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selection: Using computer vision techniques
to classify bees and bee mimics
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SUMMARY

Many groups of stingless insects have independently evolved mimicry of bees to
fool would-be predators. To investigate this mimicry, we trained artificial intelli-
gence (Al) algorithms—specifically, computer vision—to classify citizen scientist
images of bees, bumble bees, and diverse bee mimics. For detecting bees and
bumble bees, our models achieved accuracies of 91.71% and 88.86%, respec-
tively. As a proxy for a natural predator, our models were poorest in detecting
bee mimics that exhibit both aggressive and defensive mimicry. Using the
explainable Al method of class activation maps, we validated that our models
learn from appropriate components within the image, which in turn provided
anatomical insights. Our t-SNE plot yielded perfect within-group clustering, as
well as between-group clustering that grossly replicated the phylogeny. Ulti-
mately, the transdisciplinary approaches herein can enhance global citizen sci-
ence efforts as well as investigations of mimicry and morphology of bees and
other insects.

INTRODUCTION

Bees have been important pollinators ever since the Cretaceous (Genise et al., 2020). As a source of honey,
widespread exploitation of honey bees dates back to at least the early Neolithic farmers (~ 9 kya, (Roffet-
Salque et al., 2015)), and the earliest known apiculture was practiced by the Ancient Egyptians (Crane 1999).
Darwin’s experiments with “humble bees,” as bumble bees were once called, exemplify how these insects
have furthered our understanding of natural selection with respect to co-evolution, ecosystem webs, and
social behavior (Darwin 2003). Such a rich history makes it all the more tragic that today, despite their
ecological and economic importance, bees are facing an unprecedented anthropogenic decline in diver-
sity and abundance (Potts et al., 2010)—making their identification and conservation urgent concerns.

The mimicry of bees also has a storied history, albeit inadvertently so. As recounted by poets from Virgil to
Shakespeare, the ancient superstitious ritual of bugonia held that bees spontaneously generated from the
decaying carcasses of animals such as oxen (Osten-Sacken, 1894). The primary culprit of this deception was
likely the honey bee-mimicking Eristalis tenax (Syrphidae), a cosmopolitan hoverfly that occasionally lays its
eggs on carcasses (Osten-Sacken, 1894) (Scholl et al., 2019). Its common name, the common drone fly,
stems from the resemblance of members of this genus to the drones of honey bees (Figure 1).

Indeed, Hymenoptera—consisting of bees, wasps, and ants—is the most mimicked insect order (Poulton 1Computer Science and
1890), which is not surprising given these insects’ formidable sting. A resemblance to such well-equipped Engineering, University of
insect models protects harmless mimics by fooling would-be predators with a false harmful signal. This type South Florida, Tampa, FL
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of defensive mimicry is known as Batesian mimicry (Pasteur 1982).
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Figure 1. Citizen scientist photos of bees and bee mimic flies

(A) Bumble bee mimic (Asilidae: Laphria thoracica) preying on bumble bee (Hymenoptera: Bombus spp.), a putative
example of aggressive mimicry. Honey bee mimic (B, Syrphidae: Eristalis tenax) and honey bee (C, Hymenoptera: Apis
mellifera), an example of defensive mimicry. Red areas in the class activation maps (D and E) denote the importance of the
wings and abdominal markings in these two correct classifications (mimic as a non-bee, honey bee as a bee) by our Al
algorithms, elaborated in this article. Original images from iNaturalist.

food stored up by the latter or even upon the larvee themselves. The boldness of these enemies sometimes
depends upon the perfection of their disguise.” (Poulton 1890; see also discussion in Brower et al., 1960).

Poulton later published observations of three other researchers, who demonstrated that larvae of the
robber fly family Asilidae (Hyperechia spp.) also prey upon larvae of the carpenter bees (Xylocopa spp.)
that they mimic as adults (Brower et al., 1960). These findings were later corroborated by Tsacas et al.,
(1970), who similarly hypothesized that this mimicry enables egg-laying in or near the opening of the carpen-
ter bee nests (Tsacas et al., 1970). Strikingly, Hyperechia and other asilids also prey upon the adult forms of
their model species (and related aculeate hymenoptera) (Figure 1) (Bromley 1930). Thus, these robber flies
exhibit not only defensive (Batesian) mimicry, but possibly one or two types of aggressive mimicry: Kirbyan
mimicry to prey on bee larvae and Batesian-Wallacian mimicry to prey on bee adults (Pasteur 1982).

Our motivation for this study is 2-fold: first, to design artificial intelligence techniques to classify bees, espe-
cially bumble bees. Second, to identify a variety of convergently evolved bee mimics—in other words, to
assess whether the visual resemblance to bees gained through natural selection can fool artificial intelli-
gence algorithms that were trained on bees. For both problems, we use images uploaded to the iNaturalist
platform (iNaturalist, n.d.), which is a crowning example of a global citizen science effort toward conserva-
tion. iNaturalist was launched in 2008, and as of July 2022, users have contributed more than 123 million
observations of animals, plants, and other organisms worldwide. At the time of writing, the platform has
1,571,407 observations of bees from 242, 667 observers. For each observation contributed, multiple iden-
tifications can be made by community members. Among these observations, the most reliable is “Research
Grade," for which two conditions must be met. The observation must contain a valid date, location, photo,
or sound, and not be of a captive/cultivated organism; and at least two members must agree on the iden-
tification (iNaturalist, 2020). For bees, we found that 812,847 (52%) of the observations are Research Grade,
which means that close to half of the uploaded observations are not reliably identified. Leveraging
Research Grade images, our specific contributions in this article are:

An artificial intelligence model for classifying bees from other insects

We designed a model based on VGG16 (Simonyan and Zisserman 2015) to classify bees from non-bees.
This Al model was trained, validated, and tested on 3,029 bee and 2,943 non-bee insect images. Note
that throughout the text, the term “model” refers to one of two disparate entities: an Al algorithm, or an
insect species upon which mimicry is based.

An artificial intelligence model for classifying bumble bees from other bees

We designed a model based on ResNet-101 (He et al., 2016) to classify bumble bees from other bees (which
we refer to as non-bumble bee bees, or simply non-bumble bees when the context is clear). This model was
trained, validated, and tested on 1,554 bumble bee and 1,475 non-bumble bee images.
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Table 1. Insect orders and non-bee image counts

Order Count
Hymenoptera 330
Blattodea 329
Coleoptera 337
Diptera 328
Lepidoptera 630
Odonata 329
Orthoptera 660

See Table S2 for details.

Evaluating both artificial intelligence models against independently evolved bee mimics

Our taxa comprise 19 bee mimic species across six diverse insect families (Asilidae, Bombyliidae, Scara-
baeidae, Sphingidae, Syrphidae, Tachinidae) in three orders—Coleoptera (beetles), Diptera (flies), and
Lepidoptera (moths)—as well as related outgroups of nine species of wasp mimics and 13 species of
non-mimics to serve as controls (see Supplemental Information). We hypothesize that 1) within each clade,
bee mimics will exhibit lower model classification accuracy compared to their non-mimic counterparts, and
2) wasp mimics will exhibit intermediate accuracy; furthermore, 3) bee mimics that are believed to exploit
aggressive mimicry toward bees will exhibit better mimicry—as defined by lower classification accuracy—
compared to bee mimics that employ only defensive mimicry. Finally, we visualize such classifications of
artificial intelligence vis-a-vis natural selection through an integration of the t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique (phenotype) and evolutionary relationships (phylogeny). t-SNE
is an Al technigue for dimensionality reduction, particularly well-suited for the visualization of high-dimen-
sional datasets (Hinton and Roweis 2002)).

Artificial intelligence-driven insights on the fidelity of our techniques

To evaluate the fidelity and explainability of our Al models, we adopt the technique of class activation maps
(CAMs) (Zhou et al., 2016) to pinpoint which pixels in an image are most used in a classification (Figures 1D
and 1E). We also convert images to grayscale in order to compare the performance of each dataset and to
make observations on the respective roles of color vs. pattern in the classifications (especially relevant in
the context of aposematic mimicry).

Related work
Atrtificial intelligence techniques to classify bees

Ina 2021 study (Spiesman et al., 2021), multiple deep learning techniques were designed to classify species
of bumble bees using images from citizen science platforms such as Bumble Bee Watch, BugGuide, and
iNaturalist. The authors collected 89,000 images from 36 species of bumble bees, including (as in our
article) Bombus (B.) vosnesenskii, B. terricola, B. pensylvanicus, B. griseocollis, and B. affinis. The deep
learning architectures used were Wide-ResNet-101, InceptionV3, ResNet-101, and MnasNet101, which
achieved accuracies of 91.71%, 91.62%, 91.33%, and 85.79%, respectively, in classifying the species of
bumble bees. In a 2022 study (De Nart et al., 2022), the authors classified species of honey bees. What is
unique about this work is that the images used were exclusively wings. 9,887 wing images spread across
seven species were extracted from a large dataset of honey bee images archived at CREA-Research Center
for Agriculture and Environment (CREA-AA, ltaly). To extract the wings alone from the archived images, a
RetinaNet model with a ResNet-50 backbone was designed (De Nart et al., 2022). Multiple deep neural
network models were then developed, including ResNet-50, MobileNetV2, InceptionNetV3, and
InceptionResNetV2, with the highest accuracy of 99.15% achieved using the InceptionNetV3 model.
Both works referred to above focus exclusively on identifying species of bumble bees and honey bees,
and as such are complementary to the work in our article. Other related work on insect identification using
image data and Al techniques include recent studies detecting invasive mosquito vectors (Carney et al.,
2022; Minakshi et al., 2020), crop pests (Kasinathan et al., 2021), beetles (Venegas et al., 2021), and hornets
(Jeong et al., 2020), as well as ants and their movements (Wu et al., 2020).
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Table 2. Bumble bee species and image counts

Species Count
affinis 247
griseocollis 250
impatiens 250
melanopygus 150
pascuorum 157
pensylvanicus 200
terrestris 250
bimaculatus 10
flavifrons 10
lucorum 10
terricola 10
vosnesenskii 10

Images in the last five rows are not used for training and validation but only used for testing. See Table S1 for details.

Artificial intelligence techniques to study bee mimicry

In the realm of investigating bee mimicry using deep neural networks, we are aware of one recent work in 2019,
which looks at Mdillerian mimicry among bumble bees across spatial scales (Ezray et al., 2019). Mdillerian mimicry
is a form of biological resemblance in which two or more unrelated harmful (e.g., stinging) organisms exhibit
closely similar warning systems, such as the same pattern of bright colors. The authors generated their own data-
set to represent the color patterns of 35 bumble bee species using a standardized template that removed the
effects of body size while still maintaining the morphologically monotonous shape of bumble bees. This method
focuses on only color pattern differences and avoids variation from other sources. Color diagrams for the 35 spe-
cies were generated in this manner by applying particular colors to each segmental domain of their template to
match the color patterns displayed in a guide (Williams et al., 2014). With the resulting dataset, the authors first
calculated the perceptual distance between every pairwise set of bumble bee color pattern diagrams, using a
method proposed in (Wham et al., 2019). Then, they employed the t-SNE method (Van der Maaten and Hinton
2008) to visualize high-dimensionality distances in a two-dimensional (2D) plot. To derive data on the
geographic locations of various bumble bee species in the contiguous United States, the authors extracted
location information from 160,213 bumble bee records stored at the Global Biodiversity Information Facility
(GBIF). Using both the t-SNE plots and the geographic data, the authors found that bumble bees exhibit color
mimicry patterns that are geographically clustered, but sometimes imperfect. The authors also concluded that
mimicry patterns gradually transition spatially instead of exhibiting discrete boundaries. Furthermore, the au-
thors identified that transition zones of three co-mimicking, polymorphic species (B. flavifrons, B. melanopygus,
and B. bifarius), where active selection is driving phenotype frequencies, differ within a broad region of poor
mimicry.

Our study is related to the above-referenced work (Ezray et al., 2019) in that we also employ the t-SNE tech-
nique (Van der Maaten and Hinton 2008). However, we do not investigate mimicry between various bumble
bee species, but rather examine similarities and differences between various species of bee mimics, wasp
mimics, and non-mimic insects. Furthermore, our work in this article classifies bee mimics vs. bees, which is
not the case with the work in (Ezray et al., 2019).

RESULTS

We used 6,332 color images—which were also converted to grayscale—to train, validate, and test our Al
models. Image counts are presented in Tables 1, 2, 3, and 4. The metric we used to evaluate our models is
classification accuracy, defined as the percentage of correct predictions out of the total number of
predictions:

100 x (True positive + True negative)

accuracy = (Equation 1)

(True positive + True negative + False positive + False negative)

4 iScience 25, 104924, September 16, 2022



iScience ¢? CellPress
OPEN ACCESS

Table 3. Non-bumble bee genera and image counts

Genus Count
Andrena 179
Anthidium 180
Apis 518
Centris 239
Megachile 184
Melissodes 174
Osmia 1

See Table S1 for details.

Classifying bees from other insects

For this problem, we chose images presented in Tables 1, 2, and 3 for training and validation. Broadly, 80%
of images in each row in the tables was used for training and validation, and the other 20% was unseen and
purely used for testing. Note that images of bumble bee species in the last five rows in Table 2 were used
only for testing, and not for training or validation. We have included all the species and image counts that
were used in our bee and non-bee datasets in Supplemental Tables 2 and 3. All the bee species were from
the families “Andrenidae,” “Apidae,” and “Megachilidae.”

Results from our VGG-based Al algorithm (Simonyan and Zisserman 2015; details are elaborated in STAR
Methods section) for the classification of bees from other insects are presented in Table 5. We considered a
classification as correct if the Al model identified a mimic as a non-bee. All testing results reported are for
unseen images only. We trained three Al models separately on color images only, grayscale images only,
and an equal combination of color and grayscale images. Each model was tested on an equal number of
color and grayscale images, and the results are presented in the appropriate column in Table 5. Boldface
percentages represent the top classification accuracy for each of the color and grayscale testing image sets
among the three models. We can observe in row 3 that the model trained on grayscale images yielded the
best accuracies in classifying bees from non-bees. From the perspective of classifying mimics, the accuracy
of the VGG model is not very good. However, we observe that the model correctly detected non-mimics
with better accuracy than mimics across color and grayscale images (as expected, owing to the morpho-
logical similarities between bee mimics and bees). For clarity, we wish to emphasize that no mimic images

Table 4. Mimics and outgroups with image counts, categorized into three orders (from top to bottom: Coleoptera,
Diptera, and Lepidoptera)

Family Count
Scarabaeidae (bee mimics) 30
Scarabaeidae (non-mimics) 30
Asilidae (bee mimics) 30
Bombyliidae (bee mimics) 30
Syrphidae (bee mimics) 30
Syrphidae (wasp mimics) 30
Tachinidae (bee mimics) 30
Tachinidae (wasp mimics) 30
Tachinidae (non-mimics) 30
Sphingidae (bee mimics) 30
Sesiidae (wasp mimics) 30
various (non-mimics) 30
Total 360

Italics denote the non-bee mimics (i.e., wasp mimics and non-mimics). See Table S3 for species-level designations.

iScience 25, 104924, September 16, 2022 5
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Table 5. Comparison of accuracy (in %) between three VGG 16-based models that classify bees from non-bees,
evaluated against testing images of bee mimics and non-bee mimics (italicized)

Training image type Color Gray Color + Gray Average
Testing image type Color Gray Color Gray Color Gray
Bees vs. non-bees 84.63 79.79 91.36 91.71 90.85 91.62 88.33

Testing accuracy

Scarabaeidae (bee mimics) 23.33 43.33 60.00 53.33 43.33 43.33 44.44
Scarabaeidae (non-mimics) 76.67 80.00 83.33 83.33 86.67 86.67 82.78
Asilidae (bee mimics) 10.00 36.67 16.67 13.33 20.00 1333 18.33
Bombyliidae (bee mimics) 46.67 53.33 20.00 16.67 33.33 26.67 32.78
Syrphidae (bee mimics) 23.33 36.67 23.33 16.67 13.33 13.33 21.11
Syrphidae (wasp mimics) 36.67 30.00 46.67 36.67 50.00 33.33 38.89
Tachinidae (bee mimics) 23.33 30.00 30.00 20.00 16.67 13.33 22.22
Tachinidae (wasp mimics) 60.00 60.00 83.33 86.67 63.33 70.00 71.67
Tachinidae (non-mimics) 66.67 60.00 80.00 83.33 60.00 63.33 68.89
Lepidoptera (bee mimics) 30.00 50.00 56.67 60.00 70.00 60.00 54.45
Lepidoptera (wasp mimics) 66.67 83.33 73.33 70.00 70.00 70.00 72.22
Lepidoptera (non-mimics) 86.67 90.00 96.67 100.00 100.00 100.00 95.56
Average 45.83 54.44 55.83 53.33 52.22 49.44 51.95

A correct classification is when the model accurately identifies one of these insects as non-bee. Boldface percentages repre-
sent the top classification accuracy for color and grayscale images among the three models for each row. The third row pre-
sents the accuracy for classifying bees from non-bees. For this, 683 bee and 539 non-bee colorimages were used, which were
evenly distributed across all the species. Another 683 bee and 539 non-bee grayscale versions of those same images were
used for the evaluation of the models with grayscale images. The following rows denote accuracies for the same Al models
in classifying mimics as in Table 4. For testing mimics, 30 color and 30 corresponding grayscale images for each of the 12
groups were used.

were used for training and validation in any of our Al models. As such, the mimic species were purely unseen
by the Al. Details of this model architecture are shown in Table 6 and hyperparameters are shown in Table 7.

Classifying bumble bees from non-bumble bees

For this problem, we employ a similar approach as above. The Al model used was ResNet-101 (He et al,,
2016; details are elaborated in STAR Methods section). Here again, we selected 80% of the images from
the first seven species in Table 2 and the first seven genera in Table 3 for model training and validation.
The remaining images were used for testing. Here also, we trained three Al models separately on color
images only, grayscale images only, and an equal combination of color and grayscale images. Each
model was tested on an equal number of color and grayscale images, and the results are presented
in the appropriate column in Table 8. We considered a classification as correct if the Al model identified
a mimic as a non-bumble bee. All testing results are for unseen images only.

First, we can see that the ResNet-101 architecture achieved good accuracy in classifying bumble bees from
non-bumble bees, with the best testing accuracies exhibited by the model trained with color and grayscale
images (>88%; average for testing, row 5). Second, we observe that the ResNet-101 models classified
mimics with much higher accuracy compared to the previous VGG models. Note that the grayscale image
models performed better than colorimage models overall for the problem of classifying bumble bees from
non-bumble bees. For the case of bee mimics, color models generally performed a little better in classifi-
cation. Again, none of the mimic images were used for training and validation, thus the mimic species are
purely unseen by the Al. Hyperparameters for this model are shown in Table 9.

Evaluating model fidelity

To evaluate the fidelity and explainability of our Al models, we employed the CAM technique (Zhou et al.,
20716) to pinpoint which pixels in an image were most used to make a classification by the Al. The warmer

6 iScience 25, 104924, September 16, 2022
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Table 6. VGG16-based model architecture details

Layer Input size Output size
VGG16 5 Conv blocks 224,224, 3 7,7,512
Global_average_pooling2d 7,7,512 512

dense_1 (Dense) 512 256
dropout_1 (Dropout) 256 256

dense_2 (Dense) 256 128
dropout_2 (Dropout) 128 128

dense_3 (Dense) 128 64
dropout_3 (Dropout) 64 64

dense_4 (Dense) 64 2

(i.e., redder) a pixel is in the CAM, the higher the weight of that pixel used for classification. If the pixels
highlighted in the CAM appear on anatomical components of the insect, that means that the model
learned to classify correctly, while ignoring the background. From Figures 2, 3, 4, 5, and 4 for all Al
models and image classes, we see that our models focused primarily on the anatomical components of
the insect (for both color and grayscale images), and have learned well enough to ignore the background.
Results are indeed generalizable to other images in our dataset and as such increase confidence in our Al
models.

Visualizing high-dimensional image data in two dimensions using t-distributed Stochastic
Neighbor Embedding

We plotted the t-SNE coordinates onto a 2D graph and color-coded them by phylogenetic and mimetic
grouping (Figure 7). We observed that those data points yielded twelve individual clusters, with no outliers.
Furthermore, multiple clusters within a given clade (e.g., Lepidoptera) were also grouped together.

Training, hardware, and inference time

Our training and validation were conducted on a GPU cluster of four Nvidia GeForce GTX TITAN X cards
each having 3,072 CUDA cores and 12 GB of memory each (Nvidia). It took around 28 h to train and validate
the VGG16-based bee vs. non-bee model and took 46 h to train and validate the ResNet-101-based
bumble bee vs. non-bumble bee model. Inference time for a single image was less than a second for
both models.

DISCUSSION

The ability to identify bees from other insects—especially bee mimics—has important applications for con-
servation, education, and Al in biology. Overall, our accuracies reach ~ 90% for classifying bees from non-
bees, as well as bumble bees from non-bumble bees, when grayscale images were included in the training.
For the mimics studied, the bee vs. non-bee model (VGG16-based) yielded lower classification accuracies
compared to those of the bumble bee vs. non-bumble bee model (ResNet-101-based) (Table 5 and 8). This
difference could be owing to a number of reasons, such as the disparate neural network architectures. Note

Table 7. VGG16-based model hyperparameters

Hyperparameter Value

Loss Binary Cross entropy
Optimizer Adam Optimizer
Momentum 0.9

Early training epochs 50

Early epochs learning rate 0.005

Whole model training epochs 200

Learning rate for all epochs 0.0005

iScience 25, 104924, September 16, 2022 7
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Table 8. Comparison of accuracy (in %) between three ResNet-101-based models that classify bumble bees from
non-bumble bee bees, evaluated against testing images of bee mimics and non-bee mimics (italicized)

Training image type Color Gray Color + Gray Average
Testing image type Color Gray Color Gray Color Gray

Species used in training, validation 73.48 77.82 82.33 81.99 85.78 86.87 81.38
Species not used in training, validation 86.73 86.73 94.90 93.88 92.86 92.86 91.33
Average for testing 77.90 80.79 86.52 85.95 88.14 88.86 86.36

Testing accuracy

Scarabaeidae (bee mimics) 93.33 93.33 76.67 60.00 93.33 90.00 84.44
Scarabaeidae (non-mimics) 90.00 86.67 80.00 86.67 80.00 83.33 84.45
Asilidae (bee mimics) 66.67 56.67 P 26.67 56.67 43.33 47.22
Bombyliidae (bee mimics) 96.67 66.67 56.67 63.33 90.00 83.33 76.11
Syrphidae (bee mimics) 100.00 96.67 96.67 96.67 100.00 100.00 98.34
Syrphidae (wasp mimics) 100.00 100.00 100.00 100.00 100.00  100.00  100.00
Tachinidae (bee mimics) 100.00  80.00 70.00 66.67 93.33 86.67 82.78
Tachinidae (wasp mimics) 100.00 100.00 96.67 100.00 100.00 100.00 99.45
Tachinidae (non-mimics) 100.00  96.67 93.33 86.67 100.00 100.00 96.11
Lepidoptera (bee mimics) 90.00 70.00 70.00 66.67 86.67 73.33 76.11
Lepidoptera (wasp mimics) 96.67 100.00  100.00 100.00 100.00 100.00  99.45
Lepidoptera (non-mimics) 66.67 56.67 90.00 66.67 86.67 70.00 72.78
Average 91.67 83.61 76.67 76.67 90.56 85.83 84.77

A correct classification is when the model accurately identifies these insects as non-bumble bee. Boldface percentages
represent the top classification accuracy for color and gray images among the three models for each row. The third
row presents the accuracy of a dataset comprising unseen images from those species of bumble bees and non-bumble
bees used in training and validation. The fourth row presents the accuracy in a dataset comprising unseen images from
species of bumble bees and non-bumble bees that were not used in training and validation. In other words, these species
were also unseen by the Al model. The number of testing images of seen species used for testing was 585 color and 585
corresponding grayscale images, distributed evenly among all species. The number of testing images of unseen species
used for testing was 98 color and 98 corresponding grayscale images, distributed evenly among all species. More details
on the species used in testing are included in Tables S4 and S5. Later rows in this table denote accuracies for the same Al
models in classifying mimics in Table 4. For testing mimics, 30 color and 30 corresponding grayscale images s for each of
the 12 groups were used.

that the ResNet-101 model is much heavier with many more layers, and is better suited for learning finer-
grained discriminators compared to the lighter-weight VGG models. Second, the difference could be
owing to the phylogenetic specificity of both the bumble bee and non-bumble bee classes. In other words,
the non-bumble bee class was trained using non-bumble bee bees, as opposed to the more general non-
bee insects used to train the bee model. It should also be noted that the great majority of the bee mimics
tested were bumble bee mimics, compared to others such as the several honey bee mimics (i.e., Eristalis

spp.).

Table 9. ResNet-101 based model hyperparameters

Hyperparameter Value

Loss Binary Cross entropy
Optimizer Adam Optimizer
Momentum 0.9

Epochs 100,000

Learning rate (up to 50,000 epochs) 0.0003

Learning rate (up to 80,000 epochs) 0.00003

Learning rate (up to 100,000 epochs) 0.000003
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Figure 2. Non-bee insects

Citizen science photos (top) and class activation maps (bottom) of non-bee insects, using the bee vs. non-bee classifier
(VGG16-based model, trained with color images). Species and classifications, from left: Ectobius vittiventris (correct),
Hapithus agitator (correct), Uropetala carovei (correct).

One surprising finding from the bumble bee model was that unseen species had higher accuracies than
seen species, for both true negatives and true positives (Table 8: rows 4 vs. 3; Supplemental Information).
We hypothesize that this counterintuitive result may be due in part to selection bias. Specifically, the
unseen non-bumble bee species used in testing may be more morphologically derived—presumably,
exhibiting traits that are further away from the bumble bee gestalt that the Al was trained to recognize.
For example, the two unseen Apis species—which have accuracies of 100% (Supplementary Table 5)—
include the anatomically distinct black dwarf honey bee, Apis andreniformis. Among the true positives,
the unseen species of Bombus may have more prominent versions of diagnostic bumble bee traits recog-
nized by the Al, such as hair. For example, the unseen species B. flavifrons has unusually long and uneven
hair lengths (Koch 2012).

Results supported our first hypothesis, as the bee mimics within all four relevant clades—Scarabaeidae,
Syrphidae, Tachinidae, and Lepidoptera—had the lowest classification accuracy compared to their wasp
mimic and non-bee mimic counterparts, in both bee and bumble bee models (Tables 5 and 8). The only
exception to this was that the bumble bee model yielded a lower accuracy for the Lepidoptera non-mimics
compared to bee mimics (72.78% vs. 76.11%,; also, the difference was negligible for Scarabaeidae).

Figure 3. Non-bumble bee bees

Citizen science photos (top) and class activation maps (bottom) of non-bumble bee bees using the bee vs. non-bee
classifier (VGG16-based model, trained with color images). Species and classifications, from left: Andrena cineraria
(correct), Apis dorsata (correct), Megachile mendica (correct).
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Figure 4. Bumble bees

Citizen science photos (top) and class activation maps (bottom) of bumble bees using the bee vs. non-bee classifier
(VGG16-based model, trained with color images). Species and classifications, from left: Bombus impatiens (correct),
Bombus impatiens (correct), Bombus pensylvanicus (correct).

Our second hypothesis was not supported, as the accuracy of the wasp mimics was intermediate be-
tween bee mimics and non-mimics in only one of the four three-way comparisons across both models.
Indeed, for the bumble bee model, this included identical near-perfect classification (99.45%) for the
wasp mimics within Tachinidae and Lepidoptera (not to mention 100% classification of the wasp mimics
in Syrphidae). Note also that this essentially perfect classification of wasp mimics in all three clades (Syr-
phidae, Tachinidae, Lepidoptera) was across all three training image types (color, grayscale, color +
grayscale) and both testing image types (color, grayscale). Thus, while the bee mimics were better at
fooling both algorithms, the phenotypic divergence of the wasp mimics may have been more easily de-
tected (i.e., less confused for bees) compared to the non-mimics. Phylogeny may play a non-mutually
exclusive role within Tachinidae as well, as the wasp mimics and non-mimics are sister groups (Figure 7),
and have more similar accuracies compared to those of the bee mimics (based on both models; Tables 5
and 8).

All of the bee and wasp mimicry herein is considered to be defensive (Batesian), enabling an aposematic
warning to would-be predators by falsely appearing to be a stinging taxon. In terms of fooling the Al model
(i.e., convincing the algorithm that a mimic was actually a bee), the poorest performance was exhibited by

' ‘i ‘
Tiw? | SN
Figure 5. Bee mimics (Asilidae)

Citizen science photos (top) and class activation maps (bottom) of bee mimics from the family Asilidae using the bee vs.
non-bee classifier VGG16-based model, trained with color images). Species and classifications, from left: Mallophora
leschenaulti (incorrect), Mallophora leschenaulti (incorrect), Mallophora leschenaulti (grayscale) (correct).
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Figure 6. Bee mimics (Scarabaeidae)

Citizen science photos (top) and class activation maps (bottom) of bee mimics from the family Scarabaeidae using the bee
vs. non-bee classifier (VGG16-based model, trained with color images). Species and classifications, from left: Trichius
fasciatus (grayscale) (incorrect), Trichius gallicus (incorrect), Trichius sexualis (correct).

images of bee hawkmoths (Hemaris, Sphingidae, Lepidoptera) in the bee model (54.45% of images were
correctly classified as a mimic), and the bee beetles (Trichius, Scarabaeidae) in the bumble bee model
(84.44% of images were correctly classified as a mimic) (Tables 5 and 8).

Conversely, the best bee mimicry, as defined by the lowest Al classification accuracy, was exhibited by Asi-
lidae in both models (18.33%, 47.22%). This robber fly family is represented herein by three species from the
genus Mallophora, known as the bee killers (Brower et al., 1960), (Bromley 1930). These flies mimic the color,
form, and hairy appearance of their bumble bee and carpenter bee prey (Figure 5), as well as exhibit bee-
like flight behavior and buzz (Linsley 1960), (Bromley 1930). For one of our species, M. bomboides, Brower
et al., (1960) experimentally demonstrated that this mimicry is defensive (Batesian). These authors pro-
posed that this mimicry is also aggressive, in a non-mutually exclusive manner, and operates at two
possible levels: during the known predation of the adult bees, and during the presumed oviposition in
bee nests (the larval feeding habits are unknown). Assuming that such aggressive mimicry is operating
on one or both levels in our Mallophora (in addition to defensive mimicry), the superior bee mimicry of
these bee killers confirms our third hypothesis. Ultimately, such two- or three-way selective pressure may

common ancestor
Coleoptera
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Hymenoptera (bees, etc)
Lepidoptera
monophyletic

10 --- paraphyletic
Scarabaeidae
Scarabaeidae (non-mimic)
r5 Bombyliidae
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Syrphidae (wasp mimics)
Tachinidae
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Figure 7. t-Distributed Stochastic Neighbor Embedding
t-SNE plot of bee mimics (n = 180), wasp mimics (n = 90), and non-mimics (n = 90) from Table 2, with the phylogenetic tree
overlaid. Note the perfect clustering within each group, as well as the clustering between groups that grossly corresponds

to the phylogeny. Evolutionary relationships follow (Wiegmann et al., 2009), (Gunter et al., 2016), (Powell 2009), (Penney
et al., 2012), and (Blaschke et al., 2018).
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be responsible for driving the evolution of more accurate mimicry within this genus, and perhaps other
asilids.

It is also worth noting that in addition to being non-mutually exclusive, the co-existence of defensive and
aggressive mimicry could also provide a positive evolutionary feedback loop. Theoretically, asilid preda-
tion upon bees would assure sympatry (Brower et al., 1960), which in turn would enable defensive mimicry
(i.e., mimics and their models must co-occur), which in turn could be exapted for aggressive mimicry to
enhance predation.

We also advocate for a less restrictive definition of aggressive mimicry (per the original Poulton 1890: p.268)
than what is sometimes followed in the literature. Namely, that mimicry should be considered aggressive if
it fools any prey species (not just the model species)—just as mimicry would be considered defensive if it
fools any predator species. For adult prey, Mallophora prefers aculeate Hymenoptera (Bromley 1930), and
if the former’s mimicry fatally dupes a member of the latter, it should be considered no less aggressive if
that prey is a honey bee rather than a bumble bee. Such an inclusive definition would apply to the putative
mimicry-enabled egg-laying as well. Fundamentally, the phenomenon of aggressive mimicry in bee mimics
is understudied and not well-understood, so further investigations would be welcomed.

Findings from the three other groups—if they do, indeed, exhibit aggressive mimicry—would also be
consistent with our third hypothesis. Bombyliidae is the sister group to Asilidae, and represents a large clade
known as the bee flies (15 subfamilies, 5K described species; (Evenhuis and Greathead, 1999)). Members of
Bombyliidae may theoretically include aggressive mimics, but only in the Kirbyan sense: while their adult
forms do not feed upon adult bees like those of Mallophora do, Bombylius (Bombyliidae) larvae are ecto-
parasitoids in the nests of bees (Yeates and Greathead 1997). Larvae of some Syrphidae and the bee mimic
genus Tachina also parasitize bees (Packard, 1868). Interestingly, these three groups exhibit accuracy values
intermediate between the bee mimics in Asilidae and in Lepidoptera/Scarabaeidae, in the bee model. This
patternis notthe case in the bumble bee model, given the high accuracy of the syrphids and tachinids, which
may be owing to their mimicking of honey bees, rather than bumble bees as in the bombylids.

Among the incorrect classifications—i.e., when the mimicry successfully fooled the Al model—within the
Scarabaeidae (represented here by Trichius), the CAMs were often located on the bee-like hairy thorax,
or the elytra (Figure 6, left). Elytra are the modified, hardened forewings of the beetle order Coleoptera,
which is interesting in that this differentiates the order from both the bee mimics in Diptera and the
bees in Hymenoptera. In Trichius, the elytra mimic the gold and black banding pattern of bee abdomens
(Figure 6). We can quantify the role of elytra color (4%) vs. pattern (44%) based on the percentage of images
in which the CAMs selected the elytra in the color incorrect images compared to the grayscale incorrect
images: 48% (10/21) vs. 44% (7/16), respectively. Interestingly, the VGG16-based model trained only on co-
lorimages performed much better on grayscale than color versions of the testing images (43.33 vs. 23.33%;
Table 5).

When comparing training with color images vs. grayscale images, we notice a trend of grayscale images
giving a consistently similar performance. The exceptions to this include the Bombyliidae in Table 5,
and, interestingly, the bee mimics in Table 8. The latter demonstrates that the algorithm was able to better
detect these mimics as non-bumble bees on the basis of color. Conversely, for our entire testing set, the
grayscale training yielded higher classification accuracies in all models, suggesting that color can possibly
confound Al models. This also means that the algorithms learn from the lighter-weight grayscale images as
well. This phenomenon can be explained by the fact that in some cases, when color may not be relevantto a
classification problem, Al models work just as well as with grayscale images (or sometimes better) (Cadik
2008) (Kanan and Cottrell 2012) (Xie and Richmond 2018) (Yohanandan et al., 2018). In the case of insect
morphology, pattern and shape can play a critical role in classification; for example, the very unique
T-shaped area of hairs on the thorax of B. affinis. For detecting such markers, grayscale images may be suf-
ficient. Also, Al models may be confused by the colors appearing in images, which is likely to happen in
citizen-generated photos owing to diverse sources of background, inconsistencies in light, camera capa-
bilities, and more. Grayscale images may overcome these issues, which aid in robust Al models for prob-
lems related to the analysis of insect morphology. Herein, it should be noted that converting one of the
Mallophora images to grayscale turned an incorrect classification into a correct classification (Figures 5B
and 5C).
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With respect to the t-SNE results (Figure 7), it is interesting that there was perfect clustering within each
group, with no mismatched data points. Such clustering is surprising within the paraphyletic groups (Scar-
abaeidae non-mimics, Syrphidae wasp mimics) and especially the Lepidoptera non-mimics, which comprise
five distinct families within four superfamilies. Furthermore, given the imperfect mimicry within Syrphidae
(Penney et al., 2012), it is notable that there was such a clear separation of the bee mimic and wasp mimic
clusters. This finding is inconsistent with the multi-model hypothesis (Edmunds 2000), which would predict
overlap owingto the imperfect mimicry of multiple models. This separation also corroborates the findings of
Penney et al., (2012), which found no syrphids intermediate in appearance between hymenopteran models.
Itis alsointriguingthat the pattern of clustering between these bee mimic groups grossly corresponds to the
evolutionary relationships, as denoted by the phylogenetic tree (Figure 7). Specifically, all within-clade clus-
ters group together for Scarabaeidae, Lepidoptera, Syrphidae, Tachinidae, and even the Asilidae + Bomb-
ylidae clade, which represents the superfamily Asiloidea.

Limitations of the study

We would like to note that distance within the t-SNE plot cannot be used as an exact proxy for pheno-
typic disparity, owing to the probabilistic nature of the approach (Wattenberg et al., 2016), (Van der
Maaten and Hinton 2008). Phenotypic disparity is also an imperfect proxy for phylogenetic distance,
especially in the case of convergent morphotypes. Lastly, one limitation of our bumble bee model is
that all of the training images were of bees (bumble bees and non-bumble bee bees), with no training
images of non-bees.

Conclusion

By applying machine learning techniques within an evolutionary framework—from our integration of t-SNE
and phylogeny, to grayscale images and CAMs—we can take the first step from “explainable Al"” to
"explainable mimicry.” This includes decoupling the role of color from pattern and elucidating diagnostic
anatomical regions. We need to acknowledge, however, that the features learned by our deep learning
models operating on images may have little to no functional significance in the evolutionary history of these
insects. Nonetheless, these methods provide new avenues for addressing the long-standing challenge of
"quantifying the extent of mimetic fidelity between mimics and models” (Penney et al., 2012). Furthermore,
real-time deployment of the approaches herein—such as providing immediate feedback and visualiza-
tions—could enhance the operational efficiency of citizen scientist-driven identification of bees and their
mimics, as well as help pique interest and engagement among the general public. For example, alerting
users of critically endangered species such as B. affinis could have a direct impact on sustaining efforts
for conservation. Ultimately, with ever-expanding datasets of crowdsourced images, coupled with ex-
pected advances in computer vision techniques, foundational insights and applications are possible in
the near future and beyond.
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Code for this paper (Bhuiyan et al., 2022) Bee Classifier, Zenodo: https://doi.org/10.5281/ https://doi.org/10.5281/zenodo.6965250
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RESOURCE AVAILABILITY
Lead contact

Requests for resources or information should be directed to the lead contact, Tanvir Bhuiyan (bhuiyan@usf.
edu).

Material availability
No reagents were generated in the study.

Data and code availability
® All data used in this study are available through Mendeley Data (Bhuiyan, 2022).

® All code used in this study is available through a Zenodo repository (Bhuiyan et al., 2022).

o Other associated information is available in our Supplemental Information Excel files.

METHOD DETAILS

Herein we designed two separate convolutional neural network (CNN) architectures for two problems: 1)
classifying bees vs. other insects (including mimics) and 2) classifying bumble bees vs. non-bumble bees.

Data pre-processing

Our images were sourced exclusively from Research Grade observations on the citizen science platform
iNaturalist. Images there are typically large in size, with a maximum of up to 2,048 pixels in the longest
dimension. Processing images of these sizes can be very complex and time-consuming. To speed up
learning without compromising accuracy, we reduced the size of each image to 1,024 pixels in the longest
dimension. To evaluate the effect of color on classification accuracy, we trained our models on color im-
ages, grayscale images, and combination of color and grayscale images. The first dataset retained the orig-
inal colors of the images from iNaturalist. For the grayscale versions, we converted all the images into
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grayscale using OpenCV (Culjak et al., 2012). In the third dataset, we combined all the color and grayscale
versions of the images, thereby doubling the training dataset. We did the same for testing dataset also. The
procedure was executed for both problems. Note here that we did not do data augmentation of images in
our dataset. There is a reason for this. Typically, data augmentation helps where the context of classification
between two classes is very vivid and clear (for example, classifying a cat from a dog). In such cases, noise
addition will not hurt the larger context of images used for classification. In our problem, the dataset was
insects. And these insects have very fine-grained and minute signatures for classification. As such, adding
artificial noise could change the overall context of images. Hence, we did not attempt data augmentation
for images in this paper.

VGG16-based CNN for classifying bees from other insects

Our VGG16-based model was pre-trained on the “ImageNet” dataset (Deng et al., 2009). Note that the
VGG16 architecture consists of five blocks of convolutional layers, followed by three fully connected layers
(Simonyan and Zisserman 2015). It is an architecture that is simpler in size and complexity than most other
standard CNN architectures. For our problem, after the five blocks of convolutional layers, we added one
global pooling layer and four fully connected dense layers. Details of our architecture are shown in Table 6,
where the first row represents the last layer of the base VGG16 architecture, up to which was fixed. For
training, we did not change the pre-existing weights in the base architecture (i.e., we froze them), and
we only trained those weights added after the fifth block for the first 50 epochs. Here, the weights for
only the newly added layers were trained, with a rate of 0.005. Then, weights in the entire architecture
were unfrozen and retrained again for 200 epochs, with a rate of 0.0005. Table 7 presents the critical hyper-
parameters in our architecture during training and validation. The loss function is the binary cross entropy
loss function, which is given by — log(p), where p is the model estimated probability of the ground truth
class, which we want to minimize during training and validation. We did monitor, but did not explicitly re-
cord decrease in the loss function; we stopped training when the loss function (and accuracy) saturated.

ResNet-101-based CNN for classifying bumble bees from other bees

Classifying bumble bees from non-bumble bees is a more complex problem, since there are subtler differ-
ence between these two classes as compared to classifying bees from other insects. For this problem, the
CNN architecture that worked best in our study was the more complex ResNet-101. Here also, our ResNet-
101 model was not trained from scratch. We took the pre-trained version trained on “ImageNet” dataset for
this model, with its base weights. ResNet-101 is a CNN with residual connections, wherein each layer,
instead of feeding only into the next layer, also directly feeds into layers further down (He et al., 2016).
This was done to specifically improve learning at later layers. Thus, this is a more complex architecture
with 101 blocks of convolutional layers. This architecture provided optimal results in its current form; there-
fore, we did not change the architecture, but changed only the weights via training and validation. Table 9
presents the critical hyperparameters in this architecture for training and validation. The loss function is
once again the binary cross entropy loss function. We did monitor, but did not explicitly record decrease
in the loss function; we stopped training when the loss function (and accuracy) saturated.

CAM

To get a better understanding how our models interpret pixels in an image for classification, we adopted
the technique of class activation maps (CAM) (Zhou et al., 2016). The CAM technique gives each pixel a
weight which indicates the significance of that pixel toward classification. To execute the technique, we
compute the output features generated at the final convolution layer of the CNN. Then, we traverse
back in the architecture (at the conclusion of the last convolutional layer) to determine the weight (proba-
bility) of each pixel in the image that was used for classification. A higher weight for a pixel indicates a
redder color in CAM, meaning that the particular pixel was a more significant factor in classification. Pixels
with lower weight would appear comparatively bluer in the CAM technique, and these are pixels that were
not dominant in classification. The CAM model was based on our VGG 16 model that was trained on color
images.

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton 2008) is an algorithm
developed as an improvement over Stochastic Neighbor Embedding (Hinton and Roweis 2002). t-SNE
is an unsupervised, non-linear technique for dimensionality reduction, primarily used for visualising
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high-dimensional data (in our case, RGB values from image pixels). In other words, t-SNE gives an intuition
of how high-dimensional data points are related in low-dimensional space. Compared to many other non-
parametric visualisation techniques (e.g., Sammon mapping, principal components analysis, isomap,
locally linear embedding), t-SNE proved more robust and significantly more effective for high-dimensional
data visualisation (Chatzimparmpas et al., 2020). t-SNE can be used for data-visualisation in a wide range of
applications including biomedical signal processing, genomics, computer security research, bioinformat-
ics, cancer research, and music analysis (Chatzimparmpas et al., 2020).

To generate the t-SNE, we started with a base neural network architecture, from which the t-SNE algorithm
runs a combination of two sequential phases. In the first phase, t-SNE builds up a probability distribution
matrix for data points, which consists of the RGB values from the image pixels. Each pair of distinct data
points are considered. For each pair, a probability value is generated. If there is a high level of similarity
between the two objects in that pair, a large probability value is assigned, otherwise the probability value
is small. In the second phase, t-SNE considers those data points in a lower dimensional space and gener-
ates another probability distribution following the similar procedure it did in the first phase. The algorithm
then tries to minimize the loss or difference between the two probability distributions with respect to the
locations on the map. To accomplish that, the algorithm calculates the Kullback-Leibler divergence (KL
divergence) (Perez-Cruz 2008) value and minimises it over several iterations.

To visualize phenotype vis-a-vis phylogeny, we also plotted the data points from images of bee mimics and
outgroups using the t-SNE algorithm on a 2D graph, and overlaid the phylogenetic tree that illustrates the
evolutionary relationships. To build that graph, at first we trained a twelve-class VGG16-based classifier
deep-learning model (similar architecture to thatin Table 6) with 360 bee mimic images. We then extracted
features from the final convolution layer for all 360 images. These features are a matrix of size 14 x 14 x
512. We flattened the data to a 100,352 sized array for each image. Then we ran the t-SNE algorithm
(per steps above) over the 360 flattened feature data, resulting in 2D coordinates for each image which
were then color-coded by phylogenetic and mimetic group.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of images used in our study from iNaturalist was 6, 332 color images. These were also then con-
verted to grayscale. Together, these images encompassed our dataset for training, validation and testing.
We designed Al models for color only, grayscale only, and a combination of color and grayscale images.
The percent of images used for training and validation was together was 80, while the remaining 20% of
images was used for testing. Note that images used for testing were completely unseen by the Al models
during training and validation.

The overall metric used to assess classification is denoted as Accuracy, which is computed based on True
Positives, True Negatives, False Positives and False Negatives, and is defined in Equation 1. In addition,
model fidelity was evaluated using Class Activation Maps, that highlight pixels with different colors based
on the priority of those pixels for classification. Here, the warmer (i.e., more reddish) a pixel appears in the
CAM, the higher is the priority of that pixel for classification. Ideally, we will see more red pixels in areas
surrounding the insect anatomy if the model has high fidelity. We employed the t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique to study mimics. t-SNE is an unsupervised, non-linear technique
for dimensionality reduction, primarily used for visualising high-dimensional data. We employed this
method in our study to understand clustering of various mimic groups. Our study yielded perfect clustering
within each group, as well as the clustering between groups that grossly corresponds to the phylogeny.
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