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A study was undertaken into using unmanned aerial vehicles or drones to inspect the condition of a range of transport
infrastructure. A road intersection, bridge and railway crossing in the USA were each inspected using two different
types of drone. Machine-learning-based feature-identification techniques, developed in an earlier case study of a
car parking lot, were then used to extract information automatically from the remotely captured photogrammetric
data for each asset. The findings and analysis results will help to optimise future transportation infrastructure health

monitoring using unmanned aerial vehicles.
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1. Introduction

Much of the world’s transport infrastructure is in poor condition
because of the growing wear and tear caused by increased traffic
and environmental loads. For example, the American Society of
Civil Engineers’ 2021 Report Card for America’s Infrastructure
(ASCE, 2021) provided an overall grade for the nation’s
infrastructure of C—, which indicates a mediocre condition. Good-
quality infrastructure is essential to meet a nation’s basic social and
economic needs, and its optimal performance is critical to national
growth and productivity.

Infrastructure monitoring can be undertaken using field
instrumentation and increasingly advanced land survey equipment.
However, considering the human resources required and budgetary
constraints, they are not conducive to proactive monitoring of
infrastructure assets. As a result, asset owners and agencies may
conduct reactive maintenance, which is more cost-intensive than
preventive maintenance (Frangopol and Liu, 2007). This underlines
the need to adopt new technologies to monitor the health of
infrastructure and to develop a comprehensive plan for identifying
and mitigating potential problems by preventive maintenance
strategies.

Close-range photogrammetry combined with unmanned aerial
vehicles systems (UAVs, UASs or drones), due to their ability to
access hard-to-reach areas, offers a solution, along with navigable
three-dimensional (3D) models and high-quality visuals to augment
current routine inspection practices (Congress et al., 2018, 2022c;
Fernandez-Hernandez et al., 2015; Mikhail ez al., 2001).

1.1 Photogrammetry

Photogrammetry is a remote data-collection technique that can
record or capture information, using imaging sensors to make
measurements without coming in direct contact with the inspected
element (Colomina and Molina, 2014; Gongalves and Henriques,
2015; Honkavaara et al., 2009; McGlone et al., 2004; Mikhail et al.,

2001; Nikolakopoulos et al., 2017; Puppala and Congress, 2019;
Puppala et al., 2018). It is also referred to as the art, science and
technology designed to obtain reliable information about physical
objects and their surrounding environment through the process of
recording, measuring and interpreting patterns.

Close-range photogrammetry (CRP) using UAVs offers a broad
scope of possibilities for conducting remote inspections and
assessments at a micro level. Some of the important terms include
flight altitude, flight lines, waypoints, ground sampling distance
(GSD), overlap, ground control points, focal length, aperture, shutter
speed and International Organization for Standardization (ISO)
sensitivity. There is no single set of predefined settings that can be
applied for all infrastructure cases and situations as they are unique
for different conditions. They need to be considered based on the
pilot’s experience, desired data quality and inspection objectives.

Building 3D models from overlapping images is one of the most
common applications of CRP technology. In this study, UAV-CRP
technology was used for conducting infrastructure inspections.

1.2 Unmanned aerial vehicles

Modern image-capturing equipment has provided the impetus
for conducting real-time mapping, surveying and monitoring of
infrastructure assets. UAVs are increasingly used for inspection and
monitoring in civil engineering. Multi-rotor, fixed-wing and vertical
take-off and landing UAVSs are all currently used in field operations.
Dense point-cloud models, orthomosaics, digital surface models
(DSMs) and contours are some of the common mapping outputs
derived from aerial imagery using CRP analyses and techniques for
remotely monitoring the condition of the structures.

The ability to monitor and detect physical features of
infrastructure remotely is of great value to civil engineers. Due
to their versatile nature, UAVs have become a popular means
for remotely gathering information and assessing transportation
infrastructure assets. Studies have been undertaken into using UAV's
for bridge inspections, asset inventories, building monitoring,
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Table 1. Details of unmanned aerial vehicles used in this study

Drone make/  Approximate Take-off Flight time

model cost with weight: kg per battery
accessories: set: min
Us$

Aibot X6 40 000 6.6 12-15

hexacopter

DJI Phantom 1500-2500 1.4 24-26

4 series (non-

RTK)

Identify ground
control points in the
aerial images

Build digital
elevation model

Render texture

Align the images
according to the
locations and stitch
the images

Build mesh model Build orthomosaic

Generate sparse
point cloud using tie
points and key
points identified in
overlapping images

Build dense point
cloud outputs

Export 3D mapping

Figure 1. Typical photogrammetric data processing workflow

pre-construction surveys, construction monitoring, automated
asphalt pavement inspections, traffic monitoring, law enforcement,
avalanche monitoring, rail corridor monitoring, airport monitoring,
stability analysis, virtual and augmented reality and disaster
response (Agapiou, 2020; Carter et al., 2018; Congress et al., 2018,
2019, 2020, 2021, 2022c¢; Jefferies et al., 2022; Metni and Hamel,
2007; Moreu and Taha, 2018; Siebert and Teizer, 2014; Wang,
2017; Yinhuai et al., 2022; Yu et al., 2018).

Despite such studies, infrastructure agencies need skilled
personnel for operating the UAVSs, collecting and processing the
data. Some agencies are collaborating with universities and industry
partners in identifying potential application areas and training their
personnel (Puppala and Congress, 2021). Dissemination of UAV
applications for structural health monitoring of infrastructure assets
is expected to bridge this knowledge gap.

This research study presents information based on hands-
on experience in collecting and processing aerial imagery and
analysing the 3D models of various infrastructure assets. UAVs
mounted with optical sensors were used to collect aerial images
of multiple transportation infrastructure assets. These images were
processed and used to conduct qualitative inspections. Further,
CRP techniques were used to build 3D models for conducting
quantitative inspections.

Subsequently, a case study is used to show the need for and
feasibility of using machine-learning-based feature-extraction
techniques to obtain infrastructure asset information. The study
concludes with salient observations on the advantages and limitations
of these platforms to guide transportation infrastructure agencies.

Camera sensors GNSS Operating Operating
geotagging temperature  frequencies:
range GHz
Sony Alpha 6000 Yes —20° to 40° C 2.48 and 5.85
(global shutter)
In-built optical No 0° to 40°C 2.48 and 5.85

camera (global
shutter)

2. Using UAVs for infrastructure condition
assessments

The enormous number of activities needed to maintain current
infrastructure assets and meet future needs requires robust and
cost-effective infrastructure monitoring. The authors demonstrated
aerial inspections on multiple transportation infrastructure assets in
the USA. The lessons learned during some of those missions and
analyses have been compiled in this paper to provide much-needed
guidance to infrastructure agencies on efficient and effective health-
monitoring strategies.

Two different types of drones mounted with optical sensors were
used in this study to meet the inspection objectives of the three
different infrastructure assets (Table 1). Both types of drones
had light-emitting diode (LED) lights to assist in identifying the
orientation while flying, two landing legs, a high-definition video
downlink that relayed the video signals to a digital live video
display unit, a camera-triggering mechanism and obstacle sensors.

An Aibot X6 hexacopter, an industrial-grade drone that could
accommodate sensors on both upward and downward gimbals,
was used to map the road, bridge and rail assets discussed in the
current study. An integrated global navigation satellite system
(GNSS) unit provided accurate geotagging data for processing the
images by communicating with a laptop connected to the nearest
base station through the GNSS Networked Transport of Radio
Technical Commission for Maritime Services via Internet Protocol
(NTRIP) caster manager. This allowed for both real-time kinematic
(RTK) and post-processed kinematic (PPK) GNSS geotagging of
the collected images.

A DJI Phantom 4 Pro Version 2, a low-cost quadrotor UAV
equipped with an optical camera mounted on a three-axis stabilised
gimbal, was used to augment the inspections. It was equipped with
forward, backward and downward vision systems, and side infrared
sensors, which were very useful in avoiding collisions while
conducting close inspections of structures.

After identifying the mapping location of each of the three assets
being inspected, the next step was to check the airspace class to
determine whether there was a need to obtain a Federal Aviation
Administration (FAA) airspace authorisation or waiver. The flight
missions in this study were conducted in compliance with the FAA
part 107 rules for the use of commercial UAVs, and the flight plans
were prepared in such a way to avoid flying over people or moving
vehicles, thereby eliminating the need for waivers.

The second step was to conduct a site reconnaissance of the
three locations based on the information available on the internet.
Preliminary flight plans were made in the office to be efficient in the
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Figure 2. Aerial mapping of road intersection: (a) orthomosaic, (b) DSM, (c) 2 ft (610 mm) contours

field. All data-collection tasks were conducted by an FAA-certified
drone remote pilot in command (RPIC). The complexity of the
inspection determined the number of visual observers (VOs) that
were used in each infrastructure asset inspected.

Safety briefings, field reconnaissance, equipment set-up, mission
flights and debriefings at the site were important steps of the field
inspections. Field reconnaissance, conducted before the flights, was
crucial for accounting for any unfavourable conditions that were
not identified during online reconnaissance and for amending flight
plans. Ground control points were used in building the model and
checkpoints were laid out within the inspection areas to check the
models’ accuracy.

Typical photogrammetric data processing and 3D model
generation workflow (Figure 1) included the following steps.

B Ground control points were identified and marked in the
corresponding images.

B All images were aligned and stitched to generate tie points and
key points that were later used to produce a dense point-cloud
model.

B The dense point-cloud model was used to generate a mesh
model, and the texture was derived from the images.

B A DSM was developed from the dense point cloud.

B An orthomosaic was generated by projecting the images on
either a DSM or a mesh surface.

B The 3D mapping products generated from the above workflow
were exported.

3. Highway intersection

Many previous studies have been conducted by the authors to
identify the condition and design characteristics of road pavements
using UAV-CRP technology. For example, a stretch of road, prone
to heaving due to high-sulfate soils, was aerially inspected after
its rehabilitation. The rehabilitation was based on a comprehensive
laboratory study to evaluate the effect of mellowing on reducing
sulfate heave (Congress ef al., 2018).

In another study, the depth and area of distress were obtained from
3D models developed from aerial imagery of a section flooded by
a hurricane in Texas, USA (Congress et al., 2019). A cracked area
was identified based on artificial intelligence and machine-learning
techniques. Design characteristics such as cross-slope and longitudinal

elevation profiles were obtained by collecting oblique images at
different altitudes and overlaps. During data collection, traffic on
the high-speed road was not interrupted as the drone was flown at a
safe distance away and with the camera facing toward the pavement
(Congress and Puppala, 2020).

In the current study, the authors mapped a highway intersection
to assess its condition. The total flight time for inspecting the road
intersection was approximately 17 min, spanning three flights.
The flights were conducted at multiple altitudes with the camera
viewing the pavement in nadir and oblique angles to avoid flying
directly over traffic and to get data with the required resolution.
The flight crew relocated to a second location at the end of the first
two flights to maintain the line of sight of the drone during the
third flight. At the end of field operations, a quick quality check of
images was performed before generating a model with low-quality
settings to ensure proper mapping of the area of interest.

The images were geotagged using satellite constellation data
received by the GNSS module mounted on the drone. The images
were processed to generate high-quality 3D models. The global
accuracy of the model was measured as the average root mean
square error (RMSE) of the checkpoint coordinates in the X, Y and
Z directions, which were found to be 9 mm, 18 mm and 6 mm,
respectively.

Different data outputs developed from the optical imagery are
shown in Figure 2. The orthomosaic and DSM of the intersection
area are shown in Figures 2(a) and 2(b), respectively. By comparing
the orthomosaic and DSM, the drainage path leading to the drainage
culvert could be roughly estimated from the low-elevation areas
surrounding it. Contours at 610 mm intervals were laid on the
intersection to provide details about the transverse slope and the
drainage profile of the intersection area (Figure 2(c)).

Over its service life, the design characteristics of a pavement
tend to deteriorate, leading to unsafe conditions. Hence, proactive
monitoring of the pavement conditions is necessary. The transverse
slope provided insight into whether the design superelevation
remained intact after many years of service. The elevation profile
at the central portion of the intersection was useful in considering
the drainage path and planning future design improvements for the
intersection.

A cost—benefit analysis conducted on using UAVs for mapping
the intersection indicated that approximately 50% savings in time
and cost could be realised with this method when compared to
traditional methods (Puppala and Congress, 2021).
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Table 2. Comparison between UAV-CRP data measurements and ground truth measurements

Marker number

mm

UAV-CRP data measurements:  Ground truth measurements:

Absolute error: %

105.6
89.4
84.9
96.8
95.6
88.7
80.5

N o b wN =

% Over-bridge inspection

Nadir  “\n.  Oblique ™ __
photo

%
/

/

Photo 1 Photo 2

Photo 2

# Under-bridge inspection

Figure 3. UAV configurations used for bridge superstructure
and substructure inspections

mm

108.0 2.2
88.5 1.0
85.0 0.1
97.0 0.2
96.0 0.4
89.0 0.3
80.0 0.6

4. Highway bridge

An aerial inspection was carried out on a newly constructed
bridge, not yet opened for traffic, to explore the capabilities of
UAV data collection in identifying features on bridge structures.
The super- and sub-structure elements of the 213 m long and 6 m
tall bridge were inspected using an optical camera mounted on the
bottom and top gimbals, respectively, of the drone in separate flight
missions (Figure 3).

Before every flight, the drone’s compass was aligned properly
by placing it in an area without any interference from nearby metal
objects. For this study, the take-off operation was performed on a
wooden plank laid on the adjacent grass area to reduce the magnetic
interference of the reinforcement of the infrastructure asset on the
drone’s compass. No problems were encountered while flying close
to the reinforced elements of the bridge and, despite the wind gusts,
the servo gimbal provided a stable platform and helped rotate the
camera in any of the three axes to map and inspect the condition of
the elements. The bridge deck and the sides were inspected using
a camera mounted on the bottom gimbal. While conducting the
under-bridge inspections, mounting the camera on the top gimbal
was observed to provide the best angle to inspect the elements of
interest (Congress et al., 2022b).

Since this was a newly constructed bridge at the time of data
collection, tape markers with known dimensions were randomly

Figure 4. Aerial mapping of a bridge deck: (a) orthomosaic, (b) DSM
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distributed on the bridge deck to validate the accuracy of the 3D
models. A lawnmower pattern was followed while collecting the
images of the surface and underneath areas of the bridge deck
in different flight missions. The images were captured with a
minimum overlap of 80%. Although the weather was cloudy, it did
not adversely affect the quality of the data and models.

The bridge deck images were processed using ground control
points to obtain 3D models and the orthomosaic shown in Figure 4.
The accuracy of the model was measured as the average RMSE of
the checkpoint coordinates in X, Y and Z directions, which were
found to be 27 mm, 12 mm and 70 mm, respectively. This gives an
idea about the global accuracy. However, the taped markers were
measured manually to estimate the relative accuracy within the
model and also to evaluate the resolving power of the 3D mapping
products in identifying features on a concrete bridge deck.

Seven locations on the bridge superstructure were randomly
marked with black tape to evaluate the performance of the UAV-
CRP technology measurements (Figure 5). The scaled image
generated from the aerial imagery shows the measurement of
tape marker 7 (Figure 5(b)). Seven tape markers were measured
and compared using UAV-CRP and traditional methods, as shown
in Table 2.

UAV-CRP technology demonstrated a high degree of efficiency
and accuracy while rapidly collecting the data for monitoring the
bridge. The maximum error of 2.2% and an average error of less
than 0.7% showed the feasibility of using UAVSs as a supplemental
data-collection tool to assist current traditional bridge inspection
methods.

It is important to note that the lack of GNSS assistance combined
with high wind gusts during the under-bridge inspection made the
conditions challenging for the UAV flight. However, maintaining
the line of sight, obstacle sensors and operating at a minimum
offset distance of 1.8 m from the nearest obstacle ensured that
aerial images of hard-to-reach areas could be collected safely. The
frames extracted from the videos collected during the under-bridge
inspection were processed further to identify specific features.

Since it was a newly constructed bridge at the time of inspection,
there was no distress identified during the inspections. However,
the surface dark paint marks formed during the construction,
highlighted in red in Figure 6(a), and the borders of the panels
could be quickly identified in the images processed with colour-
inversion techniques (Figure 6(b)). Moisture staining could also
be identified in the processed image, as the concrete background,
which was relatively light in colour, helped to highlight the darker
areas (Figure 6). This approach also affirmed the ability to identify
cracks on concrete surfaces using drone imagery and offered a
quick method for identifying cracks or efflorescence staining that
commonly forms on in-service bridges.

The information captured by the UAV inspections could be an
important part of efficient asset management as it can be used to
build a ‘reality twin’ model of the bridge showing existing conditions
of the structure (Dang and Shim, 2020). This information can be
fed into a digital twin, which is a digital replica of any physical
asset, process or system, with the help of artificial intelligence,
machine learning and/or data analytics to create live digital models.
The digital twins can learn and update from several data sources
to represent and predict the current and future condition of their
physical counterparts (Lu et al., 2022).

Tape marker:7

Length = 8.05cm

l Top view ; : ‘

Joint width

Tape markers

(@ ' (b)

Bridge deck inspection: (a) locations of a few
markers, (b) pixel view of tape marker 7 on scaled image from
UAV-CRP technology

Under-bridge aerial inspection: (a) optical image, (b)
colour inversion
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Terrestrial lidar

) Ground point

Figure 7. Rail crossing mapping: (a) terrestrial lidar scanning,
(b) collecting ground point information using an RTK GNSS unit

This analysis indicated that the
UAV-CRP data can accurately
detect several features of

a rail corridor efficiently

" -'. ‘(.‘_- | ) S
Rail spacing = 1.55m

Figure 9. Rail spacing measured from rail crossing data
collected using (a) terrestrial lidar, (b) UAV-CRP technology

Figure 8. Aerial inspection of rail crossing: (a) orthomosaic,
(b) DSM

5. Rail crossing

An at-grade highway crossing of a railway was mapped using
terrestrial lidar (Figure 7(a)) and UAV-CRP technology to evaluate
safety. Ground-point information was also collected using a ground
RTK GNSS unit shown in Figure 7(b). UAV flights were planned to
collect the images with 80% overlap. Aerial imagery was collected
in two 10 min flights. The images were geotagged and processed
to obtain the dense point-cloud model, orthomosaic and DSM of
the crossing area. The orthomosaic and DSM offered an overview
of the elevation profile of the area, read from the colour-coded
elevation bar, as shown in Figure 8(b).

The average RMSE of the model in the X, Y and Z directions
was measured as 24 mm, 52 mm and 14 mm, respectively. This
provided an idea about the error in global location, but terrestrial
lidar measurements provided a better idea about the accuracy of
the 3D model. ‘Ground truth’ measurements were collected using
terrestrial lidar scanning. Traffic flow was mostly unobstructed
and was only regulated while the two 15 min terrestrial lidar scan
surveys were being conducted to map the crossing area. A terrestrial
lidar with a resolution of 1/4 and quality of 4x was used to obtain
the desired level of detail. Four spheres, three on one side and one
on the other side of the intersection along the rail line, were placed
to assist in stitching the two lidar scans.

The measurements obtained from the terrestrial lidar and the
UAV-CRP data were compared to evaluate the accuracy of the
aerially mapped data. The spacing between the two rails was
measured at two locations from the data collected using terrestrial
lidar and UAV-CRP technologies, as shown in Figures 9(a) and 9(b),
respectively. The nearest and farthest rail spacing measurements in
the lidar data are represented by the blue and pink lines in the UAV-
CRP data, respectively, shown in Figure 9(b).

Considering the terrestrial lidar data as the benchmark, the
percentage error in the two spacings measured from the UAV-
CRP data was obtained as 0.7% and 0.3%, respectively. This
analysis indicated that the UAV-CRP data can accurately detect
several features of a rail corridor efficiently. With this assurance
of accuracy, the rail corridor data models were analysed further to
evaluate their safety. Congress et al. (2020) pioneered a study using
UAV-CRP data to evaluate the safety of rail crossings, and they
were successful in identifying obstructions within the line of sight
of drivers negotiating the crossings.

Congress and Puppala (2021) provided a comparison of the
real-field view and model view of an obstruction generated from
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R e U T TNy A o e

Figure 10. Obstruction analysis at test rail crossing area: (a) orthomosaic, (b) real view — driver’s eye level, (c) digital view — driver’s
eye level, (d) digital view — after obstruction removal

the unmanned aerial images captured at a test rail crossing site o g 1
(Figure 10). They also highlighted the unique ability of UAV-CRP ' o R L e fon 50%
technology to provide views at different locations that could not be 4 - Model predetion 9
obtained from traditional data-collection methods without stopping !
traffic for a significant amount of time. Based on the observations
made in the digital replica of the rail crossing developed from the
UAV-CRP data, appropriate planning could be made to displace or
remove the obstruction, as shown in Figure 10(d).

6. Machine-learning-based feature-
identification in aerial data sets

The aerial imagery collected using UAVs can be used to make
either qualitative and/or quantitative assessments of infrastructure
assets. Qualitative assessments can be performed using either the
raw images or the 3D models generated from the aerial images.
Quantitative assessments can be performed using the 3D models
generated from aerial imagery. Redundancy in the data collected
helps in building high-quality data models and making accurate
assessments. These assessments are observed to be effective when Figure 11. Neural-network-based prediction of cars at 50%
compared to conventional inspection practices. However, manually and 90% confidence scores
analysing the raw imagery and/or 3D models representing vast
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areas of infrastructure assets is still laborious (Congress et al.,
2022a). The authors demonstrated the use of machine-learning-
based algorithms to identify the features in a case study.

In the case study, a geo-referenced orthomosaic generated
from aerial imagery and 3D models was analysed using machine-
learning-based instance-segmentation techniques. One of the key
advantages of coupling machine learning with photogrammetric
techniques is that the 3D mapping products offer scaled views and
the location of the infrastructure asset, which can be used to feed the
infrastructure condition information directly to the network-level
asset management database. The area covered by the object class,
detected by the mask, can be measured by using pixel resolution
and tagged to its global location.

A neural network model was trained to identify cars and
performed inferencing on an orthomosaic of a car park, as shown
in Figure 11. The inference was conducted at confidence levels of
50% and 90% to evaluate the performance of the model. Adopting
a higher confidence level for inferencing ignores the detection
of doubtful object classes and vice versa. Depending on the
model performance, there can be potential false negatives with a
higher confidence level and potential false positives with a lower
confidence level. Hence, an appropriate image resolution and
confidence level need to be selected for training and inferencing,
respectively (Congress et al., 2022a).

In Figure 11, the model with both 50% and 90% confidence
levels automatically detected all the cars. The locations of the cars
identified by the neural network model were extracted from the
geo-referenced orthomosaic and fed into a geographic information
system (GIS) database.

It can be observed that multiple cars in the car parking lot were
not only identified but their location coordinates were tagged to
the global coordinate system and automatically fed into a GIS-
based system. This reduces a lot of manual labour for identifying
different features, if it were to be performed by a person, and helps
in dedicating human resources toward other important applications.

Although they reduce manual labour, these technologies are not
expected to replace people in the near future as they require human
input when they encounter situations or features that were not
provided during the training of the model. An unfamiliar situation
or feature might happen frequently in a field like civil engineering
as the environmental, lighting and background conditions of objects
can change dynamically and present the same object with a different
appearance. Hence, a balance between human involvement and
machine analysis needs to be obtained based on the complexity of
the problem being addressed.

The case study discussed in this section highlights the need for
and feasibility of adopting machine-learning-based techniques
to augment the aerial imagery and derived data sets depicting
the infrastructure conditions. This can also help in the automatic
identification and tracking of parking usage over time using the
same flight paths and plans. Similar approaches can be used to
automatically detect various infrastructure features and distress in
large data sets and feed them to the asset management database.

7. Summary and conclusions

Proactively monitoring the health of infrastructure assets
will facilitate preventive maintenance. The multiple views of

infrastructure offered by the immersive visualisation of the models
derived from UAV-CRP technology can help to identify the condition
of road pavements, bridges and railway assets, as demonstrated by
the three examples in this study. Moreover, subjective inspections
can be transformed into objective nature with the help of various
image-analysis techniques.

Aerial data collection facilitates efficient inspection of long
and linear infrastructure assets. It also helps access hard-to-reach
areas and derive the design characteristics and health condition of
infrastructure efficiently and cost-effectively. The same aerial data
sets can be used to obtain multiple attributes of an infrastructure
asset.

For road pavement inspections, distress, design features and
construction practices can be monitored using UAV-based data
collection. Moreover, blind spots to traffic can be identified quickly
from the 3D models without interrupting traffic for long periods
during data collection.

For bridge inspections, UAVs provide access to hard-to-reach
areas and facilitate 360° bridge inspections. An increase in the
frequency of high-intensity weather events and aging bridge
infrastructure require the adoption of UAVs to efficiently conduct a
preliminary inspection of bridges.

For rail inspections, UAVs are being used to monitor tie
conditions, washout, rail buckling and other surface conditions
of a rail track. The 3D models are also being used to identify
humped crossings and trespassing of an at-grade road crossing.
Moreover, machine-learning tools are being leveraged to analyse
these aerial data sets and extract information for infrastructure
health monitoring. Although object-detection techniques offer
faster detection results, instance-segmentation techniques were
observed to be better for civil engineering assets due to their
cluttered background.

Similar to any technology, UAV-CRP technology also has some
limitations. An optical camera mounted on a UAV can only provide
the surface condition of an infrastructure element. It cannot provide
penetrative information, and will not provide any information if
there is an object obstructing its view. Loss of Global Positioning
System (GPS) connection and poor lighting conditions are some
of the challenges for operating and collecting under-bridge data.
Finally, data storage may also cause an issue if proper data-
management strategies are not followed.
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