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Abstract: In this paper, we will discuss the space of functions of weak bounded mean oscillation. In

particular, we will show that this space is the dual space of the special atom space, whose dual space

was already known to be the space of derivative of functions (in the sense of distribution) belonging to

the Zygmund class of functions. We show, in particular, that this proves that the Hardy space H 1 strictly

contains the special atom space.
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1 Introduction

The space of functions of bounded means oscillation has taken central stage in the mathematical literature

after the work of Charles Fefferman [1], where he showed that it is the dual space of the real Hardy space�1,

a long sought-after result. Right after, Ronald Coifman [2] showed this result using a different method.

Essentially, he showed that�1 has an atomic decomposition. De Souza [3] showed there is a subset B1 of�1,

formed by special atoms that is contained in �1. This space B1 has the particularity that it contains some

functions whose Fourier series diverge. The question of whether B1 is equivalent to �1 was never truly

answered explicitly, but it was always suspected that the inclusion ⊂ �B1 1 was strict, that is, there must be

at least one function in �1 that is not in B1. However, such a function had neither been constructed nor

given. Since the dual space ( )∗�1 of�1 isBMO and ⊂ �B1 1, it follows that the dual space ( )∗B1 of B1 must be a

superset of BMO. A natural superset candidate of BMO is therefore the space BMOw since ⊂BMO BMOw. So

in essence, thatBMOw is the dual of B1 would also prove that ⊂ �B1 1 with a strict inclusion. Moreover, it was

already proved that ( )* ≅ ′∗B Λ1 , where ′∗Λ is the space of derivative (in the sense of distributions) of functions

in the Zygmund class ∗Λ , see, for example, [3] and [4]. Therefore, if( ) ≅∗B BMOw1 , then by transition, wewould

have ′ ≅∗Λ BMOw.

Henceforth, we will adopt the following notations: = { ∈ ∣ ∣ < }� �z z: 1 is the open unit disk and let

= { ∈ ∣ ∣ = }� �z z: 1 is the unit sphere. For an integrable function f on a measurable set A, and the Lebesgue

measure λ on A, we will write ⨍ ∫( ) ( ) ≔ ( ) ( )( )f ξ dλ ξ f ξ dλ ξA
λ A A

1
. We will start by recalling the necessary

definitions and important results. The interested reader can see, for example, [5] for more information.
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Definition 1. Let < < ∞p0 be a real number. The Hardy Space ≔ ( )� � �p p is the space of holomorphic

functions f defined on � and satisfying

∫∥ ∥ ≔ ∣ ( )∣ ( ) < ∞
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Let ∈ ( )�f L Q,n
loc
1 be a hypercube in �n, and λ be the Lebesgue measure on �n for some ∈ �n .

Put

⨍ ⨍= ( ) ( ) = ( ) ( )#f f ξ dλ ξ f f ξ dλ ξ, .Q

Q

Q

Q

For ∈ ( )�f L n
loc
1 and ∈ �x n, we define

⨍( )( ) = ∣ ( ) − ∣ ( )#
∋

#M f x f ξ f dλ ξsup ,
Q x

Q

Q (1.1)
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∋

M f x f ξ f dλ ξsup ,
Q x

Q

Q (1.2)

( ) =
∋
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where the supremum is taken over all hypercubesQ containing x. Now, we can define the space of functions

of bounded mean oscillation and its weak counterpart.

Definition 2. The space of functions of bounded mean oscillation is defined as the space of locally integr-

able functions f for which the operator #M is bounded, that is,

( ) = { ∈ ( ) ( ) ∈ ( )}# ∞� � �f L M f LBMO : .n n n
loc
1

We can endowed ( )�BMO n with the norm
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The space of functions of weak bounded mean oscillation is defined as the space of locally integrable

functions f for which the operator M is bounded, that is,

( ) = { ∈ ( ) ∈ ( )}∞� � �f L Mf LBMO : .w n n n
loc
1

Remark 1.1. It follows from the above definitions that ( ) ⊆ ( )� �BMO BMOn w n .

Let us recall the definition of the space of functions of vanishing mean oscillation ( )�VMO n and

introduce the space of functions of weak vanishing mean oscillations ( )�VMO w n .

Definition 3. Let ∈ ( )�f L n
loc
1 .

⨍
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Remark 1.2. It follows from the above definition that ( )�VMO n is a subspace of ( )�VMO w n which is itself

a subspace of ( )�BMOw n . We will show (see Theorem 2.8 below) that VMO w is in fact closed subspace

of BMOw.

Henceforth, ( ) ( )� �BMO , BMOn w n , and ( )�VMO w n will simply be referred to as BMO, BMOw, and VMOw.

Now, we consider ( )�A as the space of analytic functions defined on the unit disk �. Following the

work of Girela in [6] on the space of analytic functions of bounded means oscillations, we introduce their

weak counterpart. Before, we recall that the Poisson Kernel is defined as

( ) = +
−
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Definition 4. The space of analytic functions of bounded mean oscillation is defined as
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We endow ( )�BMO with the norm
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In other words, ( )�BMOA is the space of Poisson integrals of functions in ( )�BMO .

We can now define the space BMOAw of analytic function of weak bounded mean oscillation.

Definition 5. An analytic function F on � is said to be of weak bounded mean oscillation if there exists

∈ ( )�f BMOw such that
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We recall the definition of special atom space B1, see [7].

Definition 6. For ≥n 1, we consider the hypercube of �n given as = ∏ [ − + ]=J a h a h,j
n

j j j j1 where a h,j j are

real numbers with >h 0j . Let ∈ ( )ϕ L J1 with ∫( ) = ( ) ( )ϕ J ϕ ξ dλ ξ
J

.

The special atom (of type 1) is a function ⊆ → �b I J: such that

( ) =

( ) =
( )
[ ( ) − ( )]

b ξ J I

b ξ
ϕ I

χ ξ χ ξ

1 on \ or

1
,LR

where

• = ⋃
=

−

R I
j

i
1

2
n

j

1

for some … ∈ { … }−i i i, , , 1, 2, , 2n1 2 2n 1 with < < ⋯ < −i i i1 2 2n 1 and =L I R\ .

• { … }I I I, , ,1 2 2n is the collection of sub-cubes of I , cut by the hyperplanes = = … =x a x a x a, , , n n1 1 2 2 .

• χA represents the characteristic function of set A.

142  Eddy Kwessi



Definition 7. The special atom space is defined as

∑ ∑= → ( ) = ( ) ∣ ∣ < ∞
=

∞

=

∞
ÿ

ÿ

ÿ

ÿ

ü
ý
þ

ü
ý
þ

�B f J f ξ α b ξ α: ; ; ,
n

n n

n

n
1

0 0

where the bn’s are special atoms of type 1.

B1 is endowed with the norm ∥ ∥ = ∑ ∣ ∣=
∞

f αinfB n n0
1 , where the infimum is taken over all representations of f

(Figure 1).

Now, we define the Zygmund class of functions.

Definition 8. Let ∈ �k . A function f is said to be in the Zygmund class ( )∗ �Λk n of functions of order k if

∈ ( )− �f Ck n1 and
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In particular, for =k 1, we have ≔ ( )∗ ∗ �Λ Λ n1 , and hence
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One important note about the space ∗Λ is that it contains the so-called Weierstrass functions that are

known to be continuous everywhere but nowhere differentiable. Therefore, the space ∗Λ
k is the space of

derivatives of functions in ∗
−Λk 1, where the derivative is taken in the sense of distributions. Another equiva-

lent way to see ∗Λ
k is to consider functions of ∗

−Λk 1 that are either differentiable or limits of convolutions with

the Poisson kernel, that is, ( ) = ( ∗ )( )
→

f ξ f P ξlim
r

r
1

where ( )P θr is the Poisson kernel.
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Figure 1: Illustration of the special atom, for =n 1 in (a), =n 2 in (b), and =n 3 in (c).
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2 Main results

Our first result is about the constant fQ in the definition ofBMOw. If fact, the constant fQ can be replaced with

any non-negative constant. The same can be said about BMO as well.

Proposition 2.1. Let ∈f Lloc
1 .

(1) For any non-negative real number α, we have

⨍ ⨍[ ( ) − ] ( ) ≤ [ ( ) − ] ( )
∋ ∋

f ξ f dλ ξ f ξ α dλ ξsup 2 sup .
Q x

Q

Q
Q x

Q

(2.1)

(2) ∈f BMOw if and only if for any ∈ �x n and any cube ∋Q x, there exists a non-negative number ∈α Q

such that

⨍[ ( ) − ] ( ) < ∞
∋

f ξ α dλ ξsup .
Q x

Q

(2.2)

Proof. To prove assertion (1), fix ∈ �x n and a cube ⊆ �Q n containing x. Observe that for every non-

negative α we have,

⨍ ⨍[ ( ) − ] ( ) ≤ [ ( ) − ] ( )f ξ f dλ ξ f ξ α dλ ξ2 .

Q

Q

Q

Indeed, for any non-negative real number α, we have

⨍ ⨍ ⨍

⨍ ⨍

⨍ ⨍ ⨍

⨍ ⨍ ⨍

[ ( ) − ] ( ) = [ ( ) − ] ( ) + [ − ] ( )

≤ [ ( ) − ] ( ) + [ − ] ( )

≤ [ ( ) − ] ( ) + ( ) − ( ) ( )

≤ [ ( ) − ] ( ) + [ − ( )] ( ) ≤ [ ( ) − ] ( )

f ξ f dλ ξ f ξ α dλ ξ α f dλ ξ

f ξ α dλ ξ α f dλ ξ

f ξ α dλ ξ αdλ ξ f ξ dλ ξ

f ξ α dλ ξ α f ξ dλ ξ f ξ α dλ ξ2 .

Q

Q

Q Q

Q

Q Q

Q

Q Q Q

Q Q Q

To conclude, we take the supremum over of all cubes ∋Q x.

Assertion (2) follows immediately from (1). □

We can define two equivalent norms on BMOw and prove that endowed with these norms, BMOw is in

fact a Banach space.

Proposition 2.2. Consider the following: for every ∈f BMOw, we put

⨍∥ ∥ = ∥ ∥ + ∥ ∥ ∥ ∥ = ∥ ∥ + [ ( ) − ] ( )∞ ∞ ∗ ∞
∋ >

f mf Mf and f mf f ξ f dλ ξ2 sup inf .
Q x α

Q

QBMO BMO
0

w w

144  Eddy Kwessi



Then,

∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥∗f f f2 .BMO BMO BMOw w w

Proof. The proof is an immediate consequence of Proposition 2.1. We note that the proof can also be

obtained from the closed-graph theorem, but that will require to first prove that endowed with the two

norms, BMOw is a Banach space. □

Theorem 2.3. The space ( )∥⋅∥BMO ,w BMOw is complete.

Proof.

(1) In the proof that ∥⋅∥BMOw is a norm, homogeneity and the triangle inequality are easy to prove. As for

positivity, we note that ∥ ∥ = ⇔ =
∋

f f0 sup 0
Q x

QBMOw and ( ) =f ξ fQ on all cubes ∋Q x. It follows immedi-

ately that =f 0.

(2) Let { } ∈�fn n be a Cauchy sequence in BMOw. Let >ϵ 0 and ∈ �N such that ∀ ∈n m N, , we have

∥ − ∥ <f f ϵn m BMOw . That is,

⨍( − ) + [( − )( ) − ( − ) ] ( ) <
∋

ù

û

ú
ú
ú

ù

û

ú
ú
ú

f f f f ξ f f dλ ξsup ϵ.
Q x

n m Q

Q

n m n m Q (2.3)

In particular, from (2.3), we have that ( − ) <
∋

f fsup ϵ
Q x

n m Q , therefore,

⨍ ⨍ ⨍∣ − ∣ = ( ) ( ) − ( ) ( ) ≤ [ − ]( ) ( ) = ( − ) ≤ ( − ) <
∋

f f f ξ dλ ξ f ξ dλ ξ f f ξ dλ ξ f f f fsup ϵ.n Q m Q

Q

n

Q

m

Q

n m n m Q
Q x

n m Q, ,

Hence, for fixedQ, { }fn Q, is Cauchy sequence in�. Let =
→∞

f flimQ
n

n Q, . We note from the above inequalities that

⨍( − ) = [ − ]( ) ( ) ≥ ∣ − ∣ ≥ −f f f f ξ dλ ξ f f f f .n m Q

Q

n m n Q m Q n Q m Q, , , ,

Therefore, given a cube ⊂ �Q n containing x, we have

⨍

⨍

∣ ( ) − ( )∣ ≤ [( ( ) − ( )) − ( − )] ( )

≤ [( ( ) − ( )) − ( − ) ] ( ) + ∣( − ) − ( − )∣

≤ ∥ − ∥ + ∣( − )∣ <

∋

∋ ∋

∋

Mf x Mf x f ξ f ξ f f dλ ξ

f ξ f ξ f f dλ ξ f f f f

f f f f

sup

sup sup

sup 2ϵ.

n m
Q x

Q

n m n Q m Q

Q x
Q

n m n m Q
Q x

n m Q n Q m Q

n m
Q x

n Q m Q

, ,

, ,

BMO , ,w

It follows that { } ∈�Mfn n is a Cauchy sequence in ∞Lloc. Let = →∞h Mflim
n

n.

Since ⊂∞L Lloc loc
1 , we have ∈h Lloc

1 .

⨍ ⨍( ) = ( ) = [ ( ) − ] ( ) = [ ( ) − ] ( )
→∞ →∞ ∋ ∋ →∞

h x Mf x f ξ f dλ ξ f ξ f dλ ξlim lim sup sup lim .
n

n
n Q x

Q

n n Q
Q x

Q
n

n Q,

Since ( )h x is finite on any cube ∋Q x, that follows that ( ) = ( )
→∞

f ξ f ξlim
n

n is finite a.e. on Q. Thus, =h Mf ,

for some ∈f BMOw and ∥ − ∥ →
→∞

f flim 0
n

n BMOw . □
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Theorem 2.4. (Hölder’s type inequality) Let ∈g BMOw and a hyper-cube ⊂ �J n. Consider the following

operator → �T B:g
1 given by ∫( ) = ( ) ( ) ( )T f f ξ g ξ dλ ξg

J
. Then, ∈ ( )∗T Bg

1 with ∥ ∥ ≤ ∥ ∥( )∗T gg B BMOw1 .

Moreover, the operator → ( )∗H B: BMOw 1 defined as ( ) =H g Tg is onto.

Proof. By linearity of the integral, Tg is a linear. To start, we study the action of this operator on special

atoms. Indeed, let ∈ ⊆ξ I J and suppose ( ) = ( ) = [ ( ) − ( )]( )f ξ b ξ χ ξ χ ξ
ϕ I R L
1

, where R L, are sub-cubes of I

such that = ∪I R L and ∩ = ∅R L . Therefore, we have:

∫ ∫ ∫ ∫( ) = ( ) ( ) ( ) = ( ) ( ) ( ) = ( )[ ( ) − ] ( ) ( ) ( ) =T b b ξ g ξ dλ ξ b ξ g ξ dλ ξ b ξ g ξ g dλ ξ b ξ g dλ ξ, since 0.g

J I I

I

I

I

Taking the supremum over all ∋I x and using the fact that ( ) ≤ ( )b ξ
ϕ I

1
, we have

⨍∣ ( )∣ ≤ [ ( ) − ] ( ) ≤ ∥ ∥
∋ >
⊆

T b g ξ α dλ ξ gsup inf .g
I x α

I
0

BMO

I J

w (2.4)

Now suppose ( ) = ∑ ( )=
∞

f ξ c b ξn n n1 with ∑ ∣ ∣ < ∞=
∞

cn n1 is an element of B1, where the bn’s are special atoms

defined on sub-cubes In of J with = ∪I R Ln n n and ∩ = ∅R Ln n . Let = ⋃
=

∞
I I

n
n

1

. We have for >α 0

∫ ∫

∫ ∫

∑ ∑

∑ ∑

( ) = ( ) ( ) ( ) = ( ) [ ( ) − ] ( )

= ( )[ ( ) − ] ( ) = ( )[ ( ) − ] ( )

=

∞

=

∞

=

∞

=

∞

ö

ø
÷÷

ö

ø
÷÷

ö

ø
÷÷

ö

ø
÷÷T f c b ξ g ξ dλ ξ c b ξ g ξ α dλ ξ

c b ξ g ξ α dλ ξ c b ξ g ξ α dλ ξ .

g

J
n

n n

I
n

n n

n

n

I

n

n

n

I

n

1 1

1 1
n

It follows from (2.4) that

∑∣ ( )∣ ≤ ∣ ∣ ⋅∥ ∥
=

∞ö

ø
÷÷

ö

ø
÷÷T f c g .g

n

n

1

BMOw

Talking the infimum over all representations of f yields as follows:

∣ ( )∣ ≤ ∥ ∥ ⋅∥ ∥T f f g .g B BMOw1

Therefore, Tg is a bounded linear operator on B1 with

∥ ∥ = ∣ ( )∣ ≤ ∥ ∥( )
∥ ∥ =

∗T T f gsup .g B
f

g
1

BMO

B

w1

1
(2.5)

Now suppose thatT is a bounded linear functional on B1, that is, ∈ ( )∗T B1 . We want to show that there exists

a function ∈g BMOw such that ∫( ) = ( ) = ( ) ( ) ( )T f T f f ξ g ξ dλ ξg
J

. That ∈ ( )∗T B1 implies the existence of an

absolute constant C such that

∣ ( )∣ ≤ ∥ ∥ ∀ ∈T f C f f B, .B
11 (2.6)

Recall that a function → �G J: is said to be absolutely continuous on J if for every positive number ϵ, there

exists a positive number δ, such that for a finite sequence of pairwise disjoint sub-cubes = ( )I x y,n n n of J ,

∑ ∑( − ) < ⇒ ∣ ( ) − ( )∣ <
=

∞

=

∞
y x δ G y G x ϵ.

n

n n

n

n n

1 1

(2.7)

Suppose such a sequence of sub-cubes exists. Now, consider ( ) = ( )[ − + )G x T χ x h x h, for some real number

>h 0. Then, given an cube In and a real number hn, we have by linearity of T that

( ) − ( ) = −[ − + ) [ − + )
ö

ø
÷

ö

ø
÷

ù

û
ú
ú

ù

û
ú
ú

G y G x T χ χ .n n y h y h x h x h, ,n n n n n n n n
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Now, if we define = [ − + )L x h x h,n n n n n and = [ − + )R y h y h,n n n n n , we see that ∩ = ∅R Ln n and their union

forms a single cube Jn if we choose = ( − )/h y x 2n n n . Moreover, in that case, the length of the cube Jn is

+ − + = ( − )y h x h y x2n n n n n n . Therefore, by linearity

( ) − ( ) = ( − )
( − )

−[ − + ) [ − + )
ù

û
ú

ù

û
ú

ö

ø
÷

ö

ø
÷G y G x y x T

y x
χ χ2

1

2
.n n n n

n n
y h y h x h x h, ,n n n n n n n n

We observe that ( ) = ( ) − ( )( − ) [ − + ) [ − + )
ù

û
ú

ù

û
úb ξ χ ξ χ ξn y x y h y h x h x h

1

2 , ,
n n n n n n n n n n

is a special atom with norm in B1 equal to 1.

It follows that using (2.6)

∣ ( ) − ( )∣ ≤ ( − )∣ ( )∣ ≤ ( − )∥ ∥ = ( − )G y G x y x T b C y x b C y x2 2 2 .n n n n n n n n B n n1

Hence,

∑ ∑∣ ( ) − ( )∣ ≤ ( − )
=

∞

=

∞
G y G x C y x2 .

n

n n

n

n n

1 1

We conclude by noting that given >ϵ 0, (2.7) is satisfied if we choose =δ
C

ϵ

2
. We conclude that the function

G is absolutely continuous on J . Therefore, G is differentiable almost everywhere, that is, there exists

∈g L1 such that ∫( ) = ( ) ( )G x g ξ dλ ξ
a

x
for all cubes = [ ] ⊆I a b J, . Let ∋I x be a sub-cube of J . Therefore,

∫ ( ) ( ) < ∞
∋ ( ) g ξ dλ ξsup
I x

λ I I

1
because an absolutely continuous function is a function with bounded variation.

Since ∈g L1, we have that ∫= ( ) ( ) < ∞( )g g ξ dλ ξI λ I I

1
. It follows that

∫ ∫( ) =
( )
( ( ) − ) ( ) ≤

( )
( ) ( ) + < ∞

∋ ∋ ∋
Mg x

λ I
g ξ g dλ ξ

λ I
g ξ dλ ξ gsup

1
sup

1
sup .

I x
I

I
I x

I
I x

I

This proves that ∈g BMOw. That is, → ( )∗H B: BMOw 1 is onto with ( ) = =H g T Tg. IdentifyingT with the g ,

it follows from (2.5) that

∥ ∥ = ∥ ∥ = ∥ ∥ ≤ ∥ ∥( ) ( ) ( )∗ ∗ ∗g T T g .

□

B B g B BMOw1 1 1 (2.8)

Remark 2.5. We observe that the above result can be obtained differently. In fact, we recall that it was

proved in [3] that the dual space of B1 is equivalent to ∗Λ
2. Let ∈ > = [ − + ] ⊆ =x J h I x h x h J L, 0, , ,

[ − )x h x, , and = [ + ]R x x h, . Let ( ) = [ ( ) − ( )]b ξ χ ξ χ ξ
h R L
1

2
. We have

∫ ∫∥ ∥ ≅ ∥ ∥ = ( )∂ ( ) ( ) = ( )(∂ ( ) − ∂ ) ( ) ≤ ∥ ∥( )
∋ ∋

∗
∗

> >

f f b ξ f ξ dλ ξ b ξ f ξ f dλ ξ fsup sup .B
I x

I
I x

I

IΛ BMO

h h

w1 2

0 0

This shows that ⊆ ≅ ( )∗
∗BBMO Λw 2 1 .

Theorem 2.6. The dual space ( )∗B1 of B1 is BMOw with ∥ ∥ ≅ ∥ ∥( )∗g g BBMOw 1 .

To prove Theorem 2.6, we recall that ( )�B1 has an analytic extension ( )�BA
1 to the unit disk. In fact, in [8],

it was shown that ( )�BA
1 consists of functions F that are Poisson integrals of functions in ( )�B1 , that is,

∫( ) = ( ) ( )
−
+
−
−

−F z f e dλ ξ
π π

π e z

e z
iξ1

2

1

1

iξ

iξ
where ∈ ( )�f B1 . Moreover, the norm ∫ ∫∥ ∥ = ∣ ′( )∣( ) −�F F z dzB

π

π

0

1

A
1 is equivalent to

the norm ∥ ∥ ( )�f B1 . This allows to identify ( )�BA
1 with ( )�B1 and thus the following:

Proposition 2.7. ( )�BA
1 can be identified with a closed subspace of ( )�L1 .
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Proof. Let { } ∈�fn n be a sequence in ( )�B1 that converges to f in ( )�L1 . We need to show that the Poisson

integral of f is in ( )�BA
1 . Since ∈ ( ) ∀ ∈� �f B n,n

1 , then ∫( ) = ( ) ( )
−
+
−
−

−F z f e dλ ξn π π

π e z

e z n
iξ1

2

1

1

iξ

iξ
belongs to ( )�BA

1 .

Let ( )F z be the Poisson integral of f . We note that if =z eiθ, then ( − ) − ≤ ∣ − ∣ ≤ ( − )( − ) −ξ θ e z ξ θ1
ξ θ iξ2
2

2 2
4

.

Therefore, we have that ∫′( ) = ( ) ( )
− ( − )

−

−F z f e dλ ξ
π π

π e

e z
iξ1

2

2

1

iξ

iξ 2
and ∣ ′( )∣ ≤F z ∫ ∣ ( )∣ ( ) ≤ ∥ ∥

− ∣ − ∣ ( )− �f e dλ ξ C f
π π

π

e z
iξ

L
1

2

2

1 iξ 2
1 .

It follows that,

∫∫∥ − ∥ = ∣ ′( ) − ′( )∣ ≤ ∥ − ∥
−

( )�F F F z F z dz C f f .n B

π

π

n n L

0

1

A
1 1

Since →f fn in ( )�L1 , it follows that ∈F BA
1 and →F Fn in ( )�BA

1 . The result follows by identifying ( )�BA
1 and

( )�B1 . □

We note that there is an extension of this result to the polydisk �n and polysphere � n, see [9].

Proof of Theorem 2.6. It is sufficient to show that there exists a constant >M 0 such that ∥ ∥ ≥( ( ))∗�T B1

∥ ∥ ( )�M g BMOw . The extension to �n is natural, using the results in [7,9]. With Proposition 2.7, the proof

follows along the lines of the proof of Proposition 7.3 in [6].

Let ∈ ( ( ))∗�T B1 . Since ( )�B1 is a closed subspace of ( )�L1 by Proposition 2.7, then by Hahn-Banach

Theorem,T can be extended to a bounded linear operator ′ ∈ ( ( ))∗�T L1 with∥ ∥ = ∥ ′∥( ( )) ( ( ))∗ ∗
� �T TB L1 1 . Since( ( )) =∗�L1

( )∞ �L , then there exists ∈ ( )∞ �g L0 such that ∥ ∥ = ∥ ′∥ = ∥ ∥( ) ( ) ( )∞ ∗ ∗
�g T TL L B1 1 and ∫( ) = ( ) ( ) ( )

�

T f g e f e dλ ξ
π

iξ iξ1

2 0 ,

for all ∈ ( )�f BA
1 . Note that here, we identify f with its correspondent in ( )�BA

1 . Now, let ∑ ∈� A en n
inξ be

the Fourier series of g0. Since ∈ ( ) ⊂ ( )∞ � �g L L0
2 , we have that ∑ ∣ ∣ < ∞∈� An n

2 . This means that g0 is

holomorphic. Let

∫ ∫( ) = ( )
−
( ) = ( )

−
− −

−g z
πi

g e

e z
d e

π

g e

e z
dξ

1

2

1

2 1
.

π

π
iξ

iξ
iξ

π

π
iξ

iξ

0 0

Since = ∑− ∈
−

�
e z

e z n
inξ n1

1 iξ
and ∫= ( ) ( )

−
−A e g e dλ ξn π π

π
inξ iξ1

2 0 , we have

∫ ∑( ) = ( )
−

=
−

−
∈�

g z
π

g e

e z
dξ A z

1

2 1
.

π

π
iξ

iξ
n

n
n0

This implies that ∈ ( )�g H2 . For ∈ �θ , ∫( ) = ( )
−

( )
− −g e dλ ξiθ

π π

π g e

e e

1

2 1

iξ

iξ iθ

0 . Moreover, given ∈ ( ) ⊆ ( )� �f B HA
1 1 , and

using the Cauchy integral formula, we have:

∫ ∫ ∫ ∫( ) ( ) = ( ) ( )
−

( ) = ( ) ( ) = ( )
− − −

−
−

ö

ø

÷
÷

ö

ø

÷
÷π

g e f e dθ
π

g e
π

f e

e e
dλ ξ dθ

π
g e f e dθ T f

1

2

1

2

1

2 1

1

2
.

π

π

iθ iθ

π

π

iθ

π

π
iξ

iξ iθ

π

π

iθ iθ
0 0

We also observe that

∫ ∫( ) = +
−

+ ( ) = +
−

( ) ( )
−

−

−
−

−

−
ù

û
ú

ù

û
úg z

π

e z

e z
g e dξ

π

e z

e z
G e dλ ξ

1

2

1

2

1

1
1

1

2

1

1
,

π

π
iξ

iξ
iξ

π

π
iξ

iξ
iξ

0 0 (2.9)

where ( )∫( ) = ( ) + ( ) ( ) = ( ( ) + )
−

G e g e g e dλ ξ g e Aiξ iξ
π π

π
iξ iξ

0
1

2 0
1

2 0
1

2 0 0 .

Put = ( ) = ( )G G G GRe , Im1 0 2 0 , and

∫ ∫( ) = +
−

( ) ( ) ( ) = +
−

( ) ( )
−

−

−
−

−

−U z
π

e z

e z
G e dλ ξ V z

π

e z

e z
G e dλ ξ

1

2

1

1
;

1

2

1

1
.

π

π
iξ

iξ
iξ

π

π
iξ

iξ
iξ

1 2

148  Eddy Kwessi



Then = +g U iV . Moreover,U andV are analytic in � since they represent the Poisson integral of ∈G G,1 2

( ) ⊆ ( )∞ � �L B1 . Observe that ⊆BMO BMOw. Moreover, Theorem 3.2 in [6] shows that ∥ ∥ ≅ ∥ ∥g g ABMO BMO .

It therefore follows that there exists a constant >C 0 such that

∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥ ≤ ∥ ′∥ = ∥ ∥( ) ( )∗ ∗C g C g g T T . □A L BBMO BMO BMOw 1 1

2.1 Discussion

We note that ⊆ ′∗BMO Λw with ∥ ∥ ≤ ∥ ∥′∗f C fΛ BMOw, where ∥ ∥ = ∥ ∥′∗ ∗g fΛ Λ with ′ =g f in the sense of distributions.

Since ( ) ≅ ′∗
∗B Λ1 , and from Theorem 2.6 above ( ) ≅∗B BMOw1 , it follows that ≅ ′∗BMO Λ .w The consequence is

that there exists >c 0 such that ∥ ∥ ≤ ∥ ∥ ′∗c f fBMO Λw , that is, those two norms are equivalent. We finish by

noting ′∗Λ has an analytic characterization, so we would expect the analytic characterization ofBMOw to also

be equivalent to that of ′∗Λ .

Another takeaway from Theorem 2.6 is that it provides another proof that BMO is strictly contained in

BMOw otherwise we would have had ≅ �B1 1, which is not true. In other words, there exists ∈ �f 1 such

that ∉f B1.

Our next result is about the closeness of VMO w in BMOw.

Theorem 2.8. VMO w is a closed subspace of BMOw.

Proof. Let { } ∈�fn n be a sequence in VMOw that converges to ∈f BMOw. Let us prove that ∈f VMO w. That

→f fn as → ∞n inBMOw is equivalent to ∥ − ∥ =
→∞

f flim 0
n

n BMOw . The latter is also equivalent, by definition of

the norm in BMOw to

( − ) = ( − )( ) =
→∞ ∋ →∞

f f M f f xlim sup 0 and lim 0.
n Q x

n Q
n

n

Since ∈f BMOw, then ⨍[ ( ) − ] ( ) < ∞
∋

f ξ f dλ ξsup
Q x Q

Q . Therefore,

⨍ ⨍

⨍ ⨍ ⨍

⨍ ⨍

⨍

[ ( ) − ] ( ) = [ ( ) − ( ) + ( ) − + − ] ( )

≤ [ ( ) − ( )] ( ) + [ ( ) − ] ( ) + [ − ] ( )

≤ [ ( ) − ( )] ( ) + [ ( ) − ] ( ) + ∣ − ∣

≤ [ ( ) − ( )] ( ) + ∥ − ∥ ≤ ∥ − ∥ + ∥ − ∥

f ξ f dλ ξ f ξ f ξ f ξ f f f dλ ξ

f ξ f ξ dλ ξ f ξ f dλ ξ f f dλ ξ

f ξ f ξ dλ ξ f ξ f dλ ξ f f

f ξ f ξ dλ ξ f f f f f f .

Q

Q

Q

n n n Q n Q Q

Q

n

Q

n n Q

Q

n Q Q

Q

n

Q

n n Q n Q Q

Q

n n n L n

, ,

, ,

, ,

BMO BMOw w
loc
1

Since { } ∈�fn n is a sequence of function is BMOw, we have that ∥ − ∥ =
→∞

f flim 0
n

n BMOw . Since ⊂ LBMOw
loc
1 , we

have that ∥ − ∥ =
→∞

f flim 0
n

n Lloc
1 . Hence, VMO w is a closed subspace of BMOw. □

Remark 2.9.We note that it was proved in [6] that VMO is a closed subspace ofBMO. A stronger result even

showed that if we restrict ourselves to � , then the space of complex-valued and continuous functions

( ) ⊆ ( )� �C VMO and the ( )�BMO -closure of ( )�C is precisely ( )�VMO . It turns out this result is also true

for VMOw.

Equivalence between weak BMO and derivatives of Zygmund space  149



Theorem 2.10. The BMOw-closure of ( )�C is precisely ( )�VMOw , that is

( ) = ( )� �C VMO .wBMOw

Proof.Weobserve that ( ) ⊆ ( ) ⊆ ( ) ⊆ ( )� � � �C VMO VMO BMOw w . Therefore, since ( )�VMOw is closed in ( )�BMOw ,

we have that

( ) ⊆ ( ) = ( )( ) ( )
� � �

� �C VMO VMO .w wBMO BMOw w

For the other direction, let ∈ ( )�f VMOw , and consider the sequence { ( )} >R fϵ ϵ 0 of rotations of f by angle ϵ,

defined on� as ( )( ) = ( )( − )R f e f eiθ i θ
ϵ

ϵ ; ∈ �θ . Then, from Theorem 2.1 in [6], we have that for all > ( ) ∈R fϵ 0, ϵ

( )�C and ∥ ( ) − ∥ =
→

( )�R f flim 0
ϵ 0

ϵ BMO . Since ( ) ⊆ ( )� �BMO BMOw , we also have that ∥ ( ) − ∥ =
→

( )�R f flim 0
ϵ 0

ϵ BMOw .

That is, ∈ ( ) ( )
�

�f C BMOw
. □
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