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Abstract
The branch-and-cut algorithm for integer programming has a wide variety of tunable parameters that
have a huge impact on its performance, but which are challenging to tune by hand. An increasingly
popular approach is to use machine learning to configure these parameters based on a training set
of integer programs from the application domain. We bound how large the training set should be
to ensure that for any configuration, its average performance over the training set is close to its
expected future performance. Our guarantees apply to parameters that control the most important
aspects of branch-and-cut: node selection, branching constraint selection, and cut selection, and are
sharper and more general than those from prior research.
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1 Introduction

Branch-and-cut (B&C) is a powerful algorithmic paradigm that is the backbone of all modern
integer programming (IP) solvers. The main components of B&C can be tuned and tweaked
in a myriad of ways. The fastest commercial IP solvers like CPLEX and Gurobi employ an
array of heuristics to make decisions at every stage of B&C to reduce the solving time as
much as possible, and give the user freedom to tune the multitude of parameters influencing
the search through the space of feasible solutions. However, tuning the parameters that
control B&C in a principled way is an inexact science with little to no formal mathematical
guidelines. A rapidly growing line of work studies machine-learning approaches to speeding
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3:2 Improved Sample Complexity Bounds for Branch-And-Cut

up the various aspects of B&C – in particular investigating whether high-performing B&C
parameter configurations can be learned from a training set of typical IPs from the particular
application at hand [2, 22, 37, 42, 25, 32, 27, 43, 29]. Complementing the substantial number
of experimental approaches using machine learning for B&C, a recent generalization theory
has developed in parallel that aims to provide a rigorous theoretical foundation for how well
any B&C configuration learned from training IP data will perform on new unseen IPs [7, 9].
In particular, this line of theoretical research provides sample complexity guarantees that
bound how large the training set should be to ensure that no matter how the parameters
are configured (i.e., using any approach from prior research), the average performance of
branch-and-cut over the training set is close to its expected future performance. Sample
complexity bounds are important because with too small a training set, learning is impossible:
a configuration may have strong average performance over the training set but terrible
expected performance on future IPs. If the training set is too small, then no matter how the
parameters are tuned, the resulting configuration will not have reliably better performance
than any default configuration. State-of-the-art parameter tuning methods have historically
come without any provable guarantees, and our results fill in that gap for a wide array of
tunable B&C parameters. In this paper, we expand and improve upon the existing theory to
develop a wider and sharper handle on the learnability of the key components of B&C.

1.1 Summary of main contributions
Our main contribution is a formalization of a general model of tree search, presented in
Section 2.1, that allows us to improve and generalize prior results on the sample complexity
of tuning B&C. In this model, the algorithm repeatedly chooses a leaf node of the search
tree, performs a series of actions (for example, a cutting plane to apply and a constraint to
branch on), and adds children to that leaf in the search tree. The algorithm will also fathom
nodes when applicable. The node and action selection are governed by scoring rules, which
assign a real-valued score to each node and possible action. For example, a node-selection
scoring rule might equal the objective value of the node’s LP relaxation. We focus on general
tree search with path-wise scoring rules. At a high level, a score of a node or action is
path-wise if its value only depends on information contained along the path between the
root and that node, as is often the case in B&C. Many commonly used scoring rules are
path-wise including the efficacy [4], objective parallelism [1], directed cutoff distance [15],
and integral support [41] scoring rules, all used for cut selection by the leading open-souce
solver SCIP [15]; the best-bound scoring rule for node selection; and the linear, product, and
most-fractional scoring rules for variable selection using strong branching [1]. In Section 4,
we show how this general model of tree search captures a wide array of B&C components,
including node selection, general branching constraint selection, and cutting plane selection,
simultaneously. We also provide experimental evidence that, in the case of cutting plane
selection, the data-dependent tuning suggested by our model can lead to dramatic reductions
in the number of nodes expanded by B&C.

In Section 3, we prove our main structural result: for any IP, the tree search parameter
space can be partitioned into a finite number of regions such that in any one region, the
resulting search tree is fixed. This is in spite of the fact that the B&C search tree can be an
extremely unstable function of its parameters, with minuscule changes leading to exponentially
better or worse performance [7, 9]. By analyzing the complexity of this partition, we prove
our sample complexity bound. In particular, we relate the complexity of the partition to
the pseudo-dimension of the set of functions that measure the performance of B&C as a
function of the input IP. Pseudo-dimension (defined in Section 3) is a combinatorial notion



M.-F. Balcan, S. Prasad, T. Sandholm, and E. Vitercik 3:3

from machine learning theory that measures the intrinsic complexity of a set of functions. At
a high level, it measures how well a set of functions are able match complex patterns. Classic
results from learning theory then allow us to translate our pseudo-dimension bound into a
sample complexity guarantee [3], capturing the intuition that the more complex patterns
one can fit (i.e., the larger the pseudo-dimension is), the more samples needed to generalize.
The sample complexity bound grows linearly with the pseudo-dimension, so ideally, the
pseudo-dimension will be polynomial in the size of the problem.

We show that the pseudo-dimension is only polynomial in the depth of the tree (which is,
for example, at most the number of variables in the case of binary integer programming). By
contrast, we might naïvely expect the pseudo-dimension to grow linearly with the number of
arithmetic operations required to compute the B&C tree (as in Theorem 8.4 by Anthony and
Bartlett [3]), which is exponential in the depth of the tree. In fact, our bound is exponentially
smaller than the pseudo-dimension bound of prior research by Balcan et al. [9], which grows
linearly with the total number of nodes in the tree. Their results apply to any type of scoring
rule, path-wise or otherwise. By taking advantage of the path-wise structure, we are able to
reason inductively over the depth of the tree, leading to our exponentially improved bound.
Our results recover those of Balcan et al. [7], who only studied path-wise scoring rules for
single-variable selection for branching. In contrast, we are able to handle many more of the
critical components of tree search: node selection, general branching constraint selection,
and cutting plane selection.

1.2 Additional related research
A growing body of research has studied how machine learning can be used to speed up the
time it takes to solve integer programs, primarily from an empirical perspective, whereas we
study this problem from a theoretical perspective. This line of research has included general
parameter tuning procedures [25, 27, 24, 37], which are not restricted to any one aspect of
B&C. Researchers have also honed in on specific aspects of tree search and worked towards
improving those using machine learning. These include variable selection [29, 2, 13, 7, 16, 19],
general branching constraint selection [44], cut selection [37, 39, 23, 9], node selection [36, 21],
and heuristic scheduling [30, 10]. Machine learning approaches to large neighborhood search
have also been used to speed up solver runtimes [38].

This paper contributes to a line of research that provides sample complexity guarantees for
algorithm configuration, often by using structure exhibited by the algorithm’s performance
as a function of its parameters [20, 8, 7, 6, 9, 5]. This line of research has studied algorithms
for clustering [8], computational biology [6], and integer programming [7, 9], among other
computational problems. The main contribution of this paper is to provide a sharp yet
general analysis of the performance of tree search as a function of its parameters.

A related line of research provides algorithm configuration procedures with provable
guarantees that are agnostic to the specific algorithm that is being configured [31, 40] and are
particularly well-suited for algorithms with a finite number of possible configurations (though
they can be applied to algorithms with infinite parameter spaces by randomly sampling a
finite set of configurations).

2 Main tree search model

In this section we present our general tree search model and situate it within the framework
of sample complexity. Balcan et al. [9] studied the sample complexity of a much more
general formulation of a tunable search algorithm without any inherent tree structure. Our
formulation explicitly builds a tree.

CP 2022
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Algorithm 1 Tree search.

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None) then
5: Fathom Q.
6: else
7: Select an action A ∈ actions(T , Q) that maximizes ascore(T , Q, A).
8: if fathom(T , Q, A) then
9: Fathom Q.

10: else if children(T , Q, A) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q, A) to T as children of Q.

2.1 General model of tree search

Tree search starts with a root node. In each round of tree search, a leaf node Q is selected.
At this node, one of three things may occur: (1) Q is fathomed, meaning it is never visited
again, (2) some action is taken at Q, and then it is fathomed, or (3) some action is taken
at Q, and then some number of children nodes of Q are added to the tree. (For example,
an action might represent a decision about which variable to branch on.) This process
repeats until the tree has no unfathomed leaves. More formally, there are functions actions,
children, and fathom prescribing how the search proceeds. Given a partial tree T and a
leaf Q of T , actions(T , Q) outputs a set of actions available at Q. Given a partial tree
T , a leaf Q of T , and an action A ∈ actions(T , Q), fathom(T , Q, A) ∈ {true, false}
is a Boolean function used to determine when to fathom a leaf Q of T given that action
A ∈ actions(T , Q) ∪ {None} was taken at Q, and children(T , Q, A) outputs a (potentially
empty) list of nodes representing the children of Q to be added to the search tree given that
action A was taken at Q. Finally, nscore(T , Q) is a node-selection score that outputs a
real-valued score for each leaf of T , and ascore(T , Q, A) is an action-selection score that
outputs a real-valued score for each action A ∈ actions(T , Q). These scores are heuristics
that are meant to indicate the quality of exploring a node or performing an action.

Many aspects of B&C are governed by scoring rules [1]. For example, commonly used
scoring rules for cutting plance selection include efficacy [4], which is the perpendicular
distance from the current LP solution to the cutting plane; parallelism [1], which measures
the angle between the objective and the normal vector to the cutting plane; and directed
cutoff [15], which is the distance from the current LP solution to the cutting plane along
the direction of the line segment connecting the LP solution to the current best incumbent
integer solution For node selection, under the commonly used best-first node selection policy,
nscore(T , Q) equals the objective value of the LP relaxation of the IP represented by the
node Q. Finally, for variable selection, popular scoring rules include a maximum change in
LP objective value after branching on the variable (where the maximum is taken over the two
resulting children), the minimum change in the LP objective value, linear combinations of
these two values, and the product of these two values [1]. Algorithm 1 is a formal description
of tree search using these functions.
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The key condition that enables us to derive stronger sample complexity bounds compared
to prior research is the notion of a path-wise function, which was also used in prior research
but only in the context of variable selection [7].

▶ Definition 1 (Path-wise functions). A function f on tree-leaf pairs is path-wise if for all T
and Q ∈ T , f(T , Q) = f(TQ, Q), where TQ is the path from the root of T to Q. A function
g on tree-leaf-action triples is path-wise if for all A, fA(T , Q) := g(T , Q, A) is path-wise.

We assume that actions, ascore, nscore and children are path-wise, though fathom
is not necessarily path-wise.

Many commonly-used scoring rules are path-wise. For example, scoring rules are often
functions of the LP relaxation of the IP represented by a given node, and these scoring rules
are path-wise. Specific examples include the efficacy, objective parallelism, directed cutoff
distance, and integral support scoring rules used for cut selection; the best-bound scoring
rule for node selection; and the linear, product, and most-fractional scoring rules for variable
selection using strong branching. A point of clarification: the pathwise assumption is with
respect to the numerical scores assigned to actions/nodes. The actual act of, for example,
node selection, can depend on the entire tree. For example, consider the best-bound node
selection rule in branch-and-cut, which chooses the node with the best LP estimate. Here,
the scoring rule, which is the LP objective value itself, is pathwise, but ultimately the node
that is selected depends on the LP bounds at every unexplored node of the tree. This is fine
for our analysis. Similarly, the decision to fathom a node based on LP bounds is a decision
that depends on the entire tree built so far, which is also captured by our analysis.

No one scoring rule is optimal across all application domains, and prior research on
variable selection has shown that it can be advantageous to adapt the scoring rule to the
application domain at hand [7]. To this end, Algorithm 1 can be tuned by two parameters
µ ∈ [0, 1] and λ ∈ [0, 1] that control action selection and node selection, respectively. Given
two fixed path-wise action-selection scores ascore1 and ascore2, we define a new score by

ascoreµ(T , Q) = µ · ascore1(T , Q) + (1 − µ) · ascore2(T , Q).

Similarly, given two path-wise node-selection scores nscore1 and nscore2, we define

nscoreλ(T , Q, A) = λ · nscore1(T , Q, A) + (1 − λ) · nscore2(T , Q, A).

Then, if nscoreλ and ascoreµ are used as the scores in Algorithm 1, we can view the
behavior of tree search as a function of µ and λ. The choice to use a convex combination of
scores is not new: prior research has shown that this idea can lead to dramatic improvements
in the case of single-variable branching [7]. Furthermore, the leading open source solver
SCIP uses a hard-coded weighted sum of scoring rules to select cutting planes. More broadly,
interpolating between two scores is a commonly-studied modeling choice in other machine
learning topics such as clustering [8].

Finally, we assume there exists b, k ∈ N such that |actions(T , Q)| ≤ b for any Q ∈ T ,
and |children(T , Q, A)| ≤ k for all Q, A.

2.2 Problem formulation
We now define the notion of a sample complexity bound more formally. Let Q denote
the domain of possible input root nodes Q to Algorithm 1 (for example, the set of all
IPs with n variables and m constraints). As is common in prior research on algorithm
configuration [22, 37, 42, 25, 32, 27, 43], we assume there is some unknown distribution D
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over Q. In the IP setting, D could represent, for example, typical scheduling IP instances
solved by an airline company. The sample complexity of a class of real valued functions
F = {f : Q → R} is the minimum number of independent samples required from D so that
with high probability over the samples, the empirical value of f on the samples is a good
approximation of the expected value of f over D, uniformly over all f ∈ F . Formally, given
an error parameter ε and confidence parameter δ, the sample complexity NF (ε, δ) is the
minimum N0 ∈ N such that for any N ≥ N0,

Pr
Q1,...,QN ∼D

(
sup
f∈F

∣∣∣∣∣ 1
N

N∑
i=1

f(Qi) − E
Q∼D

[f(Q)]

∣∣∣∣∣ ≤ ε

)
≥ 1 − δ

for all distributions D supported on Q. Equivalently, our results bound the error εF (N, δ)
between the empirical value of any f ∈ F and its true expected value in terms of the number
of training samples N and the confidence parameter δ. NF (ε, δ) is the number of samples
required to achieve a prescribed error bound ε, while εF (N, δ) provides an error bound for
any number N of samples at hand. We provide bounds on NF (ε, δ) and εF (N, δ) in terms of
a common learning-theoretic measure of intrinsic complexity of F called pseudo-dimension,
which is detailed in Section 3.

In the context of Algorithm 1, we study families of tree-constant cost functions. A
cost function cost : Q → R is tree constant if cost(Q) only depends on the tree built
by Algorithm 1 on input Q (an example is tree size). Let costµ,λ(Q) denote this cost
when Algorithm 1 is run using the scores ascoreµ = µ · ascore1 + (1 − µ) · ascore2
and nscoreλ = λ · nscore1 + (1 − λ) · nscore2. We study the sample complexity of
F = {costµ,λ : µ, λ ∈ [0, 1]}. We emphasize that we primarily interpret tree-constant
functions as proxies for run-time. In the context of integer programming, tree size is one such
measure. A strength of these guarantees is that they apply no matter how the parameters
are tuned: optimally or suboptimally, manually or automatically. For any configuration,
these guarantees bound the difference between average performance over the training set
and expected future performance on unseen IPs.

3 Generalization guarantees for tree search

In order to derive our sample complexity guarantees, we first prove a key structural property:
the behavior of Algorithm 1 is piecewise constant as a function of the node-selection score
parameter λ and the action-selection score parameter µ. We give a high-level outline of our
approach. We first assume that the conditional checks fathom(T , Q, ·) = true (lines 4 and 8)
are suppressed. Let A′ denote Algorithm 1 without these checks (so A′ fathoms a node if
and only if the depth limit is reached or if the node has no children). The behavior of A′ as
a function of µ and λ can be shown to be piecewise constant using the same argument as in
Claim 3.4 of Balcan et al. [7]. Given this, our first main technical contribution (Lemma 2) is a
generalization of Claim 3.5 of Balcan et al. [7] that relates the behavior of A′ to Algorithm 1.
The argument in Balcan et al. [7] is specific to branching, but we are able to prove our result
in a much more general setting. Our second main technical contribution (Lemma 4) is to
establish piecewise structure when the node-selection score is controlled by λ ∈ [0, 1]. The
main reason for this auxiliary step of analyzing A′ is due to the fact that fathom is not
necessarily a path-wise function, and can depend on the state of the entire tree.

▶ Lemma 2. Fix µ ∈ [0, 1]. Let T and T ′ be the trees built by Algorithm 1 and A′,
respectively, using the action-selection score µ · ascore1 + (1 − µ) · ascore2. Let Q be any
node in T , and let TQ be the path from the root of T to Q. Then, TQ is a rooted subtree of
T ′, no matter what node selection policy is used.
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Proof. Let t denote the length of the path TQ. Let TQ be comprised of the sequence
of nodes (Q1, . . . , Qt) such that Q1 is the root of T , Qt = Q, and for each τ , Qτ+1 ∈
children(TQτ

, Qτ , Aτ ) where Aτ ∈ actions(TQτ
, Qτ ) is the action selected by Algorithm 1

at node Qτ . We show that (Q1, . . . , Qt) is a rooted path in T ′ as well.
Suppose for the sake of contradiction that this is not the case. Let τ ∈ {2, . . . , t} be the

minimal index such that (Q1, . . . , Qτ−1) is a rooted path in T ′, but there is no edge in T ′

from Qτ−1 to node Qτ . There are two possible cases:
Case 1. Qτ−1 was fathomed by A′. This case is trivially not possible since whenever

A′ fathoms a node, so does Algorithm 1 (recall A′ was defined by suppressing fathoming
conditions of Algorithm 1).

Case 2. Qτ /∈ children(T ′, Qτ−1, A′
τ−1) where A′

τ−1 is the action taken by A′ at node
Qτ−1. In this case, if children(T ′, Qτ−1, A′

τ−1) = ∅, then Qτ−1 would be fathomed by A′,
which cannot happen by the first case. Otherwise, if children(T ′, Qτ−1, A′

τ−1) ̸= ∅, we show
that we arrive at a contradiction due to the fact that the scoring rules, action-set functions,
and children functions are all path-wise. Let A′

τ−1 denote the action taken by A′ at Qτ−1,
and let Aτ−1 denote the action taken by Algorithm 1 at Qτ−1. Since actions is path-wise,

actions(T , Qτ−1) = actions(TQτ−1 , Qτ−1) = actions(T ′, Qτ−1).

Since ascore1 and ascore2 are path-wise, we have

µ · ascore1(T ,Qτ−1, A) + (1 − µ) · ascore2(T , Qτ−1, A)
= µ · ascore1(TQτ−1 , Qτ−1, A) + (1 − µ) · ascore2(TQτ−1 , Qτ−1, A)
= µ · ascore1(T ′, Qτ−1, A) + (1 − µ) · ascore2(T ′, Qτ−1, A).

for all actions A ∈ actions(TQτ−1 , Qτ−1). Therefore Algorithm 1 and A′ choose the same
action at node Qt−1, that is, Aτ−1 = A′

τ−1. Finally, since children is path-wise, we have

children(T , Qτ−1, Aτ−1) = children(TQτ−1 , Qτ−1, Aτ−1) = children(T ′, Qτ−1, Aτ−1).

Since Qτ ∈ children(T , Qτ−1, Aτ−1), this is a contradiction, which completes the proof. ◀

We use the following generalization of Claim 3.4 of Balcan et al. [7] that shows the
behavior of A′ is piecewise constant. While their argument only applies to single-variable
branching, our key insight is that the same reasoning can be readily adapted to handle any
actions (including general branching constraints and cutting planes). The structure of our
proof (which we defer to the appendix) is identical, but is modified to work in our more
general setting. This style of analysis is similar in spirit to [34].

▶ Lemma 3. Let ascore1 and ascore2 be two path-wise action-selection scores. Fix the
input root node Q. There are T ≤ k∆(∆−1)/2b∆ subintervals I1, . . . , IT partitioning [0, 1]
where for any subinterval It, the action-selection score µ · ascore1 + (1 − µ) · ascore2 results
in the same tree built by A′ for all µ ∈ It, no matter what node selection policy is used.

We now prove our main structural result for Algorithm 1.

▶ Lemma 4. Let ascore1 and ascore2 be path-wise action-selection scores and let nscore1
and nscore2 be path-wise node-selection scores. Fix the input root node Q. There are
T ≤ k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such that for any rectangle Rt, the node-selection
score λ·nscore1+(1−λ)·nscore2 and the action-selection score µ·ascore1+(1−µ)·ascore2
result in the same tree built by Algorithm 1 for all (µ, λ) ∈ Rt.

CP 2022



3:8 Improved Sample Complexity Bounds for Branch-And-Cut

Proof. By Lemma 3, there is a partition of [0, 1] into subintervals I1∪· · ·∪IT such that for all µ

within a given subinterval, the tree built by A′ is invariant (independent of the node-selection
score). Fix a subinterval It of this partition. Let T denote the tree built by Algorithm 1.
For each node Q ∈ T , let TQ denote the path from the root to Q in T . Since nscore1 is
path-wise, for any tree T ′ containing TQ as a rooted path, nscore1(T ′, Q) = nscore1(TQ, Q).
The same holds for nscore2. For every pair of nodes Q1, Q2 ∈ T , let λ(Q1, Q2) ∈ [0, 1]
denote the unique solution to

λ · nscore1(TQ1 , Q1) + (1 − λ) · nscore2(TQ1 , Q1)
= λ · nscore1(TQ2 , Q2) + (1 − λ) · nscore2(TQ2 , Q2),

if it exists (if there are either (1) no solutions or (2) infinitely many solutions, set λ(Q1, Q2) =
0). The thresholds λ(Q1, Q2) for every pair of nodes Q1, Q2 ∈ T partition [0, 1] into
subintervals such that for all λ within a given subinterval, the total order over the nodes of
T induced by nscoreλ is invariant. In particular, this means that the node selected by each
iteration of Algorithm 1 is invariant. Let J1 ∪ · · · ∪ JS denote these subintervals induced by
the thresholds over all subinterval It ∈ {I1, . . . , IT } established in Lemma 3.

We now show that this implies that the tree built by Algorithm 1 is invariant over all (µ, λ)
within a given rectangle It × Js. Fix some rectangle It × Js. We proceed by induction on the
iterations (of the while loop) of Algorithm 1. For the base case (iteration 0, before entering
the while loop), the tree consists of only the root, so the hypothesis trivially holds. Now,
suppose the statement holds up until the jth iteration, for some j. We analyze each line of
Algorithm 1 to show that the behavior of the j+1st iteration is independent of (µ, λ) ∈ It ×Js.
First, since Js determines the node selected at each iteration (as argued above), the node
selected on the j + 1st iteration (line 3) is fixed, independent of (µ, λ) ∈ It × Js. Denote this
node by Q. Thus, whether depth(Q) = ∆ is independent of (µ, λ) ∈ It × Js, and similarly
whether fathom(T , Q, None) = true is independent of (µ, λ) ∈ It × Js (line 4). This implies
that whether or not Q is fathomed at this stage is independent of (µ, λ) ∈ It × Js. If Q was
fathomed, we are done. Otherwise, we argue that the action selected at line 7 is invariant
over (µ, λ) ∈ It × Js. By Lemma 3, A′ builds the same tree for all µ ∈ It. Let TQ denote
the path from the root to Q in this tree. By Lemma 2, TQ is the path from the root to Q

in the tree built by Algorithm 1 as well. The action selected at Q by A′ is invariant over
µ ∈ It (by Lemma 3). Therefore, since actions, ascore1, and ascore2 are path-wise, the
action A selected by Algorithm 1 at Q is invariant over µ ∈ It. Finally, fathom(T , Q, A) and
children(T , Q, A) are completely determined, so the execution of the remaining conditional
statement (line 8 to line 13) is invariant over (µ, λ) ∈ It × Js. Thus, the entire iteration of
Algorithm 1 is invariant over (µ, λ) ∈ It × Js, which completes the induction.

Finally, we count the total number of rectangles in our partition of [0, 1]2. For each
interval It in the partition established in Lemma 3, we obtained a partition of It × [0, 1] into
rectangles induced by at most

(|T |
2
)

thresholds, which consists of at most at most

1 +
(

(k∆+1 − 1)/(k − 1)
2

)
≤ 1 +

(
k∆+1 − 1

k − 1

)2

≤ k5∆

subintervals. Accounting for every interval It ∈ {I1, . . . , IT } in the partition from Lemma 3,
we get a total of Tk5∆ ≤ k∆(9+∆)/2b∆ rectangles, as desired. ◀

We now derive generalization guarantees for the collection F = {costµ,λ : (µ, λ) ∈ [0, 1]2}
where cost is any tree-constant function, such as tree size. We do this by bounding the
pseudo-dimension of F , which is a combinatorial measure of intrinsic complexity of a class of
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real valued functions. The pseudo-dimension of F , denoted by Pdim(F ), is the largest positive
integer N such that there exist N nodes Q1, . . . , QN ∈ Q and N thresholds r1, . . . , rN ∈ R
such that |{(sign(f(Q1) − r1), . . . , sign(f(QN ) − rN )) : f ∈ F}| = 2N . A well-known result
in learning theory [3] states that if functions in F have bounded range [−H, H], then

NF (ε, δ) = O

(
H2

ε2 (Pdim(F) + ln(1/δ))
)

and εF (N, δ) = O

(
H

√
Pdim(F) + ln(1/δ)

N

)
.

When each function in F maps to {0, 1}, the pseudo-dimension is more commonly referred
to as the VC dimension.

Bounding the pseudo-dimension is a simple instantiation of the general framework provided
by Balcan et al. [6] with the piecewise structure established in Lemma 4. Balcan et al.’s [6]
main result gives pseudo-dimension bounds for families of piecewise structured functions
in terms of the VC dimension of the class of 0/1 classifiers defining the boundaries of the
functions, the number of classifiers defining the boundaries, and the pseudo-dimension of
the family of functions when restricted to each piece. (Strictly, this result is in terms of the
dual classes of the boundary and piece functions. However, since the dual class of all linear
separators is the set of all linear separators, we omit this detail for simplicity.)

▶ Theorem 5. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the
cost of the tree built by Algorithm 1 on input root node Q using action-selection score
parameterized by µ and node-selection score parameterized by λ. Then, Pdim({costµ,λ}) =
O(∆2 log k + ∆ log b).

Proof. By Lemma 4, there are at most T = k∆(9+∆)b∆ rectangles partitioning [0, 1]2 such
that for a fixed input node Q, costµ,λ(Q) is constant over each rectangle as a function
of µ, λ. These T rectangles can be defined by T thresholds on [0, 1] corresponding to µ

and T thresholds on [0, 1] corresponding to λ. Thus, the T rectangles can be identified by
T 2 = k2∆(9+∆)b2∆ linear separators in R2. The VC dimension of linear separators in R2 is
O(1). The pseudo-dimension of the set of constant functions is also O(1). Plugging these
quantities into the main theorem of Balcan et al. [6] yields the theorem statement. ◀

3.1 Multiple actions
Theorem 5 can be easily generalized to the case where there are multiple actions of different
types taken at each node of Algorithm 1. Specifically, there are now d path-wise action-set
functions actions1, . . . , actionsd, and at line 7 of Algorithm 1 we take one action of each
type, that is, we select action A1 ∈ actions1(T , Q), A2 ∈ actions2(T , Q), and so on. The
functions fathom and children then depend on all d actions taken at node Q. We assume
that there are two scoring rules ascorei

1 and ascorei
2 for each action type i = 1, . . . , d.

Algorithm 1 can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of parameters
controlling each action, so the ith action is selected to maximize µi ·ascorei

1+(1−µi)·ascorei
2.

Then, as long as d = O(1), we get the same pseudo-dimension bound. We assume b is a
uniform upper bound on the size of actionsi for any i. The proof is nearly identical, and
we defer it to the appendix (which also contains more details on the multiple-action setup).

▶ Theorem 6. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be the
cost of the tree built by Algorithm 1 on input root node Q using action-selection scores
parameterized by µ ∈ Rd, where d = O(1), and node-selection score parameterized by λ.
Then, Pdim({costµ,λ}) = O(∆2 log k + ∆ log b).
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4 Branch-and-cut for integer programming

We now instantiate our main results with the three main components of the B&C algorithm:
branching, cutting planes, and node selection, used to solve IPs max{cT x : Ax ≤ b, x ≥
0, x ∈ Zn} where c ∈ Rn, A ∈ Zm×n, b ∈ Zm. The function fathom(T , Q, A) outputs true
if after having taken action A the LP relaxation at Q is integral, infeasible, or worse than
the best integral solution found so far in T . The function children(T , Q, A) outputs the
two subproblems generated by the branching procedure on the IP at Q after having taken
action A. For simplicity we refer only to IPs, but everything in our discussion applies to
mixed IPs as well. In our model of tree search, node selection is controlled by λ. Cutting
planes and branching are types of actions and controlled by µ.

4.1 Branching
In this section, we provide guarantees for branching. Throughout this section we assume
∆ = O(n), as is the case with single-variable branching.

4.1.1 Multivariable branching constraints
It is well known that allowing for more general generation of branching constraints can result
in smaller B&C trees. Gilpin and Sandholm [17] studied multivariable branches of the form∑

i∈S x[i] ≤
⌊∑

i∈S x∗
LP[i]

⌋
,
∑

i∈S x[i] ≥
⌈∑

i∈S x∗
LP[i]

⌉
where S is a subset of the integer vari-

ables such that
∑

i∈S x∗
LP[i] /∈ Z. Here, actions(T , Q) = 2[n], so, Pdim({costµ,λ}) = O(n2).

So our sample complexity bound for multivariable branching constraints is, surprisingly, only
a constant factor worse than the bound for single-variable branching constraints.

We give a simple example where B&C using only single variable branches builds a tree of
exponential size, while a single branch on the entire set of variables at the root yields two
infeasible subproblems (and a B&C tree of size 3).

▶ Theorem 7. For any n, there is an IP with two constraints and n variables such that
with only single variable branches, B&C builds a tree of size 2(n−1)/2, while with a suitable
multivariable branch, B&C builds a tree of size three.

Proof. Let n be an odd positive integer. Consider the infeasible IP max{
∑n

i=1 x[i] :
2
∑n

i=1 x[i] = n, x ∈ {0, 1}n}. Jeroslow [26] proved that with only single-variable branches,
B&C builds a tree with 2(n−1)/2 nodes to determine infeasibility. However, with a suitable
multivariable branch, B&C will build a tree of constant size. The optimal solution to the LP
relaxation of the IP is attained when all variables are set to 1/2. A multivariable branch
on all n variables produces the two subproblems with constraints

∑n
i=1 x[i] ≤ ⌊n/2⌋ and∑n

i=1 x[i] ≥ ⌈n/2⌉, respectively. Since n is odd, ⌊n/2⌋ < n/2 and ⌈n/2⌉ > n/2, so the LP
relaxations of both subproblems are infeasible. Thus, B&C builds a tree with three nodes. ◀

Yang et al. [45] provide more examples of situations where multivariable branching yields
dramatic improvements in tree size over single variable branching. They also perform a
computational evaluation of a few different strategies for generating multivariable branching
constraints. Yang et al. [44] explore gradient-boosting for learning to mimic strong branching
for multiple variables.

4.1.2 Branching on general disjunctions
Branching constraints can be even more general than multivariable branches. Given any
integer vector π ∈ Zn and any integer π0 ∈ Z (jointly referred to as a disjunction), the
constraints πT x ≤ π0 or πT x ≥ π0 + 1 represent a valid partition of the feasible region
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into subproblems. Owen and Mehrotra [35] ran the first experiments demonstrating that
branching on general disjunctions can lead to significantly smaller tree sizes. Subsequent
works have posed different heuristics to select disjunctions to branch on [14, 33].

In practice it is known that additional IP constraints should not have coefficients that
are too large. If C is a bound on the magnitude of the coefficient of any disjunction, then
actions(T , Q) = {−C, . . . , C}n+1, so Pdim({costµ,λ}) = O(n2 log C). Karamanov and
Cornuéjols [28] conduct a computational evaluation of disjunctions derived from Gomory
mixed-integer cuts. In this setting, actions(T , Q) is the set of m or fewer disjunctions
corresponding to the m or fewer Gomory mixed-integer cuts derived from the simplex tableau
from solving the LP relaxation of Q. In this case, Pdim({costµ,λ}) = O(n2 + n log m).

4.2 Cutting planes

The action set can also correspond to cutting planes used to refine the feasible region of the
IP at any stage of B&C. Here, actions(T , Q) is any set of cutting planes derived solely using
the path from the root to the IP at Q. Examples include the set of Chvátal-Gomory (CG)
derived from the simplex tableau [18], and various combinatorial families of cutting planes
such as clique cuts, odd-hole cuts, and cover cuts. The set actions(T , Q) can also consist of
sequences of cutting planes, representing adding several cutting planes to the IP in waves.
For example, the set of all sequences of w CG cuts generated from the simplex tableau for
an IP with m constraints has size at most mw (regardless of whether the LP is resolved after
each cut). The number of such cutting planes provided by the LP tableau at any node in the
tree is at most O(m + nw) (the original IP has m constraints, and after at most n branches
there are an additional n branching constraints and at most nw cutting planes), which means
that |actions(T , Q)| ≤ O(m + nw)w. Thus, Pdim({costµ,λ}) = O(n2 + nw log(m + nw)).

We can also handle arbitrary CG cuts (not just ones from the LP tableau). Balcan et al. [9]
proved that given an IP with feasible region {x ∈ Zn : Ax ≤ b, x ≥ 0}, even though there
are infinitely many CG cut parameters, there are effectively only O(w2w ∥A∥1,1 + 2w ∥b∥1 +
nw)1+mw distinct sequences of cutting planes that w CG cut parameters can produce. At any
node in the B&C tree, the number of constraints is at most O(m + nw). So, on the domain
of IPs with ∥A∥1,1 ≤ α and ∥b∥1 ≤ β, |actions(T , Q)| ≤ O(w2wα + 2wβ + nw)1+w·O(m+nw).
Thus, Pdim({costµ,λ}) = O(n2w3m log(α + β + n)).

4.2.1 Experiments on cover cuts for the multiple knapsack problem

In this section, we demonstrate via experiments that tuning a convex combination of scoring
rules to select cuts can lead to dramatically smaller branch-and-cut trees when done in a
data-dependent manner. We study the classical NP-hard multiple knapsack problem: given
a set N of items where each item i ∈ N has a value pi ≥ 0 and a weight wi ≥ 0, and
a set K of knapsacks where each knapsack k ∈ K has a capacity Wk ≥ 0, the goal is to
find a feasible packing of the items into the knapsacks of maximum value. We assume,
without loss of generality, that the items are labeled in descending order of weight, that is,
w1 ≥ w2 ≥ · · · ≥ w|N |. This problem can be formulated as the following binary IP:

maximize
∑

i∈N

∑
k∈K pixk,i

subject to
∑

i∈N wixk,i ≤ Wk ∀ k ∈ K∑
k∈K xk,i ≤ 1 ∀ i ∈ N

xk,i ∈ {0, 1} ∀ i ∈ N, k ∈ K
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(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 1 Chvátal distribution with 35 items and 2 knapsacks.

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 2 Chvátal distribution with 35 items and 3 knapsacks.

A subset C ⊆ N of items is called a cover for knapsack k ∈ K if
∑

i∈C wi > Wk. If C is
a cover, no feasible solution can have xk,i = 1 for all i ∈ C, so

∑
i∈C xk,i ≤ |C| − 1 is a

valid constraint – called a cover cut. When C is minimal (that is, C \ {i} is not a cover
for every i ∈ C), such cover cuts help tighten the knapsack IP by cutting off fractional LP
solutions. We generate (a subset of all) cover cuts for each knapsack k as follows: for each
i ∈ N , let j > i be minimal such that C = {i, i + 1, . . . , j} is a cover for k (if such a j

exists). Since wi ≥ wj for j > i, C is a minimal cover, and moreover the extended cover cut∑j
i=1 xi ≤ |C|−1 is valid and dominates the minimal cover cut

∑
i∈C xi ≤ |C|−1. Extended

cover cuts generated from minimal covers are known to be facet defining for the integer hull
under certain natural conditions [12].

We investigate the relationship between three scoring rules for cutting planes. The first is
efficacy (E), which is the perpendicular distance from the current LP solution to the cutting
plane. The second is parallelism (P), which measures the angle between the objective and
the normal vector to the cutting plane. The third is directed cutoff (D), which is the distance
from the current LP solution to the cutting plane along the direction of the line segment
connecting the LP solution to the current best incumbent integer solution. More details,
including explicit formulas, can be found in [9] and references therein.

We consider two specific instances of the multiple knapsack problem, which are loosely
based on a class of knapsack problems introduced by Chvátal that are difficult to solve
with vanilla branch-and-bound [11, 45]. In the first, pi = wi for all i ∈ N , and Wk =
⌊(
∑

i∈N wi)/2|K|⌋ + (k − 1) for each k = 1, . . . , |K|. In the second, pi = w|N |−i+1, so the
most valuable item is the lightest and the least valuable item is the heaviest, and Wk is
defined as in the first type. We call the first class of problems Chvátal instances and the
second class reverse Chvátal instances. For a given N, K, we generate (reverse) Chvátal
instances by drawing each weight independently as wi = ⌊zi⌋, where zi ∼ N (50, 2), and
sorting the items by weight in descending order.
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(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 3 Reverse Chvátal distribution with 100 items and 10 knapsacks.

(a) µ · E + (1 − µ) · P. (b) µ · E + (1 − µ) · D. (c) µ · D + (1 − µ) · P.

Figure 4 Reverse Chvátal distribution with 100 items and 15 knapsacks.

In our experiments, we add (whenever possible) two extended cover cuts obtained in the
aforementioned manner at every node of the B&C tree. The two cuts chosen are the two
with the highest score µ · ascore1 + (1 − µ) · ascore2 among all extended cover cuts that are
violated by the current LP optimum, where ascore1, ascore2 ∈ {E, D, P}. Figures 1-4 display
the average tree size over 1000 samples for different Chvátal and reverse Chvátal distributions
as a function of µ, where the domain [0, 1] of µ is discretized in increments of 0.01. We ran
our experiments using the Python API of CPLEX 12.10 with default cut generation turned
off. All other aspects of B&C (e.g. variable and node selection) are controlled by the default
settings of CPLEX. The key takeaway of our plots is that tuning a convex combination of
scoring rules can lead to significant savings in B&C tree size, and that this tuning must be
done with the IP distribution in mind. No single parameter produces small trees for all the
distributions we considered, and in fact a µ that minimizes tree size for one distribution can
result in the largest trees for another (as in Figures 2b and 4b, for example). Furthermore,
many of the plots display discernible trends (and in some cases are quite smooth), suggesting
that the number of samples required to avoid overfitting in practice can be significantly
smaller than our theoretical bounds.

4.3 Improved bounds for branch-and-cut
To allow node selection, branching, and cutting-plane selection to be tuned simultaneously,
we apply Theorem 6. This allows us to bound the pseudo-dimension of the family of functions
{costµ1,µ2,λ}, where µ1 controls branching, µ2 controls cutting-plane selection, and λ controls
node selection. Let actions1(T , Q) denote the set of branching actions available at Q, and
let actions2(T , Q) denote the set of cutting planes available at Q. Let b1, b2 ∈ N be such
that actions1(T , Q) ≤ b1 and actions2(T , Q) ≤ b2 for all T and all Q ∈ T . Fix two
branching scores ascore1

1, ascore1
2, fix two cutting-plane selection scores ascore2

1, ascore2
2,

and fix two node-selection scores nscore1, nscore2.
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▶ Theorem 8. Let cost(Q) be any tree-constant cost function, and let costµ1,µ2,λ be the cost
of the tree built by B&C using branching score µ1 · ascore1

1 + (1 − µ1) · ascore1
2, cutting-plane

selection score µ2 · ascore2
1 + (1 − µ2) · ascore2

2, and node-selection score λ · nscore1 + (1 −
λ) · nscore2. Then, with ∆ = O(n), Pdim({costµ1,µ2,λ}) = O(n2 + n log(b1 + b2)).

4.3.1 Comparison to existing bounds
Balcan et al. [9] give a pseudo-dimension bound for tree search with a linear dependence
on a cap κ on the number of nodes allowed in any tree. Their pseudo-dimension bound in
our setting is Pdim({costµ1,µ2,λ}) = O(κ log κ + κ log b1 + κ log b2). While κ is treated as
a constant, it can be a prohibitively large quantity. In fact, without explicitly enforcing a
limit on the number of nodes expanded by B&C, Balcan et al. [9] obtain a pseudo-dimension
bound of O(2n(log b1 + log b2)). Balcan et al. [7] use the path-wise property to prove that
Pdim({costµ}) = O(n2) for single-variable branching, but for the case where branching is
the only tunable component of B&C (and node selection is fixed).

5 Conclusions and future research

We presented a general model of tree search and proved sample complexity guarantees
for this model that improve and generalize upon the recent sample complexity theory for
configuring branch-and-cut. There are many interesting and open directions for future
research. One compelling open question is to obtain pseudo-dimension bounds when action
sets are infinite. Balcan et al. [9] alluded to this question in the case of cutting planes, and
neither the techniques of their work nor the techniques of the present work can handle, for
example, important infinite cutting-plane families such as the class of Gomory mixed-integer
cuts, or the infinitely many valid disjunctions that could be branched on. Beyond integer
programming, our model of tree search could potentially be applied to completely different
problem domains that exhibit tree structure. Another direction is to extend our results to
convex combinations of ℓ > 2 scoring rules µ1score1 + . . . µℓscoreℓ, as Balcan et al. [7] do in
the special case of single-variable branching. However, their pseudo-dimension bound grows
exponentially in the number of variables n in that special case; developing techniques that
lead to a polynomial dependence on n remains a challenging open question.
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A Analysis of A′

Proof of Lemma 3. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the
restriction of T to nodes of depth at most i. Let ascoreµ = µ · ascore1 + (1 − µ) · ascore2.
We prove the lemma by induction on i. In particular, we show that for each i ∈ [∆], there
are ki(i−1)/2bi subintervals partitioning [0, 1] such that T [i] is invariant over all µ within any
given subinterval. Since T [∆] = T , this implies the lemma statement. The base case of i = 1
is trivial since T [1] consists of only the root.

Now, suppose the statement holds for some i ∈ {1, . . . , ∆ − 1}. That is, there are
T ≤ ki(i−1)/2bi disjoint intervals I1 ∪ · · · ∪ IT = [0, 1] such that T [i] is invariant over all µ

within any given subinterval (our inductive hypothesis). Fix one of these subintervals It. We
subdivide It into subintervals such that T [i + 1] is invariant within each one of these smaller
subintervals. Let Q be any leaf of T [i], and for µ ∈ It let Tµ denote the state of the tree
using ascoreµ at the point that Q is selected. Since i < ∆, Q is not fathomed at line 4,
regardless of µ. Next, since actions is path-wise, the actions available at Q depend only on
the path TQ from the root of T to Q, which, by the inductive hypothesis, is invariant over
all µ ∈ It. That is, actions(Tµ, Q) = actions(TQ, Q) for all µ ∈ It. Then, ascoreµ with
parameter µ will select action A ∈ actions(TQ, Q) if and only if

A = argmax
A0∈actions(TQ,Q)

µ · ascore1(Tµ, Q, A0) + (1 − µ) · ascore2(Tµ, Q, A0)

= argmax
A0∈actions(TQ,Q)

µ · ascore1(TQ, Q, A0) + (1 − µ) · ascore2(TQ, Q, A0),

where the second equality follows from the fact that ascore1 and ascore2 are path-wise.
Thus, for a fixed A0, ascoreµ is linear in µ, so for each A0 there is at most one subinterval
of [0, 1] such that for all µ in that subinterval, A0 maximizes ascoreµ. Thus, each leaf
of T [i] contributes at most b subintervals such that for µ within a given subinterval, the
action selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a
total of at most kib subintervals. Now, since the action A selected at each leaf Q of T [i] is
invariant, the set of children children(Tµ, Q, A) = children(TQ, Q, A) of Q added to the
tree is also invariant, using the fact that children is path-wise. This shows that within
every subinterval, T [i + 1] is invariant. The total number of subintervals is, by the induction
hypothesis, at most ki(i−1)/2bi · kib = k(i+1)i/2bi+1, as desired. ◀

B Multiple actions

Let actions1, . . . , actionsd be path-wise. The multi-action version of Algorithm 1 is given
by Algorithm 2. There are two scoring rules ascorei

1 and ascorei
2 for each action type i ∈ [d].

Algorithm 2 can then be parameterized by (µ, λ), where µ ∈ Rd is a vector of parameters
controlling each action: the ith action is selected to maximize µi ·ascorei

1 +(1−µi) ·ascorei
2.

As before, we assume there are b, k ∈ N such that |actionsi(T , Q)| ≤ b for any i and any
Q ∈ T , and |children(T , Q, A1, . . . , Ad)| ≤ k for all Q, A1, . . . , Ad.

Let A′, as in the single-action setting, be Algorithm 2 with the evaluations of fathom on
line 4 and line 8 suppressed. Then, we may prove a slight generalization of lemma 3.

▶ Lemma 9. Let ascorei
1 and ascorei

2 be two path-wise action-selection scores, for each
i ∈ {1, . . . , d}. Fix the input root node Q. There are T ≤ kd∆(∆−1)/2bd∆ boxes of the form
Rt = I1 × · · · × Id partitioning [0, 1]d where for any box Rt, the action-selection scores
µi · ascorei

1 + (1 − µi) · ascorei
2 results in the same tree built by A′ for all µ ∈ Rt, no matter

what node selection policy is used.
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Algorithm 2 Tree search with multiple actions.

Input: Root node Q, depth limit ∆
1: Initialize T = Q.
2: while T contains an unfathomed leaf do
3: Select a leaf Q of T that maximizes nscore(T , Q).
4: if depth(Q) = ∆ or fathom(T , Q, None, . . . , None) then
5: Fathom Q.
6: else
7: For i = 1, . . . , d, select Ai ∈ actionsi(T , Q) that maximizes ascorei(T , Q, Ai).
8: if fathom(T , Q, A1, . . . , Ad) then
9: Fathom Q.

10: else if children(T , Q, A1, . . . , Ad) = ∅ then
11: Fathom Q.
12: else
13: Add all nodes in children(T , Q, A1, . . . , Ad) to T as children of Q.

Proof. Let T denote the tree built by A′. For i ∈ [∆], let T [i] denote the restriction of T
to nodes of depth at most i. Let ascorei

µi
= µi · ascorei

1 + (1 − µi) · ascorei
2. We prove the

lemma by induction on i. In particular, we show that for each i ∈ [∆], there are kdi(i−1)/2bdi

boxes partitioning [0, 1]d such that T [i] is invariant over all µ within any given box. Since
T [∆] = T , this implies the lemma statement. The base case of i = 1 is trivial since T [1]
consists of only the root, regardless of µ ∈ [0, 1]d.

Now, suppose the statement holds for some i ∈ {1, . . . , ∆ − 1}. That is, there are
T ≤ kdi(i−1)/2bdi disjoint boxes R1 ∪ · · · ∪ IR = [0, 1]d such that T [i] is invariant over all µ

within any given boxes (our inductive hypothesis). Fix one of these boxes Rt. We subdivide
Rt into sub-boxes such that T [i + 1] is invariant within each one of these smaller boxes. Let
Q be any leaf of T [i], and for µ ∈ Rt let Tµ denote the state of the tree using ascorei

µi
for

each i at the point that Q is selected. Since i < ∆, Q is not fathomed at line 4, regardless
of µ. Next, since actionsi is path-wise for each i, the actions available at Q depend only
on the path TQ from the root of T to Q, which, by the inductive hypothesis, is invariant
over all µ ∈ Rt. That is, for all i actionsi(Tµ, Q) = actionsi(TQ, Q) for all µ ∈ Rt. Then,
ascorei

µi
will select action Ai ∈ actionsi(TQ, Q) if and only if

Ai = argmax
A0∈actionsi(TQ,Q)

µ · ascorei
1(Tµ, Q, A0) + (1 − µi) · ascorei

2(Tµ, Q, A0)

= argmax
A0∈actionsi(TQ,Q)

µi · ascorei
1(TQ, Q, A0) + (1 − µi) · ascorei

2(TQ, Q, A0),

where the second equality follows from the fact that ascorei
1 and ascorei

2 are path-wise.
Thus, for a fixed A0, ascorei

µi
is linear in µi, so for each A0 there is at most one subinterval of

[0, 1] such that for all µi in that subinterval, A0 maximizes ascorei
µi

. Thus, each leaf of T [i]
contributes at most b subintervals such that for µi within a given subinterval, the action of type
i selected at each leaf of T [i] is invariant. T [i] consists of at most ki leaves, so this is a total of
at most kib subintervals. Writing Rt = I1×· · · Id, we have established that for each i, there are
kib subintervals partitioning Ii into subintervals such that as µi varies over each subinterval,
the action of type i selected at every leaf of T [i] is invariant. These subintervals partition Rt

into at most (kib)d boxes. As before, since the actions selected at each leaf Q of T [i] are
invariant, the set of children children(Tµ, Q, A1, . . . , Ad) = children(TQ, Q, A1, . . . , Ad) of
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Q added to the tree is also invariant, using the fact that children is path-wise. Therefore,
within every sub-box of Rt, T [i+1] is invariant. The total number of boxes over each possible
Rt is, by the induction hypothesis, at most kdi(i−1)/2bdi · kdibd = kd(i+1)i/2bd(i+1). ◀

The proof of Lemma 2 is identical in the multi-action setting. The proof of Lemma 4
is also identical: here, we fix a box R in the partition established in Lemma 9, and get
an identical partition of R × [0, 1] such that the behavior of Algorithm 2 is invariant as λ

varies in each subinterval of [0, 1]. The number of boxes in the final partition of [0, 1]d+1 is
kd∆(∆−1)/2bd∆ · k5∆ ≤ kd∆(9+∆)bd∆. Our main pseudo-dimension bound for the multi-action
setting follows from the same argument that exploits the framework of Balcan et al. [6].

▶ Theorem 10. Let cost(Q) be any tree-constant cost function, and let costµ,λ(Q) be
the cost of the tree built by Algorithm 1 on input root node Q using action-selection scores
parameterized by µ ∈ Rd, where d = O(1), and node-selection score parameterized by λ.
Then, Pdim({costµ,λ}) = O(d∆2 log k + d∆ log b).

When d = O(1) we get the same pseudo-dimension bound as in the single-action setting:
Pdim({costµ,λ}) = O(∆2 log k + ∆ log b), which is the statement of Theorem 6.
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