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Abstract

We consider a susceptible, infected, and recovered infectious disease model which incorporates a vac-

cination rate. In particular, we study the problem of choosing the vaccination rate in order to reduce the 

number of infected individuals to a given threshold as quickly as possible. This is naturally a problem of 

time-optimal control. We interpret the optimal time as a solution of two dynamic programming equations 

and give necessary and sufficient conditions for a vaccination rate to be optimal.

 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The SIR infectious disease model in epidemiology involves the system of ODE

⎧

⎪

«

⎪

¬

Ṡ = −³SI

İ = ³SI − ´ I

Ṙ = ´ I.

(1.1)
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Fig. 1. Solution of the SIR system with S(0) = 2, I (0) = 3, ³ = 1/2, and ́ = 2. The graph of S is shown in blue, and the 

graph of I is shown in red. Note that ³S(0) ≤ ´ so that I is decreasing. (For interpretation of the colors in the figure(s), 

the reader is referred to the web version of this article.)

Fig. 2. Solution of the SIR system with S(0) = 2, I (0) = 1, ³ = 2, and ́ = 2. The graph of S is shown in blue, and the 

graph of I is shown in red. Note that ³S(0) > ´ so that I increases for an interval and then decreases to 0.

Here S, I, R : [0, ∞) → R represent the susceptible, infected, and recovered compartments of 

a total population, and ³ > 0 and ´ > 0 are the respective infected and recovery rates per unit 

time. It is also clear that once S, I are determined then R is known. As a result, we only need to 

consider the first two equations. (See Figs. 1 and 2.)

It is not hard to see that any solution S, I of (1.1) with initial conditions S(0), I (0) > 0, 

remains positive and bounded with S decreasing. Moreover, if

³S(0) ≤ ´,

then I is also decreasing. Otherwise, I increases for an interval of time and decreases from then 

on. And in either case,

lim
t→∞

I (t) = 0.
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1.1. Controlled SIR

In this note, we will consider the following analog of the SIR system

�

Ṡ = −³SI − rS

İ = ³SI − ´ I
(1.2)

where r : [0, ∞) → [0, 1] represents a vaccination rate control of the SIR model. This rate is 

conveniently limited by the upper bound 1; other constant upper bounds would lead to virtually 

the same theory which we present below. Even though we have piecewise continuous controls r

in mind, it will be advantageous for us to consider (1.2) for each r belonging to the collection

A := {r ∈ L∞([0,∞)) : 0 ≤ r(t) ≤ 1, a.e. t ≥ 0}

of admissible vaccination rate controls.

We’ll see that for any r ∈ A, there is a unique solution Sr , I r of (1.2) for given initial 

conditions Sr(0), I r (0) ≥ 0. Moreover, these solutions have the same qualitative properties of 

solutions to the uncontrolled SIR system (1.1) which we described above. In particular, the first 

time that the number of infectious individuals I r(t) falls below a given threshold μ > 0

ur = inf{t > 0 : I r(t) ≤ μ}

is finite. When μ is small, we can think of this time as an eradication time. In this paper, we will 

address the question:

How do we choose a vaccination rate r ∈A to minimize the eradication time ur?

For this problem, Pontryagin’s maximum principle [18] asserts the following necessary con-

ditions on an optimal vaccination rate r .

Necessary conditions for an optimal vaccination rate r ∈ A. There are absolutely continuous 

P, Q : [0, ur ] → R such that the following statements hold.

(i) P, Q satisfy the ODE

�

Ṗ (t) = (³I r (t) + r(t))P (t) − ³I r(t)Q(t)

Q̇(t) = ³Sr(t)P (t) + (´ − ³Sr(t))Q(t)

for almost every t ∈ [0, ur ].
(ii) P(ur ) = 0 and Q(ur) �= 0.

(iii) r(t)P (t) = P(t)+ for almost every t ∈ [0, ur ].
(iv) For all t ∈ [0, ur ],

³Sr(t)I r(t)P (t) + Sr(t)P (t)+ + (´ − ³Sr(t))I r (t)Q(t) = 1.
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Remark 1.1. When r ∈ A is an optimal vaccination rate, we will specifically refer to the condi-

tions above as the associated necessary conditions (i) − (iv).

In a recent paper [6], Bolzoni, Bonacini, Soresina, and Groppi used these necessary conditions 

to show that any optimal vaccination rate r is of the form

rτ (t) =
�

0, t ∈ [0, τ ]
1, t ∈ (τ,∞)

(1.3)

for some τ ≥ 0. That is, any optimal vaccination rate will switch from not controlling the SIR 

system at all on [0, τ ] to maximally controlling the SIR system on (τ, ∞). As a result, τ is 

interpreted as an optimal switching time. The corresponding vaccination rate rτ is a “bang-bang” 

control as it only takes on the extreme values in the interval [0, 1] in which each vaccination rate 

r may assume.

1.2. The dynamic programming approach

In what follows, we will study this eradication time problem from the standpoint of dynamic 

programming. To this end, we will consider the eradication time function

ur(x, y) := inf{t > 0 : I r(t) = μ}

for a given vaccination rate r ∈ A. Here Sr and I r satisfy (1.2) for this r and initial conditions 

Sr(0) = x ≥ 0 and I r(0) = y ≥ μ. A crucial property of ur is that for each t ∈ [0, ur(x, y)],

ur(x, y) = t + ur(Sr (t), I r(t)). (1.4)

That is, after t units of time, the time remaining for I r to decease to μ is simply ur(x, y) − t .

The corresponding value function is defined as

u(x, y) := min
r∈A

ur(x, y)

for x ≥ 0 and y ≥ μ. Employing (1.4), we will show that u satisfies the dynamic programming 

principle

u(x, y) = min
r∈A

{t + u(Sr(t), I r (t))}

for t ≥ 0. A direct consequence of dynamic programming is that u is a viscosity solution of a 

Hamilton-Jacobi-Bellman (HJB) equation

³xy∂xu + x(∂xu)+ + (´ − ³x)y∂yu = 1 (1.5)

in (0, ∞) × (μ, ∞).

It follows from the definition of u that

u(x,μ) = 0 for 0 ≤ x ≤ ´ /³ (1.6)
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and

u(0, y) = 1

´
ln

�

y

μ

�

for y ≥ μ. (1.7)

Moreover, we will show

lim
x+y→∞

u(x, y) = ∞. (1.8)

It turns out that u is the unique continuous viscosity solution of (1.5) which satisfies these three 

conditions.

Theorem 1.2. The value function u is the unique continuous viscosity solution of (1.5) which 

satisfies (1.6), (1.7), and (1.8).

We will also argue that u is twice differentiable almost everywhere and its Hessian is essen-

tially bounded from above in each compact subset of (0, ∞) × (μ, ∞). This follows from the 

following theorem.

Theorem 1.3. For each convex, compact K ⊂ (0, ∞) × (μ, ∞), there is a constant L such that

u(x, y) − L

2
(x2 + y2)

is concave on K .

Using the fact that each optimal control is of the form rτ for some τ , we will also derive 

the following representation of the value function. Note that this allows us to give a sufficient 

condition for a vaccination rate rτ to be optimal.

Theorem 1.4. Suppose S, I is the solution of the SIR system (1.1) with S(0) = x ≥ 0 and I (0) =
y ≥ μ. Then

u(x, y) = min
τ≥0

{τ + ur0(S(τ ), I (τ ))}. (1.9)

Moreover, any τ for which the minimum in (1.9) is achieved corresponds to an optimal vaccina-

tion rate rτ , and

τ ∗ = min{t ≥ 0 : u(S(t), I (t)) = ur0(S(t), I (t))} (1.10)

is a minimizing time.

Remark 1.5. In (1.9), r0 is the switching time (1.3) with τ = 0.
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Equation (1.9) also implies u is a viscosity solution of

max{³xy∂xu + (´ − ³x)y∂yu − 1, u − ur0} = 0 (1.11)

in (0, ∞) × (μ, ∞). Finding a solution of this PDE is sometimes called a “free boundary” prob-

lem as if we happened to know the region

S := {(x, y) ∈ (0,∞) × (μ,∞) : u(x, y) = ur0(x, y)},

we could solve the PDE

³xy∂xu + (´ − ³x)y∂yu = 1

in the complement of S subject to the boundary condition u = ur0 in order to obtain u. In 

addition, we can use this set to express τ ∗ defined in (1.10) as the first time t for which 

(S(t), I (t)) ∈ S .

Finally, we will employ the value function u to verify the necessary conditions which follow 

from Pontryagin’s maximum principle.

Theorem 1.6. Let x > 0 and y > μ and choose r ∈A such that

u := u(x, y) = ur(x, y).

Define

P(t) = ∂xu
r(Sr (t), I r(t)) and Q(t) = ∂yu

r(Sr(t), I r (t))

for t ∈ [0, u]. Then P, Q satisfy the necessary conditions (i) − (vi).

As hinted at above, the paper by Bolzoni, Bonacini, Soresina, and Groppi [6] was a major 

inspiration of this work. However, we would also like to emphasize that we gained perspective 

and learned techniques for time-optimal control by studying the notes of Evans [11] and the 

monographs by Bardi and Capuzzo-Dolcetta [2], Fleming and Soner [13], Fleming and Rishel 

[12], and Cesari [7]. We would also like to point out that there have been several recent papers 

[4–6,15–17,19] which consider control problems involving compartmental models. We hope that 

our work adds in a positive way to this trend.

This paper is organized as follows. In section 2, we will study the controlled SIR system (1.2)

and verify the existence of an optimal vaccination rate for any given initial conditions. Then in 

sections 3 and 4, we will show u is the unique viscosity solution of the HJB equation (1.5) which 

satisfies conditions (1.6), (1.7), and (1.8). Next, we’ll study the differentiability of u and prove 

Theorem 1.3 in section 5. In section 6, we derive formula (1.9) and consider the PDE (1.11). 

Finally in section 7, we will prove Theorem 1.6.
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2. Existence of an optimal control

In this preliminary section, we will explain that there always is a solution of the controlled 

SIR system (1.2) and derive several properties of solutions. In particular, we will show solutions 

depend continuously on their initial conditions and on the control. We will use this continuity to 

show that an optimal vaccination rate exists for our eradication time problem.

Lemma 2.1. For any x, y ≥ 0 and r ∈A, there is a unique solution

S, I : [0,∞) → R

of the controlled SIR equations (1.2) with S(0) = x and I (0) = y. Moreover, S, I , and İ are 

Lipschitz continuous.

Proof. By Caratheodory’s Theorem (Theorem 5.1 in section I.5 of [14]), there is an absolutely 

continuous local solution S, I : [0, T ) → R. We also set

R(t) := ´

t
�

0

I (τ )dτ, t ∈ [0, T ),

so

S(t) + I (t) + R(t) = S(0) + I (0) + R(0) = x + y

for t ∈ [0, T ). In view of (1.2),

S(t) = xe

−
t

�

0

³I (τ) + r(τ )dτ

and I (t) = ye

t
�

0

(³S(τ) − ´ )dτ

.

Thus, S(t), I (t) ≥ 0 for t ∈ [0, T ). It follows that

0 ≤ S(t), I (t) ≤ x + y, t ∈ [0, T ).

It is then possible to continue this solution to all of [0, ∞) (Theorem 5.2 in section I.5 of [14]). 

Given that S(t), I (t) are bounded, it is also not hard to check that this solution is unique.

Note that

0 ≥ Ṡ(t) ≥ −³(x + y)2 − (x + y)

for almost every t ≥ 0. Thus, S is Lipschitz continuous. We also note

|İ (t)| ≤ ³(x + y)2 + ´ (x + y)

for all t ≥ 0, so I is Lipschitz continuous. Differentiating the second equation in (1.2) we see 

that

220



R. Hynd, D. Ikpe and T. Pendleton Journal of Differential Equations 303 (2021) 214–252

Ï (t) = −³(³I (t) + r(t))S(t)I (t) + (³S(t) − ´ )2I (t)

for almost every t ≥ 0. Thus,

|Ï (t)| ≤ ³(³(x + y) + 1)(x + y)2 + 2(³2(x + y)2 + ´ 2)(x + y)

for almost every t ≥ 0. It follows that İ is also Lipschitz continuous. �

Lemma 2.2. Suppose S, I is a solution of (1.2) with S(0) ≥ 0 and I (0) > 0 for some r ∈ A. Then 

the limit

lim
t→∞

S(t) ∈
�

0,
´

³

�

exists and

lim
t→∞

I (t) = 0.

Proof. From the proof of the previous lemma, we have

´

∞
�

0

I (τ )dτ ≤ S(0) + I (0).

It follows that there is a sequence of times tk � ∞ such that limk→∞ I (tk) = 0. Also note that

I (t) = I (0) + ³

t
�

0

S(τ)I (τ )dτ − ´

t
�

0

I (τ )dτ (2.1)

for all t ≥ 0. Choosing t = tk → ∞ and sending k → ∞ gives

0 = I (0) + ³

∞
�

0

S(τ)I (τ )dτ − ´

∞
�

0

I (τ )dτ.

Now we can send t → ∞ in (2.1) to get

lim
t→∞

I (t) = I (0) + ³

∞
�

0

S(τ)I (τ )dτ − ´

∞
�

0

I (τ )dτ = 0.

Suppose S(0) > 0 or else S(t) = 0 for all t ≥ 0. For S(0) > 0, S is decreasing and positive, 

thus limt→∞ S(t) exists. It follows that if ³S(0) ≤ ´ , then

³ lim
t→∞

S(t) < ´. (2.2)
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Otherwise, I is initially increasing and must have a critical point at a time t0 > 0 with ³S(t0) = ´ . 

As S is decreasing, (2.2) holds in this case, as well. �

We emphasize that since S is decreasing, I can have at most one critical point. We’ll also 

record one more fact which essentially follows from the proof above.

Corollary 2.3. Let r ∈ A and suppose S, I is the corresponding solution of (1.2) which satisfies 

S(0) = x > 0 and I (0) = y > μ. Then

³S(u) < ´

where u = inf{t > 0 : I (t) = μ}.

Proof. As S is decreasing and u > 0, ³x ≤ ´ implies

³S(u) − ´ < ³x − ´ ≤ 0.

If ³x > ´ , I will initially increase. Let t > 0 be the maximum time for I . At this time ³S(t) = ´

and I (t) > μ. It follows that t < u and

³S(u) − ´ < ³S(t) − ´ = 0. �

We recall that a sequence (rk)k∈N ⊂ L∞([0, ∞)) converges weak* to r if

lim
k→∞

∞
�

0

g(t)rk(t)dt =
∞

�

0

g(t)r(t)dt

for each g ∈ L1([0, ∞)). Moreover, any sequence (rk)k∈N ⊂ L∞([0, ∞)) with

sup
k∈N

�rk�L∞([0,∞)) < ∞

has a subsequence which converges weak*. In particular, the control set A is weak* compact. 

We can use this notion to show solutions of (1.2) depend continuously on r and their initial 

conditions.

Proposition 2.4. Suppose xk , yk ≥ 0, rk ∈ A for each k ∈ N , and

⎧

⎪

«

⎪

¬

xk → x∞

yk → y∞

rk → r∞ weak*

as k → ∞. If Sk, I k is the solution of (1.2) with r = rk , Sk(0) = xk , and I k(0) = yk , then

�

Sk(t) → S∞(t)

I k(t) → I∞(t)
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uniformly for t belonging to bounded subintervals of [0, ∞). Here S∞, I∞ is the solution of 

(1.2) with r = r∞, S∞(0) = x∞, and I∞(0) = y∞.

Proof. We showed in Lemma 2.1 that

0 ≤ Sk(t), I k(t) ≤ xk + yk, t ≥ 0

and

⎧

⎪

«

⎪

¬

|Ṡk(t)| ≤ ³(xk + yk)2 + (xk + yk)

|İ k(t)| ≤ ³(xk + yk)2 + ´ (xk + yk)

for almost every t ≥ 0. As xk and yk are convergent, the sequences (Sk)k∈N and (I k)k∈N of 

continuous functions are both uniformly bounded and uniformly equicontinuous. The Arzelà-

Ascoli Theorem implies that there are locally uniformly convergent sequences (Skj )j∈N and 

(I kj )j∈N . Let us write S, I : [0, ∞) → ∞ for their respective limits.

Clearly S(0) = x and I (0) = y. By Lemma 2.1, it suffices to show S, I satisfy (1.2) with 

r = r∞. To this end, we note that Sk and I k satisfy

Sk(t) = xk − ³

t
�

0

Sk(τ )I k(τ )dτ −
t

�

0

rk(τ )Sk(τ )dτ

and

I k(t) = yk + ³

t
�

0

Sk(τ )I k(τ )dτ − ´

t
�

0

I k(τ )dτ

for each t ≥ 0. Employing the weak* convergence of rk and the local uniform convergence of 

(Skj )j∈N and (I kj )j∈N , we can let k = kj → ∞ in the two identities above to conclude

S(t) = x − ³

t
�

0

S(τ)I (τ )dτ −
t

�

0

r∞(τ )S(τ )dτ

and

I (t) = y + ³

t
�

0

S(τ)I (τ )dτ − ´

t
�

0

I (τ )dτ

for each t ≥ 0. That is, S = S∞ and I = I∞. �
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Let us fix a threshold

μ > 0

and a pair of initial conditions

x ≥ 0 and y ≥ μ.

For a given r ∈ A, we will denote Sr , I r denote the solution of the (1.2) which satisfies Sr(0) = x

and I r(0) = y. We define

ur := inf{t > 0 : I r(t) = μ}

and now argue that a minimizing vaccination rate r ∈A exists.

Theorem 2.5. There is r∗ ∈A such that

ur∗ ≤ ur (2.3)

for all r ∈ A.

Proof. Choose a minimizing sequence (rk)k∈N ⊂ A

inf
r∈A

ur = lim
k→∞

urk

.

Without any loss of generality we may assume that rk → r∞ weak* to some r∞ as this occurs for 

a subsequence. Let Sk, I k denote the solution of (1.2) with r = rk , Sk(0) = x, and I k(0) = y. By 

Proposition 2.4, Sk and I k converge locally uniformly to S∞ and I∞, respectively, the solution 

of (1.2) with r = r∞, S∞(0) = x, and I∞(0) = y.

Therefore, we can send k → ∞ in I k(urk
) = μ to get

I∞
�

inf
r∈A

ur

�

= μ.

That is,

ur∞ ≤ inf
r∈A

ur . �

We’ll call any r∗ ∈ A satisfying (2.3) an optimal vaccination rate (for the SIR eradication 

time problem) with initial conditions S(0) = x ≥ 0 and I (0) = y ≥ μ. In the sections that follow, 

we will develop methods to characterize such rates.
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3. The HJB equation

We will now consider our time optimal control problem for varying initial conditions. To this 

end, we will employ the value function

u(x, y) = min
r∈A

ur(x, y)

discussed in the introduction. Here ur(x, y) = inf{t > 0 : I r(t) = μ} is the eradication time cor-

responding to a given vaccination rate r ∈ A, and Sr and I r satisfy (1.2) with Sr(0) = x ≥ 0 and 

I r(0) = y ≥ μ. In this section, we will show that u is a continuous viscosity solution of the HJB 

equation (1.5).

Our first task will be to establish that u is continuous on [0, ∞) × [μ, ∞). To this end, we’ll 

start by showing that ur is locally bounded uniformly in r ∈ A.

Lemma 3.1. Let r ∈A. Then

0 ≤ ur(x, y) ≤ x + y

μ´
(3.1)

for x ≥ 0 and y ≥ μ.

Proof. Set

w(x,y) = x + y

μ´

and note ³xy∂xw + (´ − ³x)y∂yw = y/μ. As a result,

d

dt
w(Sr(t), I r (t))

= ∂xw(Sr(s), I r (s))(−³Sr (t)I r(t) − r(t)Sr (t)) + ∂yw(Sr(t), I r (t))(³Sr (t)I r (t) − ´ I r(t))

= − 1

μ´
r(t)Sr (t) − 1

μ
I r (t)

≤ − 1

μ
I r(t)

≤ −1

for t ∈ [0, ur (x, y)]. Integrating from 0 to t = ur(x, y) gives

w(Sr(ur(x, y)), I r (ur(x, y))) − w(x,y) ≤ −ur(x, y).

And as w is nonnegative, w(x, y) ≥ ur(x, y). �
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Corollary 3.2. Suppose xk ≥ 0, yk ≥ μ and rk ∈ A for each k ∈ N , and

⎧

⎪

«

⎪

¬

xk → x

yk → y

rk → r weak*

as k → ∞. Then

lim
k→∞

urk

(xk, yk) = ur(x, y). (3.2)

Proof. Suppose Srk
, I rk

is the solution of (1.2) with Srk
(0) = xk and I rk

(0) = yk . By Proposi-

tion 2.4, Srk
, I rk

converge locally uniformly to Sr , I r as k → ∞. In view of the previous lemma, 

urk
(xrk

, yrk
) is a bounded sequence; so there is a convergent subsequence ur

kj
(xr

kj
, yr

kj
) for 

which

t := lim inf
k→∞

urk

(xrk

, yrk

) = lim
j→∞

ur
kj

(xr
kj

, yr
kj

).

As I rk
(urk

(xrk
, yrk

)) = μ for each k ∈ N ,

I r(t) = lim
j→∞

I r
kj

(ur
kj

(xr
kj

, yr
kj

)) = μ.

By the definition of ur(x, y),

ur(x, y) ≤ t = lim inf
k→∞

urk

(xrk

, yrk

).

We can also select a convergent subsequence urk�
(xrk�

, yrk�
) such that

s := lim sup
k→∞

urk

(xrk

, yrk

) = lim
�→∞

urk�
(xrk�

, yrk�
).

As above, we find I r(s) = μ. If y > μ or if 0 ≤ x ≤ ´ /³ and y = μ, then the only solution 

of I r(τ ) = μ is τ = ur(x, y). In particular, s = ur(x, y). Otherwise, if x > ´/³ and y = μ, 

I r(τ ) = 0 has two solutions τ = 0 and τ = ur(x, y). Thus, s ≤ ur(x, y) with either possibility. 

It follows that

s = lim sup
k→∞

urk

(xrk

, yrk

) ≤ ur(x, y).

We conclude (3.2). �

Note the limit (3.2) implies ur is continuous on [0, ∞) × [μ, ∞) for each r ∈ A. The value 

function u also inherits this continuity.

Proposition 3.3. The value function u is continuous at (x, y) ∈ [0, ∞) × [μ, ∞).
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Proof. Suppose xk ≥ 0, yk ≥ μ, and xk → x, yk → y as k → ∞, and select rk ∈ A for which

u(xk, yk) = urk

(xk, yk) (3.3)

(k ∈ N). We may select an increasing sequence of positive integers k = kj → ∞ such that

lim inf
k→∞

u(xk, yk) = lim
j→∞

ur
kj

(xkj , ykj )

and for which rkj converges weak∗ to some r∗ ∈A. Using (3.2) gives

lim inf
k→∞

u(xk, yk) = lim
j→∞

ur
kj

(xkj , ykj ) = ur∗
(x, y) ≥ u(x, y).

By (3.3), we also have u(xk, yk) ≤ ur(xk, yk) for all k ∈ N and each r ∈A. Using (3.2) again 

gives

lim sup
k→∞

u(xk, yk) ≤ ur(x, y).

Since r ∈ A is arbitrary, lim supk→∞ u(xk, yk) ≤ u(x, y). That is,

lim sup
k→∞

u(xk, yk) = u(x, y) = lim inf
k→∞

u(xk, yk).

It follows that u is continuous at (x, y). �

Next, we will establish dynamic programming and then use this property to verify that u is 

a viscosity solution of the HJB equation (1.5). We note that these types of results have been 

considered more generally elsewhere. An excellent reference for dynamic programming in time 

optimal control is Chapter IV of the monograph by Bardi and Capuzzo-Dolcetta [2]. In addition 

to [2], another standard reference for viscosity solutions is the monograph by Fleming and Soner 

[13].

Proposition 3.4. Let x ≥ 0 and y ≥ μ. If t ∈ [0, u(x, y)],

u(x, y) = min
r∈A

{t + u(Sr(t), I r (t))}. (3.4)

The minimum is attained by any r ∈A such that u(x, y) = ur(x, y); and for any such r ,

u(Sr(t), I r (t)) = ur(Sr(t), I r (t)).

Proof. We note that 0 ≤ t ≤ ur(x, y) for r ∈ A and

ur(x, y) = t + ur(Sr (t), I r(t)).

For any r∗ ∈ A such that u(x, y) = ur∗
(x, y),
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u(x, y) = t + ur∗
(Sr∗

(t), I r∗
(t)) ≥ t + u(Sr∗

(t), I r∗
(t)) ≥ inf

r∈A
{t + u(Sr(t), I r (t))}. (3.5)

To derive the opposite inequality, we fix r ∈A and choose r∗ ∈ A such that

u(Sr (t), I r(t)) = ur∗
(Sr(t), I r (t)). (3.6)

Let us also define

r(s) =
�

r(s), 0 ≤ s ≤ t

r∗(s − t), t ≤ s < ∞.
(3.7)

We claim that

ur(Sr(t), I r (t)) = ur∗
(Sr(t), I r (t)). (3.8)

In particular, this common number is the first time s = s∗ the solution of

�

Ẋ(s) = −³X(s)Y (s) − r∗(s − t)X(s)

Ẏ (s) = ³X(s)Y (s) − ´ Y (s)
(s > t)

with X(t) = Sr(t), Y(t) = I r(t) ≥ μ satisfies Y(s) = μ. That ur(Sr (t), I r(t)) = s∗ follows from 

(3.7); note in particular that Sr(s) = X(s) and I r(s) = Y(s) for s ≥ t . The right hand side of 

(3.8) also equals s∗ once we note S(τ) = X(τ + t) and I (τ ) = Y(τ + t) solve (1.2) with r∗ and 

satisfy S(0) = Sr(t) and I (0) = I r(t).

By (3.6) and (3.8),

u(x, y) ≤ ur(x, y)

= t + ur(Sr(t), I r (t))

= t + ur∗
(Sr (t), I r(t))

= t + u(Sr(t), I r (t)).

That is,

u(x, y) ≤ inf
r∈A

{t + u(Sr (t), I r(t))}.

In view of (3.5), equality holds in this inequality; the infimum is achieved for any r∗ ∈ A such 

that u(x, y) = ur∗
(x, y), and we also note ur∗

(Sr∗
(t), I r∗

(t)) = u(Sr∗
(t), I r∗

(t)). �

A corollary of dynamic programming is that the value function u is a viscosity solution of 

(1.5)

³xy∂xu + x(∂xu)+ + (´ − ³x)y∂yu = 1

in (0, ∞) × (μ, ∞).
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Corollary 3.5. The value function u is a viscosity solution of the HJB equation (1.5).

Proof. Fix x0 > 0 and y0 > μ and suppose that u −ϕ has a local maximum at (x0, y0); here ϕ is 

a continuously differentiable function defined on a neighborhood of (x0, y0). We further assume 

a ∈ [0, 1], r(t) = a for all t ≥ 0, and Sr and I r is the solution of (1.2) with Sr(0) = x0 and 

I r(0) = y0. It follows that

(u − ϕ)(Sr (t), I r(t)) ≤ (u − ϕ)(x0, y0)

for all t ≥ 0 small. By dynamic programming u(x0, y0) ≤ t + u(Sr (t), I r(t)) for t ≥ 0. As a 

result,

−t ≤ u(Sr(t), I r (t)) − u(x0, y0) ≤ ϕ(Sr(t), I r(t)) − ϕ(x0, y0)

for all t ≥ 0 small. In particular,

−1 ≤ d

dt
ϕ(Sr(t), I r (t))

�

�

�

�

t=0

= −(³x0y0 + ax0)∂xϕ(x0, y0) − (´ − ³x0)y0∂yϕ(x0, y0).

Rearranging this inequality gives

³x0y0∂xϕ(x0, y0) + x0a∂xϕ(x0, y0) + (´ − ³x0)y0∂yϕ(x0, y0) ≤ 1.

And taking the supremum over all a ∈ [0, 1] we find

³x0y0∂xϕ(x0, y0) + x0(∂xϕ(x0, y0))
+ + (´ − ³x0)y0∂yϕ(x0, y0) ≤ 1.

Conversely, suppose u − ψ has a local minimum at (x0, y0) and r∗ ∈A such that u(x0, y0) =
ur∗

(x0, y0). Here ψ is a continuously differentiable function defined on a neighborhood of 

(x0, y0). By Proposition 3.4,

u(x0, y0) = t + u(Sr∗
(t), I r∗

(t))

for all small t > 0, where Sr∗
and I r∗

is the solution of (1.2) with Sr∗
(0) = x0 and I r∗

(0) = y0. 

Consequently,

−t = u(Sr∗
(t), I r∗

(t)) − u(x0, y0) ≥ ψ(Sr∗
(t), I r∗

(t)) − ψ(x0, y0)

for all small t > 0. As 0 ≤ r∗ ≤ 1,

−1 ≥ 1

t
(ψ(Sr∗

(t), I r∗
(s)) − ψ(Sr∗

(0), I r∗
(s)))

= 1

t

t
�

0

d

ds
ψ(Sr∗

(s), I r∗
(s))ds
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= 1

t

t
�

0

∂xψ(Sr∗
(s), I r∗

(s))(−³Sr∗
(s)I r∗

(s) − r∗(s)Sr∗
(s))+

∂yψ(Sr∗
(s), I r∗

(s))(³Sr∗
(s)I r∗

(s) − ´ I r∗
(s))ds

≥ 1

t

t
�

0

�

−³Sr∗
(s)I r∗

(s)∂xψ(Sr∗
(s), I r∗

(s)) − Sr∗
(s)∂xψ(Sr∗

(s), I r∗
(s))++

(³Sr∗
(s)I r∗

(s) − ´ I r∗
(s))∂yψ(Sr∗

(s), I r∗
(s))

�

ds.

Sending t → 0+ gives

−1 ≥ −³x0y0∂xψ(x0, y0) − x0(∂xψ(x0, y0))
+ − (´ − ³x0)y0∂yψ(x0, y0).

That is

³x0y0∂xψ(x0, y0) + x0(∂xψ(x0, y0))
+ + (´ − ³x0)y0∂yψ(x0, y0) ≥ 1. �

We will now establish (1.8) which asserts

lim
x+y→∞

u(x, y) = ∞.

This will be a direct consequence of the following lemma.

Lemma 3.6. For each x ≥ 0 and y ≥ μ,

u(x, y) ≥ ln(x + y) − ln(´ /³ + μ)

max{´,1} .

Proof. Set

w(x,y) = ln(x + y) − ln(´ /³ + μ)

max{´,1} .

Observe

³xy∂xw + x(∂xw)+ + (´ − ³x)y∂yw = 1

max{´,1}
x + ´y

x + y
≤ 1

and

w(x,μ) ≤ 0 for 0 ≤ x ≤ ´ /³. (3.9)

It then follows that if r ∈ A,
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d

dt
w(Sr(t), I r (t))

= ∂xw(Sr(s), I r (s))(−³Sr (t)I r(t) − r(t)Sr (t)) + ∂yw(Sr(t), I r (t))(³Sr (t)I r (t) − ´ I r(t))

≥ −³Sr(t)I r (t)∂xw(Sr(s), I r (s)) − Sr(t)∂xw(Sr(t), I r(t))+

− (´ − ³Sr(t))I r (t)∂yw(Sr(t), I r (t))

≥ −1

for almost every t ≥ 0. Integrating from t = 0 to t = ur(x, y) gives

w(Sr(ur(x, y)), I r (ur(x, y))) − w(x,y) ≥ −ur(x, y).

As I r(ur(x, y)) = μ, we can apply (3.9) to find w(x, y) ≤ ur(x, y). Since r ∈ A is arbitrary, 

w(x, y) ≤ u(x, y). �

4. Uniqueness

In this section, we will argue that the value function u is the unique continuous viscosity so-

lution of the HJB equation (1.5) in (0, ∞) × (μ, ∞) which satisfies conditions (1.6), (1.7), and 

(1.8); recall that this is the statement of Theorem 1.2. To this end, we will adapt the technique 

used to prove Theorem 2.6 in Chapter IV section 2 of [2], which is in turn based upon reference 

[1]. Theorem 2.6 in Chapter IV section 2 of [2] is a general result on the comparison of vis-

cosity sub- and supersolutions to HJB equations arising in time optimal control. In this general 

setting, the domain of the time function is the collection of all points for which the associated 

control ODE has a solution which arrives at a given target in a finite time. The main idea is to 

change variables so that the corresponding HJB equation is proper. In our framework, this can be 

accomplished by setting

v := e−u.

In particular, we note that v is a positive, continuous viscosity solution of

v + ³xy∂xv − x(∂xv)− + (´ − ³x)y∂yv = 0 (4.1)

in (0, ∞) × (μ, ∞). In view of (1.6), (1.7), and (1.8), v additionally satisfies

v(x,μ) = 1 (4.2)

for 0 ≤ x ≤ ´ /³ ,

v(0, y) =
�

y

μ

�−1/´

(4.3)

for y ≥ μ, and

v is bounded from above. (4.4)
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As a result, in order to conclude Theorem 1.2, it suffices to prove the following claim.

Proposition 4.1. Assume v1, v2 : [0, ∞) × [μ, ∞) → (0, ∞) are continuous viscosity solutions 

of (4.1) in (0, ∞) × (μ, ∞) which satisfy (4.2), (4.3), and (4.4). Then v1 ≡ v2.

We will verify uniqueness by employing the celebrated “doubling the variables” argument 

of Crandall and Lions [9]. Before carrying out these details, we will show how to deduce 

uniqueness under the additional assumption that v1 and v2 are continuously differentiable in 

(0, ∞) × (μ, ∞). This will motivate the subsequent viscosity solutions argument.

Proof of Proposition 4.1 assuming v1, v2 are continuously differentiable. Choose g : [0, ∞)

→ [0, ∞) to be any smooth, nondecreasing function which vanishes on [0, ́ /³] and is positive 

on (´ /³, ∞). Next set

w(x,y) :=

⎧

«

¬

x + y + g(x)

y − μ
, x ≥ 0, y > μ

x + y, 0 ≤ x ≤ ´ /³, y = μ.

Note that

w + ³xy∂xw + (´ − ³x)y∂yw = x + y + ´y + g(x) + ³xyg"(x)

y − μ
+ ³y

(x − ´ /³)g(x)

(y − μ)2

is a positive function in (0, ∞) × (μ, ∞); this is due to our assumptions that g(x), g"(x), and 

(x − ´ /³)g(x) are all nonnegative. We conclude

w + ³xy∂xw + (´ − ³x)y∂yw ≥ 0 (4.5)

in (0, ∞) × (μ, ∞).

Let us consider the quantity

m := sup
�

v1(x, y) − v2(x, y) − �w(x, y) : x ≥ 0, y > μ
�

(4.6)

for a given � > 0. We claim that

m ≤ 0. (4.7)

This would in turn imply that v1 ≤ v2 + �w for all � > 0, and therefore v1 ≤ v2. Likewise, we 

would have v2 ≤ v1. Consequently, we will focus on verifying inequality (4.7).

To this end, we note that since v1 is bounded from above and that v2 and w are positive, m is 

finite. And as

lim
x+y→∞

y>μ

w(x,y) = ∞ (4.8)

and
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lim
(x,y)→(x0,μ)

y>μ

w(x,y) = ∞ (4.9)

for each x0 > ´/³ , there is (x̂, ŷ) ∈ [0, ∞) × [μ, ∞) for which

m = v1(x̂, ŷ) − v2(x̂, ŷ) − �w(x̂, ŷ).

In particular, if ŷ = μ then x̂ ∈ [0, ́ /³]. In this case, v1(x̂, ŷ) = v2(x̂, ŷ) by (4.2) so (4.7) holds. 

Using (4.3), we can similarly conclude that (4.7) holds if x̂ = 0.

Now suppose that x̂ > 0 and ŷ > μ. Our hypothesis that v1 and v2 are continuously differen-

tiable gives

⎧

⎪

«

⎪

¬

0 = ∂xv
1(x̂, ŷ) − ∂xv

2(x̂, ŷ) − �∂xw(x̂, ŷ)

0 = ∂yv
1(x̂, ŷ) − ∂yv

2(x̂, ŷ) − �∂yw(x̂, ŷ).

In particular, we note that since ∂xw(x̂, ŷ) ≥ 0

(∂xv
1(x̂, ŷ))− = max{−∂xv

1(x̂, ŷ),0}

= max{−∂xv
2(x̂, ŷ) − �∂xw(x̂, ŷ),0}

≤ max{−∂xv
2(x̂, ŷ),0}

= (∂xv
2(x̂, ŷ))−.

Since v1 and v2 are solutions of (4.1) and w satisfies (4.5),

m = v1(x̂, ŷ) − v2(x̂, ŷ) − �w(x̂, ŷ)

= −³x̂ŷ∂xv
1(x̂, ŷ) + x̂(v1(x̂, ŷ))− − (´ − ³x̂)ŷv1(x̂, ŷ)

+ ³x̂ŷ∂xv
2(x̂, ŷ) − x̂(v2(x̂, ŷ))− + (´ − ³x̂)ŷv2(x̂, ŷ) − �w(x̂, ŷ)

= −³x̂ŷ(∂xv
1(x̂, ŷ) − ∂xv

2(x̂, ŷ))

− (´ − ³x̂)ŷ(∂yv
1(x̂, ŷ) − ∂yv

2(x̂, ŷ))

+ x̂[(∂xv
1(x̂, ŷ))− − (∂xv

2(x̂, ŷ))−] − �w(x̂, ŷ)

= −�
�

w(x̂, ŷ) + ³x̂ŷ∂xw(x̂, ŷ) + (´ − ³x̂)ŷ∂yw(x̂, ŷ)
�

+ x̂[(∂xv
1(x̂, ŷ))− − (∂xv

2(x̂, ŷ))−]

≤ 0.

Therefore, we conclude that (4.7) holds in all cases. �

Now we will issue a proof of Proposition 4.1 without assuming v1, v2 are continuously dif-

ferentiable. Again we emphasize that this proposition and Corollary 3.5 imply Theorem 1.2.
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Proof of Proposition 4.1. 1. We will fix � > 0 and use the same notation as in the proof of this 

assertion in the special case that v1, v2 are continuously differentiable. In particular, our goal is 

to show that m defined in (4.6) is nonpositive. Accordingly, we set

mα : = sup

�

v1(x1, y1) − v2(x2, y2) − �

2
(w(x1, y1) + w(x2, y2))

− 1

2α
((x1 − x2)

2 + (y1 − y2)
2) : x1, x2 ≥ 0, y1, y2 > μ

�

for α > 0. It is not hard to see that

−∞ < m ≤ mα ≤ supv1 < ∞

for each α > 0.

In addition, note that for any pairs (x1, y1), (x2, y2) ∈ [0, ∞) × (μ, ∞)

v1(x1, y1) − v2(x2, y2) − �

2
(w(x1, y1) + w(x2, y2)) − 1

2α
((x1 − x2)

2 + (y1 − y2)
2)

≤ supv1 − �

2
(w(x1, y1) + w(x2, y2)).

This inequality combined with (4.8) and (4.9) implies the existence of (xα
1 , yα

1 ), (xα
2 , yα

2 ) ∈
[0, ∞) × [μ, ∞) such that

mα = v1(xα
1 , yα

1 ) − v2(xα
2 , yα

2 ) − �

2
(w(xα

1 , yα
1 ) + w(xα

2 , yα
2 )) − 1

2α
((xα

1 − xα
2 )2 + (yα

1 − yα
2 )2)

(4.10)

and

sup
α>0

(xα
1 + yα

1 + xα
2 + yα

2 ) < ∞. (4.11)

Furthermore, if yα
1 = μ, then xα

1 ∈ [0, ́ /³]; and if yα
2 = μ, then xα

2 ∈ [0, ́ /³]. Proposition 3.7 

of [8] also implies

lim
α→0+

1

2α
((xα

1 − xα
2 )2 + (yα

1 − yα
2 )2) = 0 (4.12)

and

lim
α→0+

mα = m.

2. In view of (4.11), we may select a sequence of positive numbers αk tending to 0 as k → ∞
so that

x̂ := lim
k→∞

x
αk

1 = lim
k→∞

x
αk

2
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and

ŷ := lim
k→∞

y
αk

1 = lim
k→∞

y
αk

2 .

If x̂ = 0, then

m = lim
k→∞

mαk
= v1(0, ŷ) − v2(0, ŷ) − �w(0, ŷ) ≤ 0

by (4.3). Likewise, if ŷ = μ

m = lim
k→∞

mαk

= lim
k→∞

�

v1(x
αk

1 , y
αk

1 ) − v2(x
αk

2 , y
αk

2 ) − �

2
(w(x

αk

1 , y
αk

1 ) + w(x
αk

2 , y
αk

2 ))

− 1

2αk

((x
αk

1 − x
αk

2 )2 + (y
αk

1 − y
αk

2 )2)

�

= v1(x̂,μ) − v2(x̂,μ) − �

2
lim

k→∞
(w(x

αk

1 , y
αk

1 ) + w(x
αk

2 , y
αk

2 )).

As (w(x
αk

1 , y
αk

1 ))k∈N and (w(x
αk

1 , y
αk

1 ))k∈N are bounded from above, it must be that 0 ≤ x̂ ≤
´ /³ . This in turn implies

m ≤ v1(x̂,μ) − v2(x̂,μ) = 0

by (4.2).

3. Alternatively, (x̂, ŷ) ∈ (0, ∞) × (μ, ∞). In this case, (x
αk

1 , y
αk

1 ), (x
αk

2 , y
αk

2 ) ∈ (0, ∞) ×
(μ, ∞) for all sufficiently large k ∈ N . In view of (4.10), the function of (x1, y1)

v1(x1, y1) −
�

v2(x
αk

2 , y
αk

2 ) + �

2
(w(x1, y1) + w(x

αk

2 , y
αk

2 )) + 1

2αk

((x1 − x
αk

2 )2 + (y1 − y
αk

2 )2)

�

has a maximum at (x
αk

1 , y
αk

1 ). Since v1 is a viscosity solution of (4.1),

v1(x
αk

1 , y
αk

1 ) + ³x
αk

1 y
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�

(4.13)

− x
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−

+ (´ − ³x
αk

1 )y
αk

1

�

�

2
∂yw(x

αk

1 , y
αk

1 ) +
y

αk

1 − y
αk

2

αk

�

≤ 0.

Likewise the function of (x2, y2)

v2(x2, y2) −
�

v1(x
αk

1 , y
αk

1 ) − �

2
(w(x

αk

1 , y
αk

1 ) + w(x2, y2)) − 1

2αk

((x2 − x
αk

1 )2 + (y2 − y
αk

1 )2)

�
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has a minimum at (x
αk

2 , y
αk

2 ). As v2 is a viscosity solution of (4.1),

v2(x
αk

2 , y
αk

2 ) + ³x
αk

2 y
αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�

(4.14)

− x
αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−

+ (´ − ³x
αk

2 )y
αk

2

�

−�

2
∂yw(x

αk

2 , y
αk

2 ) −
y

αk

2 − y
αk

1

αk

�

≥ 0.

We can then combine (4.13) and (4.14) to get

mαk
≤ v1(x

αk

1 , y
αk

1 ) − v2(x
αk

2 , y
αk

2 ) − �

2
(w(x

αk

1 , y
αk

1 ) + w(x
αk

2 , y
αk

2 )) (4.15)

≤ ³x
αk

2 y
αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�

− ³x
αk

1 y
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�

+ x
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
− x

αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−

+ (´ − ³x
αk

2 )y
αk

2

�

−�

2
∂yw(x

αk

2 , y
αk

2 ) −
y

αk

2 − y
αk

1

αk

�

− (´ − ³x
αk

1 )y
αk

1

�

�

2
∂yw(x

αk

1 , y
αk

1 ) +
y

αk

1 − y
αk

2

αk

�

− �

2
(w(x

αk

1 , y
αk

1 ) + w(x
αk

2 , y
αk

2 )).

4. We will now proceed to estimate some of the terms on the right hand side of (4.15). First, 

observe

− ³x
αk

2 y
αk

2 ·
x

αk

2 − x
αk

1

αk

− ³x
αk

1 y
αk

1 ·
x

αk

1 − x
αk

2

αk

(4.16)

= ³
x

αk

1 − x
αk

2

αk

�

x
αk

2 y
αk

2 − x
αk

1 y
αk

1

�

= ³
x

αk

1 − x
αk

2

αk

�

x
αk

2 y
αk

2 − x
αk

1 y
αk

2 + x
αk

1 y
αk

2 − x
αk

1 y
αk

1

�

= −³
(x

αk

2 − x
αk

1 )2

αk

y
αk

2 + ³
x

αk

1 − x
αk

2√
αk

y
αk

2 − y
αk

1√
αk

x
αk

1

= o(1)

as k → ∞ by (4.12). Similarly,

− (´ − ³x
αk

2 )y
αk

2

y
αk

2 − y
αk

1

αk

− (´ − ³x
αk

1 )y
αk

1

y
αk

1 − y
αk

2

αk

(4.17)

=
y

αk

1 − y
αk

2

αk

�

(´ − ³x
αk

2 )y
αk

2 − (´ − ³x
αk

1 )y
αk

1

�
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= −´
(y

αk

1 − y
αk

2 )2

αk

+ ³
y

αk

1 − y
αk

2

αk

�

x
αk

1 y
αk

1 − x
αk

2 y
αk

2

�

= −(´ − ³x
αk

1 )
(y

αk

1 − y
αk

2 )2

αk

+ ³y
αk

2

x
αk

1 − x
αk

2√
αk

y
αk

1 − y
αk

2√
αk

= o(1)

as k → ∞.

Also notice

x
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
− x

αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−

= (x
αk

1 − x
αk

2 )

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
+

x
αk

2

�

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
−

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−�

= o(1) + x
αk

2

�

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
−

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−�

as k → ∞. Employing the elementary inequality

a− − b− ≤ (a − b)− (a, b ∈ R),

we then find

x
αk

1

�

�

2
∂xw(x

αk

1 , y
αk

1 ) +
x

αk

1 − x
αk

2

αk

�−
− x

αk

2

�

−�

2
∂xw(x

αk

2 , y
αk

2 ) −
x

αk

2 − x
αk

1

αk

�−
(4.18)

≤ o(1) + x
αk

2

��

2

�

∂xw(x
αk

1 , y
αk

1 ) + ∂xw(x
αk

2 , y
αk

2 )
�

�−

≤ o(1)

as k → ∞. Here we used ∂xw ≥ 0.

In view of (4.16), (4.17), and (4.18), we can send k → ∞ in (4.15) to get

m ≤ −�
�

w(x̂, ŷ) + ³x̂ŷ∂xw(x̂, ŷ) + (´ − ³x̂)ŷ∂yw(x̂, ŷ)
�

≤ 0

by (4.5). As mentioned at the start of this proof, the proposition in question follows from the 

nonpositivity of m. Therefore, we have obtained the desired conclusion. �
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5. Local semiconcavity

Let us now investigate the differentiability of the value function. We’ll argue that u is twice 

differentiable almost everywhere and its Hessian is locally bounded above. We will establish 

these properties by deriving various bounds on ur that are independent of r ∈ A. With these 

goals in mind, we will study ur and u on triangular domains

TN,δ := {(x, y) ∈ R
2 : x ≥ δ, y ≥ μ + δ, and x + y ≤ N}

for N, δ ≥ 0 which satisfy

μ + 2δ < N.

We will also employ the flow of the controlled SIR system (1.2)

�r : [0,∞) × [μ,∞) × [0,∞) → [0,∞)2; (x, y, t) �→ (�r
1(x, y, t),�r

2(x, y, t)).

Here Sr(t) = �r
1(x, y, t) and I r(t) = �r

2(x, y, t) is the solution of the controlled SIR system 

(1.2) with Sr(0) = x and I r(0) = y. We note that for any r ∈ A,

(x, y) �→ �r(x, y, t) is smooth for each t ≥ 0

by Theorem 3.3 and Exercise 3.2 of [14], and

(x, y, t) �→ �r
2(x, y, t) is continuously differentiable

by Lemma 2.1.

It also follows that (x, y, t) �→ �r(x, y, t) is smooth whenever r is smooth. Since ur satisfies 

the implicit equation

�r
2(x, y,ur(x, y)) = μ (5.1)

for each x > 0 and y > μ, we can then differentiate this equation twice to obtain bounds on the 

second derivatives of ur when r is smooth. Of course, r is in general not smooth. We will get 

around this by finding estimates which are independent of r and using the fact that r �→ ur is 

continuous.

To this end, we will employ the following assertion about solutions of linear ODEs. Since this 

claim follows from an easy application of Grönwall’s lemma, we will omit the proof.

Lemma 5.1. Suppose A(t) is a 2 ×2 matrix for each t ≥ 0 and f : [0, ∞) → R
2. If z : [0, ∞) →

R
2 solves

ż(t) = A(t)z(t) + f (t), t ≥ 0,

then
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�z(t)�2 ≤ e(2c+1)t

⎛

¿�z(0)�2 +
t

�

0

e−(2c+1)s�f (s)�2ds

À

⎠

where c ≥ maxt≥0 �A(t)�.

Remark 5.2. Here �A(t)� denotes the Frobenius norm of A(t).

We will now derive various bounds on the derivatives of �r
2 when r is smooth.

Lemma 5.3. Suppose r ∈A is smooth and N > μ. Then

(i) 0 ≤ �r
2(x, y, t) ≤ N

(ii) |∂t�
r
2(x, y, t)| ≤ ³N2 + ´N

(iii) |∂x�
r
2(x, y, t)|, |∂y�

r
2(x, y, t)| ≤ e(C+1/2)t

(iv) |∂2
t �r

2(x, y, t)| ≤ (³N2 + N)³N + (³2N2 + ´ 2)N

(v) |∂x∂t�
r
2(x, y, t)|, |∂y∂t�

r
2(x, y, t)| ≤ e(C+1/2)t (2³N + ´ )

(vi) |∂2
x�r

2(x, y, t)|, |∂2
y�r

2(x, y, t)|, |∂x∂y�
r
2(x, y, t)| ≤ 2³√

C
e(2C+1)t

for (x, y) ∈ T0,N and t ≥ 0. Here C :=
�

6³2N2 + 2´ 2 + 2.

Proof. Assertions (i), (ii) and (iv) follow from the proof of Lemma 2.1. Moreover,

0 ≤ �r
1(x, y, t) ≤ N

holds for (x, y) ∈ T0,N , as well. Differentiating (1.2) with respect to x gives

∂t

�

∂x�
r
1(x, y, t)

∂x�
r
2(x, y, t)

�

= A(t)

�

∂x�
r
1(x, y, t)

∂x�
r
2(x, y, t)

�

, (5.2)

with

A(t) =
�

−³�r
2(x, y, t) − r(t) −³�r

1(x, y, t)

³�r
2(x, y, t) ³�r

1(x, y, t) − ´

�

.

As

�A(t)�2 = (³�r
2(x, y, t) + r(t))2 + (³�r

1(x, y, t))2 + (³�r
2(x, y, t))2 + (³�r

1(x, y, t) − ´ )2

≤ 2(³2N2 + 1) + ³2N2 + ³2N2 + 2(³2N2 + ´ 2)

= 6³2N2 + 2´ 2 + 2

= C2

and �∂x�
r (x, y, 0)� = 1, the previous lemma with z(t) = ∂x�

r (x, y, t) implies
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�∂x�
r(x, y, t)� ≤ e(C+1/2)t . (5.3)

We can derive the same upper bound for �∂y�
r(x, y, t)�, so assertion (iii) follows.

The second equation in (5.2) is

∂t∂x�
r
2(x, y, t) = ³(∂x�

r
1(x, y, t)�r

2(x, y, t) + �r
1(x, y, t)∂x�

r
2(x, y, t)) − ´ ∂x�

r
2(x, y, t).

Using (i) and (5.3) leads to

|∂t∂x�
r
2(x, y, t)| ≤ e(C+1/2)t (2³N + ´ ).

This method also leads to the same bound for |∂t∂y�
r
2(x, y, t)|. This proves (v).

As for (vi), we will prove the estimate for ∂2
x�r

2(x, y, t) as the other cases can be handled 

similarly. Upon differentiating (5.2) with respect to x,

∂t

�

∂2
x�r

1(x, y, t)

∂2
x�r

2(x, y, t)

�

= A(t)

�

∂2
x�r

1(x, y, t)

∂2
x�r

2(x, y, t)

�

+ 2³

�

−∂x�
r
1(x, y, t)∂x�

r
2(x, y, t)

∂x�
r
1(x, y, t)∂x�

r
2(x, y, t)

�

.

Note that ∂2
x�r

1(x, y, 0) = ∂2
x�r

2(x, y, 0) = 0 and

�

�

�

�

2³

�

−∂x�
r
1(x, y, t)∂x�

r
2(x, y, t)

∂x�
r
1(x, y, t)∂x�

r
2(x, y, t)

��

�

�

�

2

≤ 8³2e4(C+1/2)t

by (5.3). The previous lemma then implies

|∂2
x�r

2(x, y, t)|2 ≤ e(2C+1)t8³2

t
�

0

e−(2C+1)se(4C+2)sds

≤ e(2C+1)t8³2

t
�

0

e(2C+1)sds

≤ e(2C+1)t8³2 1

2C + 1
(e(2C+1)t − 1)

≤ e(4C+2)t 4³2

C
. �

When we differentiate (5.1), it will be crucial that

∂t�
r
2(x, y, t) = (³�r

1(x, y, t) − ´ )�r
2(x, y, t) < 0

when t = ur(x, y). We’ll show that this quantity is uniformly bounded away from 0 for (x, y) ∈
TN,δ .
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Lemma 5.4. Suppose N, δ > 0 satisfy N > μ + 2δ. There is

� > 0

such that

´ − ³�r
1(x, y,ur(x, y)) ≥ � (5.4)

for each r ∈ A and (x, y) ∈ TN,δ .

Proof. If this assertion is false, for each k ∈ N there would be (xk, yk) ∈ TN,δ and rk ∈ A such 

that

´ − ³�rk

1 (xk, yk, urk

(xk, yk)) <
1

k
.

Passing to subsequences if necessary, we may suppose that (xk, yk) → (x, y) ∈ TN,δ and rk → r

weak∗ in A. According to Proposition 2.4 and (3.2),

´ − ³�r
1(x, y,ur(x, y)) ≤ 0.

However, this contradicts Lemma 2.3 as y ≥ μ + 2δ > μ. �

Corollary 5.5. For each r ∈ A, ur is continuously differentiable on (0, ∞) × (μ, ∞). Moreover, 

for each N, δ > 0 with N > μ + 2δ, there is a constant B such that

|∂xu
r(x, y)|, |∂yu

r(x, y)| ≤ B (5.5)

for (x, y) ∈ TN,δ and r ∈ A.

Proof. Recall that �r
2 is continuously differentiable for all r ∈ A. In view of the previous lemma,

∂t�
r
2(x, y,ur (x, y)) < 0

for x > 0 and y > μ. Applying the implicit function theorem to equation (5.1) gives that ur is 

continuously differentiable.

Differentiating (5.1) with respect to x gives

∂x�
r
2(x, y,ur(x, y)) + ∂t�

r
2(x, y,ur(x, y))∂xu

r(x, y) = 0. (5.6)

We can then use the previous lemma, part (iii) of Lemma 5.3 and (3.1) to find

|∂xu
r(x, y)| =

|∂x�
r
2(x, y,ur (x, y))|

|∂t�
r
2(x, y,ur(x, y))| ≤ 1

μ�
e(C+1/2)ur (x,y) ≤ 1

μ�
e(C+1/2)N/μ´

for (x, y) ∈ TN,δ . Here � is the constant in (5.4) and C =
�

6³2N2 + 2´ 2 + 2. The same upper 

bound also holds for |∂yu
r(x, y)|. �
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Remark 5.6. Using (5.6) and the corresponding equation obtained by differentiating (5.1) with 

respect to y, we can extend ∂xu
r and ∂yu

r continuously to the interval

0 < x <
´

³
and y = μ.

In particular,

∂xu
r(x,μ) = 0 and ∂yu

r(x,μ) = 1

(´ − ³x)μ

for any such pair (x, y).

In view of (5.5) and the fact that TN,δ is convex,

|ur(x1, y1) − ur(x2, y2)| ≤
√

2B(|x1 − y1| + |x2 − y2|)

for all r ∈A and (x1, y1), (x2, y2) ∈ TN,δ . As a result,

|u(x1, y1) − u(x2, y2)| ≤
√

2B(|x1 − y1| + |x2 − y2|)

for (x1, y1), (x2, y2) ∈ TN,δ . In particular, the value function is Lipschitz continuous on TN,δ for 

any N > μ + 2δ. By Rademacher’s theorem, u is differentiable almost everywhere in (0, ∞) ×
(μ, ∞).

Now we will explain how to bound the second derivatives of ur when r is smooth. Our method 

involves differentiating equation (5.1) twice.

Proposition 5.7. Suppose N, δ > 0 satisfy N > μ + 2δ. There is a constant D such that

|∂2
xur(x, y)|, |∂2

yur(x, y)|, |∂x∂yu
r(x, y)| ≤ D (5.7)

for each (x, y) ∈ TN,δ and each smooth r ∈A.

Proof. We will establish the bound for |∂2
xur(x, y)| as the other bounds can be similarly 

achieved. Differentiating (5.6) with respect to x gives

0 = ∂2
x�r

2(x, y,ur(x, y)) + ∂t∂x�
r
2(x, y,ur(x, y))∂xu

r(x, y)

+ (∂x∂t�
r
2(x, y,ur (x, y)) + ∂2

t �r
2(x, y,ur (x, y))∂xu

r(x, y))∂xu
r(x, y)

+ ∂t�
r
2(x, y,ur (x, y))∂2

xur(x, y).

In view of (3.1), ur(x, y) ≤ N/μ´ . Consequently,

|∂2
x�r

2(x, y,ur(x, y))|, |∂t∂x�
r
2(x, y,ur (x, y))|, |∂2

t �r
2(x, y,ur(x, y))|

are each uniformly bounded for all (x, y) ∈ TN,δ independently of r . This follows from (iv), (v), 

and (vi) in Lemma 5.3. We can then solve the equation above for ∂2
xur(x, y) and use (5.4) and 

(5.5) to find D as asserted. �
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Corollary 5.8. Suppose N, δ > 0 satisfy N > μ + 2δ. Then there is a constant L such

(x, y) �→ ur(x, y) − L

2
(x2 + y2)

is concave in TN,δ for each r ∈A.

Proof. First suppose r ∈ A is smooth. By (5.7), we can find L which is independent of r such 

that

�

�

�

�

�

∂2
xur(x, y) ∂y∂xu

r(x, y)

∂x∂yu
r(x, y) ∂2

yur(x, y)

��

�

�

�

≤ L

for (x, y) ∈ TN,δ . It follows that the Hessian of

(x, y) �→ ur(x, y) − L

2
(x2 + y2)

is nonpositive definite in TN,δ , so this function is concave in TN,δ .

Now suppose r ∈ A and choose a sequence of smooth rk ∈ A such that rk → r weak∗. Such 

a sequence exists by standard smoothing techniques. See for example Appendix C.5 of [10]. As

(x, y) �→ urk

(x, y) − L

2
(x2 + y2)

is concave in TN,δ ,

urk

�

x1 + x2

2
,
y1 + y2

2

�

≥ 1

2
urk

(x1, y1) + 1

2
urk

(x2, y2) − L

�

�

x1 − x2

2

�2

+
�

y1 − y2

2

�2
�

for each (x1, y1), (x2, y2) ∈ TN,δ . We can then send k → ∞ in this inequality by (3.2) and con-

clude that this inequality holds for ur . That is, ur(x, y) − L
2
(x2 + y2) is concave in TN,δ . �

Proof of Theorem 1.3. Suppose K ⊂ (0, ∞) × (μ, ∞) is convex and compact. Then K ⊂ TN,δ

for some N, δ > 0 with N > μ + 2δ. Thus, there is a constant L such that

u(x, y) − L

2
(x2 + y2) = inf

r∈A

�

ur(x, y) − L

2
(x2 + y2)

�

is necessarily concave in K by Corollary 5.8. �

6. Optimal switching

In this section, we will prove Theorem 1.4 and a few corollaries. Here we recall the definition 

of a switching time vaccination rate

rτ (t) =
�

0, t ∈ [0, τ ]
1, t ∈ (τ,∞).
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We will first need to make an elementary observation

Lemma 6.1. Suppose x ≥ 0 and y ≥ μ. If

ρ := urτ (x, y) < τ,

then

ρ = urρ (x, y).

Proof. As ρ < τ , rρ(t) = rτ (t) for t ∈ [0, ρ]. It follows that (Srρ (t), I rρ (t)) = (Srτ (t), I rτ (t))

for t ∈ [0, ρ]. In particular, I rρ (ρ) = I rτ (ρ) = μ. Therefore,

urρ (x, y) ≤ ρ.

Also note that if y > μ or if 0 ≤ x ≤ ´ /³ and y = μ, then I rρ (t) = μ only has one solution 

t = urρ (x, y). Alternatively, if x > ´/³ and y = μ, then I rρ (t) = μ has two solutions t = 0 and 

t = urρ (x, y). In either case, ρ = 0 or ρ = urρ (x, y) and we conclude

ρ ≤ urρ (x, y). �

The main conclusion of the above lemma is that when studying the eradication times urτ (x, y)

we only need to consider values of τ for which τ ≤ urτ (x, y).

Proof of Theorem 1.4. Let S, I be the solution of the SIR system (1.1) with S(0) = x ≥ 0 and 

I (0) = y ≥ μ. According to [6] and Theorem 2.5, there is τ ≥ 0 such that

u(x, y) = min
r∈A

ur(x, y) = urτ (x, y). (6.1)

By Lemma 6.1, we may assume τ ≤ urτ (x, y) = u(x, y). As a result,

u(x, y) = min
0≤τ≤u(x,y)

urτ (x, y). (6.2)

Also note

urτ (x, y) = τ + urτ (Srτ (τ ), I rτ (τ ))

= τ + ur0(S(τ ), I (τ ))

for τ ≤ u(x, y). Here we used

�

(Srτ (τ ), I rτ (τ )) = (S(τ ), I (τ )) and

urτ (Srτ (τ ), I rτ (τ )) = ur0(S(τ ), I (τ )),

which follow from the definitions of rτ and r0.
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In view of (6.2),

u(x, y) = min
0≤τ≤u(x,y)

{τ + ur0(S(τ ), I (τ ))}.

Of course if τ > u(x, y), then τ + ur0(S(τ ), I (τ )) > u(x, y). Consequently,

u(x, y) = min
τ≥0

{τ + ur0(S(τ ), I (τ ))}. (6.3)

In addition, we note that if u(x, y) = τ + ur0(S(τ ), I (τ )), then τ ≤ u(x, y) ≤ urτ (x, y) which in 

turn implies u(x, y) = τ + ur0(S(τ ), I (τ )) = urτ (x, y).

Now set

τ ∗ := inf{t ≥ 0 : u(S(t), I (t)) = ur0(S(t), I (t))}, (6.4)

and choose a minimizing τ ≥ 0 in (6.3). Then

urτ (x, y) = τ + ur0(S(τ ), I (τ )) ≥ τ.

We also have

u(S(τ), I (τ )) = urτ (S(τ ), I (τ ))

by Proposition 3.4. In addition, we recall urτ (S(τ ), I (τ )) = ur0(S(τ ), I (τ )) so that

τ ∗ ≤ τ < ∞.

Moreover, we only need to consider times t ≥ 0 in (6.4) which are bounded above by τ . It now 

follows easily that the infimum in (6.4) is attained by t = τ ∗. And appealing to Proposition 3.4

once again gives

u(x, y) = urτ (x, y)

= τ ∗ + urτ (S(τ ∗), I (τ ∗))

≥ τ ∗ + u(S(τ ∗), I (τ ∗))

= τ ∗ + ur0(S(τ ∗), I (τ ∗)).

Thus τ ∗ is optimal. �

We will make use of the fact that ur0 is a smooth solution of

³xy∂xu
r0 + x∂xu

r0 + (´ − ³x)y∂yu
r0 = 1 (6.5)

in (0, ∞) × (μ, ∞). This follows from computing the time derivative of both sides of the identity

ur0(x, y) = t + ur0(Sr0(t), I r0(t))
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at t = 0; here Sr0, I r0 is the solution of the (1.2) with Sr0(0) = x and I r0(0) = y.

Corollary 6.2. Suppose x > 0, y > μ. If u(x, y) = ur0(x, y), then

∂xu
r0(x, y) ≥ 0.

Otherwise

∂xu
r0(S(τ ∗), I (τ ∗)) = 0, (6.6)

where τ ∗ is given by (6.4) and S, I is the solution of the SIR system (1.1) with S(0) = x and 

I (0) = y.

Proof. If u(x, y) = ur0(x, y), then τ = 0 is a minimizing time in (6.3). In view of (6.5),

0 ≤ d

dτ

�

τ + ur0(S(τ ), I (τ ))
�

�

�

�

�

τ=0

= 1 − ³xy∂xu
r0(x, y) − (´ − ³x)y∂yu

r0(x, y)

= x∂xu
r0(x, y).

If u(x, y) < ur0(x, y), then τ ∗ > 0, and we can perform a computation similar to the one above 

to find (6.6). �

Combining (6.3) with the dynamic programming principle (3.4) gives

u(x, y) = min
τ≥0

{τ + u(S(τ), I (τ ))}, (6.7)

where S, I is the solution of the SIR system (1.1) with S(0) = x and I (0) = y ≥ μ. We will use 

this identity to verify the following claim.

Corollary 6.3. The value function u is a viscosity solution of the PDE (1.11)

max{³xy∂xu + (´ − ³x)y∂yu − 1, u − ur0} = 0

in (0, ∞) × (μ, ∞).

Proof. Let x0 > 0 and y0 > μ, and suppose ϕ is continuously differentiable in a neighborhood 

of (x0, y0) and that u − ϕ has a local maximum at (x0, y0). Then

(u − ϕ)(S(t), I (t)) ≤ (u − ϕ)(x0, y0)

for all t ≥ 0 small. Here S, I is the solution of the SIR system (1.1) with S(0) = x0 and I (0) = y0. 

By (6.7), u(x0, y0) ≤ t + u(S(t), I (t)) for all t ≥ 0, so that

−t ≤ u(S(t), I (t)) − u(x0, y0) ≤ ϕ(S(t), I (t)) − ϕ(x0, y0)
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for all t ≥ 0 small. Consequently,

−1 ≤ d

dt
ϕ(S(t), I (t))

�

�

�

�

t=0

= −³x0y0∂xϕ(x0, y0) − (´ − ³x0)y0∂yϕ(x0, y0).

Therefore,

max{³x0y0∂xϕ(x0, y0) + (´ − ³x0)y0∂yϕ(x0, y0) − 1, u(x0, y0) − ur0(x0, y0)} ≤ 0.

Now suppose ψ is continuously differentiable and u −ψ has a local minimum at (x0, y0). We 

claim

max{³x0y0∂xψ(x0, y0) + (´ − ³x0)y0∂yψ(x0, y0) − 1, u(x0, y0) − ur0(x0, y0)} ≥ 0. (6.8)

Recall that if u(x0, y0) < ur0(x0, y0), then the corresponding τ ∗ defined in (6.4) is positive. As a 

result,

u(x0, y0) = urτ∗ (x0, y0) = t + urτ∗ (S(t), I (t)) = t + u(S(t), I (t))

for t ∈ [0, τ ∗]. It follows that

−t = u(S(t), I (t)) − u(x0, y0) ≥ ψ(S(t), I (t)) − ψ(x0, y0)

for all t > 0 small enough. Therefore,

−1 ≥ d

dt
ψ(S(t), I (t))

�

�

�

�

t=0

= −³x0y0∂xψ(x0, y0) − (´ − ³x0)y0∂yψ(x0, y0)

which implies (6.8). �

We have established that the value function is a viscosity solution of the HJB (1.5) and the 

PDE (1.11). There is at least one implication of this fact which we can state in terms of the set S

mentioned in our introduction

S = {(x, y) ∈ (0,∞) × (μ,∞) : u(x, y) = ur0(x, y)}.

Corollary 6.4. For each (x, y) belonging to the interior of S ,

∂xu(x, y) ≥ 0.

And at almost every (x, y) ∈ Sc,

∂xu(x, y) ≤ 0.
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Proof. As u agrees with ur0 in S , u is smooth in the interior of S . It follows from Corollary 6.2

that ∂xu(x, y) ≥ 0 for each (x, y) in the interior of S .

Since u is locally Lipschitz on (0, ∞) × (μ, ∞), u is differentiable almost everywhere in Sc. 

Let (x, y) ∈ Sc be a differentiability point of u. As u is a viscosity solution of the HJB (1.5), it 

is routine to check that u satisfies the equation at this point. That is,

³xy∂xu(x, y) + x∂xu(x, y)+ + (´ − ³x)y∂yu(x, y) = 1.

See Proposition 1.9 of Chapter II in [2], and Corollary 8.1 of Chapter II in [13] for more on this 

technical point. And since u is a viscosity solution of (1.11) and (x, y) ∈ Sc, we also have

³xy∂xu(x, y) + (´ − ³x)y∂yu(x, y) = 1.

Upon subtracting these equations, we find ∂xu(x, y)+ = 0. That is, ∂xu(x, y) ≤ 0. �

7. Necessary conditions revisited

In this final section, we will relate our ideas on dynamic programming back to the necessary 

conditions (i) − (vi) which follow from Pontryagin’s maximum principle. The link between 

viscosity solutions of Hamilton-Jacobi equations and Pontryagin’s maximum principle was first 

established by Barron and Jensen [3]. Our particular control problem does not exactly fit into 

the framework they considered, so we cannot simply quote their results. Nevertheless, the ideas 

presented below are inspired by their work.

Our first insight is that each optimal vaccination rate r ∈ A is a “feedback” control. That is, 

r(t) depends on the value of (Sr(t), I r (t)) for almost every t ≥ 0. In proving this assertion, we 

will make use of the following basic observation. Whenever x0 > 0, y0 > μ, and u(x0, y0) =
ur(x0, y0), then

u(x, y) − ur(x, y) ≤ 0 = u(x0, y0) − ur(x0, y0)

for each x > 0 and y > μ. That is, u − ur has a maximum at (x0, y0). Since u is a viscosity 

solution and ur is continuously differentiable,

³x0y0∂xu
r(x0, y0) + x0(∂xu

r(x0, y0))
+ + (´ − ³x0)y0∂yu

r(x0, y0) ≤ 1. (7.1)

Proposition 7.1. Let x > 0 and y > μ and choose r ∈A such that u(x, y) = ur(x, y). Then

r(t)∂xu
r(Sr(t), I r (t)) = ∂xu

r(Sr(t), I r (t))+ (7.2)

for almost every t ∈ [0, u(x, y)] and

³Sr(t)I r (t)∂xu
r(Sr (t), I r(t)) + Sr(t)∂xu

r(Sr (t), I r(t))+ (7.3)

+ (´ − ³Sr(t))I r (t)∂yu
r(Sr (t), I r(t)) = 1

for all t ∈ [0, u(x, y)].

248



R. Hynd, D. Ikpe and T. Pendleton Journal of Differential Equations 303 (2021) 214–252

Proof. By Proposition 3.4,

u(Sr(t), I r (t)) = ur(Sr (t), I r(t))

for t ∈ [0, u(x, y)]. And in view of inequality (7.1),

³Sr(t)I r(t)∂xu
r(Sr (t), I r(t)) + Sr(t)(∂xu

r(Sr(t), I r (t)))+ (7.4)

+ (´ − ³Sr(t))I r (t)∂yu
r(Sr(t), I r (t)) ≤ 1

for all t ∈ [0, u(x, y)]. Furthermore, we always have

ur(Sr(t), I r (t)) = ur(x, y) − t

for t ∈ [0, u(x, y)]. Differentiating gives

−1 = d

dt
ur(Sr (t), I r(t))

= −³Sr(t)I r (t)∂xu
r(Sr(t), I r (t)) − Sr(t)r(t)∂xu

r(Sr (t), I r(t))

− (´ − ³Sr(t))I r (t)∂yu
r(Sr (t), I r(t))

≥ −³Sr(t)I r(t)∂xu
r(Sr(t), I r (t)) − Sr(t)(∂xu

r(Sr (t), I r(t)))+

− (´ − ³Sr(t))I r (t)∂yu
r(Sr (t), I r(t))

≥ −1

for almost every t ∈ [0, u(x, y)]; the last inequality is due to (7.4). We conclude (7.2) and (7.3)

hold for almost every t ∈ [0, u(x, y)]. Since ∂xu
r and ∂yu

r are continuous, (7.3) actually holds 

for all t ∈ [0, u(x, y)]. �

We will need to record a basic fact involving the adjoint equations appearing in the necessary 

conditions obtained via Pontryagin’s maximum principle.

Lemma 7.2. Let r ∈A, x > 0, and y > μ. Set

P(t) = ∂xu
r(Sr (t), I r(t)) and Q(t) = ∂yu

r(Sr(t), I r (t))

where Sr and I r is the solution of (1.2) with Sr(0) = x and I r(0) = y. Then P, Q satisfy

�

Ṗ (t) = (³I (t) + r(t))P (t) − ³I (t)Q(t)

Q̇(t) = ³S(t)P (t) + (´ − ³S(t))Q(t)
(7.5)

for almost every t ∈ [0, ur(x, y)].
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Proof. Just as we computed (5.2), we have

∂tZ(x, y, t) = A(x,y, t)Z(x, y, t) (7.6)

for almost every t ∈ [0, ur (x, y)] where

Z(x, y, t) =
�

∂x�
r
1(x, y, t) ∂y�

r
1(x, y, t)

∂x�
r
2(x, y, t) ∂y�

r
2(x, y, t)

�

and

A(x,y, t) =
�

−³�r
2(x, y, t) − r(t) −³�r

1(x, y, t)

³�r
2(x, y, t) ³�r

1(x, y, t) − ´

�

.

Taking the transpose of (7.6) leads to

∂tZ(x, y, t)t = Z(x, y, t)tA(x,y, t)t . (7.7)

We also note that since

Z(x, y,0) =
�

1 0

0 1

�

,

t �→ Z(x, y, t) is the fundamental solution of the 2 × 2 system (7.6). In particular, Z(x, y, t) is a 

nonsingular matrix for each t ≥ 0.

Recall the identity

ur(�r
1(x, y, t),�r

2(x, y, t)) = ur(x, y) − t

for t ∈ [0, ur (x, y)]. Differentiating with respect to x and y gives

Z(x, y, t)t
�

∂xu
r(�r

1(x, y, t),�r
2(x, y, t))

∂yu
r(�r

1(x, y, t),�r
2(x, y, t))

�

=
�

∂xu
r(x, y)

∂yu
r(x, y)

�

.

And taking the derivative with respect to t leads to

∂tZ(x, y, t)t
�

∂xu
r(�r

1(x, y, t),�r
2(x, y, t))

∂yu
r(�r

1(x, y, t),�r
2(x, y, t))

�

+ Z(x, y, t)t∂t

�

∂xu
r(�r

1(x, y, t),�r
2(x, y, t))

∂yu
r(�r

1(x, y, t),�r
2(x, y, t))

�

= 0.

(7.8)

Let us now fix x > 0 and y > μ and set Z(t) = Z(x, y, t), A(t) = A(x, y, t), and

�

P(t)

Q(t)

�

=
�

∂xu
r(�r

1(x, y, t),�r
2(x, y, t))

∂yu
r(�r

1(x, y, t),�r
2(x, y, t))

�

.

By (7.7) and (7.8),
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Z(t)t
d

dt

�

P(t)

Q(t)

�

= −Z(t)tA(t)t
�

P(t)

Q(t)

�

,

for almost every t ∈ [0, ur (x, y)]. Since Z(t) is nonsingular,

d

dt

�

P(t)

Q(t)

�

= −A(t)t
�

P(t)

Q(t)

�

which is (7.5). �

We can now establish the necessary conditions coming from Pontryagin’s maximum principle 

in terms of the derivatives of ur when u(x, y) = ur(x, y).

Proof of Theorem 1.6. Properties (iii) and (iv) were established in Proposition 7.1. As for 

property (ii), recall that ∂xu
r(x, μ) = 0 for x ∈ (0, ́ /³) as explained in Remark 5.6. In view of 

Corollary 2.3, Sr(u) ∈ (0, ́ /³) so P(u) = 0. Moreover, evaluating (7.3) at t = u gives

(´ − ³Sr(u))μQ(u) = 1.

Thus, Q(u) �= 0. Finally, property (i) follows from Lemma 7.2. �
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