2]) is new compared to Eq. (13). This new term
captures the effect of finite flow inertia for 𝜖𝑅𝑒 = (1).
As before, the (implicit) flow rate–pressure drop relation is
obtained by taking 𝑧 = 0 in Eq. (A.4).
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