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Predicting mixing free energy using mutual
ghosting
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The excess free energy of mixing ΔGex governs the phase behavior of mixtures and controls material

properties. It is challenging, however, to measure ΔGex in simulations. Previously, we developed a method

that combines molecular dynamics (MD) simulations with thermodynamic integration along the path of

transformation of chains to predict the Flory Huggins interaction parameter χ for polymer mixtures and

block copolymers. However, this method is best applied when the constituent molecules of the blends are

structurally related. To overcome this limitation, we have developed a new method to predict ΔGex for

mixtures. We perform simulations to induce phase separation within a mixture by gradually weakening the

interaction between different species. To compute ΔGex we measure the thermodynamic work required to

modify the interactions and the interfacial energy between the separated phases. We validate our method

by applying it first to equimolar mixtures of labeled and unlabeled Lennard-Jones (LJ) beads, and labeled

and unlabeled benzene, which results in good agreement with ideal solution theory. Then we compute the

excess free energy of mixing for equimolar mixtures of benzene and pyridine, using both united-atom (UA)

and all-atom (AA) potentials. Our results using UA potentials predict a value for ΔGex about four times the

experimental value, whereas using AA potentials gives results consistent with experiment, highlighting the

need for good potentials to faithfully represent mixture behavior.

1 Introduction

Most practical materials consist of more than one
component, as mixtures offer unique properties that are not
accessible using pure substances. In particular, polymer
mixtures and block copolymers have made an impact in a
variety of applications, including microelectronics,
photovoltaics, membranes, biomimetic materials, and
others.1–6 The performance of these materials is strongly

dependent on the structure and morphology of the blend.7 A
key challenge is thus to describe and predict the phase
behavior of such mixtures.

The key factor governing the phase behavior of mixtures is
the free energy of mixing ΔGmix. For a two-component mixture,

ΔGmix = G12 − X1G1 − X2G2 (1)

Here Xi and Gi are the mole fractions and free energy of
species i, and G12 is the free energy of mixture.

As written in eqn (1), the mixing free energy ΔGmix contains
both the ideal and excess contributions. For mixtures
reasonably described as regular solutions (i.e., the constituent
molecules are roughly the same size and shape), the excess
mixing free energy ΔGex can be sensibly defined from
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Design, System, Application

Interactions between fluid species determine miscibility, phase behavior, and self-assembly. Computing interaction parameters (“chi parameters”) from
analytical theory is an insuperable task for all but the simplest idealized architectures. Molecular simulations would appear to be ideally suited for this
task, as molecular shapes and interactions can be faithfully represented with properly designed simulation potentials. However, mixing free energies have
entropic as well as enthalpic contributions, and so cannot be determined by simple time averages, but require special techniques, often involving
thermodynamic integration. But not all thermodynamic integration pathways are equally suitable for measuring subtle intermolecular interactions on the
scale of fractions of kT per molecule. In this work, we introduce a new, general approach to computing mixing free energies, for arbitrary molecular
architectures. We demonstrate it first for model ideal solutions, then test it on a well-characterized miscible blend: benzene/pyridine. Our results
demonstrate the utility and promise of the method—as well as the requirement that the simulation force fields faithfully represent the molecular mixture
under study. We anticipate this method can be employed to study polymer blends, where determining chi from simulations for real polymer architectures
remains a grand challenge.
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ΔGmix = ΔGex + ΔGideal

ΔGideal = −kT(X1 logX1 + X2 logX2) (2)

Here ΔGideal corresponds to the limiting case of an ideal
solution, in which the two components are physically identical
except for some innocuous label (the closest physical example
being a mixture of hydrogenated and deuterated solvents).

In turn, the excess mixing free energy is often used to
define an interaction parameter χ, which for regular solutions
is typically written

βΔGex = X1X2χ (3)

(So defined, χ is not constant in general, but may depend on
temperature, pressure, and composition).

Predicting ΔGex for mixtures is a challenging task. Many
experiments, calculations, and simulations have been
performed to determine ΔGex or equivalently χ, particularly
for polymer blends.8–16

At first sight, atomistic molecular dynamics (MD)
simulations appear well suited to the task of computing
mixing free energies for chemically realistic solutions, since
the energetic and entropic contributions to mixing depend
on details of molecular shape and interactions, which
simulations aspire to accurately describe.

However, MD simulations only give easy access to
quantities that can be computed from particle positions and
momenta; the energy is such a quantity, but the entropy and
free energy are not. Thus special methods are always required
to extract free energies from simulations.

In previous approach, we developed a “morphing” method
to determine excess mixing free energies (and thus χ) for
polymer mixtures.17–20 In this approach, we perform
molecular dynamic (MD) simulations for a sequence of
systems, along which sequence one species of molecule is
progressively transformed or “morphed” into another. We
compute the work to transform the species by
thermodynamic integration, and determine mixing free
energies by comparing the work to morph molecules in a
blend and in the pure state.

We have applied this method to bead-spring polymer
chains, we have studied the effect of various factors like chain
stiffness, interaction mismatch, and chain architecture on χ.
For chain of different stiffness, Kozuch et al. found a positive
entropic contribution to χ, in agreement with the field theory
predictions of Fredrickson et al.12,17 Zhang et al. studied the
effect of Lennard Jones (LJ) interaction mismatch on χ, and
validated their results by comparing the interfacial profile for
immiscible blends predicted by self-consistent field theory
(SCFT) with MD simulation results.18 Shetty et al. studied the
effect of chain architecture on χ, investigating blends with a
more weakly-interacting bead located at different positions on
polypropylene-like bead-spring chains.19

We have also extended the morphing method to
chemically realistic polymers, predicting χ for four real
polymer blends.20 To carry out “atomistic morphing”, we

perform MD simulations for a sequence of systems along
which the forcefield parameters of the molecules are
progressively transformed from one species to another. This
is evidently more complicated for real polymers than for
bead-spring chains. We are obliged to adjust LJ parameters
and partial charges, change bonded interactions as double
bonds morph into single bonds, and sometimes progressively
delete atoms altogether.

In this work, we explored a sequence of examples for
which the experimental χ value progressively decreased. We
thereby determined the practical limits to the atomistic
morphing method, which reflect both statistical error (which
becomes more demanding for small χ) and systematic error
in the force fields. In brief, the method holds promise for χ

values down to of order 10−2. However, atomistic morphing
has another practical limitation: different species in the
mixture must be structurally related. For mixtures involving
species that are only distantly related structurally, atomistic
morphing requires increasingly complicated schemes in
which many moieties are morphed, added, or removed to
transform one polymer species into another. This quickly
becomes impractical for all but the most structurally similar
pairs of polymers.

To overcome the limitation of structural similarity, in this
study we present a new method called “mutual ghosting” to
predict the excess free energy of mixing ΔGex. Mutual ghosting
works by progressively weakening the interactions between two
species in a miscible blend, until they undergo phase
separation (as the mutual interactions weaken, the two species
become “ghosts” to each other). We can compute the work to
achieve phase separation by thermodynamic integration.

However, the state induced by weakened interactions is
not complete phase separation, in two respects: 1) an
interface between the separated phases is present, and 2) a
dilute amount of species A may be present in the B-rich
phase, and vice versa. To determine the work to completely
separate the two species, we must measure the interfacial
tension of the A–B interface, and compute the work to
“sweep” the dilute stragglers into their own phase.

The mixing free energy ΔGmix that we seek is then the
negative of the total work ΔGdemix to completely demix the
system into its pure components, given by

ΔGdemix = ΔGweak − ΔGint + ΔGsweep (4)

Here ΔGweak is the thermodynamic work to weaken the A–B
interactions; ΔGint = 2Aγ is the A–B interfacial free energy
(two interfaces in a periodic system of cross-sectional area A),
and ΔGsweep is the work to transfer the stragglers (see
Appendix for details).

The mutual ghosting method gives the full mixing free
energy ΔGmix; to obtain the excess free energy of mixing ΔGex,
we must subtract the ideal contribution. This imposes a
limitation on the sensitivity of the method; to measure weak
deviations from ideal mixing, we must measure ΔGmix quite
accurately.
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To test our new method, we first apply it to ideal mixtures,
for which the excess free energy of mixing ΔGex should
vanish. The simplest such system is an equimolar mixture of
Lennard Jones (LJ) beads, differing only in their labels A and
B. For a simple chemically specific ideal mixture, we likewise
apply mutual ghosting to an equimolar mixture of labeled
and unlabeled benzene.

We then apply our method to an equimolar benzene–
pyridine mixture. Benzene and pyridine have very similar
molecular shapes, but rather different interactions because
of the substantial dipole on pyridine (about 2.2 Debye); thus
such mixtures serve as a good example of a regular solution,
for which the mixing free energy can be written as in eqn (2).
Also, vapor–liquid equilibrium (VLE) data is available for
benzene–pyridine solutions; VLE data can be used to infer
the mixing free energy, for comparison of our mutual
ghosting results to experiment.

As with any simulation method, our results depend on the
force field we use to represent the molecules being
simulated. For benzene and pyridine, we investigate both
united atom (TraPPE UA) and all-atom (OPLS-AA) potentials.
Both have been well tested for the respective pure fluids, but
neither have been specifically tested or tuned for benzene–
pyridine mixtures.

To distinguish between shortcomings of the potentials in
describing real molecules and difficulties with the mutual
ghosting method, it is useful to compare to results for χ

obtained with other simulation methods using the same
potentials. Because they are structurally so similar, χ for
benzene and pyridine described by both UA and AA
potentials can readily be obtained using atomistic
morphings.

2 Methods

The mutual ghosting method consists of a sequence of MD
simulations in which attractive interactions between two
species in a mixture are progressively weakened, which
causes the species to demix. The work to demix ΔGdemix is
computed by thermodynamic integration; the interfacial
tension γ between the resulting phases is measured by
standard techniques. Finally, the work ΔGsweep to transfer
species A molecules from the B-rich phase to the A-rich phase
and vice versa is computed from the concentrations of these
“straggler” molecules. The mixing free energy ΔGmix is then
given in terms of these results by eqn (4).

To illustrate mutual ghosting in detail, we apply it to the
simplest ideal mixture, an equimolar mixture of pointlike
particles interacting with identical LJ interactions, differing
only in their labels. For an ideal mixture, we expect ΔGmix to
be given by the ideal-mixing result, which serves as a first test
of our method.

2.1 Ideal solution of LJ beads

Our first model ideal solution consists of a liquid of LJ beads
with diameter σ = 0.2 nm, and interaction strength ε equal to

kT at the simulation temperature of 300 K (i.e., ε = 2.49 kJ
mol−1), at a pressure of 1 bar.

To build the equilibrated solution, we first randomly
insert 5000 LJ beads into a cubic simulation box of linear
dimension 6 nm. We randomly label the beads as species A
and B. We then minimize the system energy, followed by
simulation at fixed NPT for 5 ns.

All simulations were performed using GROMACS.21 These
simulations run at 250 ns per day on 8 cores with 1 GPU,
with a timestep of 1 fs. The particles diffuse at a rate of 6.9
nm2 ns−1, so that 5 ns is more than adequate to equilibrate
the species concentrations. Fig. 1(a) displays a snapshot of
the resulting solution, in which A beads are shown as red
and B as blue.

We then perform a series of simulations in which the LJ
interaction strength between red and blue beads is
systematically decreased, while blue–blue and red–red
interactions remain the same. As the interactions between
blue and red beads weaken, beads of the same species
increasingly cluster together, ultimately separating into
immiscible phases (see Fig. 1(b)).

The weakening of the LJ interactions between red and
blue beads is controlled by a parameter λ:

LJ r; λð Þ ¼ 1 − λð Þ C 12ð Þ

r12
− C 6ð Þ

r6

� �
(5)

Here C(12) = 4εσ12 and C(6) = 4εσ6, where σ and ε are the LJ
diameter and interaction energy.

To modify nonbonded interactions between two species A
and B while leaving A–A and B–B interactions undisturbed,
the only practical way is to use tabulated interactions, with
separate tables for A–B and all other interactions. This
approach works for molecules of arbitrary complexity, and
handles Coulomb as well as LJ interactions. In GROMACS,
this can be done with .mdp options
coulombtype = User
vdwtype = User
energygrps = A B
with index groups A and B defining species A and B.

The A–B table table_A_B.xvg is computed from the
standard table table6-12.xvg with all entries multiplied by 1 −
λ. More precisely, we used a “soft cutoff” scheme in which
the potential singularity at r = 0 is softened as λ becomes
small.22 The soft-cutoff potential we used takes the form

Fig. 1 Snapshots of the (a) equilibrated LJ beads melt, (b) after phase
separation and (c) with only red beads.
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Vsc(r) = (1 − λ)V(rsc)
rsc = (ασsc

6λ + r6)1/6 (6)

with α = 0.5 and σsc = 0.2 nm. This potential avoids problems
that occur when nearly-vanished particles have insufficient
repulsive interactions to prevent other particles from
approaching their weak but still singular potential at r = 0.

The work dW to weaken the interactions by ∂λ at λ is given
by dW = ∂G/∂λ, with the latter derivative given by

∂G
∂λ

� �
¼ ∂H

∂λ

� �
λ

≈ ΔHh iλ
Δλ

(7)

in which Hλ is the system Hamiltonian at a given value of λ.
Physically, eqn (7) says the generalized thermodynamic force
∂G/∂λ acting through a small displacement Δλ equals the
average change in system energy 〈ΔH〉, which is the work done.

We emphasize that the first equality in eqn (7) is
thermodynamically exact, derivable from the appropriate
partition function. Indeed, this same general relation is used
for atomistic morphing, in which λ controls the morphed
atomistic parameters. For the Gibbs ensemble, the
thermodynamic work of eqn (7) includes the effects of
volume change on mixing (to see this, note that only the
Hamiltonian depends on the morphing parameter λ, while
the system volume is a property of the microstate), which in
any case are very small for most regular solutions.

The sequence of λ values is chosen to reasonably represent
the integrand eqn (7). The last frame of the simulation at a
given λ is used as the initial configuration for the next λ

value, which is a sensible procedure if the λ values are closely
spaced, and the ensembles at neighboring λ values overlap
significantly.

We evaluate the derivative 〈∂H/∂λ〉 using a finite difference
between adjacent λ values (last line in eqn (7)). In detail, we
compute ΔEλ by rerunning the simulation trajectory at a given
λ with the interaction tables corresponding to neighboring λ

values, and taking the difference of the average energy in the
original and rerun.

Fig. 2(a) displays results for the integrand ∂G/∂λ versus λ for
our LJ beads ideal solution. The points in the graph indicate the
λ values taken, which are chosen to give good representation of
the integrand. To ensure good averaging of the integrand, each
λ value corresponds to a simulation run of 20 ns.

To compute the free energy ΔGweak to weaken the
interactions, we integrate the generalized thermodynamic
force ∂G/∂λ with respect to λ; Fig. 2(b) presents the integral
versus λ. Evidently, as λ progressively increases and we
continue to weaken the A–B interaction, the work to demix
continues to increase. Because A and B have largely separated
beyond about λ = 0.3, this reflects the increase in interfacial
tension as the A–B interactions weaken.

To completely demix the system, we must remove the
interface between the two phases. To this end, we measure
the interfacial tension γ in terms of the pressure anisotropy
in the usual way, as

2γ/L = Pz − (1/2)(Px + Py) (8)

for interfaces normal to the z axis in a cubic cell of linear
dimension L. The total interfacial free energy ΔGγ is then 2γA
(there are two interfaces of area A = L2 in the periodic
system), which increases with λ as shown in Fig. 3.

Comparing Fig. 3 and 2(b), we see that the increasing
work to effect the phase separation at larger values of λ is
nearly identical to the increasing free energy of the A–B
interface. This suggests that when the work to achieve phase
separation is computed via eqn (4), the result will be nearly
constant with λ.

Even after the A–B interfacial tension is accounted for, the
phase separation induced by weakening the A–B interactions
is not complete; for a system of small molecules, a few
“stragglers” of species A may be present in the B-rich phase,

Fig. 2 (a) Free energy integrand dG/dλ versus λ and (b) free energy to
weaken interactions ΔGweak versus λ for bead–bead separation.

Fig. 3 Interfacial free energy ΔGint versus λ for LJ beads mixing.
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or vice versa. This is the case for our LJ bead simulations, as
shown in Fig. 4(a). We count the stragglers by integrating the
number density in each phase, and calculate the work
ΔGsweep to transfer or “sweep” the stragglers to their own
phase, which turns out to be kT per particle (see Appendix
for details). Fig. 4(b) shows how ΔGsweep depends on λ; as λ

increases, the phase separation is more complete, and fewer
stragglers remain to be swept into the proper phase.

We determine the free energy of mixing ΔGmix, or rather
its negative, the free energy of de-mixing ΔGdemix, from the
measured values using eqn (4). We obtain ΔGex from ΔGmix

by subtracting the ideal part of the mixing free energy, using
eqn (2).

Putting together our results for the work ΔGweak to weaken
the A–B interactions, the interfacial free energy ΔGint, and the
work ΔGsweep to sweep the stragglers into the appropriate
phase, we obtain the work to completely demix the system
ΔGdemix, which is the negative of ΔGmix (see Fig. 5). As evident
in the figure, the demixing free energy for this ideal solution
is independent of λ (above λ ≈ 0.3, at which phase separation
first occurs), and consistent with the ideal-mixing result
ΔGideal = kT log 2.

The individual contributions to ΔGdemix each vary with λ—

the work ΔGweak to weaken the A–B interaction increases
(Fig. 2), the interfacial free energy ΔGint likewise increases in
nearly the same way (Fig. 3), and the small work ΔGsweep to
sweep the stragglers out decreases (Fig. 4)—but the sum is
quite constant. We can thus improve our value for ΔGdemix by
averaging the independent values, and estimate our
statistical error from the variance. From simulations, ΔGdemix

= 1.738 ± 0.009 kJ mol−1 for LJ beads separation from itself,
consistent with the expected kT log 2 = 1.729 kJ mol−1 within
the small statistical error.

2.2 Benzene and pyridine mixtures

For molecular mixtures, we consider an ideal solution of
equimolar labeled and unlabeled benzene, followed by an
equimolar mixture of benzene and pyridine, as a good
representation of a regular solution.

To prepare the equilibrated initial state of a benzene–
benzene ideal solution, we begin by randomly inserting 2500
benzene molecules into a cubic simulation box of linear
dimension 10 nm. To equilibrate, we 1) minimize the energy,
2) resize the system to the experimental density during a 1 ns
simulation, and 3) equilibrate for 1 ns under NPT conditions
at 300 K at 1 bar pressure. For the benzene ideal solution, we
use OPLS-AA (Optimized Potentials for Liquid Simulations-All
Atom) potentials.23

We prepare equimolar benzene–pyridine solutions in the
same way, using 1250 benzene and 1250 pyridine molecules
in a cubic 10 nm simulation box. We perform benzene–
pyridine mutual ghosting simulations using the united-atom
TraPPE (Transferable Potentials for Phase Equilibria Force
Field) potential, as well as the all-atom OPLS-AA potential, to
see how the two potentials compare in their predictions.24,25

Our MD simulations for benzene and pyridine employ a
timestep of 1 fs, and run at 25 ns per day on 16 cores with 1
GPU. Each λ value in the sequence of mutual ghosting
simulations is run for 50 ns. Benzene diffuses in our
simulations at a rate of about 1.7 nm2 ns−1 (in good
agreement with the experimental value of 2.2 nm2 ns−1), so
runs of this length are more than sufficient to equilibrate
concentration fluctuations across the system.

Finally, we perform atomistic morphing simulations20 to
compute the mixing free energy for benzene–pyridine
solutions by a completely independent route, to compare
with our mutual ghosting results using the same TraPPE and
OPLS-AA force fields.

To summarize the atomistic morphing method, starting
with a pure benzene liquid, we perform two series of

Fig. 4 (a) Number density of beads versus box co-ordinate at two λ

values and (b) work to sweep ΔGsweep versus λ.

Fig. 5 Demixing free energy ΔGdemix per bead versus λ for ideal
solution of LJ beads.
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simulations, in which we transform either all or half of the
benzene molecules to pyridine, to obtain either pure pyridine
or an equimolar benzene–pyridine solution. By
thermodynamic integration with respect to the morphing
parameter λ, we compute the work to effect each
transformation, and thereby calculate ΔGpyr and ΔGbenz–pyr,
with pure benzene as the reference state. The excess mixing
free energy ΔGex is given by

ΔGex = ΔGbenz–pyr − (1/2)ΔGpyr (9)

Note that atomistic morphing although more cumbersome
and less general than mutual ghosting because it requires
structural similarity between species, has the advantage that
it gives the excess mixing free energy directly, with no need
to subtract the ideal mixing contribution.

3 Results
3.1 Benzene ideal solutions

Following the same procedures described in section 2.1 and
illustrated for the ideal solution of labeled and unlabeled LJ
beads, we perform mutual ghosting simulations for ideal
equimolar solutions of labeled and unlabeled benzene.
Fig. 6(a) displays results for the free energy ΔGweak to weaken
the interactions between labeled and unlabeled molecules,
and Fig. 6(b) displays the interfacial free energy ΔGint, both
as a function of λ.

In contrast to our results for ideal solutions of LJ beads,
for benzene–benzene ideal solutions we find no “straggler”
molecules in the wrong phase (presumably because the
interactions per molecule are larger compared to kT for
benzene than for our LJ beads). Hence for these molecular
solutions, we do not need to correct for the work to transfer
stragglers to the appropriate phase.

Fig. 7 shows the demixing free energy ΔGdemix per
molecule versus λ for ideal solutions of benzene in benzene.
As for the LJ bead ideal solution results, the demixing free
energy is independent of λ once phase separation has
occurred, with the increase in interfacial free energy ΔGint

compensating precisely for the increase in the work ΔGweak to
weaken the interactions. Averaging the data points in Fig. 7,
we find ΔGdemix = 1.713 ± 0.005 kJ mol−1, reasonably
consistent with the ideal solution result of ΔGideal = kT log 2 =
1.729 kJ mol−1.

3.2 Benzene–pyridine solutions

We perform mutual ghosting simulations for equimolar
benzene–pyridine solutions using united-atom TraPPE as well
as all-atom OPLS-AA potentials. Fig. 8(a) and (b) presents our
results for the work to weaken the interactions ΔGweak and
the free energy ΔGint of the resulting interface, for both
potentials (as for benzene ideal solutions, we observe no
straggler molecules in the wrong phase, so no correction is
required to account for sweeping stragglers into the correct
phase).

For both potentials, we again find that as we weaken the
interactions between benzene and pyridine, the work ΔGweak

increases in the same way as the interfacial free energy ΔGint.
As a consequence, the demixing free energy predicted using
either potential is constant over the range of λ for which the
mixture has separated (see Fig. 9).

However, our results using TraPPE UA and OPLS-AA
potentials differ substantially from each other: using TraPPE
potentials, we find ΔGex equal to 0.49 ± 0.01 kJ mol−1, while
for OPLS-AA potentials we obtain a much smaller value of
0.17 ± 0.01 kJ mol−1. The latter result is much closer to the
experimental value of 0.125 kJ mol−1, obtained from fitting
vapor–liquid equilibrium (VLE) data for benzene–pyridine
solutions to regular solution theory.26

Fig. 6 (a) Free energy to weaken interactions ΔGweak as a function of λ
and (b) interfacial free energy ΔGint versus λ for benzene–benzene
mixture.

Fig. 7 Demix free energy ΔGdemix per molecule versus λ for benzene–
benzene mixture.
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So is the discrepancy between mutual ghosting results
using TraPPE and OPLS potentials (and between both these
results and experiment) evidence of a shortcoming in the
method, or in the potentials? To shed light on this question,
we performed atomistic morphing simulations for an
equimolar benzene–pyridine solution of 2500 molecules,
using the same potentials.

Fig. 10 displays the results of atomistic morphing
simulations for the free energy integrand ∂Gex/∂λ for TraPPE
UA and OPLS-AA potentials. As evident from the figure, the area
under the curve is larger for the TraPPE results. Performing the
integral to obtain ΔGex, we find ΔGex = 0.375 ± 0.005 kJ mol−1

for TraPPE potentials, versus 0.165 kJ mol−1 for OPLS-AA

potentials. These atomistic morphing results, using a
completely different approach, are consistent with our mutual
ghosting results, in the following respects: a) the TraPPE-
derived value is much higher than the OPLS-AA value, b) the
OPLS-AA values from atomistic morphing and mutual ghosting
are in close agreement, and c) the OPLS-AA values are in much
better although not perfect agreement with experiment.

Table 1 summarizes our results obtained using both
potentials, with both methods, reported both as excess
mixing free energies, and as χ parameters on a per molecule
basis, obtained from eqn (3). Error bars for simulation ΔGex

results (both UA and AA) are 0.01.

4 Conclusion

We present a new “mutual ghosting” simulation method to
determine the free energy of mixing ΔGmix for miscible
solutions. The new method works by artificially weakening
the interactions between species A and B to induce phase
separation, then measures the interfacial tension between
the immiscible phases. The work ΔGdemix to demix the two
species (which equals −ΔGmix) is the sum of the work ΔGweak

to weaken the interactions, minus the interfacial free energy
ΔGint. ΔGdemix can be computed by thermodynamic
integration along the path of weakening interactions.
Sometimes, a dilute admixture of “straggler” molecules of
species A remains in the B-rich phase, and vice versa; in such
cases, we add to ΔGdemix the thermodynamic work ΔGsweep to
sweep these stragglers to the appropriate phase, to complete
the separation of A and B.

Fig. 8 (a) Free energy to weaken interactions ΔGweak as a function of λ
and (b) interfacial free energy ΔGint versus λ for benzene–pyridine,
using TraPPE UA (blue, filled circles) and OPLS-AA (green, open circles)
potentials.

Fig. 9 Demix free energy ΔGdemix per molecule versus λ for benzene–
pyridine mixture, using TraPPE UA (blue, filled circles) and OPLS-AA
(green, open circles) potentials.

Fig. 10 Excess free energy integrand ∂Gex/∂λ versus λ for benzene–
pyridine mixture from “atomistic morphing” simulations, using TraPPE
UA (blue) and OPLS-AA (green) potentials.

Table 1 Excess mixing free energy results for benzene–pyridine
solutions, computed using TraPPE and OPLS-AA potentials, by mutual
ghosting (top values) and atomistic morphing (bottom values)

Source ΔGex (kJ mol−1) χ

TraPPE UA 0.49 0.79
0.38 0.61

OPLS-AA 0.17 0.27
0.17 0.27

Experiment 0.125 0.2
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Mutual ghosting overcomes an important limitation of
our previously developed “atomistic morphing” method,20

which determines the excess free energy of mixing ΔGex from
simulations by computing the work to progressively
transform one species into another, but in practice requires
the two species to be closely related structurally. In contrast,
mutual ghosting can applied to completely dissimilar species.
However, atomistic morphing computes ΔGex directly,
without subtracting the ideal mixing free energy ΔGideal from
ΔGmix, as must be done for mutual ghosting. For nearly-ideal
mixtures, this imposes stringent requirements on the
statistical error of mutual ghosting simulations.

We test our new method first by applying it to ideal
solutions, first a mixture of labeled and unlabeled Lennard-
Jones particles, then a mixture of labeled and unlabeled
benzene. In both cases, we compute ΔGmix = ΔGideal to very
good accuracy. For simplicity, in the present work we
consider only equimolar mixtures; however, like the atomistic
morphing method, the new mutual ghosting method can be
applied equally well to non-equimolar mixtures.

Then, we apply mutual ghosting to equimolar benzene–
pyridine solutions, which are convenient to study for several
reasons: 1) because benzene and pyridine have similar size
and shape, they are reasonably described as regular solutions;
2) because they are structurally similar, we can use atomistic
morphing as well as mutual ghosting to determine ΔGex for
the same force fields; and 3) experimental results for ΔGex can
be inferred from published vapor–liquid equilibrium data.

As with any chemically specific simulation, our results rely
on the fidelity of the force fields we use to model the system. In
this work, we simulate benzene and pyridine using two different
force fields, the TraPPE UA (united atom) and the OPLS-AA (all
atom) force fields. Both are commonly used, both have been
tested against pure fluid properties, and neither has been
specifically tuned to represent benzene–pyridine mixtures.

We find that mutual ghosting simulations using TraPPE
UA potentials predict ΔGex four times larger than experiment,
while OPLS-AA potentials give values about 30 percent larger
than experiment. Simulation results using atomistic
morphing are reasonably consistent with mutual ghosting
values, particularly for OPLS-AA potentials. This finding
highlights the fact that simulation predictions for mixing free
energies are only reliable if the underlying force fields
reasonably represent the interacting species, and that
validation of potentials for pure-fluid properties may not
ensure good results for mixtures.

5 Appendix: sweeping up the
stragglers

Consider a two component, phase separated system
consisting of species A and B, with a dilute amount of B in
A-rich phase and vice versa. For a system in equilibrium, the
chemical potential μB of B molecules is same in both the
phases (Δμ = 0). As a result, the thermodynamic work Δμ to

transfer a single B molecule from the A-rich phase to B-rich
phase is initially zero.

However, as we continue to transfer B molecules, the
concentration of B in the A phase drops, and the
translational entropy of the remaining B molecules in the
A-phase increases, given by eqn (10):

ΔS(c) = −k log(c/c0) (10)

Here c0 is the equilibrium concentration of B in the A-rich
phase, and c its reduced value after some transfers have
taken place.

Hence, the work to transfer a B molecule to the B-rich
phase as a function of its concentration in the A-rich phase is

Δμ(c) = ΔE − TΔS = −kT log(c/c0) (11)

(We assume here that B molecules are dilute enough in the
A-rich phase that they may be regarded as an ideal solute,
and interactions between B molecules in the A-rich phase
neglected). The same arguments hold true for dilute A
molecules in B-rich phase.

We integrate to find the work to transfer all the B
molecules to B-rich phase (assuming the dilute concentration
of A in the B-rich phase is largely unaffected, since very few B
molecules are transferred). The work per unit volume is then

W=V ¼
ð c0

0
dcΔμ cð Þ ¼ kTc0 (12)

Correspondingly, the work per particle transferred is
simply kT.
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