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2001; Nikolakopoulos et al., 2017; Puppala and Congress, 2019; 
Puppala et al., 2018). It is also referred to as the art, science and 
technology designed to obtain reliable information about physical 
objects and their surrounding environment through the process of 
recording, measuring and interpreting patterns.

Close-range photogrammetry (CRP) using UAVs offers a broad 
scope of possibilities for conducting remote inspections and 
assessments at a micro level. Some of the important terms include 
flight altitude, flight lines, waypoints, ground sampling distance 
(GSD), overlap, ground control points, focal length, aperture, shutter 
speed and International Organization for Standardization (ISO) 
sensitivity. There is no single set of predefined settings that can be 
applied for all infrastructure cases and situations as they are unique 
for different conditions. They need to be considered based on the 
pilot’s experience, desired data quality and inspection objectives.

Building 3D models from overlapping images is one of the most 
common applications of CRP technology. In this study, UAV-CRP 
technology was used for conducting infrastructure inspections.

1.2 Unmanned aerial vehicles
Modern image-capturing equipment has provided the impetus 

for conducting real-time mapping, surveying and monitoring of 
infrastructure assets. UAVs are increasingly used for inspection and 
monitoring in civil engineering. Multi-rotor, fixed-wing and vertical 
take-off and landing UAVs are all currently used in field operations. 
Dense point-cloud models, orthomosaics, digital surface models 
(DSMs) and contours are some of the common mapping outputs 
derived from aerial imagery using CRP analyses and techniques for 
remotely monitoring the condition of the structures.

The ability to monitor and detect physical features of 
infrastructure remotely is of great value to civil engineers. Due 
to their versatile nature, UAVs have become a popular means 
for remotely gathering information and assessing transportation 
infrastructure assets. Studies have been undertaken into using UAVs 
for bridge inspections, asset inventories, building monitoring, 

1. Introduction

Much of the world’s transport infrastructure is in poor condition 
because of the growing wear and tear caused by increased traffic 
and environmental loads. For example, the American Society of 
Civil Engineers’ 2021 Report Card for America’s Infrastructure 
(ASCE, 2021) provided an overall grade for the nation’s 
infrastructure of C–, which indicates a mediocre condition. Good-
quality infrastructure is essential to meet a nation’s basic social and 
economic needs, and its optimal performance is critical to national 
growth and productivity.

Infrastructure monitoring can be undertaken using field 
instrumentation and increasingly advanced land survey equipment. 
However, considering the human resources required and budgetary 
constraints, they are not conducive to proactive monitoring of 
infrastructure assets. As a result, asset owners and agencies may 
conduct reactive maintenance, which is more cost-intensive than 
preventive maintenance (Frangopol and Liu, 2007). This underlines 
the need to adopt new technologies to monitor the health of 
infrastructure and to develop a comprehensive plan for identifying 
and mitigating potential problems by preventive maintenance 
strategies.

Close-range photogrammetry combined with unmanned aerial 
vehicles systems (UAVs, UASs or drones), due to their ability to 
access hard-to-reach areas, offers a solution, along with navigable 
three-dimensional (3D) models and high-quality visuals to augment 
current routine inspection practices (Congress et al., 2018, 2022c; 
Fernández-Hernandez et al., 2015; Mikhail et al., 2001).

1.1 Photogrammetry
Photogrammetry is a remote data-collection technique that can 

record or capture information, using imaging sensors to make 
measurements without coming in direct contact with the inspected 
element (Colomina and Molina, 2014; Gonçalves and Henriques, 
2015; Honkavaara et al., 2009; McGlone et al., 2004; Mikhail et al., 
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2. Using UAVs for infrastructure condition 
assessments

The enormous number of activities needed to maintain current 
infrastructure assets and meet future needs requires robust and 
cost-effective infrastructure monitoring. The authors demonstrated 
aerial inspections on multiple transportation infrastructure assets in 
the USA. The lessons learned during some of those missions and 
analyses have been compiled in this paper to provide much-needed 
guidance to infrastructure agencies on efficient and effective health-
monitoring strategies.

Two different types of drones mounted with optical sensors were 
used in this study to meet the inspection objectives of the three 
different infrastructure assets (Table 1). Both types of drones 
had light-emitting diode (LED) lights to assist in identifying the 
orientation while flying, two landing legs, a high-definition video 
downlink that relayed the video signals to a digital live video 
display unit, a camera-triggering mechanism and obstacle sensors.

An Aibot X6 hexacopter, an industrial-grade drone that could 
accommodate sensors on both upward and downward gimbals, 
was used to map the road, bridge and rail assets discussed in the 
current study. An integrated global navigation satellite system 
(GNSS) unit provided accurate geotagging data for processing the 
images by communicating with a laptop connected to the nearest 
base station through the GNSS Networked Transport of Radio 
Technical Commission for Maritime Services via Internet Protocol 
(NTRIP) caster manager. This allowed for both real-time kinematic 
(RTK) and post-processed kinematic (PPK) GNSS geotagging of 
the collected images.

A DJI Phantom 4 Pro Version 2, a low-cost quadrotor UAV 
equipped with an optical camera mounted on a three-axis stabilised 
gimbal, was used to augment the inspections. It was equipped with 
forward, backward and downward vision systems, and side infrared 
sensors, which were very useful in avoiding collisions while 
conducting close inspections of structures.

After identifying the mapping location of each of the three assets 
being inspected, the next step was to check the airspace class to 
determine whether there was a need to obtain a Federal Aviation 
Administration (FAA) airspace authorisation or waiver. The flight 
missions in this study were conducted in compliance with the FAA 
part 107 rules for the use of commercial UAVs, and the flight plans 
were prepared in such a way to avoid flying over people or moving 
vehicles, thereby eliminating the need for waivers.

The second step was to conduct a site reconnaissance of the 
three locations based on the information available on the internet. 
Preliminary flight plans were made in the office to be efficient in the 

pre-construction surveys, construction monitoring, automated 
asphalt pavement inspections, traffic monitoring, law enforcement, 
avalanche monitoring, rail corridor monitoring, airport monitoring, 
stability analysis, virtual and augmented reality and disaster 
response (Agapiou, 2020; Carter et al., 2018; Congress et al., 2018, 
2019, 2020, 2021, 2022c; Jefferies et al., 2022; Metni and Hamel, 
2007; Moreu and Taha, 2018; Siebert and Teizer, 2014; Wang, 
2017; Yinhuai et al., 2022; Yu et al., 2018).

Despite such studies, infrastructure agencies need skilled 
personnel for operating the UAVs, collecting and processing the 
data. Some agencies are collaborating with universities and industry 
partners in identifying potential application areas and training their 
personnel (Puppala and Congress, 2021). Dissemination of UAV 
applications for structural health monitoring of infrastructure assets 
is expected to bridge this knowledge gap.

This research study presents information based on hands-
on experience in collecting and processing aerial imagery and 
analysing the 3D models of various infrastructure assets. UAVs 
mounted with optical sensors were used to collect aerial images 
of multiple transportation infrastructure assets. These images were 
processed and used to conduct qualitative inspections. Further, 
CRP techniques were used to build 3D models for conducting 
quantitative inspections.

Subsequently, a case study is used to show the need for and 
feasibility of using machine-learning-based feature-extraction 
techniques to obtain infrastructure asset information. The study 
concludes with salient observations on the advantages and limitations 
of these platforms to guide transportation infrastructure agencies.

Table 1. Details of unmanned aerial vehicles used in this study

Drone make/ 
model

Approximate 
cost with 
accessories: 
US$

Take-off 
weight: kg

Flight time 
per battery 
set: min

Camera sensors GNSS 
geotagging

Operating 
temperature 
range

Operating 
frequencies: 
GHz

Aibot X6 
hexacopter

40 000 6.6 12−15 Sony Alpha 6000 
(global shutter)

Yes –20° to 40° C 2.48 and 5.85

DJI Phantom 
4 series (non-
RTK)

1500−2500 1.4 24−26 In-built optical 
camera (global 
shutter)

No 0° to 40°C 2.48 and 5.85

2022-096fig01
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Identify ground 
control points in the 

aerial images

Align the images 
according to the 

locations and stitch 
the images

Generate sparse 
point cloud using tie 

points and key 
points identified in 
overlapping images

Render texture

Build mesh model

Build dense point 
cloud

Build digital 
elevation model

Build orthomosaic

Export 3D mapping 
outputs

Figure 1. Typical photogrammetric data processing workflow
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elevation profiles were obtained by collecting oblique images at 
different altitudes and overlaps. During data collection, traffic on 
the high-speed road was not interrupted as the drone was flown at a 
safe distance away and with the camera facing toward the pavement 
(Congress and Puppala, 2020).

In the current study, the authors mapped a highway intersection 
to assess its condition. The total flight time for inspecting the road 
intersection was approximately 17 min, spanning three flights. 
The flights were conducted at multiple altitudes with the camera 
viewing the pavement in nadir and oblique angles to avoid flying 
directly over traffic and to get data with the required resolution. 
The flight crew relocated to a second location at the end of the first 
two flights to maintain the line of sight of the drone during the 
third flight. At the end of field operations, a quick quality check of 
images was performed before generating a model with low-quality 
settings to ensure proper mapping of the area of interest.

The images were geotagged using satellite constellation data 
received by the GNSS module mounted on the drone. The images 
were processed to generate high-quality 3D models. The global 
accuracy of the model was measured as the average root mean 
square error (RMSE) of the checkpoint coordinates in the X, Y and 
Z directions, which were found to be 9 mm, 18 mm and 6 mm, 
respectively.

Different data outputs developed from the optical imagery are 
shown in Figure 2. The orthomosaic and DSM of the intersection 
area are shown in Figures 2(a) and 2(b), respectively. By comparing 
the orthomosaic and DSM, the drainage path leading to the drainage 
culvert could be roughly estimated from the low-elevation areas 
surrounding it. Contours at 610 mm intervals were laid on the 
intersection to provide details about the transverse slope and the 
drainage profile of the intersection area (Figure 2(c)).

Over its service life, the design characteristics of a pavement 
tend to deteriorate, leading to unsafe conditions. Hence, proactive 
monitoring of the pavement conditions is necessary. The transverse 
slope provided insight into whether the design superelevation 
remained intact after many years of service. The elevation profile 
at the central portion of the intersection was useful in considering 
the drainage path and planning future design improvements for the 
intersection.

A cost−benefit analysis conducted on using UAVs for mapping 
the intersection indicated that approximately 50% savings in time 
and cost could be realised with this method when compared to 
traditional methods (Puppala and Congress, 2021).

field. All data-collection tasks were conducted by an FAA-certified 
drone remote pilot in command (RPIC). The complexity of the 
inspection determined the number of visual observers (VOs) that 
were used in each infrastructure asset inspected.

Safety briefings, field reconnaissance, equipment set-up, mission 
flights and debriefings at the site were important steps of the field 
inspections. Field reconnaissance, conducted before the flights, was 
crucial for accounting for any unfavourable conditions that were 
not identified during online reconnaissance and for amending flight 
plans. Ground control points were used in building the model and 
checkpoints were laid out within the inspection areas to check the 
models’ accuracy.

Typical photogrammetric data processing and 3D model 
generation workflow (Figure 1) included the following steps.

	■ Ground control points were identified and marked in the 
corresponding images.

	■ All images were aligned and stitched to generate tie points and 
key points that were later used to produce a dense point-cloud 
model.

	■ The dense point-cloud model was used to generate a mesh 
model, and the texture was derived from the images.

	■ A DSM was developed from the dense point cloud.
	■ An orthomosaic was generated by projecting the images on 

either a DSM or a mesh surface.
	■ The 3D mapping products generated from the above workflow 

were exported.

3. Highway intersection

Many previous studies have been conducted by the authors to 
identify the condition and design characteristics of road pavements 
using UAV-CRP technology. For example, a stretch of road, prone 
to heaving due to high-sulfate soils, was aerially inspected after 
its rehabilitation. The rehabilitation was based on a comprehensive 
laboratory study to evaluate the effect of mellowing on reducing 
sulfate heave (Congress et al., 2018).

In another study, the depth and area of distress were obtained from 
3D models developed from aerial imagery of a section flooded by 
a hurricane in Texas, USA (Congress et al., 2019). A cracked area 
was identified based on artificial intelligence and machine-learning 
techniques. Design characteristics such as cross-slope and longitudinal 

Figure 2. Aerial mapping of road intersection: (a) orthomosaic, (b) DSM, (c) 2 ft (610 mm) contours
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4. Highway bridge

An aerial inspection was carried out on a newly constructed 
bridge, not yet opened for traffic, to explore the capabilities of 
UAV data collection in identifying features on bridge structures. 
The super- and sub-structure elements of the 213 m long and 6 m 
tall bridge were inspected using an optical camera mounted on the 
bottom and top gimbals, respectively, of the drone in separate flight 
missions (Figure 3).

Before every flight, the drone’s compass was aligned properly 
by placing it in an area without any interference from nearby metal 
objects. For this study, the take-off operation was performed on a 
wooden plank laid on the adjacent grass area to reduce the magnetic 
interference of the reinforcement of the infrastructure asset on the 
drone’s compass. No problems were encountered while flying close 
to the reinforced elements of the bridge and, despite the wind gusts, 
the servo gimbal provided a stable platform and helped rotate the 
camera in any of the three axes to map and inspect the condition of 
the elements. The bridge deck and the sides were inspected using 
a camera mounted on the bottom gimbal. While conducting the 
under-bridge inspections, mounting the camera on the top gimbal 
was observed to provide the best angle to inspect the elements of 
interest (Congress et al., 2022b).

Since this was a newly constructed bridge at the time of data 
collection, tape markers with known dimensions were randomly 

Table 2. Comparison between UAV-CRP data measurements and ground truth measurements

Marker number UAV-CRP data measurements: 
mm

Ground truth measurements: 
mm

Absolute error: %

1 105.6 108.0 2.2

2 89.4 88.5 1.0

3 84.9 85.0 0.1

4 96.8 97.0 0.2

5 95.6 96.0 0.4

6 88.7 89.0 0.3

7 80.5 80.0 0.6

2022-096�g03
Barking Dog Art

Photo 1

Under-bridge inspection

Over-bridge inspection

Nadir
photo

Oblique
photo

Photo 1

Photo 2

Photo 2

Figure 3. UAV configurations used for bridge superstructure 
and substructure inspections

Figure 4. Aerial mapping of a bridge deck: (a) orthomosaic, (b) DSM
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distributed on the bridge deck to validate the accuracy of the 3D 
models. A lawnmower pattern was followed while collecting the 
images of the surface and underneath areas of the bridge deck 
in different flight missions. The images were captured with a 
minimum overlap of 80%. Although the weather was cloudy, it did 
not adversely affect the quality of the data and models.

The bridge deck images were processed using ground control 
points to obtain 3D models and the orthomosaic shown in Figure  4. 
The accuracy of the model was measured as the average RMSE of 
the checkpoint coordinates in X, Y and Z directions, which were 
found to be 27 mm, 12 mm and 70 mm, respectively. This gives an 
idea about the global accuracy. However, the taped markers were 
measured manually to estimate the relative accuracy within the 
model and also to evaluate the resolving power of the 3D mapping 
products in identifying features on a concrete bridge deck.

Seven locations on the bridge superstructure were randomly 
marked with black tape to evaluate the performance of the UAV-
CRP technology measurements (Figure 5). The scaled image 
generated from the aerial imagery shows the measurement of 
tape marker 7 (Figure 5(b)). Seven tape markers were measured 
and compared using UAV-CRP and traditional methods, as shown 
in Table 2.

UAV-CRP technology demonstrated a high degree of efficiency 
and accuracy while rapidly collecting the data for monitoring the 
bridge. The maximum error of 2.2% and an average error of less 
than 0.7% showed the feasibility of using UAVs as a supplemental 
data-collection tool to assist current traditional bridge inspection 
methods.

It is important to note that the lack of GNSS assistance combined 
with high wind gusts during the under-bridge inspection made the 
conditions challenging for the UAV flight. However, maintaining 
the line of sight, obstacle sensors and operating at a minimum 
offset distance of 1.8 m from the nearest obstacle ensured that 
aerial images of hard-to-reach areas could be collected safely. The 
frames extracted from the videos collected during the under-bridge 
inspection were processed further to identify specific features.

Since it was a newly constructed bridge at the time of inspection, 
there was no distress identified during the inspections. However, 
the surface dark paint marks formed during the construction, 
highlighted in red in Figure 6(a), and the borders of the panels 
could be quickly identified in the images processed with colour-
inversion techniques (Figure 6(b)). Moisture staining could also 
be identified in the processed image, as the concrete background, 
which was relatively light in colour, helped to highlight the darker 
areas (Figure 6). This approach also affirmed the ability to identify 
cracks on concrete surfaces using drone imagery and offered a 
quick method for identifying cracks or efflorescence staining that 
commonly forms on in-service bridges.

The information captured by the UAV inspections could be an 
important part of efficient asset management as it can be used to 
build a ‘reality twin’ model of the bridge showing existing conditions 
of the structure (Dang and Shim, 2020). This information can be 
fed into a digital twin, which is a digital replica of any physical 
asset, process or system, with the help of artificial intelligence, 
machine learning and/or data analytics to create live digital models. 
The digital twins can learn and update from several data sources 
to represent and predict the current and future condition of their 
physical counterparts (Lu et al., 2022).

Information captured by 
the UAV inspections could 
be an important part of 
efficient asset management

Figure 5. Bridge deck inspection: (a) locations of a few 
markers, (b) pixel view of tape marker 7 on scaled image from 
UAV-CRP technology

Length = 8.05cm

Tape markers

Joint width

Top view Tape marker:7

(a) (b)

Figure 6. Under-bridge aerial inspection: (a) optical image, (b) 
colour inversion

(a)

(b)

Moisture staining

Panel borders

Downloaded by [ TEXAS A&M UNIVERSITY] on [16/11/22]. Copyright © ICE Publishing, all rights reserved.



Civil Engineering

6

Eye in the sky: condition monitoring of 
transportation infrastructure using drones
Congress and Puppala

5. Rail crossing

An at-grade highway crossing of a railway was mapped using 
terrestrial lidar (Figure 7(a)) and UAV-CRP technology to evaluate 
safety. Ground-point information was also collected using a ground 
RTK GNSS unit shown in Figure 7(b). UAV flights were planned to 
collect the images with 80% overlap. Aerial imagery was collected 
in two 10 min flights. The images were geotagged and processed 
to obtain the dense point-cloud model, orthomosaic and DSM of 
the crossing area. The orthomosaic and DSM offered an overview 
of the elevation profile of the area, read from the colour-coded 
elevation bar, as shown in Figure 8(b).

The average RMSE of the model in the X, Y and Z directions 
was measured as 24 mm, 52  mm and 14 mm, respectively. This 
provided an idea about the error in global location, but terrestrial 
lidar measurements provided a better idea about the accuracy of 
the 3D model. ‘Ground truth’ measurements were collected using 
terrestrial lidar scanning. Traffic flow was mostly unobstructed 
and was only regulated while the two 15 min terrestrial lidar scan 
surveys were being conducted to map the crossing area. A terrestrial 
lidar with a resolution of 1/4 and quality of 4× was used to obtain 
the desired level of detail. Four spheres, three on one side and one 
on the other side of the intersection along the rail line, were placed 
to assist in stitching the two lidar scans.

The measurements obtained from the terrestrial lidar and the 
UAV-CRP data were compared to evaluate the accuracy of the 
aerially mapped data. The spacing between the two rails was 
measured at two locations from the data collected using terrestrial 
lidar and UAV-CRP technologies, as shown in Figures 9(a) and 9(b), 
respectively. The nearest and farthest rail spacing measurements in 
the lidar data are represented by the blue and pink lines in the UAV-
CRP data, respectively, shown in Figure 9(b).

Considering the terrestrial lidar data as the benchmark, the 
percentage error in the two spacings measured from the UAV-
CRP data was obtained as 0.7% and 0.3%, respectively. This 
analysis indicated that the UAV-CRP data can accurately detect 
several features of a rail corridor efficiently. With this assurance 
of accuracy, the rail corridor data models were analysed further to 
evaluate their safety. Congress et al. (2020) pioneered a study using 
UAV-CRP data to evaluate the safety of rail crossings, and they 
were successful in identifying obstructions within the line of sight 
of drivers negotiating the crossings.

Congress and Puppala (2021) provided a comparison of the 
real-field view and model view of an obstruction generated from 

This analysis indicated that the 
UAV-CRP data can accurately 
detect several features of 
a rail corridor efficiently 

Figure 7. Rail crossing mapping: (a) terrestrial lidar scanning, 
(b) collecting ground point information using an RTK GNSS unit

Terrestrial lidar

Spheres’ locations

Ground point

RTK GNSS unit

(a) (b)

Figure 9. Rail spacing measured from rail crossing data 
collected using (a) terrestrial lidar, (b) UAV-CRP technology

Rail spacing = 1.55 m

Rail spacing = 1.55 m

Rail spacing = 1.55 m

Horizontal = 1557 mm

Horizontal = 1568 mm Rail spacing = 1.55 m

(a)

(b)

Figure 8. Aerial inspection of rail crossing: (a) orthomosaic, 
(b) DSM

(b)(a)
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the unmanned aerial images captured at a test rail crossing site 
(Figure 10). They also highlighted the unique ability of UAV-CRP 
technology to provide views at different locations that could not be 
obtained from traditional data-collection methods without stopping 
traffic for a significant amount of time. Based on the observations 
made in the digital replica of the rail crossing developed from the 
UAV-CRP data, appropriate planning could be made to displace or 
remove the obstruction, as shown in Figure 10(d).

6. Machine-learning-based feature-
identification in aerial data sets

The aerial imagery collected using UAVs can be used to make 
either qualitative and/or quantitative assessments of infrastructure 
assets. Qualitative assessments can be performed using either the 
raw images or the 3D models generated from the aerial images. 
Quantitative assessments can be performed using the 3D models 
generated from aerial imagery. Redundancy in the data collected 
helps in building high-quality data models and making accurate 
assessments. These assessments are observed to be effective when 
compared to conventional inspection practices. However, manually 
analysing the raw imagery and/or 3D models representing vast 

Figure 11. Neural-network-based prediction of cars at 50% 
and 90% confidence scores

Ground truth
Model prediction 50%
Model prediction 90%

15m0m

Figure 10. Obstruction analysis at test rail crossing area: (a) orthomosaic, (b) real view – driver’s eye level, (c) digital view – driver’s 
eye level, (d) digital view – after obstruction removal

Viewpoint
Sight obstruction

10.8 m

(a)

(c)

(b)

(d)
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infrastructure offered by the immersive visualisation of the models 
derived from UAV-CRP technology can help to identify the condition 
of road pavements, bridges and railway assets, as demonstrated by 
the three examples in this study. Moreover, subjective inspections 
can be transformed into objective nature with the help of various 
image-analysis techniques.

Aerial data collection facilitates efficient inspection of long 
and linear infrastructure assets. It also helps access hard-to-reach 
areas and derive the design characteristics and health condition of 
infrastructure efficiently and cost-effectively. The same aerial data 
sets can be used to obtain multiple attributes of an infrastructure 
asset.

For road pavement inspections, distress, design features and 
construction practices can be monitored using UAV-based data 
collection. Moreover, blind spots to traffic can be identified quickly 
from the 3D models without interrupting traffic for long periods 
during data collection. 

For bridge inspections, UAVs provide access to hard-to-reach 
areas and facilitate 360° bridge inspections. An increase in the 
frequency of high-intensity weather events and aging bridge 
infrastructure require the adoption of UAVs to efficiently conduct a 
preliminary inspection of bridges.

For rail inspections, UAVs are being used to monitor tie 
conditions, washout, rail buckling and other surface conditions 
of a rail track. The 3D models are also being used to identify 
humped crossings and trespassing of an at-grade road crossing. 
Moreover, machine-learning tools are being leveraged to analyse 
these aerial data sets and extract information for infrastructure 
health monitoring. Although object-detection techniques offer 
faster detection results, instance-segmentation techniques were 
observed to be better for civil engineering assets due to their 
cluttered background.

Similar to any technology, UAV-CRP technology also has some 
limitations. An optical camera mounted on a UAV can only provide 
the surface condition of an infrastructure element. It cannot provide 
penetrative information, and will not provide any information if 
there is an object obstructing its view. Loss of Global Positioning 
System (GPS) connection and poor lighting conditions are some 
of the challenges for operating and collecting under-bridge data. 
Finally, data storage may also cause an issue if proper data-
management strategies are not followed.
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areas of infrastructure assets is still laborious (Congress et al., 
2022a). The authors demonstrated the use of machine-learning-
based algorithms to identify the features in a case study.

In the case study, a geo-referenced orthomosaic generated 
from aerial imagery and 3D models was analysed using machine-
learning-based instance-segmentation techniques. One of the key 
advantages of coupling machine learning with photogrammetric 
techniques is that the 3D mapping products offer scaled views and 
the location of the infrastructure asset, which can be used to feed the 
infrastructure condition information directly to the network-level 
asset management database. The area covered by the object class, 
detected by the mask, can be measured by using pixel resolution 
and tagged to its global location.

A neural network model was trained to identify cars and 
performed inferencing on an orthomosaic of a car park, as shown 
in Figure 11. The inference was conducted at confidence levels of 
50% and 90% to evaluate the performance of the model. Adopting 
a higher confidence level for inferencing ignores the detection 
of doubtful object classes and vice versa. Depending on the 
model performance, there can be potential false negatives with a 
higher confidence level and potential false positives with a lower 
confidence level. Hence, an appropriate image resolution and 
confidence level need to be selected for training and inferencing, 
respectively (Congress et al., 2022a).

In Figure 11, the model with both 50% and 90% confidence 
levels automatically detected all the cars. The locations of the cars 
identified by the neural network model were extracted from the 
geo-referenced orthomosaic and fed into a geographic information 
system (GIS) database.

It can be observed that multiple cars in the car parking lot were 
not only identified but their location coordinates were tagged to 
the global coordinate system and automatically fed into a GIS-
based system. This reduces a lot of manual labour for identifying 
different features, if it were to be performed by a person, and helps 
in dedicating human resources toward other important applications.

Although they reduce manual labour, these technologies are not 
expected to replace people in the near future as they require human 
input when they encounter situations or features that were not 
provided during the training of the model. An unfamiliar situation 
or feature might happen frequently in a field like civil engineering 
as the environmental, lighting and background conditions of objects 
can change dynamically and present the same object with a different 
appearance. Hence, a balance between human involvement and 
machine analysis needs to be obtained based on the complexity of 
the problem being addressed.

The case study discussed in this section highlights the need for 
and feasibility of adopting machine-learning-based techniques 
to augment the aerial imagery and derived data sets depicting 
the infrastructure conditions. This can also help in the automatic 
identification and tracking of parking usage over time using the 
same flight paths and plans. Similar approaches can be used to 
automatically detect various infrastructure features and distress in 
large data sets and feed them to the asset management database.

7. Summary and conclusions

Proactively monitoring the health of infrastructure assets 
will facilitate preventive maintenance. The multiple views of 
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