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We consider the SIR model and study the first time the number of infected 
individuals begins to decrease and the first time this population is below a given 
threshold. We interpret these times as functions of the initial susceptible and infected 
populations and characterize them as solutions of a certain partial differential 
equation. This allows us to obtain integral representations of these times and in 
turn to estimate them precisely for large populations.
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1. Introduction

The susceptible, infected, and recovered (SIR) model in epidemiology involves the system of ODE

�

Ṡ = −βSI

İ = βSI − γI.
(1.1)

Here S, I : [0, ∞) → [0, ∞) denote the susceptible and infected compartments of a given population in the 

presence of an infectious disease. If N is the size of the population, then

R(t) = N − S(t) − I(t)

is the recovered compartment of the population at time t. The parameters β > 0 and γ > 0 are the 

infected and recovery rates per unit time, respectively. While this is a classical model in epidemiology [16], 

the SIR and its variants have played a crucial role in several recent studies of the COVID–19 epidemic 

[1–3,6,10,18,21,23].
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In what follows, we will study the first time the infected population I drops below a desired level and 

the first the I starts to decrease as a function of the initial conditions S(0) and I(0). We will use a partial 

differential equation (PDE) to assist our analysis, and we’ll also identify the asymptotic behavior of the 

these functions when S(0) +I(0) is large. We are not the first authors to study such times for compartmental 

models; recent work along these lines include [7,9,13,17,22,24]. Nevertheless, our work seems to be the first 

that considers how these times vary with initial conditions. Moreover, we have introduced a PDE that does 

not appear to have been considered before. In addition, we anticipate that this approach has a good chance 

of being successful when applied to more general compartmental models in epidemiology. For now, we will 

focus our efforts on the simple SIR model to get a better grasp on what type of analysis is needed.

Before stating our results, we will first need to recall some basic properties of solution pairs S, I to the 

SIR ODE (1.1). For more details on these facts, we refer the reader to standard references such as section 2.2 

of [19], section 10.2 of [20], or section 9.2 of [8].

Positive and bounded solutions. For given initial conditions S(0), I(0) > 0, there is a unique solution of the 

SIR ODE S, I : [0, ∞) → R. Since

S(t) = S(0)e

−β

t
�

0

I(τ)dτ

and I(t) = I(0)e

t
�

0

(βS(τ) − γ)dτ

(1.2)

for t ≥ 0, S and I are necessarily positive. Also note that as d
dt (S + I)(t) = −γI(t) ≤ 0,

S(t) + I(t) ≤ S(0) + I(0)

for t ≥ 0. It follows that S and I are additionally bounded.

Integrability. For each time t ≥ 0,

S(t) + I(t) −
γ

β
ln S(t) = S(0) + I(0) −

γ

β
ln S(0).

That is, the path t �→ (S(t), I(t)) belongs to a level set of the function

ψ(x, y) := x + y − (γ/β) ln x. (1.3)

This observation also implies

t =

S(0)
�

S(t)

dz

βz ((γ/β) ln z − z + ψ(S(0), I(0))

for t ≥ 0. In this sense, S and I are determined up to an integral. The formula above and related ways to 

represent solutions have been studied in detail in various works [4,5,9,11,13,17,22].

Decay of infected individuals. The number of infected individuals tends to 0 as t → ∞

lim
t→∞

I(t) = 0.

In particular, for any given threshold µ > 0, there is a finite time t such that the number of infected 

individuals falls below µ

I(t) ≤ µ.
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Fig. 1. Plot of the solution pair S, I of (1.1) with S(0) = x and I(0) = y. S(t) is shown in blue and I(t) is shown in red. Note that 
u(x, y) is the first time t such that I(t) ≤ μ. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Below, we will write u ≥ 0 for the first time in which I falls below µ.

Infected individuals eventually decrease. There is a time v ≥ 0 for which

I is decreasing on [v, ∞).

Since I is a positive function and İ(t) = (βS(t) − γ)I(t), v can be taken to be the first time t that the 

number of susceptible individuals falls below the ratio of the recovery and infected rates

S(t) ≤
γ

β
.

As mentioned, we will study the times u and v mentioned above as functions of the initial conditions 

S(0) and I(0). First, let us fix a threshold

µ > 0

and consider

u(x, y) := inf{t > 0 : I(t) ≤ µ} (1.4)

for x, y ≥ 0. Here S, I are solutions of (1.1) with S(0) = x and I(0) = y (Fig. 1). As u(x, y) = 0 when 

0 ≤ y < µ, we will focus on the values of u(x, y) for x ≥ 0 and y ≥ µ.

We’ll see that u is a smooth function on (0, ∞) × (µ, ∞) which satisfies the PDE

βxy∂xu + (γ − βx)y∂yu = 1 (1.5)

along with the boundary condition

u(x, µ) = 0, x ∈ [0, γ/β]. (1.6)

Moreover, we will also use ψ defined in (1.3) to write a representation formula for u. To this end, we note 

that for x > 0, y ≥ µ and there is a unique a(x, y) ∈ (0, γ/β] such that

ψ(x, y) = ψ(a(x, y), µ).
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Fig. 2. Graph of w = (γ/β) ln z − z + ψ(x, y) for a ≤ z ≤ x. Here x > 0, y > μ, and a = a(x, y) ∈ (0, γ/β] is the unique solution of 
ψ(x, y) = ψ(a, μ).

Further, a(x, y) < x when x > γ/β or y > µ. These facts follow easily from the definition of ψ; Fig. 2 also 

provides an illustration.

A fundamental result involving u is as follows.

Theorem 1.1. The function u defined in (1.4) has the following properties.

(i) u is continuous on [0, ∞) × [µ, ∞) and is smooth in (0, ∞) × (µ, ∞).

(ii) u is the unique solution of (1.5) in (0, ∞) × (µ, ∞) which satisfies the boundary condition (1.6).

(iii) For each x > 0 and y ≥ µ,

u(x, y) =

x
�

a(x,y)

dz

βz ((γ/β) ln z − z + ψ(x, y))
. (1.7)

Next, we will study

v(x, y) := inf{t > 0 : S(t) ≤ γ/β} (1.8)

for x ≥ 0 and y ≥ 0. Again we are assuming that S, I is the solution pair of the SIR ODE (1.1) with 

S(0) = x and I(0) = y (Fig. 3). Since

⎧

⎪

⎪

«

⎪

⎪

¬

v(x, y) = 0 for 0 ≤ x ≤ γ/β and

v(x, 0) = ∞ for x > γ/β,

we will focus on the values of v(x, y) for x > γ/β and y > 0. Also note that when y > 0, v(x, y) records the 

first time t that I(t) starts to decrease.

The methods we use to prove Theorem 1.1 extend analogously to v. In particular, v satisfies the same 

PDE as u with the boundary condition

v(γ/β, y) = 0, y ∈ (0, ∞). (1.9)

Almost in parallel with Theorem 1.1, we have the subsequent assertion.
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Fig. 3. The solution pair S, I of (1.1) with S(0) = x and I(0) = y. S(t) is shown in blue and I(t) is shown in red. Note that v(x, y)
is the first time S(t) ≤ γ/β which is also the same time that I starts to decrease.

Theorem 1.2. The function v defined in (1.8) has the following properties.

(i) v is continuous on [γ/β, ∞) × (0, ∞) and is smooth in (γ/β, ∞) × (0, ∞).

(ii) v is the unique solution of (1.5) in (γ/β, ∞) × (0, ∞) which satisfies the boundary condition (1.9).

(iii) For each x ≥ γ/β and y > 0,

v(x, y) =

x
�

γ/β

dz

βz ((γ/β) ln z − z + ψ(x, y))
. (1.10)

We note that formula (1.10) has been previously established; see for example [9,22,24]. One novelty of our 

work is to consider the formula as a function of initial conditions x and y and to characterize this function 

as a solution of PDE (1.5) for given boundary conditions. Moreover, we will use this formula along with 

(1.7) to precisely estimate u(x, y) and v(x, y) when x + y is large.

Theorem 1.3. Define u by (1.4) and v by (1.8). Then

lim
x+y→∞

x≥0, y≥μ

u(x, y)

1

γ
ln

"

x + y

µ

" = 1 (1.11)

and

lim
x+y→∞

x>γ/β, y>0

β(x − γ/β + y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" · v(x, y) = 1. (1.12)

It follows from (1.11) that u(x, y) → ∞ as x + y → ∞. Consequently, we are implicitly considering 

solutions of the SIR ODE (1.1) on very long time intervals. However, the limits (1.11) and (1.12) are of 

a different nature than typical large time asymptotics results for solutions of (1.1) as these limits involve 

solutions with varying initial conditions. For example, in the seminal work of Hethcote [14], the classic text 

of Murray [25], and in recent papers such as [4,15,17,20], they all consider the large time behavior of a 

solution t �→ (S(t), I(t)) of (1.1) for a fixed set of initial conditions S(0) = x and I(0) = y.

This paper is organized as follows. In section 2, we will study u and prove Theorem 1.1. Then in section 3, 

we will indicate what changes are necessary so that our proof of Theorem 1.1 adapts to Theorem 1.2. We 



6 R. Hynd et al. / J. Math. Anal. Appl. 505 (2022) 125507

will prove Theorem 1.3 in section 4 and offer some perspective on these results in section 5. Finally, we will 

explain how we obtained numerical approximations of u and v in the appendix.

2. The first time I(t) ≤ µ

This section is dedicated to proving Theorem 1.1. We will begin with an elementary upper bound on u.

Lemma 2.1. For each x ≥ 0 and y ≥ µ,

u(x, y) ≤
x + y

γµ
.

Proof. Let S, I be the solution pair of the SIR ODE (1.1) with S(0) = x and I(0) = y. Since d
dt (S + I)(t) =

−γI(t),

t
�

0

γI(τ)dτ + S(t) + I(t) = x + y.

Choosing t = u(x, y) and noting that I(τ) ≥ µ for 0 ≤ τ ≤ u(x, y) gives

u(x, y)γµ ≤

u(x,y)
�

0

γI(τ)dτ ≤ x + y. �

Next we observe that I is always decreasing at the time it reaches the threshold µ.

Lemma 2.2. Let x > 0, y > µ, and suppose S, I is the solution of (1.1) with S(0) = x and I(0) = y. Then

İ(u(x, y)) < 0.

Proof. As İ(t) = (βS(t) − γ)I(t), it suffices to show

βS(u(x, y)) − γ < 0. (2.1)

If βx ≤ γ, then βS(t) < γ for all t > 0 since S is decreasing. Consequently, (2.1) holds for t = u(x, y). 

Alternatively, if βx > γ, then I is increasing on the interval [0, v(x, y)] and

βS(v(x, y)) − γ = 0.

In particular, I(v(x, y)) ≥ y > µ. Thus, v(x, y) < u(x, y). As S is decreasing,

βS(u(x, y)) − γ < βS(v(x, y)) − γ = 0. �

Remark 2.3. Since v(x, y) = 0 for x ∈ [0, γ/β] and y > 0, it also follows from this proof that

v(x, y) ≤ u(x, y)

for each x ≥ 0 and y ≥ µ.
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Fig. 4. Numerical approximation of the function u(x, y) for (x, y) ∈ [0, 6] × [1, 5]. Here μ = 1, β = 2, and γ = 3. See the appendix 
for a description of how this graph was obtained.

In our proof of Theorem 1.1 below, we will employ the flow of the SIR ODE (1.1). This is the mapping

Φ : [0, ∞)3 → [0, ∞)2; (x, y, t) �→ (S(t), I(t))

where S, I is the solution pair of (1.1) with S(0) = x and I(0) = y. We will also write Φ = (Φ1, Φ2) so that

Φ1(x, y, t) = S(t) and Φ2(x, y, t) = I(t).

It is routine to verify that Φ is a continuous mapping. It can also be shown that Φ : (0, ∞)3 → [0, ∞)2 is in 

fact smooth. See for example Theorem 4.1 in Chapter V of [12].

Proof of Theorem 1.1. (i) Suppose xk ≥ 0 and yk ≥ µ with xk → x and yk → y as k → ∞. By Lemma 2.1, 

u(xk, yk) is bounded. We can then select a subsequence u(xkj , ykj ) such that

t := lim inf
k→∞

u(xk, yk) = lim
j→∞

u(xkj , ykj ).

From the definition of u, we also have

Φ2(xk, yk, u(xk, yk)) = µ (2.2)

for each k ∈ N. Since Φ2 is continuous, we can send k = kj → ∞ in (2.2) to get

Φ2(x, y, t) = µ.

And as y ≥ µ,

u(x, y) ≤ t = lim inf
k→∞

u(xk, yk).

We can also choose another subsequence u(xk� , yk�) for which

s := lim sup
k→∞

u(xk, yk) = lim
�→∞

u(xk� , yk�).
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The same argument above gives

Φ2(x, y, s) = µ.

If y > µ or if 0 ≤ x ≤ γ/β and y = µ, s is the unique time τ ≥ 0 such that Φ2(x, y, τ) = µ. In either case, 

s = u(x, y). Alternatively, if x > γ/β and y = µ, then τ �→ Φ2(x, y, τ) starts at y = µ, increases for an 

interval of time, and then decreases to 0 as τ → ∞. It must be that either s = 0 ≤ u(x, y) or s = u(x, y). 

Consequently, in all scenarios

s = lim sup
k→∞

u(xk, yk) ≤ u(x, y).

Therefore,

u(x, y) = lim
k→∞

u(xk, yk).

It follows that u is continuous on [0, ∞) × [µ, ∞).

Let x > 0 and y > µ and recall that Φ2(x, y, u(x, y)) = µ. By Lemma 2.2,

∂tΦ2(x, y, u(x, y)) < 0.

Since Φ2 is smooth in a neighborhood of (x, y, u(x, y)), the implicit function theorem implies that u is 

smooth in a neighborhood of (x, y). We conclude that u is smooth in (0, ∞) × (µ, ∞).

(ii) Fix x > 0 and y > µ, and let S, I be the solution of (1.1) with S(0) = x and I(0) = y. Observe that 

for each 0 ≤ t < u(x, y),

u(S(t), I(t)) = inf{τ > 0 : I(t + τ) ≤ µ}

= inf{τ : I(t + τ) ≤ µ and τ > 0}

= inf{s − t : I(s) ≤ µ and s > t}

= inf{s : I(s) ≤ µ and s > t} − t

= inf{s > t : I(s) ≤ µ} − t

= u(x, y) − t.

The first equality above follows as the SIR ODE admits a unique solution; the last equality is due to our 

assumption that t < u(x, y). Therefore,

1 = −
d

dt
u(S(t), I(t))

�

�

�

�

t=0

=
�

βS(t)I(t)∂xu(S(t), I(t)) + (γ − βS(t))I(t)∂yu(S(t), I(t))
�
�

�

�

t=0

= βxy∂xu(x, y) + (γ − βx)y∂yu(x, y).

We conclude that u satisfies (1.5).

Now suppose w is a solution of (1.5) which satisfies the boundary condition (1.6). Note

d

dt
w(S(t), I(t)) = −

�

βS(t)I(t)∂xw(S(t), I(t)) + (γ − βS(t))I(t)∂yw(S(t), I(t))
�

= −1

for 0 ≤ t < u(x, y). Integrating this equation from t = 0 to t = u(x, y) gives
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w(S(u(x, y)), I(u(x, y))) − w(x, y) = −u(x, y).

Since I(u(x, y)) = µ, βS(u(x, y)) ≤ γ, and w(S(u(x, y)), µ) = 0, it follows that w(x, y) = u(x, y). Therefore, 

u is the unique solution of the PDE (1.5) which satisfies the boundary condition (1.6).

(iii) Suppose x > 0 and y > µ or x > γ/β and y = µ. We recall that a = a(x, y) ∈ (0, γ/β] is the unique 

solution of

ψ(x, y) = ψ(a, µ).

It is also easy to check that

γ

β
ln z − z + ψ(x, y) > µ

for a < z < x. See Fig. 2 for an example.

Since u solves the PDE (1.5),

d

dz
u

"

z,
γ

β
ln z − z + ψ(x, y)

"

=
βzy∂xu(z, y) + (γ − βz)y∂yu(z, y)

βzy

�

�

�

�

y= γ
β

ln z−z+ψ(x,y)

=
1

βz
�

γ
β ln z − z + ψ(x, y)

�

for a < z < x. Integrating from z = a to z = x and using the boundary condition (1.6) gives

u(x, y) =

x
�

a

dz

βz ((γ/β) ln z − z + ψ(x, y))
. �

3. The first time S(t) ≤ γ/β

We will briefly point out what needs to be adapted from the previous section so that we can conclude 

Theorem 1.2 involving v. We first note that v is locally bounded in [γ/β, ∞) × (0, ∞).

Lemma 3.1. For each x ≥ γ/β and y > 0,

v(x, y) ≤
ln x − ln(γ/β)

βy
.

Proof. Let S, I denote the solution of (1.1) with S(0) = x and I(0) = y. Since I(t) is increasing on 

t ∈ [0, v(x, y)], I(t) ≥ y for t ∈ [0, v(x, y)]. In view of (1.2),

γ

β
= S(v(x, y)) = xe

−β

v(x,y)
�

0

I(τ)dτ

≤ xe−βyv(x,y).

Taking the natural logarithm and rearranging leads to v(x, y) ≤ (ln x − ln(γ/β))/βy, which is what we 

wanted to show. �

The next assertion follows since S is decreasing whenever I is initially positive. The main point of stating 

this lemma is to make an analogy with Lemma 2.2.



10 R. Hynd et al. / J. Math. Anal. Appl. 505 (2022) 125507

Fig. 5. Numerical approximation of the function v(x, y) for (x, y) ∈ [1, 20] × [1/2, 5]. Here β = γ = 3. Consult the appendix for an 
explanation of how we arrived at this graph.

Lemma 3.2. Let x ≥ γ/β and y > 0, and suppose S, I is the solution of (1.1) with S(0) = x and I(0) = y. 

Then

Ṡ(v(x, y)) < 0.

Having established Lemmas 3.1 and 3.2, we can now argue virtually the same way we did in the previous 

section to conclude Theorem 1.2. Consequently, we will omit a proof.

4. Asymptotics

In this section, we will derive a few estimates on u(x, y) and v(x, y) that we will need to prove Theorem 1.3. 

First, we record an upper and lower bound on u.

Lemma 4.1. If x ≥ 0 and y ≥ µ, then

u(x, y) ≥
1

γ
ln

"

x + y

γ/β + µ

"

. (4.1)

If x ∈ [0, γ/β) and y ≥ µ, then

u(x, y) ≤
ln(y/µ)

γ − βx
. (4.2)

Proof. Set

w(x, y) =
1

γ
ln

"

x + y

γ/β + µ

"

.

Observe that for each x ≥ 0 and y ≥ µ,

βxy∂xw + (γ − βx)y∂yw =
1

γ

βxy + (γ − βx)y

x + y
=

y

x + y
≤ 1.
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Now fix x ≥ 0 and y ≥ µ and suppose S, I is the solution of (1.1) with S(0) = x and I(0) = y. By our 

computation above,

d

dt
w(S(t), I(t)) = −

�

βS(t)I(t)∂xw(S(t), I(t)) + (γ − βS(t))I(t)∂yw(S(t), I(t))
�

≥ −1

for 0 ≤ t ≤ u(x, y). And integrating this inequality from t = 0 to t = u(x, y) gives

w(S(u(x, y)), µ) − w(x, y) ≥ −u(x, y). (4.3)

Since S(u(x, y)) ≤ γ/β,

w(S(u(x, y)), µ) =
1

γ
ln

"

S(u(x, y)) + µ

γ/β + µ

"

≤ 0.

Combined with (4.3) this implies u(x, y) ≥ w(x, y). We conclude (4.1).

Now suppose βx < γ and y > µ. By (1.2),

µ = I(u(x, y)) = ye

u(x,y)
�

0

(βS(τ) − γ)dτ

≤ ye(βx−γ)u(x,y).

Taking the natural logarithm and rearranging gives (4.2). �

Likewise, we can identify convenient upper and lower bounds for v(x, y). To this end, we will exploit the 

fact that for each x > γ/β and y > 0

g(z) = (γ/β) ln z − z + ψ(x, y) (4.4)

is concave on the interval γ/β ≤ z ≤ x. This implies

g(z) ≥
g(γ/β) − y

γ/β − x
(z − x) + g(x) =

"

γ

β

ln x − ln(γ/β)

x − γ/β
− 1

"

(z − x) + y (4.5)

and

g(z) ≤ g�(x)(z − x) + g(x) =

"

γ

βx
− 1

"

(z − x) + y (4.6)

for γ/β ≤ z ≤ x.

Lemma 4.2. Suppose x > γ/β and y > 0. Then

v(x, y) ≤
ln x − ln(γ/β) − ln y + ln

�

x − γ/β + y − γ
β (ln x − ln(γ/β))

�

β

"

y + x

"

1 −
γ

β

ln x − ln(γ/β)

x − γ/β

"" (4.7)

and

v(x, y) ≥
ln x − ln(γ/β) − ln y + ln

�

x − γ/β + y + γ
β ( γ

βx − 1)
�

β(x − γ/β + y)
. (4.8)
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Proof. We will appeal to part (iii) of Theorem 1.2 which asserts

v(x, y) =

x
�

γ/β

dz

βzg(z)
.

Here g(z) is defined in (4.4). We will also employ the identity

d

dz

ln z − ln(cz + d)

d
=

1

z(cz + d)
. (4.9)

By (4.5) and (4.9),

v(x, y) ≤

x
�

γ/β

dz

βz

""

γ

β

ln x − ln(γ/β)

x − γ/β
− 1

"

(z − x) + y

"

=

ln z − ln

""

γ

β

ln x − ln(γ/β)

x − γ/β
− 1

"

(z − x) + y

"

β

"

y + x

"

1 −
γ

β

ln x − ln(γ/β)

x − γ/β

""

�

�

�

�

�

�

�

�

z=x

z=γ/β

=
ln x − ln(γ/β) − ln y + ln

�

x − γ/β + y − γ
β (ln x − ln(γ/β))

�

β

"

y + x

"

1 −
γ

β

ln x − ln(γ/β)

x − γ/β

"" .

Similarly, (4.6) and (4.9) give

v(x, y) ≥

x
�

γ/β

dz

βz

""

γ

βx
− 1

"

(z − x) + y

"

=

ln z − ln

""

γ

βx
− 1

"

(z − x) + y

"

β(x − γ/β + y)

�

�

�

�

�

�

�

�

z=x

z=γ/β

=
ln x − ln(γ/β) − ln y + ln

�

x − γ/β + y + γ
β ( γ

βx − 1)
�

β(x − γ/β + y)
. �

Corollary 4.3. For each δ > 0,

lim
x+y→∞
x≥0,y≥δ

v(x, y) = 0. (4.10)

Proof. Choose sequences xk ≥ 0 and yk ≥ δ with xk + yk → ∞ such that

lim sup
x+y→∞
x≥0,y≥δ

v(x, y) = lim
k→∞

v(xk, yk).

If xk ≤ γ/β for infinitely many k ∈ N, then v(xk, yk) = 0 for infinitely many k and
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lim
k→∞

v(xk, yk) = 0. (4.11)

Otherwise, we may as well suppose that xk > γ/β for all k ∈ N. In this case, (4.7) implies

v(xk, yk) ≤
ln xk − ln(γ/β) − ln yk + ln

�

xk − γ/β + yk − γ
β (ln xk − ln(γ/β))

�

β

"

yk + xk

"

1 −
γ

β

ln xk − ln(γ/β)

xk − γ/β

""

for all k ∈ N.

If xk → ∞, then

γ

β

ln xk − ln(γ/β)

xk − γ/β
≤

1

2

for sufficiently large k. It follows that

v(xk, yk) ≤
ln xk − ln(γ/β) − ln yk + ln

�

xk − γ/β + yk − γ
β (ln xk − ln(γ/β))

�

β
�

yk + 1
2xk

�

≤
ln xk − ln(γ/β) + ln

�

xk−γ/β
yk

+ 1
�

β
�

yk + 1
2xk

�

≤
ln xk − ln(γ/β) + ln

�

xk−γ/β
δ + 1

�

β
�

δ + 1
2xk

�

for all large enough k. Therefore, (4.11) holds.

Alternatively, we can pass to a subsequence if necessary and suppose xk ≤ c for all k ∈ N and yk → ∞. 

Lemma 3.1 then gives

v(xk, yk) ≤
ln c − ln(γ/β)

βyk
→ 0.

As a result, (4.11) holds in all cases. It follows that

lim sup
x+y→∞
x≥0,y≥δ

v(x, y) = 0,

which in turn implies (4.10). �

We are now ready to prove Theorem 1.3 which asserts

lim
x+y→∞

x≥0, y≥μ

u(x, y)

1

γ
ln

"

x + y

µ

" = 1 (4.12)

and

lim
x+y→∞

x>γ/β, y>0

β(x − γ/β + y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" · v(x, y) = 1. (4.13)
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Proof of (4.12). In view of (4.1),

lim inf
x+y→∞
x≥0 y≥μ

u(x, y)

1

γ
ln

"

x + y

µ

" ≥ 1.

It follows that u(x, y) → ∞ as x + y → ∞ with x ≥ 0 and y ≥ µ. In view of Corollary (4.10), we may select 

N ∈ N so large that

v(x, y) < u(x, y)

for all x + y ≥ N with x ≥ 0 and y ≥ µ.

Suppose x + y ≥ N with x ≥ 0 and y ≥ µ and choose a time t such that

v(x, y) < t < u(x, y).

Note that as t > v(x, y),

S(t) <
γ

β
.

Here S, I is the solution of the SIR ODE (1.1) with S(0) = x and I(0) = y. By (4.2), we also have

u(x, y) = t + u(S(t), I(t))

≤ t +
1

γ − βS(t)
ln

"

I(t)

µ

"

≤ t +
1

γ − βS(t)
ln

"

x + y

µ

"

. (4.14)

In addition, we can use (1.2) to find

S(t) = S(v(x, y))e

−β

t
�

v(x,y)

I(τ)dτ

=
γ

β
e

−β

t
�

v(x,y)

I(τ)dτ

≤
γ

β
e−βμ(t−v(x,y)).

Here we used that I(τ) ≥ µ as τ ≤ t < u(x, y). Therefore,

γ − βS(t) ≥ γ
�

1 − e−βμ(t−v(x,y))
�

.

Combining this inequality with (4.14) gives

u(x, y) ≤ t +
1

1 − e−βμ(t−v(x,y))

1

γ
ln

"

x + y

µ

"

.
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As a result,

lim sup
x+y→∞
x≥0 y≥μ

u(x, y)

1

γ
ln

"

x + y

µ

" ≤
1

1 − e−βμt
.

We conclude (4.12) upon sending t → ∞. �

In our argument below, we will employ the elementary inequalities

1

x
≤

ln x − ln(γ/β)

x − γ/β
≤

β

γ
, (4.15)

which hold for x > γ/β. They follow as the natural logarithm is concave.

Proof of (4.13). By the upper bound (4.7),

β(x − γ/β + y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" · v(x, y)

=
β(x − γ/β + y)

ln x − ln(γ/β) − ln y + ln (x − γ/β + y)
· v(x, y)

≤
β(x + y)

ln x − ln(γ/β) − ln y + ln
�

x − γ/β + y − γ
β (ln x − ln(γ/β))

� · v(x, y)

≤
x + y

y + x

"

1 −
γ

β

ln x − ln(γ/β)

x − γ/β

"

=
1

1 −
x

x + y

γ

β

"

ln x − ln(γ/β)

x − γ/β

" . (4.16)

We may select sequences xk > γ/β and yk > 0 with xk + yk → ∞ and

lim sup
x+y→∞

x>γ/β, y>0

x

x + y

γ

β

"

ln x − ln(γ/β)

x − γ/β

"

= lim
k→∞

xk

xk + yk

γ

β

"

ln xk − ln(γ/β)

xk − γ/β

"

. (4.17)

If xk → ∞, then

0 ≤
xk

xk + yk

γ

β

"

ln xk − ln(γ/β)

xk − γ/β

"

≤
γ

β

ln xk

xk − γ/β
→ 0.

Alternatively, xk has a bounded subsequence. Passing to a subsequence if necessary, we may assume that 

xk ≤ c for some constant c. In which case, yk → ∞. Employing (4.15), we find

0 ≤
xk

xk + yk

γ

β

"

ln xk − ln(γ/β)

xk − γ/β

"

≤
xk

xk + yk
≤

c

yk
→ 0.

It follows that the limit in (4.17) is 0. And in view of (4.16),
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lim sup
x+y→∞

x>γ/β, y>0

β(x − γ/β + y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" · v(x, y) ≤ 1.

By the lower bound (4.8),

β(x − γ/β + y)v(x, y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" =
β(x − γ/β + y)v(x, y)

ln x − ln(γ/β) − ln y + ln (x − γ/β + y)

≥
ln x − ln(γ/β) − ln y + ln

�

x − γ/β + y + γ
β ( γ

βx − 1)
�

ln x − ln(γ/β) − ln y + ln (x − γ/β + y)

= 1 +

ln

�

x − γ/β + y + γ
β ( γ

βx − 1)

x − γ/β + y

�

ln x − ln(γ/β) − ln y + ln (x − γ/β + y)

= 1 +

ln

�

1 +

γ
β ( γ

βx − 1)

x − γ/β + y

�

ln

"

x

γ/β

"

+ ln

"

x − γ/β

y
+ 1

" . (4.18)

Let us choose sequences xk > γ/β and yk > 0 such that xk + yk → ∞ and

lim inf
x+y→∞

x>γ/β, y>0

ln

�

1 +

γ
β ( γ

βx − 1)

x − γ/β + y

�

ln

"

x

γ/β

"

+ ln

"

x − γ/β

y
+ 1

" = lim
k→∞

ln

�

1 +

γ
β ( γ

βxk
− 1)

xk − γ/β + yk

�

ln

"

xk

γ/β

"

+ ln

"

xk − γ/β

yk
+ 1

" . (4.19)

We recall ln(1 + z) ≥ 3
2z for all nonpositive z sufficiently close to 0. Since

0 ≥

γ

β

"

γ

βxk
− 1

"

xk − γ/β + yk
→ 0,

we then have

ln

�

1 +

γ
β ( γ

βxk
− 1)

xk − γ/β + yk

�

≥
3

2

γ

β

"

γ

βxk
− 1

"

xk − γ/β + yk

for all sufficiently large k ∈ N. Furthermore,

0 ≥

2

3
ln

�

1 +

γ
β ( γ

βxk
− 1)

xk − γ/β + yk

�

ln

"

xk

γ/β

"

+ ln

"

xk − γ/β

yk
+ 1

"

≥

γ

β

"

γ

βxk
− 1

"

xk − γ/β + yk

ln

"

xk

γ/β

"

+ ln

"

xk − γ/β

yk
+ 1

"
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≥
1

ln

"

xk

γ/β

"

γ

β

"

γ

βxk
− 1

"

xk − γ/β + yk

= −
1

xk

xk − γ/β

ln xk − ln(γ/β)

γ/β

xk − γ/β + yk

≥ −
γ/β

xk − γ/β + yk
.

In the last inequality, we used (4.15). We conclude the limit in (4.19) is 0. In view of inequality (4.18),

lim inf
x+y→∞

x>γ/β, y>0

β(x − γ/β + y)

ln

""

x

γ/β

" "

x − γ/β

y
+ 1

"" · v(x, y) ≥ 1. �

5. Discussion

In this paper, we studied two critical times related to the SIR model: the first time the infected population 

drops below a desired level and the first time the infected population starts to decrease. We considered these 

times as functions of the initial conditions to the SIR ODE and characterized them as solutions of a common 

PDE

βxy∂xw + (γ − βx)y∂yw = 1

subject to appropriate boundary conditions. We anticipate that analogous questions (characterizing an 

important first instance or identifying when a qualitative change occurs) for more general compartmental 

models could be studied with a similar approach. This possibility is what is compelling about of this work. 

We sincerely hope that this work inspires other researchers to pursue related directions of inquiry.
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Appendix A. Approximating the graphs of u and v

Here we will describe the method used to approximate the graph of u in Fig. 4 and v in Fig. 5. Since the 

technique works for both functions, we will only focus on approximating the graph of u. As we explain our 

method, we will refer to the MALTAB functions SIRfun, SIRsoln, PreImageTime, and SIRExitTime and 

the MATLAB script we designed that are listed below.

We used MATLAB’s ode45 to integrate solutions to the SIR ODE (1.1) in SIRsoln; this function in turn 

relies on SIRfun which simply outputs the right hand side of the SIR ODE. We then approximated u(x, y)

with the function SIRExitTime. This was accomplished as follows. For a given input (x, y), we first used

ode45 to obtain an approximation for the corresponding solution of the SIR ODE t �→ (S(t), I(t)) on the 

interval

0 ≤ t ≤
x + y

γµ
. (A.1)
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Denoting this numerical solution as (S(t1), I(t1)), . . . , (S(tN ), I(tN )), we then used PreImageTime to find 

the first time tk such that I(tk) ≤ µ; this time tk also served as our approximation for u(x, y). We note that 

since u(x, y) ≤ (x + y)/γµ, we only needed to consider times t in the interval above (A.1).

The last segment of code listed below is a script which approximates the graph of u for the parameters 

µ = 1, β = 2, γ = 3 on the rectangle 0 ≤ x ≤ 6, µ ≤ y ≤ 6. In particular, it uses SIRExitTime to approximate 

u(xi, yj) for

xi = 6 ·
i

100
and yj = µ + (6 − µ) ·

j

100

where i, j = 0, . . . , 100. The result of these computations is displayed in Fig. 4.

% Right hand side/ODE function in the SIR model

function Fun = SIRfun(X,beta,gamma)

Fun(1) =-beta*X(1)*X(2);

Fun(2) = beta*X(1)*X(2)-gamma*X(2);

Fun=Fun’;

end

% Integrating SIR ODE on [0,T] with mesh size h and initial conditions X0

function [t,X] = SIRsoln(X0,beta,gamma,T,h)

tspan=linspace(0,T,1/h);

[t,X] = ode45(@(t,y) SIRfun(y,beta,gamma), tspan, X0);

end

% Finding the first time t(i) such that yvec(i)<mu

function tstar = PreImageTime(tvec,yvec,mu)

LogicVec=yvec<mu;

index=find(LogicVec,1);

tstar=tvec(index);

end

% Approximating u(X0)

function u = SIRExitTime(X0, mu,beta,gamma,h)

% An upper bound for u

T=sum(X0)/(mu*gamma);

[s,Y]=SIRsoln(X0,beta,gamma,T,h);

u=PreImageTime(s,Y(:,2),mu);

end

% This script plots an approximate graph of u for parameters specified below

% mu, beta, and gamma parameters

mmu=1;



R. Hynd et al. / J. Math. Anal. Appl. 505 (2022) 125507 19

bbeta=2;

ggamma=3;

% grid points

xmax=6;

ymax=6;

x=linspace(0,xmax,100);

y=linspace(mmu,ymax,100);

% initializing u

u=zeros(length(x),length(y));

for i=1:length(x)

for j=1:length(y)

% Computing the approximation for u(x(i),y(j))

u(i,j)=SIRExitTime([x(i) y(j)], mmu,bbeta,ggamma,.001);

end

end

% approximate graph

[X,Y]=meshgrid(x,y);

surf(X,Y,u’)
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