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Abstract

We consider a susceptible, infected, and recovered infectious disease model which incorporates a vac-
cination rate. In particular, we study the problem of choosing the vaccination rate in order to reduce the
number of infected individuals to a given threshold as quickly as possible. This is naturally a problem of
time-optimal control. We interpret the optimal time as a solution of two dynamic programming equations
and give necessary and sufficient conditions for a vaccination rate to be optimal.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The SIR infectious disease model in epidemiology involves the system of ODE

S§=—pBSI
I=BSI—yI (1.1
R:yl.
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Fig. 1. Solution of the SIR system with S(0) =2, 1 (0) =3, 8 =1/2, and y = 2. The graph of S is shown in blue, and the
graph of 7 is shown in red. Note that 85(0) < y so that I is decreasing. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)
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Fig. 2. Solution of the SIR system with S(0) =2, 1(0) =1, B =2, and y = 2. The graph of S is shown in blue, and the
graph of [ is shown in red. Note that 8S(0) > y so that ] increases for an interval and then decreases to O.

Here S, I, R : [0, 00) — R represent the susceptible, infected, and recovered compartments of
a total population, and 8 > 0 and y > 0 are the respective infected and recovery rates per unit
time. It is also clear that once S, I are determined then R is known. As a result, we only need to
consider the first two equations. (See Figs. 1 and 2.)

It is not hard to see that any solution S, I of (1.1) with initial conditions S(0), I (0) > O,
remains positive and bounded with S decreasing. Moreover, if

BSO) <v,

then [ is also decreasing. Otherwise, I increases for an interval of time and decreases from then
on. And in either case,

lim 1(t) =0.
11— o0
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1.1. Controlled SIR

In this note, we will consider the following analog of the SIR system

(1.2)

S=—BSI—rS
I =BSI—yI

where r : [0, 00) — [0, 1] represents a vaccination rate control of the SIR model. This rate is
conveniently limited by the upper bound 1; other constant upper bounds would lead to virtually
the same theory which we present below. Even though we have piecewise continuous controls r
in mind, it will be advantageous for us to consider (1.2) for each r belonging to the collection

A:={reL®(0,00)):0<r(t) <1, ae.t >0}
of admissible vaccination rate controls.
We’ll see that for any r € A, there is a unique solution S”, I" of (1.2) for given initial
conditions S”(0), I"(0) > 0. Moreover, these solutions have the same qualitative properties of

solutions to the uncontrolled SIR system (1.1) which we described above. In particular, the first
time that the number of infectious individuals 77 (¢) falls below a given threshold u > 0

u =inf{t >0:1"(¢) < u}

is finite. When p is small, we can think of this time as an eradication time. In this paper, we will
address the question:

How do we choose a vaccination rate r € A to minimize the eradication time u” ?

For this problem, Pontryagin’s maximum principle [18] asserts the following necessary con-
ditions on an optimal vaccination rate r.

Necessary conditions for an optimal vaccination rate r € A. There are absolutely continuous
P, Q:[0,u"] — R such that the following statements hold.

(i) P, Q satisfy the ODE
1?(t)= BI"(@) +r@)P@) — BI"(1)Q(1)
Q) =BS" (P@)+ (y —BS (1) Q1)
for almost every 7 € [0, u"].
(ii) P(u")=0and Q(u") #0.

(iii) r(t)P(t) = P(t)" for almost every ¢ € [0, u"].
(iv) Forall t € [0, u"],

BS"MI"OP @)+ S (PO +(y = BS"NI" QM) = 1.
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Remark 1.1. When r € A is an optimal vaccination rate, we will specifically refer to the condi-
tions above as the associated necessary conditions (i) — (iv).

In a recent paper [6], Bolzoni, Bonacini, Soresina, and Groppi used these necessary conditions
to show that any optimal vaccination rate r is of the form

o, rer0,7
rO=11" o0 (1.3)

for some 7 > 0. That is, any optimal vaccination rate will switch from not controlling the SIR
system at all on [0, t] to maximally controlling the SIR system on (7, 00). As a result, T is
interpreted as an optimal switching time. The corresponding vaccination rate r; is a “bang-bang”
control as it only takes on the extreme values in the interval [0, 1] in which each vaccination rate
r may assume.

1.2. The dynamic programming approach

In what follows, we will study this eradication time problem from the standpoint of dynamic
programming. To this end, we will consider the eradication time function

u (x,y):=inf{r >0:1"(¢t) = u}

for a given vaccination rate » € A. Here S” and " satisfy (1.2) for this r and initial conditions
S"(0)=x>0and I"(0) = y > w. A crucial property of u” is that for each ¢ € [0, u" (x, y)],

u' (x,y)=t+u" (S, I"1)). 1.4)

That is, after ¢ units of time, the time remaining for /" to decease to w is simply u" (x, y) — 7.
The corresponding value function is defined as

u(x,y) :=minu"(x, y)
reA

for x > 0 and y > . Employing (1.4), we will show that u satisfies the dynamic programming
principle

u(x,y) =min{t +u(S" (), I" (1))}
reA

for t > 0. A direct consequence of dynamic programming is that u is a viscosity solution of a
Hamilton-Jacobi-Bellman (HIB) equation

Bxydeu +x(@yu)T + (y — Bx)ydyu =1 (1.5)

in (0, 00) x (u, 00).
It follows from the definition of u that

ux,u)=0 forO0<x <y/B (1.6)
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and
1 y
u©,y)=—In| =) fory>pu. (1.7)
14 12
Moreover, we will show
lim wu(x,y)=o0. (1.8)
X+y—>00

It turns out that u is the unique continuous viscosity solution of (1.5) which satisfies these three
conditions.

Theorem 1.2. The value function u is the unique continuous viscosity solution of (1.5) which
satisfies (1.6), (1.7), and (1.8).

We will also argue that u is twice differentiable almost everywhere and its Hessian is essen-
tially bounded from above in each compact subset of (0, 0c0) x (u, 00). This follows from the
following theorem.

Theorem 1.3. For each convex, compact K C (0, 00) X (i, 00), there is a constant L such that

L
u(x,y) = > (& +y?
is concave on K.

Using the fact that each optimal control is of the form r; for some 7, we will also derive
the following representation of the value function. Note that this allows us to give a sufficient
condition for a vaccination rate r; to be optimal.

Theorem 1.4. Suppose S, I is the solution of the SIR system (1.1) with S(0) =x > 0and 1 (0) =
y > (. Then

u(x,y)=m>ig{f+ur°(5(t),1(f))}- (1.9)

Moreover, any t for which the minimum in (1.9) is achieved corresponds to an optimal vaccina-
tion rate r¢, and

* =min{r > 0:u(S), 1)) =u"(S®), ()} (1.10)
is a minimizing time.
Remark 1.5. In (1.9), rg is the switching time (1.3) with t = 0.
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Equation (1.9) also implies u is a viscosity solution of

max{Bxydyu + (y — Bx)ydyu — 1, u —u""}=0 (1.11)

in (0, 00) X (u, 00). Finding a solution of this PDE is sometimes called a “free boundary” prob-
lem as if we happened to know the region

S:={(x,y) €(0,00) x (1, 00) :u(x,y)=u"(x,y)},

we could solve the PDE

Bxydxu + (y — Bx)ydyu =1

in the complement of S subject to the boundary condition # = u™ in order to obtain u. In
addition, we can use this set to express t* defined in (1.10) as the first time ¢ for which
S®, 1) es.

Finally, we will employ the value function u to verify the necessary conditions which follow
from Pontryagin’s maximum principle.

Theorem 1.6. Let x > 0 and y > u and choose r € A such that

u:=u(x,y)=u"(x,y).

Define

P(t)=0xu"(S" (1), I"()) and Q(t) =3dyu" (S" (1), 1" (1))
fort €[0,u). Then P, Q satisfy the necessary conditions (i) — (vi).

As hinted at above, the paper by Bolzoni, Bonacini, Soresina, and Groppi [6] was a major
inspiration of this work. However, we would also like to emphasize that we gained perspective
and learned techniques for time-optimal control by studying the notes of Evans [11] and the
monographs by Bardi and Capuzzo-Dolcetta [2], Fleming and Soner [13], Fleming and Rishel
[12], and Cesari [7]. We would also like to point out that there have been several recent papers
[4-6,15—17,19] which consider control problems involving compartmental models. We hope that
our work adds in a positive way to this trend.

This paper is organized as follows. In section 2, we will study the controlled SIR system (1.2)
and verify the existence of an optimal vaccination rate for any given initial conditions. Then in
sections 3 and 4, we will show u is the unique viscosity solution of the HIB equation (1.5) which
satisfies conditions (1.6), (1.7), and (1.8). Next, we’ll study the differentiability of # and prove
Theorem 1.3 in section 5. In section 6, we derive formula (1.9) and consider the PDE (1.11).
Finally in section 7, we will prove Theorem 1.6.
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2. Existence of an optimal control

In this preliminary section, we will explain that there always is a solution of the controlled
SIR system (1.2) and derive several properties of solutions. In particular, we will show solutions
depend continuously on their initial conditions and on the control. We will use this continuity to
show that an optimal vaccination rate exists for our eradication time problem.

Lemma 2.1. For any x, y > 0 and r € A, there is a unique solution
S,1:[0,00)— R

of the controlled SIR equations (1.2) with S(0) = x and 1(0) = y. Moreover, S, I, and I are
Lipschitz continuous.

Proof. By Caratheodory’s Theorem (Theorem 5.1 in section 1.5 of [14]), there is an absolutely
continuous local solution S, 7 : [0, T) — R. We also set

t

R(1) :=y/1(7:)dr, tel0,7),
0

SO

SO+ +R@)=S0)+10)+RO)=x+y
fort € [0, T). In view of (1.2),

t !
—/,31(1)+r(r)dt /(,BS(‘L') —y)dt
Sit)=xe 0 and (1) = ye0

Thus, S(t), I(t) >0 for ¢t € [0, T). It follows that
0<S®, 1) <x+y, tel0,T).
It is then possible to continue this solution to all of [0, co) (Theorem 5.2 in section 1.5 of [14]).

Given that S(¢), I () are bounded, it is also not hard to check that this solution is unique.
Note that

0=8(t)=—Bx+y)*—(x+y)
for almost every ¢ > 0. Thus, S is Lipschitz continuous. We also note

(O] < B+ +yx+y)

for all > 0, so [ is Lipschitz continuous. Differentiating the second equation in (1.2) we see
that

220



R. Hynd, D. Ikpe and T. Pendleton Journal of Differential Equations 303 (2021) 214-252

Ity =—=BBI@)+r@)SOI) + (BS(1) — y)*1 (1)

for almost every ¢ > 0. Thus,

O] < BB+ + D+ )2 + 2820+ ) +yH(x +y)
for almost every ¢ > 0. It follows that / is also Lipschitz continuous. [

Lemma 2.2. Suppose S, I is a solution of (1.2) with §(0) > 0 and I (0) > 0 for some r € A. Then
the limit

lim S(t) € [o, Z)
1—00 ﬁ
exists and
lim 7(t) =0.
11— 00

Proof. From the proof of the previous lemma, we have

y [ I(m)dr = S(0) +1(0).

0\8

It follows that there is a sequence of times #; ' 0o such that limy_, I (fr) = 0. Also note that

t

t
I(t)=1(0)+,3/S(r)I(r)dr —y/l(r)dt @2.1)
0

0

for all # > 0. Choosing t = t; — 0o and sending kK — oo gives

0=I(O)+ﬂ/S(t)I(r)dr—y/l(r)dt.
0 0

Now we can send t — oo in (2.1) to get

tl_i)rgol(t):I(O)—i—,B/S(t)I(r)dr—y/l(t)dr:O.
0 0

Suppose S(0) > 0 or else S(t) =0 for all # > 0. For S(0) > 0, S is decreasing and positive,
thus lim;_, o S(#) exists. It follows that if 85(0) < y, then

,BIEH)]O S) <vy. 2.2)
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Otherwise, [ is initially increasing and must have a critical point at a time 7y > 0 with S (t)) = .
As S is decreasing, (2.2) holds in this case, as well. O

We emphasize that since S is decreasing, / can have at most one critical point. We’ll also
record one more fact which essentially follows from the proof above.

Corollary 2.3. Let r € A and suppose S, I is the corresponding solution of (1.2) which satisfies
SO0)=x>0and I1(0) =y > u. Then

BS(u) <y
where u = inf{t > 0:1(t) = u}.

Proof. As S is decreasing and u > 0, Bx < y implies

BSu)—y <Bx—y <0.

If Bx > y, I will initially increase. Let ¢ > 0 be the maximum time for /. At this time 8S(¢) =y
and 7 () > w. It follows that r < u and

BSu)—y <BSt)—y=0. O
We recall that a sequence (rk)keN C L*([0, 00)) converges weak* to r if

oo oo

Jim gOrk(dr = / g(Or(t)dt
0 0

for each g € L' ([0, 00)). Moreover, any sequence (rk)kEN C L°°([0, 00)) with

k
sup [|7* || Loo (0,00)) < 00
keN

has a subsequence which converges weak*. In particular, the control set A is weak* compact.
We can use this notion to show solutions of (1.2) depend continuously on r and their initial
conditions.

Proposition 2.4. Suppose x*, y* >0, r* € A for each k € N, and

xk — x>

Yoy

r* — r® weak*

as k — oo. If Sk, I¥ is the solution of (1.2) with r = r*, §¥(0) = x*, and I1¥(0) = y¥, then

k(1) = §%°(1)
I5(t) — I°°(1)
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uniformly for t belonging to bounded subintervals of [0, 00). Here S*°, I is the solution of
(1.2) with r =r®°, $°(0) = x*°, and I°°(0) = y*°.

Proof. We showed in Lemma 2.1 that

0<Sk@), 1Y) < x* + 35, 1>0

and
ISK(1)] < Bk + yK)2 + (xF + y5)
1)) < B+ 392 + y (xF + y5)

for almost every 7 > 0. As x* and y* are convergent, the sequences (S%)icry and (I¥)ieny of
continuous functions are both uniformly bounded and uniformly equicontinuous. The Arzela-
Ascoli Theorem implies that there are locally uniformly convergent sequences (S%/) jeN and
(ij)jeN- Let us write S, I : [0, 00) — oo for their respective limits.

Clearly S(0) = x and /(0) = y. By Lemma 2.1, it suffices to show S, I satisfy (1.2) with
r = r®. To this end, we note that S¥ and I* satisfy

t t
sk@) = x* —,B/Sk(t)lk(r)dr —/rk(t)Sk(r)dt
0

0

and
t t
Ity =y"+8 / sk ¥ (vydr — y / I*(t)dr
0 0

for each ¢ > 0. Employing the weak* convergence of ¥ and the local uniform convergence of
(ki) jeN and (/ ki) jeN, we can let k = k; — oo in the two identities above to conclude

t

t
S(t):x—ﬂfS(r)I(t)dr—frm(r)S(r)dr
0

0
and

t

t
1(t):y+ﬁ/S(t)1(r)dr—y/l(r)dt
0

0

foreacht > 0. Thatis, S=S®and I =I°®°. O
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Let us fix a threshold

u>0

and a pair of initial conditions

x>0andy > u.

For a given r € A, we will denote S”, I" denote the solution of the (1.2) which satisfies $"(0) = x
and 7" (0) = y. We define

u =inf{r > 0:1I"(t) = u}
and now argue that a minimizing vaccination rate r € A exists.

Theorem 2.5. There is r* € A such that

u" <u” (2.3)
forallr € A.

Proof. Choose a minimizing sequence (rreny Cc A

: . k
inf " = lim u" .
reA k—o00

Without any loss of generality we may assume that ¥ — r°° weak* to some r° as this occurs for
a subsequence. Let Sk, I denote the solution of (1.2) with r = r*, $¥(0) = x, and 7% (0) = y. By
Proposition 2.4, S¥ and I* converge locally uniformly to S* and I°°, respectively, the solution
of (1.2) with r =r®°, §°(0) = x, and I°°(0) = y.

Therefore, we can send k — oo in I¥ (u’k) = u to get

I®|( infu" ) =p.
<reA ) H
That is,

e8] .
u <infu". O
reA

We’ll call any r* € A satisfying (2.3) an optimal vaccination rate (for the SIR eradication
time problem) with initial conditions S(0) = x > 0 and 7 (0) = y > . In the sections that follow,

we will develop methods to characterize such rates.
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3. The HJB equation

We will now consider our time optimal control problem for varying initial conditions. To this
end, we will employ the value function

u(x,y) =minu" (x,
(x, ) min (x,y)

discussed in the introduction. Here u” (x, y) = inf{t > 0: I" (¢) = u} is the eradication time cor-
responding to a given vaccination rate r € A, and S” and 1" satisfy (1.2) with §"(0) = x > 0 and
I"(0) = y > w. In this section, we will show that « is a continuous viscosity solution of the HIB
equation (1.5).

Our first task will be to establish that u is continuous on [0, 0c0) X [u, o0). To this end, we’ll
start by showing that u” is locally bounded uniformly in r € A.

Lemma 3.1. Let r € A. Then

xX+Yy

O<u'(x,y) < —— (3.1
ny
forx=>0andy > p.
Proof. Set
X+
w(x,y) = Ty
wy

and note Bxyd,w + (y — Bx)ydyw =y/u. As aresult,

i S (), I" (1)
ar” @, )
=0, w(S" (), I" (N (=BS (O (1) —r(@)S" (1)) + dyw(S" (), I"()(BS" O () — y I (1))
1 1
=——r®)S" () — —1"(t)
wy 0
1
<-=I"(t)
n
<-1
for t € [0, u" (x, y)]. Integrating from O to t = u” (x, y) gives
w(Sr(ur(xs y))v [r(ur(xv )’))) - U)(.X, y) S _ur(xv )’)
And as w is nonnegative, w(x, y) >u" (x,y). O

225



R. Hynd, D. Ikpe and T. Pendleton Journal of Differential Equations 303 (2021) 214-252

Corollary 3.2. Suppose x* > 0, y* > 1 and r* € A for each k € N, and

xk—>x

>y

r* — r weak*

as k — oo. Then

Jlim W’ (K Ry = (x, ). 32)

Proof. Suppose S™, I"" is the solution of (1.2) with $™ (0) = x* and 1" (0) = y*. By Proposi-
tion 2.4, S’k, i converge locally uniformly to S”, I" as k — oo. In view of the previous lemma,

k, .k k. . kj o kj kj
u” (x”,y") is a bounded sequence; so there is a convergent subsequence u” ' (x" ', y" ) for
which

ki ki ki
t::liminfurk(xrk,yrk)z lim u "y,
—00 ]
rk rk rk rk
AsI” (" (x" ,y"))=uforeachk e N,

, . P Y AL B
I'o)=lim I"" @ """,y "))=pn.

J—0o0

By the definition of u” (x, y),

. kooko ok
u' (x,y) <t=liminfu" (x",y").
k—o00

ke o ke pke
We can also select a convergent subsequence u” “(x" ", y" ) such that

. ko k k . kg pkg kg
s:=limsupu” (x" ,y" )= lim " " (x" ",y ).
k— 00 l—o0

As above, we find I"(s) = . If y > porif 0 <x <y/B and y = u, then the only solution
of I"(t) = is T = u’"(x,y). In particular, s = u” (x, y). Otherwise, if x > y/f and y = u,
I"(t) = 0 has two solutions 7 =0 and 7 = u" (x, y). Thus, s < u” (x, y) with either possibility.
It follows that

k k
s =limsupu’k(xr ) <u'(x,y).
k—o00

We conclude (3.2). O

Note the limit (3.2) implies u” is continuous on [0, 00) x [u, co) for each r € A. The value
function u also inherits this continuity.

Proposition 3.3. The value function u is continuous at (x, y) € [0, 00) X [, 00).
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Proof. Suppose xk>o0, yk >, and xk — X, yk — y as k — 00, and select r¥ e A for which
k Lk ko k ok
u(x®, yH) =u" (x, y") (3.3)
(k € N). We may select an increasing sequence of positive integers k = k; — oo such that
k .
liminfu(x*, y*) = lim u”’ (X%, y*i)
k— 00 j—o0
and for which r%i converges weak* to some r* € A. Using (3.2) gives
ki *
liminfu(x*, y5) = lim «”/ &, y5) =u"" (x, y) = u(x, y).
k— 00 j—o0o

By (3.3), we also have u(x*, y*y < u”(x*, y¥) for all k € N and each r € A. Using (3.2) again
gives

limsupu(x*, y%) <u’(x, y).
k—o00

Since r € A is arbitrary, limsup,_, o, u(x*, y*) <u(x, y). That is,

limsupu(xk, yk) =u(x,y)= liminfu(xk, yk).
k— 00 k=00

It follows that u is continuous at (x, y). O
Next, we will establish dynamic programming and then use this property to verify that u is
a viscosity solution of the HIB equation (1.5). We note that these types of results have been
considered more generally elsewhere. An excellent reference for dynamic programming in time
optimal control is Chapter IV of the monograph by Bardi and Capuzzo-Dolcetta [2]. In addition
to [2], another standard reference for viscosity solutions is the monograph by Fleming and Soner
[13].
Proposition 3.4. Let x >0 and y > . If t € [0, u(x, y)],
u(x,y) =min{t +u(S" (), I ())}. (3.4)
reA
The minimum is attained by any r € A such that u(x, y) = u" (x, y),; and for any such r,
u(S" (@), I"0) =u" (S" (1), I" (1)).
Proof. We note that 0 <t <u'(x, y) for r € A and
u (x,y)=t+u" (S @), I"1)).

For any r* € A such that u(x, y) = u” (x,y),
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uCe,y)=t+u" (8" @, 17 @) =t +u(S” @), 1" 1) = inf {r +u(S"(O, ")) (3.5)
re

To derive the opposite inequality, we fix r € A and choose r* € A such that

w(S™ (1), I" (1)) = u” (§" (1), I" (1)). (3.6)
Let us also define
F(s) = {r(s)’ O=s=t 3.7)
r¥(s —1), t<s < oo.
We claim that
W (ST, T () =u”" (8" (1), I" (1)) (3.8)

In particular, this common number is the first time s = s* the solution of

[X(s) = —BX(s)Y(s) — r*(s — )X (s)
(s >1)

Y(s) = BX ()Y (s) = y Y (s)
with X (1) = 8" (1), Y (1) = 1" (t) > u satisfies Y (s) = w. That u” (S" (1), I" (1)) = s* follows from
(3.7); note in particular that S”(s) = X(s) and I"(s) = Y (s) for s > ¢. The right hand side of
(3.8) also equals s* once we note S(t) = X (t +1¢) and I () = Y (r +¢) solve (1.2) with r* and

satisfy S(0) = S”(¢) and 1(0) = I" ().
By (3.6) and (3.8),

u(x,y) <u’(x,y)
=t4u" (5 (1), I" (1))
=r4+u" (S 0), I" (1))
=t4+u(S (1), 1"1)).

That is,
u(x,y) < injl{t +u(S" @), 1" (1))}

In view of (3.5), equality holds in this inequality; the infimum is achieved for any r* € 4 such
that u(x, y) =u"" (x, y), and we also note u”* (S (1), I"" (1)) = u(S"" (1), I"" ()). O

A corollary of dynamic programming is that the value function u is a viscosity solution of

(1.5)
Bxydiu + x(0eu)t + (y —Bx)ydyu=1
in (0, 00) X (u, 00).
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Corollary 3.5. The value function u is a viscosity solution of the HIB equation (1.5).
Proof. Fix xo > 0 and yp > p and suppose that u — ¢ has a local maximum at (xg, yo); here ¢ is
a continuously differentiable function defined on a neighborhood of (xg, yo). We further assume

a€[0,1], r(t) =a for all t >0, and S” and I" is the solution of (1.2) with S"(0) = xo and
1" (0) = yp. It follows that

—@)(S"(), I"(1) < (u — ¢)(x0, yo)

for all # > 0 small. By dynamic programming u(xg, yo) <t + u(S"(t), I"(t)) for t > 0. As a
result,

—t <u(S" (1), 1" (1)) — u(xo, yo) < @(S"(t), I"(t)) — ¢(x0, yo)

for all ¢ > 0 small. In particular,

-1=< iw(Sr(t) 1'(1))

B dt ’ t=0

= —(Bxoyo + axo)dx¢(xo, yo) — (¥ — Bx0) y0dy¢(x0, yo)-
Rearranging this inequality gives
Bxoyodx@(xo, yo) + x0adx@(xo, Yo) + (¥ — Bxo)yody@(xo, yo) < 1.
And taking the supremum over all a € [0, 1] we find
Bx0Y09x ¢ (x0, ¥0) + %0 (3@ (x0, Yo T + (v — Bx0)y0dye(x0, yo) < 1.
Conversely, suppose # — v has a local minimum at (xg, yo) and r* € A such that u(xg, yp) =

u” (xo, yo). Here v is a continuously differentiable function defined on a neighborhood of
(x0, yo). By Proposition 3.4,

u(xo, yo) =t +u(S” (1), I" (1))

for all small 7 > 0, where S”" and I”" is the solution of (1.2) with §”"(0) = xo and I"" (0) = yp.
Consequently,

—t=u(S" (1), I" (1)) — u(xo, yo) = ¥ (8" (1), I"" (1)) — ¥ (x0, yo)

forall small# > 0. As0<r*<1,

1 * * * *
—12 WSO, 17 6) = YT 0,17 )
t
—1/1 S (), I" (s))d
Tt dsw( S as
0
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~ | —

t
/ RV (S (), 1" () (=BS” ()" (s) — r¥(s)S" (5))+
0

WY (S (), 1" () (BS™ ()I" (5) — y 1" (5))ds

=

~ | —

t
/ (=85OI (8™ (), 17 () = S )09 (8 (), I (5) +
0

(BS” O () =y I (DS (), 17 () ] ds.
Sending t — 07 gives
—1 > —Bx0yodx ¥ (x0, Y0) — X0 (3 ¥ (x0, Yo)) T — (¥ — Bx0)y0dy ¥ (x0, y0)-

That is

Bx0Y0dx ¥ (X0, ¥0) + x0(3x Y (x0, yo)) T + (¥ — Bx0)yody ¥ (x0, y0) = 1. O

We will now establish (1.8) which asserts

lim wu(x,y)=o0.
X+y—>00

This will be a direct consequence of the following lemma.

Lemma 3.6. For each x > 0 and y > u,

In(x +y) —In(y/B + 1)

>
e = max({y, 1}
Proof. Set
In(x +y) —In(y/B + p)
w(x,y) =
max{y, 1}
Observe
1 x +
Bxydew +x@w)t + (y — pryyoyw = —— 1 o
max{y, 1} x +y
and

wx,u) <0 for0<x <y/B. (3.9
It then follows that if r € A,
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%w(S’(t), I'(1)
=0, w(S" (), I" () (=BS" (O)I"(t) —r(@)S" (1)) + dyw(S" (1), I"())(BS" (DI (t) — y I" (1))
> —BS (DI ()dw(S (), I"(5)) — " () w(S" (1), I" (1)) "

—(y = BS" O (1)dyw(S" (1), I" (1))

>—1

for almost every ¢ > 0. Integrating from t =0 to r =u’ (x, y) gives

w(S W (x, ), 1" W (x, y)) —w(x, y) = —u"(x, ).

As I"(u" (x,y)) = u, we can apply (3.9) to find w(x,y) <u"(x,y). Since r € A is arbitrary,
wx,y)<u(x,y). O

4. Uniqueness

In this section, we will argue that the value function u is the unique continuous viscosity so-
lution of the HIB equation (1.5) in (0, 00) x (u, 0o) which satisfies conditions (1.6), (1.7), and
(1.8); recall that this is the statement of Theorem 1.2. To this end, we will adapt the technique
used to prove Theorem 2.6 in Chapter IV section 2 of [2], which is in turn based upon reference
[1]. Theorem 2.6 in Chapter IV section 2 of [2] is a general result on the comparison of vis-
cosity sub- and supersolutions to HIB equations arising in time optimal control. In this general
setting, the domain of the time function is the collection of all points for which the associated
control ODE has a solution which arrives at a given target in a finite time. The main idea is to
change variables so that the corresponding HIB equation is proper. In our framework, this can be
accomplished by setting

vi=e
In particular, we note that v is a positive, continuous viscosity solution of
v+ Bxydyv —x(0xv)” + (¥ — Bx)ydyv =0 “4.1n

in (0, 00) X (u, 00). In view of (1.6), (1.7), and (1.8), v additionally satisfies

vix, u)=1 4.2)
for0<x <y/B,
y —1/y
v(0,y) = (—) 4.3)
7
for y > p, and
v is bounded from above. 4.4
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As aresult, in order to conclude Theorem 1.2, it suffices to prove the following claim.

Proposition 4.1. Assume vl v?: [0, 00) X [, 00) — (0, 00) are continuous viscosity solutions
of (4.1) in (0, 00) x (w, 00) which satisfy (4.2), (4.3), and (4.4). Then v = v2.

We will verify uniqueness by employing the celebrated “doubling the variables” argument
of Crandall and Lions [9]. Before carrying out these details, we will show how to deduce
uniqueness under the additional assumption that v! and v? are continuously differentiable in
(0, 00) x (u, 00). This will motivate the subsequent viscosity solutions argument.

Proof of Proposition 4.1 assuming v', v? are continuously differentiable. Choose g : [0, 00)
— [0, 00) to be any smooth, nondecreasing function which vanishes on [0, y /8] and is positive
on (y /B, o0). Next set

g(x)
w(x,y):= y— 1
X+, 0<x=<y/B.y=n
Note that
x) + Bxyg'(x X — X
w+ﬂxy8xw+(y—ﬂx)ya),w=x+y+yy+g() Bxys( )—i—,By( v/B)g(x)

y— 1 (y — n)?

is a positive function in (0, 00) x (i, 00); this is due to our assumptions that g(x), g’(x), and
(x —y/B)g(x) are all nonnegative. We conclude

w+ Bxyd,w + (y — Bx)ydy,w >0 4.5)

in (0, 00) x (u, 00).
Let us consider the quantity

m := sup {vl(x, y) — v (x, y)—ew(x,y):x>0, y> ,u,} 4.6)
for a given € > 0. We claim that

m < 0. 4.7

This would in turn imply that v! < v? + ew for all € > 0, and therefore v! < v2. Likewise, we
would have v? < v!. Consequently, we will focus on verifying inequality (4.7).

To this end, we note that since v! is bounded from above and that v? and w are positive, m is
finite. And as

lim w(x,y)=00 4.8)
x+y—>00
y>p

and
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lim  w(x,y)=00 (4.9
(. ))—> (%)
y>u

for each x* > y /B, there is (£, §) € [0, 00) x [u, o0) for which
m=v'(,7) —v?&, ) —ew, ).

In particular, if § = 11 then £ € [0, y/B]. In this case, v! (X, $) = v*(%, §) by (4.2) so (4.7) holds.
Using (4.3), we can similarly conclude that (4.7) holds if x = 0.

Now suppose that £ > 0 and $ > . Our hypothesis that v! and v? are continuously differen-
tiable gives

0=0,v' (&, §) — 002, §) — 0w (, §)
0=23,v'(%,9) — 3,02, 9) — €dyw(%, H).
In particular, we note that since d,w(x, y) > 0

(00" (&, $))” =max{—d,v' (£, 9).0)
= max{—0,v>(%, §) — ed,w(x, ), 0}
< max{—d,v*(%, $), 0}
= @0v*(%.3)".

Since v! and v? are solutions of (4.1) and w satisfies (4.5),

m=v'&, 9 —v*E 9 —ew@® $
=—BR9 ' (R D)+ L' E 9T - (r = BHI' R, )
+ B9V (R,F) — RWE, PN T+ (y — BOIVEE, D) — ew(®, F)

=—BE3(B:v' (£.9) — 00 (1. 9))

—(y = BDIO'E, D) — 0,07 (%, §))

+ 2[00 E )T — @&, )] - ew(®, H)
=—e[w, §) + BRFow(E, ) + (v — DI w (R, )]

+ 2@ (R, )T — @0 E )]
<0.

Therefore, we conclude that (4.7) holds in all cases. 0O

Now we will issue a proof of Proposition 4.1 without assuming v', v? are continuously dif-

ferentiable. Again we emphasize that this proposition and Corollary 3.5 imply Theorem 1.2.
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Proof of Proposition 4.1. 1. We will fix € > 0 and use the same notation as in the proof of this
assertion in the special case that v!, v? are continuously differentiable. In particular, our goal is
to show that m defined in (4.6) is nonpositive. Accordingly, we set

€
My = Sup {vl(xl,yl) — v (x2, y2) — E(w(xl,yl) + w(x2, y2))

1
— 5o (= )2+ (1 —y2)?) X1, x>0, y1, 32 > M}
for o > 0. It is not hard to see that

—oo<m§ma§supvl<oo

for each o > 0.
In addition, note that for any pairs (x1, y1), (x2, ¥2) € [0, 00) X (i, 00)

1 2 € 1 2 2
v (x1, y1) — v (x2, y2) — E(w(xlv 1) +w(xz, y2)) — Z((xl —x2)"+ (y1 —y2)9)
< supv’ = S, )+ wz y2).

This inequality combined with (4.8) and (4.9) implies the existence of (x{,y{), (x5, y5) €
[0, 00) x [, 00) such that

€ 1
my = v (xf, y§) — v (x5, ¥) — S WO, YD) + (s, ¥9)) = (o = X2+ 08—y
(4.10)
and

sup(x§ + ¥y + x5 + y5) < oo. (4.11)

a>0

Furthermore, if y¥ = u, then x{ € [0, y/B]; and if y§ = u, then x5 € [0, y/B]. Proposition 3.7
of [8] also implies

. 1
Jim (@ =)+ OF —3$)1) =0 (4.12)

and

lim my, =m.
a—0t

2.In view of (4.11), we may select a sequence of positive numbers oy tending to 0 as k — oo
so that

£:= lim x{* = lim x3*
k— 00 k—00
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and
= lim y* = lim y%.
PR e
If x =0, then
m= klim mg, =10, ) —v%(0, $) — ew(0, ) <0
—00
by (4.3). Likewise, if y =

m= lim my,
k— 00

= l ! = ) o) — = ) T ) o
kl>rrc:o (U (x » V1 )—v (xz ¥ (w(xl Y1 )+w(x2 b)) )
1
20y (1 =17+ O - y‘é‘k)%)
. . € .
=v' () = V(@) = 5 lim ) FwEsh p).

As (wx}*, y)ken and (w(x*, y1*))ken are bounded from above, it must be that 0 < £ <
y/B. This in turn implies

m<v '@, p) -0 @ =

by (4.2).
3. Alternatively, (X, ) € (0,00) x (u, 00). In this case, (x1 ,yl") (x2 ,yzk) € (0, 00) x
(u, 0o) for all sufficiently large k € N. In view of (4.10), the function of (x1, y1)

vl(mm)—[ (x5* ,yz")+ £ (wxi, yi) + w(xy* ,yzk))+—((x1 —x5)? 4+ (1 — ¥59) )}

1

has a maximum at (x1 , ylk) Since v is a viscosity solution of (4.1),

O
vl ) + By [23 w(x* ,yl")+T2} (4.13)

ay agq—
_ 3 w(x%,y k)+;x2
2 1 1 o

-5
+ (v — Bx{)yi* |:28 wx ) + —2 i| <0.
(673
Likewise the function of (x3, y2)

v2<xz,yz)—[ (x* ,yl‘)——(w(xl V) 4w, yz))——((X2—x1k)2+(y2— 1")%}
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has a minimum at (x2 s y2") Asv?isa viscosity solution of (4.1),

2 Qg _ < gy ak_x(ljlk
v (5%, ¥55) + Bagyst 23 Lw(xy*, y5*) T (4.14)

Olk_xﬂlk -
a 1
—X —0yw(x,", R
2 |: (2 )72) % :|

o
=Y
+(y —ﬁxg")ygk [—53 w(x2 ,yzk) Tl:| > 0.

We can then combine (4.13) and (4.14) to get

My, =V ()C] ,yl “—v (xz ayzk)__(w(xl ’Y]k)+w(x2 ’yzk)) (4.15)

@ o %k
Sﬁxgkygk[ —d,w(xy*, y3*) — Tl:| Bx ?ky‘ftk[ dw(x}* ,ylk)+TZ]

otk _xtz)lk - D‘k _x(llk
o
+x [28 w(x]’ ,yl")+4ak } — x5 [—58 w(xy*, y3*) — 40[ i|

ak
Ly
+ (- ,szk)y |: za)w(xz 7)’2) Ti|
S
— =t [t o + I ] Sty b waft )

4. We will now proceed to estimate some of the terms on the right hand side of (4.15). First,
observe

— Bx tzxkytzxk Xy — X —ﬁ ak Olk ) (4.16)
(275 O
X — xSk
1 2 Qf O (773
= X — X
B ” [x3* 3 Tt
_ xllltk _xgk [T 7% 7 [T Ok
=p o [5* yo* =i yy* +x i vyt — 2]
__ﬂ(x;lk_x?k)Z ak-i-ﬂ _x2 y2 _y(l)lk ag
ag NCT NCTE
=o0(1)
as k — oo by (4.12). Similarly,
g
¥ =y =y
—(y - ﬂxzk)y“kg (v - ﬂxl")yak% 4.17)
n=nt

=2 ((y — Bx35)y5* — (v — Bx{")y(*)
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——y (y1 _ygk)z +ﬂy(1¥k_y(21 ( Oékyak xotkyotk)
o ok XN 2 72

73 o o o
Xl —X Y M

e T

_ o (y _yzk)z
=—(y — Bx; )7()[

=o(1)

as k — oo.
Also notice

€ X — xS ak — x%
x‘lxk [Eaxw(x?k,y?k)-i- ! 2 } _xtzxk I:_Ea w(-x2 7y )_ 1 j|

Ok (275

(274

a o oty
k (673
X, [28 w()c1 Y )+T] — [—58 w(x2 ,y2 ) - Ol—ki|

3 X — X — %
=o(1) +x3* [23 w(x}* ,yl")+—} —[ Sw(est, y5) = 71]

“k_xak
= (x* —x2k)[ dew(x®, y®y 4 1L 12 ] +

Ak Ok

as k — oo. Employing the elementary inequality

a —b <(@—-b)" (a,beR),
we then find

CYk Ak i| - Olk ok

a ay -
x |:23Xw(x1 Y )+ — X, |: 2E)xw(x2 y2) i| (4.18)

; .
<o) +35* [ 5 (w1 + d,ws 50
=o(l)

as k — oo. Here we used 0, w > 0.
In view of (4.16), (4.17), and (4.18), we can send k — oo in (4.15) to get

m < —e[w(X, §) + BEywE, 9) + (v — pR)Jdyw(x, )] <0

by (4.5). As mentioned at the start of this proof, the proposition in question follows from the
nonpositivity of m. Therefore, we have obtained the desired conclusion. O
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5. Local semiconcavity
Let us now investigate the differentiability of the value function. We’ll argue that u is twice
differentiable almost everywhere and its Hessian is locally bounded above. We will establish

these properties by deriving various bounds on u” that are independent of r € A. With these
goals in mind, we will study #” and u on triangular domains

TN,(s::{(x,y)eRzzxzé,yz,u+8, andx +y < N}

for N, § > 0 which satisfy

u+25<N.

We will also employ the flow of the controlled SIR system (1.2)
@ 1[0, 00) X [14,00) X [0,00) = [0, 00)%; (x, y, 1) = (P (x, y, 1), D5 (x, ¥, 1)).

Here §"(¢) = @ (x,y,1) and I"(t) = ®4(x, y,?) is the solution of the controlled SIR system
(1.2) with S"(0) = x and 1" (0) = y. We note that for any r € A,

(x,y) = ®"(x, v, t) is smooth for each r > 0

by Theorem 3.3 and Exercise 3.2 of [14], and

(x,y,t) > <I>§(x, v, t) is continuously differentiable

by Lemma 2.1.
It also follows that (x, y, t) — ®"(x, y, 1) is smooth whenever r is smooth. Since u” satisfies
the implicit equation

Q5 (x, y,u" (x, y)=p (5.1

for each x > 0 and y > u, we can then differentiate this equation twice to obtain bounds on the
second derivatives of u” when r is smooth. Of course, r is in general not smooth. We will get
around this by finding estimates which are independent of » and using the fact that r — u” is
continuous.

To this end, we will employ the following assertion about solutions of linear ODEs. Since this
claim follows from an easy application of Gronwall’s lemma, we will omit the proof.

Lemma 5.1. Suppose A(t) is a2 x 2 matrix for eacht > 0 and f : [0, co0) — R2. Ifz:[0,00) —
RZ solves

2 =AM)zt)+ f@), t=0,
then
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t
lz())1> < @D | 1z(0))1% + / e~ DS £(5) |12 ds
0

where ¢ > max;>q ||A(?) ]
Remark 5.2. Here || A(¢)|| denotes the Frobenius norm of A(t).
We will now derive various bounds on the derivatives of ®/, when r is smooth.

Lemma 5.3. Suppose r € A is smooth and N > . Then

(i) 0<®L(x,y, 1) <N
(ii) 19, ®5(x,y,1)| < BN*+yN
(iii) 19: @5 (x, ¥, ), 19y @5 (x, y, 1)] < e CT/21
(iv) [02®5(x, y, )| < (BN*+ N)BN + (B*N> + y>)N
(v) 18:8: @, (x, y, )], 18,8, D5 (x, y, 1) < e CTVD' QBN +y)

2
(vi) 10795 (x, y, D), |87 D5 (x, y, 1), 10,8y Ph(x, y, )] < Tf’ae<zc+1>t

for (x,y) € To.y and t > 0. Here C := \/62N2 4 2y2 4 2.
Proof. Assertions (i), (ii) and (iv) follow from the proof of Lemma 2.1. Moreover,
0<®|(x,y,1) <N

holds for (x, y) € To,n, as well. Differentiating (1.2) with respect to x gives

(st ) =40 (ot ) =2
with
A(l)z(—ﬂ%(x,y,r)—rm —BP](x. y.1) )
BP;(x,y, 1) BP|(x,y, 1) —y
As

IA@)? = (BR5(x, y, 1) + (1)) + (BP] (x, y, 1)) + (BO,(x, y, 1)) + (B (x, y, 1) — y)*
<2(B*N?+ 1)+ BEN? + BEN? +2(B*N* +¢D)
=6B*N? +2y% +2
=C?
and |0, D" (x, y,0)|| = 1, the previous lemma with z(¢) = 9, D" (x, y, t) implies
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18, @ (x,y,1)|| < e CH/21, (5.3)

We can derive the same upper bound for ||0,®" (x, y, 1) ||, so assertion (iii) follows.
The second equation in (5.2) is

ataxq)g(xv yvt) = ﬂ(axq)ﬁ(-xv ya t)q)s(-xv yv t) + CD}i()C, ya t)axq)g(x» ya t)) - Vaxq)é(xa y’ t)

Using (i) and (5.3) leads to

19,0, @5 (x, y, )| < e TV 2BN + p).

This method also leads to the same bound for |9;0y @’ (x, y, t)|. This proves (v).
As for (vi), we will prove the estimate for 83@5 (x, y,1) as the other cases can be handled
similarly. Upon differentiating (5.2) with respect to x,

2H" 2&H7 _ r r
al(a)é@}(x’y’t))=A(t)<a)§q)}(x’y’t)>+2ﬂ< 8Xq:1(x7yvt)8xq:2(x’y7t))'
0, D5 (x, y, 1) 0y D5 (x, y,1) Ox D (x, y,1)0x 5 (x, y,1)

Note that 32", (x, y, 0) = 320 (x, y,0) = 0 and

S 8,3264(C+1/2)t

28 =0, P (x,y, )0, D5 (x, y, 1)
0y P (x, y, )0, D5 (x, y, 1)

‘ 2

by (5.3). The previous lemma then implies

t
|a§ S(x’ y, t)|2 < e(2c+l)l8ﬂ2/e—(2C+l)Se(4C+2)SdS
0

t
Se(2C—H)18132/e(2C+1)st
0

1
< 2C+Digg? @C+r _ 4
=¢ TS )

4 2
< el4c+2n 4p- ‘

O
C

When we differentiate (5.1), it will be crucial that

Py (x,y, 1) = (BPY(x, y,1) — )P4 (x, y,1) <0

when t = u” (x, y). We’ll show that this quantity is uniformly bounded away from O for (x, y) €
Tn.s-
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Lemma 5.4. Suppose N, > 0 satisfy N > pu + 26. There is
€e>0
such that
y —BPI(x, y,u (x, ) > € (5.4
fJoreachr € Aand (x,y) € Ty 5.

Proof. If this assertion is false, for each k € N there would be (xk, yk) € Tn s and r* € A such
that

k k 1
y = BOT (K, yF um (kL vh) < %.

Passing to subsequences if necessary, we may suppose that (x, y¥) — (x,y) € Ty s and r*¥ — r
weak™ in 4. According to Proposition 2.4 and (3.2),

y —BP (x,y,u" (x,y) <0.
However, this contradicts Lemma23asy>u+25§>u. O

Corollary 5.5. For each r € A, u” is continuously differentiable on (0, 00) x (i, 00). Moreover,
foreach N, 5 > 0 with N > u + 26, there is a constant B such that

Oxu” (x, ), [0yu” (x, y)| < B (5.5
for (x,y)eTnsandr e A.
Proof. Recall that @/ is continuously differentiable for all » € A. In view of the previous lemma,
0 DL (x, y,u (x,y)) <0
for x > 0 and y > u. Applying the implicit function theorem to equation (5.1) gives that u" is

continuously differentiable.
Differentiating (5.1) with respect to x gives

I Dy (x, y, u" (x,y)) + 8 Py(x, y, u' (x, y)du" (x,y) =0. (5.6)
We can then use the previous lemma, part (iii) of Lemma 5.3 and (3.1) to find

r r
|05 P50, y, u” (x, Y| _ 1 erpway o L cryonmy

[0, D5 (x, y, u"(x,y))| — pe T e

|9 u” (x, y)| =

for (x,y) € Ty 5. Here € is the constant in (5.4) and C = /682N?2 + 22 + 2. The same upper
bound also holds for |dyu" (x,y)|. O
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Remark 5.6. Using (5.6) and the corresponding equation obtained by differentiating (5.1) with
respect to y, we can extend d,u” and dyu” continuously to the interval

O<x<% and y=u.

In particular,

1

ou" (x,u)=0 and Oyu'(x,u)=———
y (y — Br)u

for any such pair (x, y).
In view of (5.5) and the fact that T s is convex,
" (1, y1) = ' (2, )| < V2B(x1 =yl + x2 = yal)
for all r € A and (x1, y1), (x2, y2) € Ty 5. As a result,

lu(x1, y1) — u(x2, y2)| < V2B(|x1 — y1| + |x2 — y21)

for (x1, y1), (x2, y2) € Ty s. In particular, the value function is Lipschitz continuous on Ty s for
any N > p + 25. By Rademacher’s theorem, u is differentiable almost everywhere in (0, 00) x

(1, 00).
Now we will explain how to bound the second derivatives of #” when r is smooth. Our method
involves differentiating equation (5.1) twice.
Proposition 5.7. Suppose N, & > 0 satisfy N >  + 28. There is a constant D such that
|0gu” (x, y)I, 107" (x, V)1, 9, Byu” (x, )| < D (5.7)

for each (x,y) € Tn s and each smooth r € A.

Proof. We will establish the bound for |8§u’(x, y)| as the other bounds can be similarly
achieved. Differentiating (5.6) with respect to x gives

0= 0205 (x, y. u” (x, ) + 3. D5 (x, y, u” (x, )y (x, y)
+ (D0 Ph(x, y, " (x, ) + 07 Do (x, y, u” (x, )3t (x, ¥))xu” (x, )
+ 0, D5 (x, v, u” (x, )T (x, ¥).
In view of (3.1), u” (x, y) < N/py. Consequently,
|07 D5 (x, y, " (x, ), 18: 9 D5 (x, y, " (x, ), 197 Bh(x, y, u” (x, 1))
are each uniformly bounded for all (x, y) € Tn s independently of r. This follows from (iv), (v),
and (vi) in Lemma 5.3. We can then solve the equation above for 8§u’ (x, y) and use (5.4) and

(5.5) to find D as asserted. O
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Corollary 5.8. Suppose N, § > 0 satisfy N > yu + 25. Then there is a constant L such

L
Cr,y) (6, y) = 2 (02 4 37)
is concave in Ty s for each r € A.

Proof. First suppose r € A is smooth. By (5.7), we can find L which is independent of » such
that

<L

Bfu’(x, y)  0y0yu"(x,y)
dxdyu” (x,y) 8)2,ur(x, y)

for (x,y) € Ty s. It follows that the Hessian of

r L 2 2
()= u'(x,y) — E(x +y9)
is nonpositive definite in Ty s, so this function is concave in Ty s.

Now suppose r € A and choose a sequence of smooth r¥ € A such that ¥ — r weak*. Such
a sequence exists by standard smoothing techniques. See for example Appendix C.5 of [10]. As

L
G y) e u (xny) — F67 47

is concave in Ty s,

2 2
Afx1+x2 yi+w»m >1 & R X1 — X2 yi—m
LI Z Z L= 22 I
u( T3 >_2M (x17y1)+2u (x2,y2) 3 + 2

for each (x1, y1), (x2, ¥2) € Tn 5. We can then send kK — oo in this inequality by (3.2) and con-
clude that this inequality holds for u". That is, u" (x, y) — %()c2 + y?) is concave in Tys. O

Proof of Theorem 1.3. Suppose K C (0, 00) x (i, 00) is convex and compact. Then K C T 5
for some N, § > 0 with N > 4+ 26. Thus, there is a constant L such that

L 2, 2 : L 2, 2
== = inf (u’(x,y) - =
u(x, y) 2(x +y9) gA(" (x,y) 2(x +y9)
is necessarily concave in K by Corollary 5.8. O

6. Optimal switching

In this section, we will prove Theorem 1.4 and a few corollaries. Here we recall the definition
of a switching time vaccination rate

ro(r) = 0, trel0,r1]
1, te(r,0).
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We will first need to make an elementary observation
Lemma 6.1. Suppose x > 0 and y > . If
pi=u""(x,y)<T,

then

p=u"r(x,y).

Proof. As p < 1,7,(t) =7 (t) for t € [0, p]. It follows that (S (t), I"7(¢)) = (S"* (), I"(¢))
for ¢ € [0, p]. In particular, "7 (p) = I"* (p) = . Therefore,

u'r(x,y) < p.
Also note that if y > porif 0 <x <y/B and y = u, then I"7(¢t) = u only has one solution

t =u'r(x,y). Alternatively, if x > y /B and y = u, then I"»(t) = p has two solutions ¢ = 0 and
t =u"r(x,y). Ineither case, p =0 or p = u’7(x, y) and we conclude

p=u"’(x,y). O

The main conclusion of the above lemma is that when studying the eradication times u'* (x, y)
we only need to consider values of t for which 7 < u'7(x, y).

Proof of Theorem 1.4. Let S, I be the solution of the SIR system (1.1) with S(0) =x > 0 and
1(0) =y > . According to [6] and Theorem 2.5, there is T > 0 such that

u(x,y)=minu"(x,y) =u""(x, y). 6.1
reA
By Lemma 6.1, we may assume 7 < u'7(x, y) =u(x, y). As a result,

u(x,y)= min u'"(x,y). (6.2)

0<t=<u(x,y)

Also note

ut(x,y)=t4+u" (8" (1), I'" (1))
=1 +u"(S(), (7))

for T <u(x,y). Here we used

(8™ (7), I'* (1)) = (S(1), I (7)) and
u' (8 (), I'"" (1)) = u"* (S(7), I (1)),

which follow from the definitions of r; and ry.
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In view of (6.2),

u(x,y)= min ){1’ +u(S(1), I(1))}.

0<t=u(x,y

Of course if 7 > u(x, y), then t +u"°(S(7), I (7)) > u(x, y). Consequently,
u(x,y)= mig{t +u"(S(z), I(1))}. (6.3)
>

In addition, we note that if u(x, y) =7 +u"(S(v), I(7)), then t <u(x,y) <u"*(x,y) which in
turn implies u(x, y) =t + u"(S(r), (7)) =u""(x, y).
Now set

t*i=inf{t > 0:u(S®), 1)) =u(S), 1))}, 6.4)
and choose a minimizing 7 > 0 in (6.3). Then
W (x,y)=1t+u(S(x),I(x)) >1.
We also have
u(S(x), I(v)) =u""(S(x), I (7))
by Proposition 3.4. In addition, we recall u"* (S(t), I (7)) = u"(S(7), I (7)) so that
T <1 < 00.
Moreover, we only need to consider times ¢ > 0 in (6.4) which are bounded above by 7. It now

follows easily that the infimum in (6.4) is attained by r = t*. And appealing to Proposition 3.4
once again gives

u(x,y)=u""(x,y)
=" +u"(S("), I(zY))
>+ u(S(t"), 1(t"))
=t*+u"0(S(x"), I(t7)).

Thus t* is optimal. O
We will make use of the fact that u’° is a smooth solution of
Bxydu' 4+ x3u" + (y — Bx)ydyu’® =1 (6.5)
in (0, 00) x (u, 00). This follows from computing the time derivative of both sides of the identity
u'(x,y) =t +u(S@), 1" (1))
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at t = 0; here §°, I'0 is the solution of the (1.2) with §°(0) = x and 1"°(0) = y.
Corollary 6.2. Suppose x >0, y > u. If u(x,y) =u°(x, y), then
dyu"(x,y) =0.
Otherwise
deu’(S(r%), 1(x™)) =0, (6.6)

where T* is given by (6.4) and S, I is the solution of the SIR system (1.1) with S(0) = x and
1(0)=y.

Proof. If u(x,y)=u""(x, y), then t =0 is a minimizing time in (6.3). In view of (6.5),

0< % (v +u"(S(x), 1 (1)) .

=1—Bxydu®(x,y) — (¥ — Bx)ydyu'(x, y)

=x0xu"(x, y).

If u(x, y) <u(x,y), then t* > 0, and we can perform a computation similar to the one above
to find (6.6). O

Combining (6.3) with the dynamic programming principle (3.4) gives
u(x, y) =min{r +u(S(z). I ()}, (6.7)
T>

where S, I is the solution of the SIR system (1.1) with S(0) = x and 7(0) =y > u. We will use
this identity to verify the following claim.

Corollary 6.3. The value function u is a viscosity solution of the PDE (1.11)
max{Bxydyu + (y — Bx)ydyu — 1, u —u"}=0
in (0, 00) x (u, 00).

Proof. Let xo > 0 and yo > 1, and suppose ¢ is continuously differentiable in a neighborhood
of (xp, yo) and that u — ¢ has a local maximum at (xg, yo). Then

(u—@)(S), I(1) < (u— ¢)(x0, yo)

for all + > O small. Here S, I is the solution of the SIR system (1.1) with S(0) = xo and 1 (0) = yop.
By (6.7), u(xq, yo) <t +u(S(t), I(¢)) for all + > 0, so that

—t <u(S(@), 1(1)) —u(xo, yo) < ¢(S(t), 1(1)) — ¢(x0, yo)
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for all # > 0 small. Consequently,

d
—1< —o(S@), It
_dtqo( ) ())t=0
= —Bx0y00x@(x0, Y0) — (¥ — Bx0)Y0dyp(x0, ¥0).
Therefore,

max{Bx0yodx¢(xo, yo) + (¥ — Bxo)yodye (xo, yo) — 1, u(xo, yo) — u" (xo, y0)} < 0.

Now suppose v is continuously differentiable and u — v has a local minimum at (xg, yp). We
claim

max{Bx0yodx ¥ (X0, y0) + (¥ — Bx0)yody ¥ (x0, yo) — 1, u(xo, yo) — u"®(x0, y0)} > 0. (6.8)

Recall that if u(xg, yo) < u"(xg, yo), then the corresponding 7* defined in (6.4) is positive. As a
result,

u(xo, yo) =u""" (xo, yo) =t +u"""(S@), I (1)) =t +u(S(), (1))
for ¢ € [0, T*]. It follows that

—t =u(S(1), I(t)) — u(xo, yo) = ¥ (S(1), (1)) — ¥ (xo, yo)

for all ¢ > 0 small enough. Therefore,

d
-1> EI/f(S(t), 1(1)) Y
= —Bx0Y09x ¥ (x0, Yo) — (¥ — Bx0)Y0dy ¥ (X0, Y0)

which implies (6.8). O
We have established that the value function is a viscosity solution of the HIB (1.5) and the

PDE (1.11). There is at least one implication of this fact which we can state in terms of the set S
mentioned in our introduction

S={(x,y) €(0,00) x (i, 00) :ulx, y) =u"(x, y)}.
Corollary 6.4. For each (x, y) belonging to the interior of S,
Oxu(x,y) > 0.
And at almost every (x, y) € 8¢,
dxu(x,y) <0.
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Proof. As u agrees with #’ in S, u is smooth in the interior of S. It follows from Corollary 6.2
that d,u(x, y) > 0 for each (x, y) in the interior of S.

Since u is locally Lipschitz on (0, 0c0) x (u, 00), u is differentiable almost everywhere in S¢.
Let (x, y) € S€ be a differentiability point of u. As u is a viscosity solution of the HIB (1.5), it
is routine to check that u satisfies the equation at this point. That is,

Bxydxu(x,y) +x0xu(x, »)* + (y — Bx)ydyulx, y) = 1.

See Proposition 1.9 of Chapter II in [2], and Corollary 8.1 of Chapter II in [13] for more on this
technical point. And since u is a viscosity solution of (1.11) and (x, y) € §¢, we also have

Bxydyu(x,y) + (y — Bx)ydyu(x,y) = 1.
Upon subtracting these equations, we find 9, u(x, y)*T =0. Thatis, d,u(x,y) <0. O
7. Necessary conditions revisited

In this final section, we will relate our ideas on dynamic programming back to the necessary
conditions (i) — (vi) which follow from Pontryagin’s maximum principle. The link between
viscosity solutions of Hamilton-Jacobi equations and Pontryagin’s maximum principle was first
established by Barron and Jensen [3]. Our particular control problem does not exactly fit into
the framework they considered, so we cannot simply quote their results. Nevertheless, the ideas
presented below are inspired by their work.

Our first insight is that each optimal vaccination rate r € A is a “feedback” control. That is,
r(t) depends on the value of (S"(¢), I" (¢)) for almost every ¢ > 0. In proving this assertion, we
will make use of the following basic observation. Whenever xo > 0, yo > u, and u(xop, yo) =
u" (xo, yo), then

u(x, y) —u'(x,y) <0=u(xo, yo) —u" (xo, yo)

for each x > 0 and y > . That is, u — u” has a maximum at (xg, yp). Since u is a viscosity
solution and u” is continuously differentiable,

Bxoyodsu” (x0, yo) + x0(dcu” (x0, y0)) T + (v — Bxo)yodyu” (x0, yo) < 1. (7.1)
Proposition 7.1. Let x > 0 and y >  and choose r € A such that u(x,y) =u" (x,y). Then
()3 u” (S (0), 1" (1)) = du” (S (1), 1" (1) * (7.2)
for almost every t € [0, u(x, y)] and

BS (DI ()dcu” (" (1), I" (1)) + S" (1) dcu" (S" (1), 1" (1)) * (7.3)
+(y = BS" NI ()oyu" (" (1), I"(1)) =1
forallt € [0,u(x, y)].
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Proof. By Proposition 3.4,

u(S" (), I"(t)) =u" (8" (1), I" (1))
for t € [0, u(x, y)]. And in view of inequality (7.1),
BS" (I ()3 u” (S (1), I" (1)) + S (1) (" (S" (1), 1" (1)) " (7.4)
+ (= BST NI ()oyu" (S (1), 1" (1)) <1

for all # € [0, u(x, y)]. Furthermore, we always have

u' ("), I"(1) =u"(x,y) — 1

for ¢t € [0, u(x, y)]. Differentiating gives

-1= iur(Sr(t), 1"(1))
dt
=—BS O (®)du" (S" (1), 1" (1)) — S"(O)r()dxu” (S" (1), 1" (1))
—(y = BS" NI )oyu" (S (1), I" (1))
> —BS" ()" (0)du” (ST (1), I" (1)) — S (1) @x" (8" (1), 17 (1)) "
—(y = BS" (NI ()dyu" (S (1), I" (1))

>—1

for almost every ¢ € [0, u(x, y)]; the last inequality is due to (7.4). We conclude (7.2) and (7.3)
hold for almost every ¢ € [0, u(x, y)]. Since d,u” and dyu” are continuous, (7.3) actually holds
forall t € [0,u(x,y)]. O

We will need to record a basic fact involving the adjoint equations appearing in the necessary
conditions obtained via Pontryagin’s maximum principle.

Lemma 7.2. Letr € A, x > 0, and y > . Set

P(t)=0yu" (S"(t), I"(t)) and Q(t)=0dyu"(S"(1),1"(1))

where S and 1" is the solution of (1.2) with §"(0) = x and I" (0) = y. Then P, Q satisfy

P()=(BI(0) +r)P@) — BI (1) Q)

. (7.5)
Q) =pSOP@)+(y —BS1) Q)

for almost every t € [0,u” (x, y)].

249



R. Hynd, D. Ikpe and T. Pendleton Journal of Differential Equations 303 (2021) 214-252

Proof. Just as we computed (5.2), we have
0Z(x,y,t)=Ax,y,)Z(x,y,1) (7.6)
for almost every ¢ € [0, u" (x, y)] where

_ (@0 y) 9@y )
Z(x,y,t)—(axq%(x,y,t) Ay Py (x, y, 1)

and

A(x,y,t):<_'3<D§(x’y’f)_”(f) —B (x,,1) )

BPL(x,y,1) BO(x,y,8) —vy
Taking the transpose of (7.6) leads to
Z(x,y, ) =Z(x,y, 1) A(x, y,1)". (7.7

We also note that since

20 =(g 1),

t+— Z(x,y,t) is the fundamental solution of the 2 x 2 system (7.6). In particular, Z(x, y, ) isa
nonsingular matrix for each ¢ > 0.
Recall the identity

ur(q)r].(x’ yvt)’(bg(xv yvt)) :ur(xv y) —1

for ¢ € [0, u" (x, y)]. Differentiating with respect to x and y gives

t 8x”r(¢’q(x’y’t)’q)g(x’y»t))):(8xur(xay))
Z(x,y,1) (ayur(cbq(x,y,t),q>;(x,y,t)) dyu’ (x,y) )

And taking the derivative with respect to ¢ leads to

axur(q)q(xv y5 t)v q)g(xv y5 t)))

&Z(x,y,1)
P2y, (ayu’(q)?(x,y,t),q’ﬁ(x’y’t))

(7.8)

r r r
+Z(x,y, )"0 <8X” (D) (x,y,1), D5 (x, y,t))) —o.

oyu" () (x,y,1), PL(x,y,1))

Letus now fix x >0and y > nw and set Z(t) = Z(x, y,t), A(t) = A(x, y, 1), and

(P(t) ) — <8Xur((b'i(xv yv t)v q)g(xv yvt))>
Q@) dyu" (P (x, y, 1), Py(x, y,1) )

By (7.7) and (7.8),
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i d (PO _ t tf P@)
Z“)dt<Q0))‘ Z“)A“)(QU)>’

for almost every ¢ € [0, u" (x, y)]. Since Z(¢) is nonsingular,

d (PO\_ v P®
E(Qm)‘ “”(Qm)
which is (7.5). O

We can now establish the necessary conditions coming from Pontryagin’s maximum principle
in terms of the derivatives of u” when u(x, y) = u"(x, y).

Proof of Theorem 1.6. Properties (iii) and (iv) were established in Proposition 7.1. As for
property (ii), recall that d,u" (x, u) =0 for x € (0, y/B) as explained in Remark 5.6. In view of
Corollary 2.3, §"(u) € (0, y/B) so P(u) = 0. Moreover, evaluating (7.3) at t = u gives

(y =BS" () Q) =1.
Thus, Q(u) # 0. Finally, property (i) follows from Lemma 7.2. O
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