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Abstract: In this paper, we will discuss the space of functions of weak bounded mean oscillation. In
particular, we will show that this space is the dual space of the special atom space, whose dual space
was already known to be the space of derivative of functions (in the sense of distribution) belonging to
the Zygmund class of functions. We show, in particular, that this proves that the Hardy space H! strictly
contains the special atom space.
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1 Introduction

The space of functions of bounded means oscillation has taken central stage in the mathematical literature
after the work of Charles Fefferman [1], where he showed that it is the dual space of the real Hardy spaceH?,
a long sought-after result. Right after, Ronald Coifman [2] showed this result using a different method.
Essentially, he showed that H! has an atomic decomposition. De Souza [3] showed there is a subset B' of H',
formed by special atoms that is contained in H!. This space B! has the particularity that it contains some
functions whose Fourier series diverge. The question of whether B! is equivalent to H! was never truly
answered explicitly, but it was always suspected that the inclusion B' ¢ H! was strict, that is, there must be
at least one function in H! that is not in B!. However, such a function had neither been constructed nor
given. Since the dual space (H!)* of H! is BMO and B! ¢ H, it follows that the dual space (B")* of B must be a
superset of BMO. A natural superset candidate of BMO is therefore the space BMOY since BMO ¢ BMOY. So
in essence, that BMOV is the dual of B! would also prove that B! ¢ H! with a strict inclusion. Moreover, it was
already proved that (B1)* = AL, where A! is the space of derivative (in the sense of distributions) of functions
in the Zygmund class A., see, for example, [3] and [4]. Therefore, if (B!)* = BMQVY, then by transition, we would
have A = BMOVY.

Henceforth, we will adopt the following notations: D = {z € C : |z| < 1} is the open unit disk and let
T = {z € C : |z| = 1} is the unit sphere. For an integrable function f on a measurable set A, and the Lebesgue

measure A on A, we will write ](A f(&)dA¢) = ﬁJ‘A f(&)dA(¢). We will start by recalling the necessary

definitions and important results. The interested reader can see, for example, [5] for more information.
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Definition 1. Let O < p < co be a real number. The Hardy Space H? := HP(D) is the space of holomorphic
functions f defined on D and satisfying

1
p

2
Iflhe = sup %Ilf(re“)lpd/\(f) < co.
0

O<r<1

Let f € LL.(R™, Q be a hypercube in R", and A be the Lebesgue measure on R" for some n € N.
Put

f = ](f(f)d/l@), fo = ][f(c’)d/l(f) .
Q Q

For f € LL (R") and x € R", we define

M0 = sup 1) - F1AE), W
323X Q

M0 = sup ]([f(€) ~ fdA@)|, (1.2)
ED ¢ Q

mf(x) = ZquQ, (1.3)

where the supremum is taken over all hypercubes Q containing x. Now, we can define the space of functions
of bounded mean oscillation and its weak counterpart.

Definition 2. The space of functions of bounded mean oscillation is defined as the space of locally integr-
able functions f for which the operator M* is bounded, that is,
BMO(R™ = {f € Lh(R") : M#(f) € L°(RM}.
We can endowed BMO(R") with the norm
Iflemown = IM*(f)lleo = sup M#(f) (x).

xeR"

The space of functions of weak bounded mean oscillation is defined as the space of locally integrable
functions f for which the operator M is bounded, that is,

BMO"(R") = {f € L (R™) : Mf € LY(R™)}.
Remark 1.1. It follows from the above definitions that BMO(R") < BMOY(R").

Let us recall the definition of the space of functions of vanishing mean oscillation VMO (R") and
introduce the space of functions of weak vanishing mean oscillations VMO ¥(R").

Definition 3. Let f € L} .(R").

fevmo® it lim fI§) - fldA&) -o.
A(Q)—»oo

fe VMOY®R™ if lim ]t[f(f)—fo]d/\({) - 0.
AQ)—0 0
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Remark 1.2. It follows from the above definition that VMO (R") is a subspace of VMO %(R") which is itself
a subspace of BMOY(R"). We will show (see Theorem 2.8 below) that VMO is in fact closed subspace
of BMO".

Henceforth, BMO(R"), BMO"(R"), and VMO *(R") will simply be referred to as BMO, BMO", and VMO".

Now, we consider A(D) as the space of analytic functions defined on the unit disk D. Following the
work of Girela in [6] on the space of analytic functions of bounded means oscillations, we introduce their
weak counterpart. Before, we recall that the Poisson Kernel is defined as

1+ re®
B(B) = Re [1 - re"e}

Definition 4. The space of analytic functions of bounded mean oscillation is defined as
BMOA(D) = {F € A(D); 3f e BMO(T) : F(re®®) = zijp,(e - Of(e$)dA);.
T
T

We endow BMO(D) with the norm

O<r<1
0T

|Fllmoam) = IF(O)] + sup %fﬂ(e ~ £)f(e¥) - Fre®dA®)| < oo
T

In other words, BMOA(D) is the space of Poisson integrals of functions in BMO(T).
We can now define the space BMOAY of analytic function of weak bounded mean oscillation.

Definition 5. An analytic function F on D is said to be of weak bounded mean oscillation if there exists
f € BMOY(T) such that

F(re®) = %IB(G — OfE)dAE).
T

We endow BMOA*(D) with the norm

O<r<1
BeT

IFlmon o) = IF(O)] + sup % IP,(G ~ B)[f(e¥) - Fre®dA@)| | < co.
T

We recall the definition of special atom space B!, see [7].

Definition 6. For n > 1, we consider the hypercube of R" given as J = ]_[;.’Zl[a,- - hj, a; + hj] where qgj, h; are
real numbers with h; > 0. Let ¢ € L1(J) with ¢(J) = ch(f)d)l(f).
The special atom (of type 1) is a function b : I € ] — R such that

b()=1on J\I or

1
b(¢)=—— - ,
€)= 55O -0l

where
21’1—1
* R= I for some iy, iy, ..., i1 € {1, 2,..., 2" with iy < ) < --- <iy1and L = I\R.
j=1
e {I, b,..., bn} is the collection of sub-cubes of I, cut by the hyperplanes x; = a1, % = a, ..., X, = ay.
e X, represents the characteristic function of set A.
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(a)

Figure 1: Illustration of the special atom, forn =1 in (a), n = 2 in (b), and n = 3 in (c).

Definition 7. The special atom space is defined as
B' = {f] - R; f(§) = zanbn(é'x Z|an| < 00};
n=0 n=0

where the b,’s are special atoms of type 1.
B! is endowed with the norm ||f|z = inf Zﬁolanl, where the infimum is taken over all representations of f
(Figure 1).

Now, we define the Zygmund class of functions.

Definition 8. Let k € N. A function f is said to be in the Zygmund class AX(R") of functions of order k if
f e CxY(R™ and

If kg = . sup |0%f (x + h) + {,i)lc - h) - 2000l
lal =k %>

In particular, for k = 1, we have A, = AYR"), and hence

A= {f ¢ CORM) : [fl, = sup LEHR S0P = 0O oo}.
x,h>0 2h

One important note about the space A, is that it contains the so-called Weierstrass functions that are
known to be continuous everywhere but nowhere differentiable. Therefore, the space AX is the space of
derivatives of functions in A¥"!, where the derivative is taken in the sense of distributions. Another equiva-

lent way to see A¥ is to consider functions of A" that are either differentiable or limits of convolutions with
the Poisson kernel, that is, f(¢) = lim(f = B) (&) where B(0) is the Poisson kernel.
r—1
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2 Main results

Our first result is about the constant f; in the definition of BMOY. If fact, the constant f; can be replaced with
any non-negative constant. The same can be said about BMO as well.

Proposition 2.1. Let f ¢ L],.
(1) For any non-negative real number a, we have

sup ]( LF©) - foldA@)| < 2sup ]f LF©) - aldA@))|. @.1)
Q

Q>x Q>x
Q

(2) f e BMOV if and only if for any x € R" and any cube Q > x, there exists a non-negative number a € Q
such that

sup ]f[f(sf) ~ aldA(®)| < co. 2.2)
Q>3x
Q

Proof. To prove assertion (1), fix x € R" and a cube Q € R" containing x. Observe that for every non-
negative a we have,

f[f(f)—fold/t(a <2 ]([f(c’)—a]d/l(s‘) .
Q Q

Indeed, for any non-negative real number a, we have

]f[f(f) ~ foldA@) ]([f(f) ~ adA@) + ]([a ~ fldAE)
Q Q Q

IN

]([f(f) —aldA@)| + f[a ~ foldAE)
Q Q

IN

f[f(f)—a]em(f) N ](ad/t(f) - ](f(f)dA(f)

Q Q Q

IN

]([fm—a]d/\(f) + ][[a—f(f)]d/l({) szf[f(a—a]dit(f).

Q Q Q

To conclude, we take the supremum over of all cubes Q > x.
Assertion (2) follows immediately from (1). O

We can define two equivalent norms on BMOY and prove that endowed with these norms, BMOY is in
fact a Banach space.

Proposition 2.2. Consider the following: for every f € BMOY, we put

Iflemor = Imflleo + IMflle  and  Ifligygw = IMflleo + 2supinf j:[f (§) - foldA(§)|.

Q>x a>0
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Then,

Iflmor < Iflpor < 2 1Ifllemoe -
BMO

Proof. The proof is an immediate consequence of Proposition 2.1. We note that the proof can also be
obtained from the closed-graph theorem, but that will require to first prove that endowed with the two
norms, BMOY is a Banach space. O

Theorem 2.3. The space (BMOVY, ||-|lgmo*) is complete.

Proof.
(1) In the proof that |- |lsmov is @ norm, homogeneity and the triangle inequality are easy to prove. As for

positivity, we note that ||flgmor = 0 & supfy = 0 and f(&) = fo on all cubes Q > x. It follows immedi-
Q>x

ately that f = 0.
(2) Let {fylney be a Cauchy sequence in BMOY. Let € >0 and N € N such that Vn,m € N, we have
If: = fimllemor < €. That is,

Q>x

sup| (f, ~ fudo + ][[(fn @) — (fa — fialdA@)| | < e 2.3)
Q

In particular, from (2.3), we have that sup(f, — f)o < €, therefore,
Q>x

ha = fnal = |[f©A@| - fh@ @@ < [fth - €A = (h - fio < sup (fy ~ o < e
Q 0 0 @
Hence, for fixed Q, {f;, o} is Cauchy sequence inR. Let fy = lim f, o. We note from the above inequalities that
(= o = [f U = Fud OANE)| > i = fial > Fo = Fnc:
Q

Therefore, given a cube Q c R" containing x, we have

IMfy(x) — Mfin(x)| < sup :':[(fn@) — fm(§) = (fu = fm.@)1dA(S)

Q>x
Q

< sup f[(fn(‘f) _fm(f)) - (fn _fm)Q]d/\(‘S) + Sup|(fn _fm)Q - (fn,Q _fm,Q)l
Q>x

Q>
*la

< fn = fnllemor + supl(fno — fn0)l < 2e.
Q>x

It follows that {Mf, },cy is a Cauchy sequence in L). Let h = lim Mf;.
Since L2 ¢ L}, we have h € L} .. e

h(x) = lim Mf,(0) = lim sup ][[fnvs) ~ fualdA@)| = sup ]([nlirgofn(a f1dA@)|.
Q

n—oo n—oo QBX QSX

Since h(x) is finite on any cube Q > x, that follows that f(¢) = lim f,(&) is finite a.e. on Q. Thus, h = Mf,
for some f € BMO" and lim|f; — flsmo* — O. e O
n—-oo
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Theorem 2.4. (Holder’s type inequality) Let g € BMOY and a hyper-cube ] c R". Consider the following
operator T, : B! — R given by Ty(f) = j] f(&)g(&)dA(&). Then, T, € (BY)* with | Tellzy < lglemor-
Moreover, the operator H : BMO¥ — (BY)* defined as H(g) = T is onto.

Proof. By linearity of the integral, T, is a linear. To start, we study the action of this operator on special
atoms. Indeed, let £ € I €] and suppose f(&) = b(¢) = ﬁ[XR(‘{) - x.(&)], where R, L are sub-cubes of I
such that I = RU L and R n L = &. Therefore, we have:

T,(b) = fb(f)g(f)d/l(f) - jb({)g(&)d}t(&) - _[b({) 8(6) - gldA), since jb({)g,d/t(a - o.
] I 1 I

Taking the supremum over all I > x and using the fact that b(¢§) < ﬁ, we have

IT®)| < supinf f[g({) ~ aldA(@)| < lglwor. (2.4)
I>x &>
Ic]

Now suppose f(¢) = Zﬁilc,,bn(f ) with ZZ‘;IC"I < 0o is an element of B!, where the b,’s are special atoms
defined on sub-cubes I, of J with [, =R, U L,and R, N L, = &. Let I = | JI,. We have fora > 0

n=1

1= | (fcnbn(an(sw(s) - j[fcnbnmj[g(s) ~ adA@)

Ji n=1 I n=1

- Yo B©18) - i ®) = Y o [ Ba©g(6) - r(®).
n=1 I n=1 I,

It follows from (2.4) that

ITe(f)I < [Z|Cn|j'||g||BMOW-

n=1
Talking the infimum over all representations of f yields as follows:

ITe(HI < Ifllz - lgllemor -

Therefore, T, is a bounded linear operator on B! with

I Tgllgry = sup ITe(H)I < llglemor- 2.5)
Ifl=1
Now suppose that T is a bounded linear functional on B!, that is, T € (B')*. We want to show that there exists
a function g € BMOY such that T(f) = T,(f) = _[] f(&)g(&)dA(£). That T € (BY)* implies the existence of an
absolute constant C such that
IT(f)l < Clfllgp, VfeB. (2.6)

Recall that a function G : ] — R is said to be absolutely continuous on J if for every positive number €, there
exists a positive number §, such that for a finite sequence of pairwise disjoint sub-cubes I, = (x,, ;) of J,

YO -x) <8 = YIG(y,) - Gl <e. .7)
n=1 n=1

Suppose such a sequence of sub-cubes exists. Now, consider G(x) = T (X;,_j x,) for some real number
h > 0. Then, given an cube I, and a real number h,, we have by linearity of T that

G(yn) - G(Xn) = Tﬂ:X[yn_hmyn*hn) - X[Xn_hn»xn"‘hn)D'
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Now, if we define L,, = [x, — hp, Xn + hy) and R, = [, — hn, ¥, + hn), we see that R, N L, = & and their union
forms a single cube J, if we choose h, = (y, — x,)/2. Moreover, in that case, the length of the cube J, is
Yo + hn — X + hy = 2(y,, — Xn). Therefore, by linearity

1
G(yn) - G(Xn) = Z(Yn - Xn)T(Z(yn _ Xn) |:X[yn—h,,,yn+hn) - X[xn—hn,x,,+h,,):|]'

We observe that b,(§) = m Xyt 6) = Xpxamhns ) € )} is a special atom with norm in B! equal to 1.
It follows that using (2.6)
1G(y,) — GOl < 2y, = X) IT(bn)| < 2C(y, — Xn) [ bnllpr = 2C(y, — Xn).
Hence,
iIG(yn) - GOl < 2C i(yn - Xp).
n=1 n=1

We conclude by noting that given € > 0, (2.7) is satisfied if we choose § = % We conclude that the function
G is absolutely continuous on J. Therefore, G is differentiable almost everywhere, that is, there exists

g € L! such that G(x) = ng(§ )dA(&) for all cubes I = [a, b] € ]. Let I > x be a sub-cube of J. Therefore,

sup /1(1) Ig({ YaA(é )‘ < oo because an absolutely continuous function is a function with bounded variation.

Smce g € L', we have that g; = < oo. It follows that

A(I)

uwﬁgﬁﬁfma—wmm<ﬁ§7ﬁjmomm+ﬁg&<m

This proves that g € BMO". That is, H : BMO¥ — (BY)* is onto with H(g) = T = T,. Identifying T with the g,
it follows from (2.5) that

Iglsty = TNy = Tl < IglBmov- (2.8)

O

Remark 2.5. We observe that the above result can be obtained differently. In fact, we recall that it was
proved in [3] that the dual space of B! is equivalent to A2. Let x € J,h>0,I=[x-h,x+h] cJ,L =
[x — h,x), and R = [x, x + h]. Let b(¢) = %[)(R(.{) - X (&)]. We have

umhmmmﬁMMWM—mﬁmma%wmqmw

h>0 1 h>0

This shows that BMOY ¢ A2 = (BY)~.
Theorem 2.6. The dual space (B')* of B! is BMOY with |Igllamo* = lIglipy-

To prove Theorem 2.6, we recall that BY(T) has an analytic extension B}(D) to the unit disk. In fact, in [8],
it was shown that B}l([D) consists of functions F that are Poisson integrals of functions in BY(T), that is,

F Lre®z oo ik 1 (YT : :
(z) = > f pern f(e*)dA(¢) where f € B(T). Moreover, the norm ||F "B},(ID) = IO .|1n|F (2)ldz is equivalent to
the norm | fllg:c). This allows to identify B}(D) with BYT) and thus the following:

Proposition 2.7. B5(D) can be identified with a closed subspace of LX(T).
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Proof. Let {f,},.y be a sequence in BY(T) that converges to f in L{(T). We need to show that the Poisson
integral of f is in Bj(D). Since f, € BY(T), Vn € N, then Fy(z) = an 1:'6 ezfn(eif)d/\(f) belongs to Bi(D).

-iE,
Let F(z) be the Poisson integral of f. We note that if z = e, then (¢ - 0)? - ﬂ <|1-ezP < (- 02

Therefore, we have that F'(z) = " -0 _f(e®)dA(§) and IF'@)] <-|" =2 1f@)dA@) < C Ifl.
It follows that,

1n
IF, - Fliy = [ [IFi2) - F@)dz < CIfy - .
0-m
Since f, — f in L(T), it follows that F € B} and F, — F in B}(D). The result follows by identifying B}(D ) and
BY(T). O

We note that there is an extension of this result to the polydisk D" and polysphere T", see [9].

Proof of Theorem 2.6. It is sufficient to show that there exists a constant M > 0 such that ||T|| )y =
M |glemo*r)- The extension to R" is natural, using the results in [7,9]. With Proposition 2.7, the proof
follows along the lines of the proof of Proposition 7.3 in [6].

Let T ¢ (BY(T))*. Since BY(T) is a closed subspace of LY(T) by Proposition 2.7, then by Hahn-Banach
Theorem, T can be extended to a bounded linear operator T’ € (LY(T))* with | Tll gty = 1T gt y- Since (L{my* =

L>(T), then there exists g, € L°(T) such that [Iglom = [Ty = I1Tllgy and T(f) = ﬁj‘] go(e®)f (e¥)dA(¢),
for all f € Bi(D). Note that here, we identify f with its correspondent in Bj(D). Now, let Ynen A,e™s be

the Fourier series of g,. Since g, € L®(T) c L*T), we have that Ynez|An |> < co. This means that g, is
holomorphic. Let

ljgo(e) oify = L Igoef)

lg’Z

Since =Y ezt and A, = —_[ e"inég (e¥)dA(&), we have

go(e %) _ n
271.[ gy dE= YA

e i
z neN

1
1-eléz

This implies that g € HA(D). For 6 € R, g(e®) = 5 f 1g°e(‘i219d/1(£ ). Moreover, given f € By(D) < HY(D), and
using the Cauchy integral formula, we have:

1 0 £ pif 7 f(e®) _Ln—ie 0y 40 —
f g(€)f(e)d6 = - f %€ zﬂj LD a0 - [ gleireds = T(f).

We also observe that

1+ e fz 1+ ez
lf — 1{
gz) = o J { }go(e yaé = — ,[71 . Go(e)dA(¢), (2.9)

-

where Go(e) = ;(go(efﬂ + o jfngo<ef<’)d/1<$)) = 2(gole®) + Ap).

Put G, = Re(Gy), G> = Im(Gyp), and

n —ié X 7'[ —i& .
UGz) = — j—l Y eI ) dAE); Vi) = — j—l tE 2 G e)dAE).
2n ) 1 - eéz 21 ) 1 - ez
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Then g = U + iV. Moreover, U and V' are analytic in D since they represent the Poisson integral of Gy, G; €
L°(T) < BYT). Observe that BMO ¢ BMO". Moreover, Theorem 3.2 in [6] shows that |gllzmo = llgllEmoa-
It therefore follows that there exists a constant C > 0 such that

Clglemor < Cliglemo < lglemoa < 1T iy = ITlgry - O

2.1 Discussion

We note that BMO™ ¢ A, with |Iflla < ClIfllemor, where [igllar = lIflla, with g’ = f in the sense of distributions.
Since (BY)* = A/, and from Theorem 2.6 above (BY)* = BMO", it follows that BMO" = A.. The consequence is
that there exists ¢ > 0 such that c||fllsmo < fla;, that is, those two norms are equivalent. We finish by
noting A! has an analytic characterization, so we would expect the analytic characterization of BMOY to also
be equivalent to that of A’.

Another takeaway from Theorem 2.6 is that it provides another proof that BMO is strictly contained in
BMOY otherwise we would have had B! = H!, which is not true. In other words, there exists f € H! such
that f ¢ Bl

Our next result is about the closeness of VMO" in BMOV.

Theorem 2.8. VMOV is a closed subspace of BMOY.

Proof. Let {f,}.en be a sequence in VMOV that converges to f € BMOY. Let us prove that f € VMOY. That
fn — f asn — ocoin BMOVY is equivalent to lim||f, — fllsmor = O. The latter is also equivalent, by definition of
the norm in BMOY to e

limsup(f, - f)o =0 and lim M(f, - f)(x) = 0.

n—00(Qsx

Since f € BMOY, then sup ][[ f(&) — foldA(€)| < oco. Therefore,

Q>x Q

]([f(s) ~ f)dA®)| = ]([f(s) “fi©) 4 o) ~ fag + fua ~ faldAE)
Q Q

< f[f(;*) G ][[fn@) ~fualdA@®)| + :|:[fn,Q ~ fldAE)
Q Q Q

< ][[fos) L1 + ][[fn«s) ol dA@)| + g  fol
Q Q

< f[f(f) ~ B@OVAAE)| + Iy ~ Flowor < Wy — flis. + Wy — Fllwor
Q

Since {f, }xen is a sequence of function is BMOY, we have that lim|f, - flgmov = 0. Since BMOY¥ c L1, we
n—oo

have that lim|f, — f ;. = 0. Hence, VMO™ is a closed subspace of BMOY. O
n—oo

Remark 2.9. We note that it was proved in [6] that VMO is a closed subspace of BMO. A stronger result even
showed that if we restrict ourselves to T, then the space of complex-valued and continuous functions
C(T) € VMO(T) and the BMO(T)-closure of C(T) is precisely VMO (T). It turns out this result is also true
for VMOY.
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Theorem 2.10. The BMOY-closure of C(T) is precisely VMOY(T), that is

CPMY” = vMO™(T).

Proof. We observe that C(T) ¢ VMO(T) ¢ VMOY(T) € BMOY(T). Therefore, since VMOY(T) is closed in BMOY(T),
we have that

CBMO" ™M ¢ TMOWmBEMO" ™ — yMOow(T).

For the other direction, let f € VMOY(T), and consider the sequence {R¢(f)}o of rotations of f by angle €,

defined on T as Rc(f)(€?) = f(el®-9)); 0 € R. Then, from Theorem 2.1in [6], we have that for alle > 0, Re(f) €

C(T) and lim|[Re(f) — fllemom = 0. Since BMO(T) < BMOY(T), we also have that lim|[Re(f) - flsmo*m = O.
-0 €—0

€
Thatis, f € TWI)BMOW(]U . O

Acknowledgments: The author would like to extend his thanks to the two anonymous referees for their
comments and suggestions, which helped greatly improve the manuscript. In particular, the author wishes
to thank Professor Tepper Gill (Howard University) and Corine Michelle Kwessi Nyandjou for their insightful
comments and discussions, and Professor Geraldo de Souza (Auburn University) for his suggestions.

Funding information: This material is based upon the work supported by the National Science Foundation
under Grant No. DMS-1440140, the National Security Agency under Grant No. H98230-20-1-0015, and
the Sloan Grant under Grant No. G-2020-12602, while the author participated in a program hosted by
the Mathematical Sciences Research Institute in Berkeley, California, during the summer of 2020.

Conflict of interest: The author states no conflict of interest.

References

[1] C. Fefferman, Characterization of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), no. 4, 587-588.

[2] R. Coifman, A real variable characterization of hp, Studia Math. 51 (1974), 269-274.

[3] G. De Souza, Spaces formed by special atoms, PhD thesis, SUNY at Albany, 1980.

[4] A. Zygmund, Trigonometric Series, Vol. |, I, Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 2002.

[5] T. Gill, Banach spaces for the Schwartz distributions, Real Analysis Exchange 43 (2017), no. 1, 1-36.

[6] D. Girela, Analytic functions of bounded mean oscillation, Complex Functions Spaces (Merkrijarvi 1999), Univ. Joensuu
Dept. Math. Rep. Ser., 4, 2001, pp. 61-170.

[7] E.Kwessi, G. De Souza, N. Djitte and M. Ndiaye, The special atom space and Haar wavelets in higher dimensions, Demonstr.
Math. 53 (2020), 131-151.

[8] S. Bloom and G. De Souza, Atomic decomposition of generalized Lipschitz spaces, Illinois |. Math. 10 (1989), 682-686.

[9] E. Kwessi and G. De Souza, Analytic characterization of high dimension weighted special atom spaces, Preprint.



	1 Introduction
	2 Main results
	2.1 Discussion

	Acknowledgments
	References

