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A B S T R A C T

The increase in additively manufactured (AM) Ti-6Al-4V alloys in high-performance industrial applications
has necessitated the development of robust computational models that can aid in their qualification and
certification. Physics-based micromechanical models, relating the AM-processed material microstructure and
defect state with the overall material response and life, can play an important role in reducing uncertainty in
component behavior and increasing acceptance. Motivated by this need, the present paper develops a novel
image-based crystal plasticity finite element model (CPFEM) for efficient micromechanical simulation of the
additively manufactured Ti-6Al-4V alloy, whose Widmanstätten microstructure is characterized by 12 HCP
𝛼 lath variants in the parent 𝛽 grain. A unique feature of this work is the creation of an efficient crystal
plasticity framework for the parent 𝛽 grain polycrystalline ensembles with parametric representation of the
𝛼 lath statistics of size, shape, orientation, and crystallography. This statistical representation is expected to
significantly enhance its efficiency over models that represent each 𝛼 lath explicitly in the microstructure.
Defects in the form of voids are represented at two scales. The smaller voids in the microstructure are
manifested as porosity or void volume fraction distribution in the crystal plasticity model. Larger voids are
represented explicitly in the statistically equivalent microstructural volume element (SEMVE) model. The
models are built from experimentally acquired electron back scatter diffraction (EBSD) and micro-focus X-ray
computed tomography (XCT) images and calibrated and validated with mechanical testing data. This paper
extends the developments in Pinz et al. (2022) through the development of a special self-consistent boundary
condition in the context of a concurrent model to overcome limitations of periodicity boundary conditions.
The concurrent model embeds the SEMVE in a homogenized exterior domain represented by a rate-dependent
isotropic plasticity model. Parametric studies are conducted to comprehend the effect of void size, shape and
orientation on the overall material response.
1. Introduction

Laser powder bed fusion (LPBF) and electron beam powder bed
fusion (EBPBF) are commonly used additive manufacturing (AM) meth-
ods for fabricating metallic components from powder-based feedstock
[1]. While these methods have made tremendous advances, their gen-
eral adoption in major applications has been impaired due to the
inability to qualify and certify AM-processed materials and compo-
nents [2]. Inconsistencies in material behavior and life due to variations
in the microstructural morphology and defects, such as porosity and
surface imperfections, are largely responsible for these impediments [3,
4]. Effective computational models that can relate the microstructure
to the overall response of these materials must be developed to address
these issues.

∗ Corresponding author.
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The additively manufactured Ti-6Al-4V alloy, studied in this paper,
has shown considerable promise for high-performance, mission-critical
components with complex topological configurations. Its microstruc-
ture consists of HCP lattice-based 𝛼 phase and BCC lattice-based 𝛽
phase, whose volume fractions are dependent on the material compo-
sition and heat treatment. In the LPBF process, the powder feedstock
is first melted. Upon re-solidification, the material first assumes the 𝛽
phase till it cools below the 𝛽 transus temperature that is approximately
950◦C. Below this temperature, 𝛼 laths nucleate and grow to proliferate
the entire microstructure. The crystallographic orientation of each of
the 12 𝛼 laths is related to that of the parent 𝛽 grain through a unique
Burgers relationship, giving rise to 12 unique variants. The high rates
of cooling in AM processes lead to frequent nucleation in the bulk,
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resulting in smaller 𝛼 laths (than other conventional processes), and
Widmanstätten or basketweave type microstructures. Build parameters
such as hatch spacing, laser power, scan speed, etc., greatly affect the
material thermal history and consequently the morphology of the 𝛼
phase.

While the literature on image-based crystal plasticity models of
conventionally processed 𝛼∕𝛽 phase Ti-6Al-4V alloy is quite extensive
viz. [5–10], there have been relatively fewer developments for AM-
processed Ti-6Al-4V alloy with Widmanstätten microstructures [11].
In part, this was due to the difficulty of obtaining 3D virtual repre-
sentations of the 𝛼 lath microstructure. The recent years are however
seeing an emergence of crystal plasticity-based micromechanical mod-
eling of AM-processed Ti-6Al-4V alloy with complex microstructures.
For example, the effects of powder and processing on porosity and
properties have been analyzed in [12], grain-level residual stresses
have been incorporated in crystal plasticity models in [13], phase-
field and crystal plasticity models have been integrated for predicting
structure–property relations in [14], anisotropic tensile behavior has
been explored in [15], and tensile properties have been predicted
in [16]. Physics-based approaches for generating virtual instantiations
of Widmanstätten microstructures have been pursued in [17–20] by
varying the energy of formation for different crystallographic orienta-
tions as a function of the material stress state. While these methods are
promising, many require highly refined spatial resolutions that make
them computationally intensive for larger simulation volumes.

Recently, an effective crystal plasticity model representing the mi-
crostructure of additively manufactured Ti-6Al-4V alloy along with
porosity distributions has been developed in [21]. This model circum-
vents the need to construct explicit 𝛼 laths by introducing a parametric
representation of the statistics of size, shape, and variant volume frac-
tion of each of the 12 𝛼 lath variants in the crystal plasticity constitutive
law. The overall mechanical response of all 𝛼 lath variants is manifested
through a volume fraction-based weighted averaging rule. A statis-
tically equivalent microstructural volume element (SEMVE) is con-
structed containing explicit representations of the 𝛽 grain morphology,
with 𝛼 lath descriptors assigned to each 𝛽 grain. The Burgers relation
then describes the crystallography of the 𝛼 laths with respect to the ex-
plicitly defined 𝛽 grain. Perspectives on the micromechanical modeling
of the impact of porosity variations in additively manufactured metal
microstructures have also been given in [22].

The present paper extends the developments in [21] to conduct a
parametric study of the effect of defects in the microstructure that are
inherent to the additively manufactured Ti-6Al-4V alloy. Microstruc-
tural voids and porosity are observed in two forms, viz. key-holing
(KH) and lack of fusion (LoF) voids. KH is typically caused by an
excess of energy in a localized area, resulting in gas pockets being
trapped while the material is still in a molten state [23]. LoF is the
result of insufficient energy density, resulting in feedstock that has
not fused. By varying the material processing conditions such as beam
speed, power, beam width, raster pattern, etc., the material processing
conditions can be tightly controlled to minimize both types of voids
and porosity. However, even under ideal processing conditions, both
types of porosity simultaneously exists, highlighting the difficulty of
eliminating porosity altogether. While many studies have focused on
how to reduce porosity in AM processed materials [24], less research
has been done on modeling the interplay between the microstructure
and voids. The size distribution of non-densified defects spans orders
of magnitude, from a few μm to over 100 μm. In this paper, different
modeling approaches are proposed for the defects depending on their
size. The micro-focus X-ray computed tomography (XCT) scanner has
a maximum resolution corresponding to a defect size of 24 μm. Defects
that are less than 24 μm are represented in the form of porosity or
void volume fraction and are incorporated as an evolving parameter
in the constitutive relation as developed in [25]. For defects larger
than 24 μm the voids are represented explicitly in the micromechanical

models. An important feature is the use of self-consistent boundary v
conditions [26,27] on the micromechanical domains to avoid over-
constraining issues with imposed periodicity boundary conditions. The
interaction between the 𝛼 Widmanstätten microstructure and voids is
critical to the material performance and life and is accounted for in this
micromechanical model for reliable predictions.

An overview of material description, build processes, mechani-
cal testing experiments, and image acquisition methods is given in
Section 2. In Section 3, the image processing pipeline and cleanup
procedures, including void and porosity identification are discussed.
The effective crystal plasticity model, parametrically incorporating the
effect of the 𝛼 lath variants and the porosity evolution, is discussed in
Section 4. The results of simulations with the model are analyzed in
Section 6. Section 7 summarizes the developments in this paper.

2. Overview of the material, manufacturing process, and mechan-
ical testing

The AM-processed Ti-6Al-4V alloy (5.82% by weight Al, 4% V, 0.2%
Fe, 0.1% O and the rest Ti) modeled in this study has a Widmanstätten
microstructure with 𝛼∕𝛽 phases. The microstructural electron backscat-
ter diffraction (EBSD) scan shows ≥ 98% 𝛼 phase area fraction, implying
that nearly all deformation will occur on HCP slip systems. The 𝛼
phase is characterized by interlocking laths that can be adequately
approximated by as ellipsoids. The Burgers relationships (0001)𝛼 ∥
(101)𝛽 and [112̄0]𝛼 ∥ [1̄11]𝛽 [28] describes the crystallography of each
𝛼 variant with respect to the parent 𝛽 grain.

2.1. Material build parameters

The samples used in this study are processed on an EOS M290 metal
laser powder bed fusion (LPBF) system in argon shielding gas using
a 400w yb-fiber laser with a spot size of 100 μm. Grade 5 Ti powder
is procured from EOS with chemical composition in accordance with
ASTM F1472 and ASTM F2924. Using a camsizer particle size analyzer,
the powder size distribution is determined to fall within the specified
range 10 − 63 μm particle size distribution with a mean size 36.7 μm,
and the 10th and 90th percentile sizes being 22.4 μm and 46.3 μm
respectively. Two different processing conditions are employed in this
study, viz. (i) a control set referred to as Stock, and (ii) a set designed
to generate keyhole voids referred to as KH1. The Stock samples are
processed at a volumetric energy density of 55.56 J∕mm3 with a laser
power of 280w, a scan speed of 1200 mm/s, hatch spacing of 140 μm,
and a layer height of 30 μm. The KH1 set, designed to impart keyhole
porosity but not substantially impact the microstructure, is generated at
a volumetric energy density of 83.33 J∕mm3 by lowering the scan speed
to 800 mm/s. This introduces approximately 0.10% keyhole porosity
as described in [29]. Samples are tested in the as-printed condition
with no post-manufacturing heat treatment to maximize the influence
of microstructure.

2.2. Mechanical testing

Tensile specimens with geometric dimensions shown in Fig. 1(a)
re fabricated by laser powder bed fusion and then removed from
he build plate via wire electric discharge machining (EDM). The
amples are then tested on an electromechanical Instron 5984, using
ustom fixturing to interface with the self-aligning grip ends of the
ample. All specimens are tested at a constant displacement rate of
E-3 mm/s. The strain is measured using an Instron AVE2 non-contact

ideo extensometer, with a gauge length of 8.5 mm.
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Fig. 1. (a) Geometry of the tensile specimen with dimensions in mm, (b) inverse pole figures (IPF) for the manufacturer recommended (Stock) build condition, and (c) IPF for
he Keyhole 1 (KH1) build condition. The IPF keys are given in Fig. 2(d).
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2.3. Imaging and data acquisition

The built samples are embedded in a slow-cure epoxy and ground
with finer SiC paper. Subsequently, they are polished with a 1 μm
lumina suspension. For acceptable surface finish of the EBSD scans,
he samples are installed on a VibroMet™ 2 for approximately 17 h
ith 0.02 μm colloidal silica. EBSD scans are performed on a Thermo
cientific Scios scanning electron microscope equipped with an Oxford
ordlysMax3 detector. An Oxford AZTEC data acquisition software
s used to acquire and store the diffraction patterns at 100 nm or
.2 μm resolutions, with an acceleration voltage of 25 kV. The high
esolution 100 nm scans allow for the accurate identification of the
ndividual 𝛼 lath morphology. The lower-resolution 1.2 μm scans are
able to capture a substantially larger area of the microstructure and
are employed primarily to reconstruct the prior 𝛽 microstructure. The
Oxford Instruments Channel 5 software processes the raw EBSD data.

Following the ingestion of the raw EBSD data, an automated EBSD
image cleanup and segmentation pipeline is established to obtain 𝛼
lath morphological and crystallographic parameters at both scan res-
olutions. The high resolution, smaller area (200 μm × 200 μm) scans in
the XY plane are shown in Fig. 1, while the lower-resolution, larger
area (3.6 mm × 2.3 mm) scans contain information from both the XY
and XZ planes. The figure shows gradients in the 𝛼 lath dimensions,
which is a consequence of significant thermal gradients and internal
stresses during solidification [30,31]. With the micrographs shown in
Fig. 2 imported into the microstructure builder DREAM.3D suite [32],
the following image processing pipeline is applied to both the 𝛼 and 𝛽
images.

1. A bad data filter removes pixels that have a confidence index ≤
0.1. Subsequently, a nearest neighbor fill approach is conducted

for the bad data. r
2. Contiguous grains with a 3◦ misorientation tolerance are identi-
fied.

3. A minimum size filter of 20 pixels is employed to eliminate
imaging artifacts and over-segmentation of grain boundaries.

4. The average crystallographic orientation and the best-fit ellipse
are identified for every segmented grain, generating axis lengths
and orientation.

The result of this pipeline is a fully segmented micrograph of 𝛼
lath colonies, that contains statistical descriptors of each lath, viz.
aspect ratio, orientation, axis lengths, equivalent sphere diameter, and
crystallographic orientation.

2.4. Void characterization

The size and spatial distribution of voids are characterized by micro-
focus X-ray computed tomography (XCT). Representative cylindrical
6 mm diameter specimens, built under the stock and KH1 conditions,
are volumetrically imaged with a voxel size of 6 μm. X-ray tomographs
are acquired using a North Star Imaging X-50 system with a 225
keV X-ray source. Each specimen is scanned with the SubPix super-
resolution mode using 2401 projections and 2x frame averaging, while
operating at 100 keV accelerating voltage and 130 μA source current.
ach scan lasts about 53 min. Scans are subsequently reconstructed
sing the standard filtered back-projection algorithm implemented in
he NorthStar Imaging reconstruction software.
The scans are post-processed using VolumeGraphics software VGStu-

ioMax [33] to characterize the porosity. Pores are segmented using
he EasyPore local thresholding algorithm, and pores smaller than 32
oxels (equivalent to a sphere with diameter of 24 μm) are excluded.
he segmentation is manually inspected, and spurious pores due to

ing artifacts are manually deleted. The location, volume, and diameter
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of all pores in each volume are subsequently exported, which allows
their size and spatial distribution statistics to be evaluated. Two distinct
classes of non-densified defects are defined, viz. voids with a diameter
greater than 24 μm, and void volume fraction or porosity corresponding
to those with a diameter less than 24 μm. The former class is represented
xplicitly as voids in the microstructure of the micromechanical model,
hile the latter is represented as a porosity density or void volume
raction parameter in the crystal plasticity constitutive relation [25].

. Generating statistically equivalent microstructural volume ele-
ents (SEMVE)

Statistically equivalent microstructural volume elements (SEMVEs)
34,35] are statistically optimal computational domains with respect to
icrostructural descriptors, used in the direct micromechanical simu-
ations for evaluating material properties and local response variables.
he SEMVEs of the AM-processed Ti-6Al-4V alloy represent ensembles
f parent 𝛽 grains, with 𝛼 lath statistics manifested through parametric
orms of representative ellipsoids in the accompanying crystal plasticity
onstitutive model. Details of this model have been given in [21].
dentical statistics are employed to generate different instantiations
f the SEMVEs. Their volumes are taken to be sufficiently large such
hat random instantiations of the microstructure behave similarly, and
eviations caused by random perturbations of unbiased statistical re-
onstructions are minimal. The 𝛼 lath crystallographic orientations are
etermined from the parent 𝛽 grain orientation by the Burgers relations.
The SEMVEs modeled has a length-scale that is of the same order

as the test specimens, and hence their deformation modes can manifest
non-homogeneity and non-periodicity such as necking. Correspond-
ingly, it is not prudent to constrain the SEMVEs with periodic boundary
conditions that do not accommodate inhomogeneous deformation. Con-
ventional boundary conditions, such as displacement, periodicity, or
traction boundary conditions can result in inaccuracies in the local
state variables, particularly near the domain boundary [36]. A self-
consistent boundary condition has been proposed in [26,27], where
a concurrent multiscale domain as shown in Fig. 11(a) is constructed
by embedding the SEMVE domain for crystal plasticity-based microme-
chanical simulations in an exterior domain modeled with self-consistent
homogenized constitutive relations. A rate-dependent isotropic elasto-
plastic constitutive model is calibrated for the exterior domain in the
concurrent model.

3.1. Identification of parent beta grains

During solidification in the LPBF process, the parent 𝛽 grains with
CC lattice structure are formed with processing condition-dependent
hape and orientations [37]. The 𝛼 laths, with orientations following
he Burgers relation, nucleate with cooling below the 𝛽 transus tem-
erature ∼ 950◦, and subsequently grow to cover the entire domain
ith further cooling. Alternative methods for reconstructing the parent
microstructure from observed 𝛼 EBSD images have been proposed

n [38,39]. A novel algorithm developed in [21] is used in this paper
or the generation of 𝛽 grain ensembles from microstructural 𝛼 laths
s shown in Fig. 2(a). This method first segments individual 𝛼 laths
into contiguous regions and lists all neighbors for each lath. For each
neighboring lath-pair, a misorientation measure determines if these
neighbors are derived from the same parent 𝛽 grain, prior to being
ssigned to a common 𝛽 grain candidate. This process is continued for
ll neighboring 𝛼 lath-pairs for potential inclusion within a common 𝛽
grain. Crystallographic orientation of the parent 𝛽 grain candidate is
alculated from those that share less than a threshold misorientation of
◦, and aggregated into a larger grain. Fig. 2(b) shows a representative
grain ensemble generated by this process.
.2. Sampling volume fractions of variants

The statistical description of the 𝛼 lath variant volume fractions is
ntegral to the micromechanical crystal plasticity modeling of the addi-
ively manufactured Ti-6Al-4V SEMVEs [21]. The aggregated material
esponse of the 12 variants is evaluated through a volume fraction-
ased weighted averaging. Hence, it is necessary to ensure unbiased
ampling of the statistically equivalent sets of 𝛼 lath variant volume
ractions in the generation of SEMVEs.
For a given parent 𝛽 grain, a 12-dimensional vector represents the

olume fraction of its variants, with each dimension being the volume
raction of an individual variant. The construction of a 12-dimensional
andom variable with a large number of constraints would necessitate
everal assumptions on the relationship between the different dimen-
ions. Instead of generating a probability density function (PDF) from
hich to sample, the approach used in this study matches critical
ross-sections of the 12-dimensional PDF. Five necessary conditions are
atisfied to ensure unbiased sampling with reasonable accuracy [21].
hese are expressed as:

1. The number distribution of independent 𝛼 variant volume frac-
tions in the parent 𝛽 grain must converge to the experimental
distributions for a large sample, as seen in Fig. 3(a);

2. The volume fractions of all variants should add up to unity,
i.e. ∑12

𝑖=1 𝑣
𝑖
𝑓 = 1 for the entire parent 𝛽 grain population;

3. The volume fraction distribution of 𝛼 variants must converge to
the experimental distribution for a large number of 𝛽 grains, as
in Fig. 3(b). This constraint is not placed on any one parent 𝛽
grain, but on the population as a whole;

4. The total volume fraction distribution of each variant should
closely match the experimental distribution, as shown in 3(c);

5. The pairwise correlation of 𝛼 variant volume fractions calculated
as: 𝑐𝑖𝑗 =

∑𝑁𝛽
𝑘

𝑣𝑓 𝑖𝑘𝑣𝑓
𝑗
𝑘

𝑣̄𝑖𝑓 𝑣̄
𝑗
𝑓

∀ 𝑖, 𝑗 ∈ [1, 12], as shown in 3(d), must be

preserved.

A sampling method for generating statistically equivalent variant
volume fractions has been described in [21]. For every 𝛽 grain in the
microstructure, the number 𝑁 of different volume fractions is sampled
from the experimental scan data. Next, 𝑁 − 1 points are randomly
sampled from the [0,1] interval. The volume fraction assigned to the
𝑖th variant is defined by the distance between each of these points.
Subsequently, the 12 variant IDs with assigned volume fractions are
rearranged to satisfy the experimental variant ID distribution over all
𝛽 grains. As shown in Fig. 3(d), the pairwise correlation 𝑐𝑖𝑗 between
the variants is quite weak. The random sampling does not produce sta-
tistically significant correlations, and hence this needs to be accounted
for.

3.3. Alpha lath characterization and statistics acquisition

Generating SEMVEs of the 3D Widmanstätten microstructure is a
challenging enterprise. Physics-based approaches to generating syn-
thetic microstructures, e.g. the phase-field models [17–20] can be com-
putationally expensive. Furthermore, the very high resolution needed
to represent individual laths in the SEMVE makes their micromechan-
ical analysis computationally intractable. To circumvent the overhead
associated with explicit representation of large microstructural regions,
the 𝛼 lath statistics of the Widmanstätten microstructure are paramet-
rically incorporated in the crystal plasticity constitutive model with
underlying physics considerations. In this representation, the 𝛼 laths
are assumed to be adequately represented by ellipsoids, shown in Fig. 4,
with parametric equations:
( 𝑥̄ )2

+
(

𝑦̄
)2

+
( 𝑧̄ )2

= 1 (1)

𝐴 𝐵 𝐶
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Fig. 2. (a) High resolution (1.2 μm) 𝛼 lath image after preprocessing using steps in Section 2.2, (b) corresponding parent 𝛽 grain ensemble constructed by an algorithm developed
in [21], (c) inverse pole figure (IPF) key for the BCC parent 𝛽 grains, and (d) IPF key for the HCP 𝛼 grains images. The IPFs apply to all figures in this paper.
Fig. 3. (a) Histogram of PDF of the number of independent variants for each experimentally observed parent 𝛽 grain, (b) comparison of the PDF of the average volume fraction
n a parent 𝛽 grain with that generated by the sampling method for a given variant, (c) histogram of PDF of the volume fraction for each of the 12 potential variants, and (d)
airwise correlation matrix 𝑐𝑖𝑗 of variant IDs relative to predicted values across all variants.
a
, 𝐵, 𝐶 are the semi-major, intermediate, and semi-minor axis lengths
espectively, and 𝑥̄, 𝑦̄, 𝑧̄ are coordinates of a point on the surface in
 e
reference coordinate system with unit vectors (𝐞𝐱̄ , 𝐞𝐲̄ , 𝐞𝐳̄) along the
llipsoid axes, with its origin 𝐱 at the centroid. The plane normal to
0
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Fig. 4. The representative 3D 𝛼 lath ellipsoid with its principal axes showing the
elation between the 𝑧̄ axis direction 𝐧𝛼 and the 𝛽 grain crystallographic direction
𝛽 .

𝐳̄ is defined as the habit plane. As shown in Fig. 4, the minor 𝑧̄ axis
irection 𝐧𝛼 and the 𝛽 grain crystallographic direction 𝐧𝛽 follow the
urgers relationship

{

11̄00
}

∥
{

1̄12
}

[40].
The most probable 3D 𝛼 lath ellipsoid is determined by a sampling

rocess given in [21]. With known principal axis 𝑧̄, the other two axes
̄ and 𝑦̄ are selected randomly about it. The most probable ellipsoid
spect ratios 𝐴∕𝐶 and 𝐴∕𝐵 are established by a sampling method in
hich 2D ellipses, extracted from the intersection of the 3D ellipsoid
ith a centroidal XY plane, best match the aspect ratios from EBSD
cans. Subsequently, the ellipsoid size is estimated from the relation
etween principal axis lengths (𝐴,𝐵, 𝐶) and the semi-minor axis length
f the 2D ellipse, resulting from the intersection of the most probable
D ellipsoid with the XY plane.
For each segmented 𝛼 lath, the corresponding variant ID ∈ [1 − 12]

nd 𝛽 orientation are identified, and the normal to the habit plane is
alculated. Next, about 50 ellipsoids are generated by sampling the
spect ratios 𝐴∕𝐵 and 𝐴∕𝐶 from the most probable distributions, and
andomly selecting a rotation about the 𝑒𝑧̄ axis that defines the 𝑒𝑦̄
nd 𝑒𝑥̄ axis orientations. 2D projections of each randomly generated
llipsoid are taken through the centroid of the 3D ellipsoid on the
maging plane. Due to the uncertainty in calculating the orientation
f the observed 2D ellipses, only the aspect ratios of the resultant 2D
llipses are used to determine the best-fit metric. Note that the absolute
ize of the ellipsoids can be scaled independently of the aspect ratio and
rientation. The semi-minor axis length 𝐶 is bounded by the smallest of
D ellipse axis lengths measured in EBSD scans. For each 𝛽 grain in the
EMVE, 12 statistically equivalent 𝛼 laths are sampled and assigned to
ach variant. The characteristic ellipsoids ascribed to the variants are
ispersed uniformly over the 𝛽 grains, and hence they do not display
patial variation in the SEMVEs.
The 3D 𝛼 lath generation results for the AM Ti-6Al-4V microstruc-

ures of the KH1 (with keyhole voids) and Stock samples are plotted
n Figs. 5(a–c). The resultant 𝐴∕𝐶 aspect ratio in Fig. 5(a) shows very
ittle difference between the two samples. A log-normal distribution
s chosen for parameterizing the distributions of all quantities with a
easonable fit. The difference between the samples is minimal for the
verall minor (C) semi-axis length in Fig. 5(b). With similar statistics,
he microstructure reconstruction process going forward uses the com-
ined statistics from both the KH1 and Stock samples. The semi-axis
engths for these combined statistics along with their log-normal fit are
lotted in Fig. 5(c).

.4. Characterization and SEMVE reconstruction for the parent 𝛽 grain

3D statistical representation of the parent 𝛽 microstructure in the

EMVEs is necessary for micromechanical analysis. Building 3D virtual a
icrostructural images from image stack data generated by FIB-SEM-
ased serial sectioning methods [34,35] can be an extremely resource-
ntensive procedure. Alternatively, statistically equivalent 3D virtual
icrostructures have been developed from 2D orthogonal EBSD/SEM
cans, whose 2D statistics in the orthogonal planes match the extracted
mages [10,41]. The approach in this paper for validating the 3D SEVMs
f parent 𝛽 grains incorporates the following modules: (i) generation
f 3D virtual microstructures from a data set of 3D statistics, (ii) ex-
raction of orthogonal slices from the reconstructed microstructure, (iii)
omparison of the 2D statistics extracted from sections of the 3D mi-
rostructure to reference statistics from 2D experimental observations,
nd (iv) iterative enhancement of the 3D microstructure statistics.
The statistics of parent 𝛽 grain morphology and crystallography

re first extracted from orthogonal XY and XZ plane EBSD scans and
rocessed using the DREAM.3D software [32], augmented with an
n-house wrapper code. The DREAM.3D software uses an equivalent
llipsoidal grain generator to create pseudo-grains with size, shape,
nd orientation distributions equivalent to those in the experimental
BSD scans. This is followed by a constrained grain packer from spatial
istribution statistics that places the generated pseudo-grains inside of
representative polycrystalline microstructural volume using a seed
oint generator and a constrained Voronoi tessellation method [42,43].
For the AM Ti-6Al-4V microstructures, contiguous parent 𝛽 grains

n the 2D EBSD images, obtained in Section 2.3 and depicted in
igs. 7(a,b), are segmented and parametrized as 2D ellipses in
REAM.3D. The distribution functions of three characteristic param-
ters of the ellipses, viz. (i) equivalent grain size represented by an
quivalent sphere (circle) diameter (𝐸𝑆𝐷), (ii) aspect ratio (𝐴𝑅), and
iii) an angle of rotation for the longest axis, are used as discrimi-
ating metrics to validate the equivalence of the experimental and
econstructed microstructures. The equivalent diameter is calculated
s 𝐸𝑆𝐷 = 2

√

𝐴𝑠
𝜋 , where 𝐴𝑠 corresponds to the 2D grain area observed

in the EBSD scans. Its distribution is approximated by the log-normal
distribution with mean 𝜇𝐸𝑆𝐷 and standard deviation 𝜎𝐸𝑆𝐷. The 2D
spect ratio 𝐴𝑅 is fit to a normal distribution with mean 𝜇𝐴𝑅 and
tandard deviation 𝜎𝐴𝑅. The distribution of the rotation angle of ellipses
n the 2D section images is characterized through a PDF of the rotation
ngle 𝑓 (𝜃) with an Epanechnikov kernel distribution [44], for which
he kernel bandwidth is theoretically optimal for normal distributions.
he distribution functions for 𝐸𝑆𝐷, 𝐴𝑅 and the orientation from the
BSD scans constitute a reference data set.
Additional assumptions are made in building the parent 𝛽 grain

irtual microstructures. The 3D ellipsoidal pseudo 𝛽 grains are found to
share a common set of Euler angles describing their spatial orientation.
Their overall size distribution across all orientations is described by

a log-normal distribution 𝑓 (𝑥) = 1
𝑥𝜎𝐸𝑆𝐷

√

2𝜋
𝑒
− (𝑙𝑛(𝑥)−𝜇𝐸𝑆𝐷 )2

2𝜎2𝐸𝑆𝐷 with mean
nd standard deviation parameters 𝜇𝐸𝑆𝐷 and 𝜎𝐸𝑆𝐷 respectively. The
3D aspect ratios 𝐶∕𝐴 and 𝐵∕𝐴 are characterized by a 𝛽 distribution,
given as 𝑓 (𝑥) = 𝑥𝑎−1(1−𝑥)𝑏−1𝛤 (𝑎+𝑏)

𝛤 (𝑎)𝛾(𝑏) , where 𝛤 is the gamma function
and 𝑎𝐴𝐵 , 𝑏𝐴𝐵 , 𝑎𝐴𝐶 , 𝑏𝐴𝐶 are parameters. The aspect ratios and size are
found to be minimally correlated. With these assumptions, the par-
ent 𝛽 grain microstructure is parametrized by a set of parameter
statistics 𝑆3𝐷 with components: (i) the Euler angles (𝜙1, 𝛷, 𝜙2) describ-
ing the orientation of the grains, (ii) the size distribution parameters
(𝜇𝐸𝑆𝐷, 𝜎𝐸𝑆𝐷), and (iii) the aspect ratio distribution function parameters
(𝑎𝐴𝐵 , 𝑏𝐴𝐵 , 𝑎𝐴𝐶 , 𝑏𝐴𝐶 ). The objective is to find an optimal set of statistical
arameters 𝑆3𝐷 that minimizes the goodness of fit metrics 𝐺𝑂𝐹𝑟𝑜𝑡,
𝑂𝐹𝐸𝑆𝐷 and 𝐺𝑂𝐹𝐴𝑅 described in Eq. (2). The goodness of fit 𝐺𝑂𝐹
unctions represent the difference between the statistics of the EBSD
ata and that from 2D sections of the reconstructed 3D microstructures,
or the rotation angle (𝜃), equivalent sphere diameter (𝐸𝑆𝐷), and
spect ratio (𝐴𝑅). For a specific 3D microstructural instantiation, the
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Fig. 5. (a) 𝐴∕𝐶 aspect ratio of 𝛼 laths for the AM Ti-6Al-4V microstructures of the KH1 (with keyhole voids) and Stock samples, (b) minor (C) semi-axis length distribution for
he KH1 and Stock samples, along with their combined statistics, and (c) PDF of the semi-axis length distributions 𝐴,𝐵, 𝐶.
functions are defined as:

𝐺𝑂𝐹𝑟𝑜𝑡 =
𝑛𝑑𝑖𝑟
∑

1 − ∫

𝜋

0
𝑓 𝑠𝑖𝑚(𝜃)𝑓 𝑒𝑥𝑝(𝜃)𝑑𝜃

𝑂𝐹𝐸𝑆𝐷 =
𝑛𝑑𝑖𝑟
∑

2(|𝜇𝑠𝑖𝑚𝐸𝑆𝐷 − 𝜇𝑒𝑥𝑝𝐸𝑆𝐷|) + |𝜎𝑠𝑖𝑚𝐸𝑆𝐷 − 𝜎𝑒𝑥𝑝𝐸𝑆𝐷|

𝐺𝑂𝐹𝐴𝑅 =
𝑛𝑑𝑖𝑟
∑

2(|𝜇𝑠𝑖𝑚𝐴𝑅 − 𝜇𝑒𝑥𝑝𝐴𝑅 |) + |𝜎𝑠𝑖𝑚𝐴𝑅 − 𝜎𝑒𝑥𝑝𝐴𝑅 |

(2)

here 1 ≤ 𝑛𝑑𝑖𝑟 ≤ 3 refers to the total number of orthogonal images
vailable from experiments. The superscript 𝑠𝑖𝑚 corresponds to statis-
ics of simulated microstructures, whereas superscript 𝑒𝑥𝑝 corresponds
o those from the EBSD scans. The orientation direction is not explicitly
pecified in these equations. Statistics belonging to the same 2D plane
re summed over all available directions. While the XY and XZ sections
re accounted for in this work, the formulation is flexible to accommo-
ate a third plane if available. The following steps are executed in the
D SEMVE reconstruction.

• With initial estimates for the set 𝑆3𝐷
(

𝜙1, 𝛷, 𝜙2, 𝜇𝐸𝑆𝐷, 𝜎𝐸𝑆𝐷, 𝑎𝐴𝐵 ,
𝑏𝐴𝐵 , 𝑎𝐴𝐶 , 𝑏𝐴𝐶

)

, evaluated from 2D statistics in the EBSD scans,
an initial 3D virtual microstructure is generated in DREAM.3D.
A series of XY and XZ sections are digitally extracted from the
3D image at a 20 voxel spacing. A minimum cutoff size of 10 μm
is assumed for estimating 𝛽 grains in each section. The PDFs of
size, aspect ratio, and orientation of each section in the XY and
XZ planes are then compiled as previously described.

• An iterative optimization scheme, implementing a Monte-Carlo

type approach, sequentially minimizes the 𝐺𝑂𝐹 metrics in Eq. (2)
for the aspect ratio, equivalent sphere diameter, and Euler angles.
Upon calculation of 𝐺𝑂𝐹𝐴𝑅 for the initial 3D microstructure,
the aspect ratio parameters in 𝑆3𝐷, i.e. (𝑎𝐴𝐵 , 𝑏𝐴𝐵 , 𝑎𝐴𝐶 , 𝑏𝐴𝐶 ) are
perturbed to create a trial set of 3D microstructural statistical
parameters 𝑆𝑡𝑟3𝐷 using a method described in Appendix C. A new
virtual microstructure is created in DREAM.3D using the set 𝑆𝑡𝑟3𝐷
and the corresponding 𝐺𝑂𝐹 𝑡𝑟𝐴𝑅 is evaluated. If 𝐺𝑂𝐹

𝑡𝑟
𝐴𝑅 ≤ 𝐺𝑂𝐹𝐴𝑅,

then the set is upgraded to 𝑆3𝐷 = 𝑆𝑡𝑟3𝐷, else 𝑆
𝑡𝑟
3𝐷 is discarded for a

different trial set. The process is repeated for 30 iterations in this
study.

• The next step entails the minimization of the goodness of fit
metric 𝐺𝑂𝐹𝐸𝑆𝐷. The 3D virtual microstructure resulting from the
previous step is sectioned, and 2D 𝐸𝑆𝐷 statistics are extracted
to generate 𝐺𝑂𝐹𝐸𝑆𝐷. A trial set of 3D microstructural statistics
𝑆𝑡𝑟3𝐷 is created with random sampling-based perturbed log-normal
distribution parameters 𝜇𝑡𝑟𝐸𝑆𝐷 = 𝜇𝐸𝑆𝐷(1 + 2𝑢𝑝 − 𝑝) and 𝜎𝑡𝑟𝐸𝑆𝐷 =
𝜎𝐸𝑆𝐷(1+2𝑣𝑝−𝑝), where 𝑝 is a perturbation factor (taken as 0.1 in
this study), and 𝑢, 𝑣 ∈ [0, 1] are randomly generated parameters.
The corresponding 3D microstructure, created in DREAM.3D, is
sectioned and the metric 𝐺𝑂𝐹 𝑡𝑟𝐸𝑆𝐷 is evaluated. The statistics set
is upgraded to 𝑆3𝐷 = 𝑆𝑡𝑟3𝐷 only if 𝐺𝑂𝐹 𝑡𝑟𝐸𝑆𝐷 ≤ 𝐺𝑂𝐹𝐸𝑆𝐷. This loop
is executed for 30 iterations in this study.

• The next minimization process is for the goodness of fit metric
𝐺𝑂𝐹𝑟𝑜𝑡 of the set 𝑆3𝐷 containing 3D ellipsoidal grains with the
orientation (Euler angles) represented by a rotation matrix 𝑅.
Subsequent to the initial microstructure generation, sectioning
and evaluation of 𝐺𝑂𝐹𝑟𝑜𝑡, trial Euler angles are obtained by

perturbing the existing set of Euler angles through a random
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Fig. 6. Comparing the PDFs of the reconstructed pseudo-𝛽 grain sections and experimental EBSD scans: (a) aspect ratio in the XY plane, (b) aspect ratio in the XZ plane, and (c)
Euler angle distribution in the XZ plane.
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angle 𝜃 ∈ [0, 𝜃𝑚𝑎𝑥], where 𝜃𝑚𝑎𝑥 represents the maximum allowable
perturbation in Euler angles. A rotation axis is chosen randomly
from a unit sphere and the corresponding rotation matrix 𝑅𝑝
representing a rotation about this axis by and angle 𝜃 is generated.
The effective rotation matrix describing the orientation of the
ellipsoids is expressed as 𝑅𝑡𝑟 = 𝑅𝑝𝑅. The software package
MTEX [45] is used to convert the rotation 𝑅𝑡𝑟 to an Euler angle
representation, which is then included in the trial set 𝑆𝑡𝑟3𝐷. As with
the other metrics, the corresponding 3D microstructure created in
DREAM.3D is sectioned and the metric 𝐺𝑂𝐹 𝑡𝑟𝑟𝑜𝑡 is evaluated. The
statistics set is upgraded to 𝑆3𝐷 = 𝑆𝑡𝑟3𝐷 only if 𝐺𝑂𝐹 𝑡𝑟𝑟𝑜𝑡 ≤ 𝐺𝑂𝐹𝑟𝑜𝑡.
This procedure is iterated for 15 iterations in this study.

• The individual optimization processes are executed within an
outer iteration loop (8 in this study), to ensure convergence of
the microstructural statistics.

The PDFs of aspect ratios in the XY and XY planes and the Euler
ngles representing the orientation of the equivalent ellipsoids for
he reconstructed microstructures are compared with the experimental
istributions in 6. The comparison is found to be reasonable, given the
ssumptions made in the reconstruction, e.g. the Euler angles for all
rains in the microstructure are within a small tolerance with respect
o each other, as well as the constraints imposed in the DREAM.3D
oftware. Fig. 7(c,d) shows the XY and XZ grain section maps of the
econstructed parent 𝛽 microstructure. The figures demonstrate that
rains are elongated in the build direction, but relatively equiaxed
n the XY plane. This is also seen in the PDF plots of the optimized

quivalent sphere diameter and the aspect ratios in Figs. 8. For this data
et, it may be inferred that only the build direction has a discernible
ifference in the morphology, as the processing conditions in the other
irections are similar.

. Effective crystal plasticity model for parent 𝜷 grains

An effective crystal plasticity model has been developed for parent
grains of AM-processed Ti-6Al-4V, with a parametric representation
f 𝛼 lath variant statistics in [21]. It accounts for the 12 𝛼 lath HCP
lip systems [46,47], and porosity evolution of the smaller voids ≤
4 μm [25]. The microstructural models in this study use combined
tatistics from the KH1 and Stock samples due to their statistical
imilarity. This section summarizes the major equations in the crystal
lasticity constitutive model from [21,25].

• Stress–Strain Relation:
𝐌 = 𝐂𝑒𝐒̂, where 𝐒̂ = C𝐄𝑒 (3)

where 𝐌 is the Mandel stress, 𝐂𝑒 is the right Cauchy–Green
tensor, 𝐄𝑒 is the Green–Lagrange strain tensor, 𝐒̂ is the second
Piola–Kirchhoff stress in an intermediate configuration, and C is
a fourth-order anisotropic elasticity tensor.

• Plastic Velocity Gradient Tensor for an 𝛼 Lath Variant :

𝐋𝑝 =
𝑁𝑆𝐹
∑

(1 −𝑤𝑖1𝑓 )
𝑁 𝑖
𝑠𝑙𝑖𝑝
∑ 𝜕𝑒𝛼∗

𝛼

𝜕𝜏𝛼∗ (4)

𝑖 𝛼 𝜕𝜏∗ 𝜕𝐌
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Fig. 7. Comparison of the experimental and reconstructed images of the parent 𝛽 microstructure: (a) IPF of the XY plane EBSD image, (b) IPF of the XZ plane EBSD image, (c)
Y grain section map of the reconstructed microstructure, and (d) XZ grain section map of the reconstructed microstructure. The IPF keys for (a,b) are given in Fig. 2(c).
Fig. 8. PDFs of (a) the equivalent sphere diameter, and (b) the aspect ratios 𝐵
𝐴
and 𝐶

𝐴
, of the reconstructed parent 𝛽 grains.
where 𝑒𝛼∗ =
𝛾̇𝛼0
𝑚+1

(

𝜏𝛼∗
𝑔̄𝛼0

)𝑚+1
is an effective slip potential for each

variant, 𝑓 is the void volume fraction, 𝑤𝑖1 is a weighting pa-
rameter, 𝜏𝛼∗ is the effective resolved shear stress, 𝑁𝑆𝐹 and 𝑁 𝑖

𝑠𝑙𝑖𝑝

are respectively the total number of slip families and number
of slip systems in the 𝑖−th slip family. For HCP crystals 𝑁𝑆𝐹 =

5 corresponding to the ⟨𝑎⟩-basal, ⟨𝑎⟩-prismatic, ⟨𝑎⟩-pyramidal,
⟨𝑐 + 𝑎⟩ pyramidal I, and ⟨𝑐 + 𝑎⟩ pyramidal II slip families. 𝑔̄𝛼 is
0
the initial slip-system resistance, and 𝛾̇𝛼0 and 𝑚 are the reference
slip-rate and rate sensitivity exponent respectively.

• Void Volume Fraction Evolution:
̇𝑓 = (1 − 𝑓 )tr(𝐋𝑝) (5)

• Effective Resolved Shear Stress 𝜏∗𝛼 Equation:
(

𝜏𝛼
𝛼

)2
+𝑤𝛼3𝑤

𝛼
1𝑓

𝑀2
𝑒𝑞
𝛼 2

+2𝑓𝑤𝛼1 cosh

(

𝑤2
𝛼𝑀

2
𝑚
𝛼

)

−1−(𝑤𝛼1𝑓 )
2 = 0 (6)
𝜏∗ (𝜏∗ ) 𝜏∗
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where 𝑀𝑚 = − 1
3𝑇 𝑟(𝐌) and 𝑀𝑒𝑞 =

√

3
2𝑀𝑖𝑗𝑀𝑖𝑗 are respectively

the hydrostatic and equivalent Mandel stress, 𝜏𝛼 = 𝐌 ∶ 𝐬𝛼0 is the
resolved shear stress on the 𝛼 slip plane, and 𝐬𝛼0 is the Schmid
tensor.

• Slip System Weighting Parameters (in Eqs. (4) and (6)):

𝑤𝛼𝑘 = 𝑎𝛼𝑘 + 𝑏
𝛼
𝑘 tanh

(

−𝑑𝛼𝑘

(

𝑓 − 𝑓0
𝑓0

))

, for {𝑘 = 1, 2} (7)

where constants 𝑎𝑘, 𝑏𝑘, 𝑑𝑘 for each 𝑘 and 𝑤𝛼3 have been calibrated
in [21,25].

• Plastic Slip Rate for a Slip System 𝛼:

̇𝛾𝛼 = ̇̃𝛾𝛼
⟨

|

|

𝜏𝛼∗ − 𝜒𝛼|
|

− 𝜏𝛼𝐺𝑃
𝑔𝛼 + 𝜏𝛼𝐺𝐹

⟩
1
𝑚

sign
(

𝜏𝛼∗ − 𝜒𝛼
)

(8)

where ̇̃𝛾𝛼 is a reference slip rate, 𝑚 is a rate sensitivity exponent,
𝜒𝛼 is the back-stress, ⟨⟩ is the Macaulay bracket, 𝜏𝛼𝐺𝑃 and 𝜏

𝛼
𝐺𝐹 are

resolved shear stress components contributing to the parallel and
forest geometrically necessary dislocations (GNDs) respectively.

• Slip System Resistance due to Statistically-Stored Dislocations (SSDs):

𝑔𝛼(𝜃) = 𝑔̄𝛼0 + 𝑔𝛼𝐻𝑃 − 𝑔̂𝛼
(

1 − exp

(

𝜃 − 𝜃𝛼𝑟𝑒𝑓
𝜃̂𝛼

))

(9)

where 𝑔̂𝛼 , 𝑔̄𝛼0 , 𝜃
𝛼
𝑟𝑒𝑓 , and 𝜃̂

𝛼 are temperature-dependent constants,
which have been calibrated in [48]. In this study 𝜃 = 298 K
corresponding to room temperature. 𝑔𝛼𝐻𝑃 = 𝐾

√

𝐷𝛼
is the hardening

component contributing to the Hall–Petch effect, where 𝐾 is a
coefficient calibrated in [49] and 𝐷𝛼 =
√

𝐴(𝐞𝑥̄ ⋅𝐦𝛼
0 )

2 + 𝐵(𝐞𝑦̄ ⋅𝐦𝛼
0 )

2 + 𝐶(𝐞𝑧̄ ⋅𝐦𝛼
0 )

2 is the dislocation mean
free path along the slip direction 𝐦𝛼

0 across the ellipsoidal 𝛼 lath
delineated in Eq. (1). The evolution equations for the hardness
𝑔̇𝛼(𝑡) and back-stress 𝜒̇𝛼 have been given in [21,48].

• Hardening Stress Components due to Parallel and Forest GND Inter-
actions:

𝜏𝛼𝐺𝑃 = 𝑐𝛼1𝐺
𝛼𝑏𝛼

√

𝜌𝛼𝐺𝑃 + 𝜌𝛼𝐴𝑃 , 𝜏𝛼𝐺𝐹 = 𝑄𝛼

𝑐𝛼2 𝑏
𝛼2

√

𝜌𝛼𝐺𝐹 + 𝜌𝛼𝐴𝐹 (10)

where 𝜌𝛼𝐺𝑃 and 𝜌
𝛼
𝐺𝐹 are GND densities parallel and normal to the

slip plane 𝛼. They are calculated from the Nye tensor given as
𝜦 = ∇ × 𝐅𝑝 [48].

• GND Augmentation Accounting for the Absence of Explicit 𝛼 Lath
Boundaries: 𝜌𝛼𝐴𝑃 and 𝜌

𝛼
𝐴𝐹 in Eq. (10) are GND augmentation terms

needed to compensate for the absence of explicit 𝛼 lath bound-
aries in the equivalent parent 𝛽 grain model. The augmented GND
density is approximated from [50] as:

𝜌𝛼𝐺𝑁𝐷 = 𝑐5
𝛾𝛼

𝑏𝛼𝐷𝛼 (11)

where 𝛾𝛼 is the cumulative slip and 𝑏𝛼 is the length of the Burgers
vector on a given slip system. The corresponding parallel and
forest augmented GNDs are given as:

𝜌𝛼𝐴𝐹 =
𝑁
∑

𝛽
𝜒𝛼𝛽𝐴𝐹 |𝜌

𝛽
𝐺𝑁𝐷 sin(𝑛𝛼 , 𝑡𝛽 )| , 𝜌𝛼𝐴𝑃 =

𝑁
∑

𝛽
𝜒𝛼𝛽𝐴𝑃 |𝜌

𝛽
𝐺𝑁𝐷 cos(𝑛𝛼 , 𝑡𝛽 )|

(12)

𝜒𝛼𝛽𝐴𝐹 is the interaction matrix between slip systems given in [48].
• Cauchy Stress Tensor for a Material Point :

𝝈 =
12
∑

𝑘=1
𝑣(𝑘)𝑓 𝝈(𝑘) (13)

where the 𝑘th variant stress is 𝝈(𝑘) = 1
det𝐅(𝑘)𝑒

𝐅(𝑘)
𝑒

−T
𝐌(𝑘)𝐅(𝑘)

𝑒
T
.

This effective crystal plasticity model is implemented in a FEM
ramework for very efficient CPFEM simulations.
 𝑫
.1. Calibration of the effective crystal plasticity parameters

Various parameters in the crystal plasticity and porosity evolution
odels are taken from previous studies in [21,25,48,49]. Only the criti-
al resolved shear stresses and the elastic constants are calibrated in this
aper. The following calibrations are for the specific material modeled
n this paper and may not be generalizable to other pedigrees of AM-
rocessed Ti-6Al-4V alloys. For calibration, 5 SEMVEs are generated as
hown in Fig. 9 and meshed into ≈ 115, 000 3D TET4 elements using the
meshing package Simmetrix [51]. Displacement boundary conditions
representing a strain-rate of 10−3 s−1 are applied up to an engineering
strain of 𝜖𝑓𝑖𝑛𝑎𝑙 = 6%. For the calibration process, a percentage error in
the strain energy for experiments and simulations is defined as:

𝛷(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎̄𝑠𝑖𝑚(𝜖)) =
1

𝑚𝑎𝑥(𝜎̄𝑒𝑥𝑝)𝜖𝑓𝑖𝑛𝑎𝑙 ∫

𝜖𝑓𝑖𝑛𝑎𝑙

0
|𝜎̄𝑒𝑥𝑝(𝜖) − 𝜎̄𝑠𝑖𝑚(𝜖)|𝑑𝜖 (14)

here 𝜎̄𝑒𝑥𝑝 and 𝜎̄𝑠𝑖𝑚 are respectively the experimental and simulated
ngineering stress components, computed from nodal forces in the
oading direction. The calibrated parameters for a given tolerance is
(𝜎̄𝑒𝑥𝑝(𝜖), 𝜎̄𝑠𝑖𝑚(𝜖)) ≤ 0.0065 are given in column 2 of Table 1. The results
f the calibration process are given in Appendix A. The experimental
nd SEMVE simulation-based material responses are shown in Fig. 10.
ince the experimental stress–strain response of the KH1 and Stock
amples are similar, an average response is shown in this figure.

. Homogenized rate dependent isotropic plasticity model (RDIPM)
or self-consistent boundary conditions in the concurrent FE model

The morphological non-uniformity of the 𝛽 grain SEMVEs neces-
itates the application of effective boundary conditions that do not
ver-constrain simulations as with periodicity boundary conditions.
self-consistent boundary condition has been developed in [27] to
vert over-constraining the SEMVE problem. The boundary condition
s applied through a concurrent model shown in Fig. 11, in which the
EMVE is embedded in an exterior domain modeled by self-consistent
omogenized constitutive relations.
The exterior domain of the concurrent model is modeled by a rate-

ependent isotropic plasticity model (RDIPM) with an associative flow
ule that are summarized here. The plastic deformation gradient 𝐅𝑝 is
ecomposed into a symmetric part 𝑫𝑝 and an antisymmetric part 𝑾 𝑝
epresenting plastic spin, which is assumed to be negligible [52]. A
ower-law type flow rule is expressed as:

𝑝 ≈ 𝑫𝑝 = 𝐷0

(

𝑌
𝑌0

)
1
𝑚
𝑵 (15)

where 𝐷0 is the reference slip rate, 𝑚 is the rate sensitivity exponent, 𝑌0
is the flow stress, and 𝑁 is the normal to the yield function 𝑌 , expressed
s:

=
(

(|𝜆1|)𝑎 + (|𝜆2|)𝑎 + (|𝜆3|)𝑎
)1∕𝑎 (16)

1, 𝜆2, and 𝜆3 are the principal values of the deviatoric part of the sec-
nd Piola–Kirchhoff stress tensor 𝐒 in the intermediate configuration,
nd the exponent 𝑎 determines the shape of the yield surface. For an
ssociative flow rule (15), the direction of the plastic strain-rate is given
y:

=
𝜕𝑌

𝜕𝑺𝑑𝑒𝑣

|

|

|

𝜕𝑌
𝜕𝑺𝑑𝑒𝑣

|

|

|

(17)

The evolution of the flow stress 𝑌0, is formulated by a modified
Voce-type law [53], given as:

𝑌0 = 𝑌0 + 𝛼̂𝑒𝑥𝑝
(( 𝜖𝑝

𝛽

)𝜓)

+ 𝐻̄𝜖𝑝 (18)

here 𝑌0 is the initial yield stress, 𝐻̄ , 𝛽, 𝛼̂, and 𝜓 are parameters that
escribe the material hardening behavior, and 𝜖𝑝 = ∫ 𝑡0

√

2
3 𝑫̄

′
𝑝 ∶ 𝑫̄′

𝑝𝑑𝑡
epresents the effective plastic strain, 𝑫̄′

𝑝 being the deviatoric part of
̄ .
𝑝
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Table 1
The convergence 𝛷 metric in Eq. (14) between (i) the experimental and SEMVE-CPFEM simulation results, (ii) the rate-dependent isotropic
plasticity model (RDIPM) and SEMVE-CPFEM simulation results, and (iii) the RDIPM simulation and experiment results.
Convergence metric: Experiment-SEMVE RDIPM-SEMVE RDIPM-Experiment

𝛷 0.0064836 0.0044927 0.0092336
Fig. 9. Reconstructed parent 𝛽 grain SEMVEs generated with 5 random initial conditions for calibration and prediction simulations. Colors represent individual grains in the
ensemble. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Comparing engineering stress–strain curves from CPFEM simulation of the 5
EMVEs with experimentally obtained response. The figure also shows the response
redicted by the homogenized rate-dependent isotropic plasticity model.

.1. Calibration of rate-dependent elasto-plastic isotropic plasticity param-
ters

The parameters 𝑌0, 𝛽, 𝐻̄ , 𝛼̂, 𝜓 of the rate-dependent isotropic
plasticity model are calibrated from the volume-averaged engineering
stress-engineering strain curve in Fig. 10 to achieve consistency in the
behavior between the SEMVE and exterior domains. The results of
the calibration process are given in Appendix B. The stress–strain re-
sponse obtained by this self-consistent homogenized constitutive model
is compared with the volume-averaged SEMVE and experimental re-
sponses in Fig. 10. Excellent convergence of the strain energy by this
model to those by the SEMVE-CPFEM simulations and experiments are
demonstrated in Table 1.
6. Simulations and parametric studies with the SEMVE model

Simulations with the SEMVE model are conducted using the self-
consistent boundary conditions to avoid over-constraining with period-
icity conditions, as explained in [27,36]. As shown in Fig. 11(a), this
approach uses a concurrent model in which the SEMVE is embedded
in a homogenized exterior material modeled by the rate-dependent
isotropic plasticity model (RDIPM) developed in Section 5. The mesh in
the exterior domain is graded from a fine resolution at the interface to a
coarse resolution away from it for significant computational efficiency.
Boundary conditions that mimic the experimental testing are applied to
the boundary of the exterior domain. As demonstrated in Figs. 11(b,c),
the self-consistent boundary condition facilitates continuity in the de-
formation and stress fields across the interface between the exterior and
SEMVE domains. The set of 5 SEMVEs shown in Fig. 9 is simulated in
his section to avoid a particular microstructural bias in the results.

.1. Parametric study with explicit representation of voids in the SEMVE

A parametric study is conducted in this section for the effect of
arger keyhole (KH) and lack of fusion (LOF) voids in the microstruc-
ure. To represent these voids, spherical (representing KH) and ellip-
oidal (representing LOF) voids are explicitly inserted into the SEMVE
odels as shown in Fig. 12. While these are only approximate represen-
ations of the void morphologies, they provide a means of parametric
epresentation with a relatively small number of parameters. The study
n this paper gives a preliminary understanding of the effect of these
oid morphologies on the local stress fields, which can eventually
nfluence microstructural damage. An important observation from the
xperimental CT analysis is that the voids have no radial spatial re-
ationship to one another. This is shown with the radial distribution
unction 𝑔(𝑟) in Fig. 11(d), which corresponds to the probability that
he centroids of a pair of voids are at a distance 𝑟 apart. The figure
hows the experimental 𝑔(𝑟)𝑒𝑥𝑝, and two test distributions viz. a random
istribution 𝑔(𝑟)𝑟𝑎𝑛𝑑 (where voids can overlap one another), and a hard
phere distribution 𝑔(𝑟)𝐻𝑆 (where random voids have a no penetration
ondition). Excellent agreement is seen between the experimental and
he hard sphere distributions, which demonstrates that the spatial
lacement of the voids in space are random with respect to the radial
imension.
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Fig. 11. Parent 𝛽 SEMVE simulations with the self-consistent boundary conditions: (a) the concurrent model and mesh with the SEMVE embedded in an exterior domain modeled
by the RDIPM, (b) equivalent plastic strain field, (c) Von-Mises stress in the concurrent model, exhibiting continuity in the fields across the interface, and (d) radial distribution
functions 𝑔(𝑟)𝑒𝑥𝑝, 𝑔(𝑟)𝑟𝑎𝑛𝑑 , and 𝑔(𝑟)𝐻𝑆 with Epanechnikov smoothing.
Table 2
Void characteristics for each of the 8 morphology cases. The aspect ratios correspond to ( 𝐴

𝐶
, 𝐵
𝐶
, 1) where 𝐴 ≥ 𝐵 ≥ 𝐶 are the principal axis

lengths and Euler angles correspond to their orientations.
Morphology case Void type Aspect ratios Volume fraction (%) Euler angles

1 None N/A 0% N/A
2 KH N/A 1% N/A
3 KH N/A 5% N/A
4 LOF 8,4,1 1% 𝜋∕2, 0, 0
5 LOF 8,4,1 1% 𝜋, 𝜋∕2, 3𝜋∕2
6 LOF 8,4,1 1% 𝜋, 𝜋∕4, 3𝜋∕4
7 LOF 2,1.5,1 1% 𝜋∕2, 0, 0
8 LOF 6,3,1 1% 𝜋∕2, 0, 0
For this study, 8 different void morphologies, described in Table 2,
re placed within each of the 5 SEMVEs in the concurrent model of
ig. 11(a). This corresponds to a total of 40 simulations for the 8 cases.
inimum boundary conditions are applied to the exterior domain
oundary, while the material is loaded up to 6% engineering strain at
strain-rate of 10−3 s−1. The initial void volume fraction for the crystal
lasticity model is taken as 𝑓 = 0.11%. The parametric study identifies
the morphological characteristics that have the most influence on the

material response. T
Three state variables, viz. the equivalent plastic strain (EPS), the
Von-Mises stress (VM), and the loading direction Cauchy stress com-
ponent 𝜎𝑧𝑧 (LC), are studied in this example. For each of these state
variables, the PDFs for each of the morphology cases are aggregated
from simulations of the 5 SEMVE instantiations in Fig. 9. The metrics
chosen to represent the response of these PDFs are the mean (𝜇𝐸𝑃𝑆 ,
𝜇𝑉𝑀 , 𝜇𝐿𝐶 ), standard deviation (𝜎𝐸𝑃𝑆 , 𝜎𝑉𝑀 , 𝜎𝐿𝐶 ), and value at the
99th percentile of the distribution (𝐹 (0.99)𝐸𝑃𝑆 , 𝐹 (0.99)𝑉𝑀 , 𝐹 (0.99)𝐿𝐶 ).

his last metric is chosen to represent the extreme values of the
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Fig. 12. Schematic of voids embedded in the SEMVE region of the concurrent model for (a) LOF void represented by case 4, (b) LOF void represented by case 5, and (c) LOF
void represented by case 4 in Table 2. The colors represent different grains. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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Table 3
Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic
strain, Von-Mises stress, and 𝜎𝑧𝑧 for SEMVEs with spherical voids of 1% and 5% volume
fraction.

Keyhole 1% Keyhole 5%

𝜇̄𝐸𝑃𝑆 0.99257 1.0086
𝜎̄𝐸𝑃𝑆 5.8139 7.7067
𝐹 (0.99)𝐸𝑃𝑆 1.679 2.0704
𝜇̄𝑉𝑀 0.99776 0.99469
𝜎̄𝑉𝑀 1.111 1.2663
𝐹 (0.99)𝑉𝑀 0.99935 0.99741
𝜇̄𝐿𝐶 0.98081 0.95751
𝜎̄𝐿𝐶 2.1582 2.7465
𝐹 (0.99)𝐿𝐶 1.0788 1.1434

response that are most likely to lead to material failure. The metrics
are scaled by the values from simulations of the morphology case 1
(no voids), i.e. 𝜇̄𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶

𝑖 =
𝜇𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
𝑖

𝜇𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
1

, 𝜎̄𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
𝑖 =

𝜎𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
𝑖

𝜎𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
1

,

and 𝐹 (0.99)𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
𝑖 =

𝐹 (0.99)𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
𝑖

𝐹 (0.99)𝐸𝑃𝑆∕𝑉𝑀∕𝐿𝐶
1

,to yield a relative measure of
response.

6.1.1. Effect of volume fraction
The effect of the void volume fraction on the state variables is

determined by comparing the morphology cases 1, 2, and 3 in Table 2.
Each of the cases embeds a void in the 5 SEMVEs of Fig. 9, as shown
in Fig. 12. The PDFs of the equivalent plastic strain, Von-Mises stress,
and 𝜎𝑧𝑧 are aggregated for simulations of the 5 SEMVEs containing the
voids and plotted in Fig. 13(a–c) respectively. The values of the scaled
metrics are given in Table 3.

A comparison of the scaled results for 1% and 5% void volume
fraction in Table 3 infers that an increase in the void volume does
ot significantly affect the mean of the equivalent plastic strain PDF.
owever, the standard deviation increases by a factor of 5.8 from 0
o 1% void volume fraction, and by a factor of 7.7 from 0 to 5%
oid volume fraction. Similarly, there is an increase by a factor of
.67 and 2.07 in the 99th percentile strain for the 1% and 5% cases
espectively, which corresponds to a substantial localized deformation.
 a
ig. 13(a) shows that increasing void volume fraction leads to a bi-
odal distribution in the PDF of the equivalent plastic strain. For the
on-Mises stress, the mean or the 99th percentile does not change
uch with increasing void volume fraction. However, the standard
eviation is considerably larger with increased volume fraction. This
s also observed in Fig. 13(b). For the loading direction stress 𝜎𝑧𝑧
he mean decreases with increasing volume fraction indicating stress
edistribution to the surrounding homogenized region. An increase in
he standard deviation and extreme value is also seen as corroborated
n Fig. 13(c).

.1.2. Effect of aspect ratio
The effect of aspect ratio on the state variables is determined by

omparing the cases 2, 4, 8, and 9 in Table 2. Again each case embeds
void in the 5 SEMVEs as shown in Fig. 12. The voids are oriented with
he shortest axis parallel to the loading direction, and the total volume
raction considered for this study is 1%. The voids correspond to (i) long
llipsoid with an aspect ratio =8 (case 4), (ii) the intermediate ellipsoid
ith an aspect ratio =6 (case 8), (iii) short ellipsoid with an aspect
atio =2 (case 7), and (iv) sphere (case 2). The other aspect ratios are
iven in Table 2. The aggregated PDFs of the equivalent plastic strain,
on-Mises stress, and loading direction 𝜎𝑧𝑧 are shown in Figs. 14(a–c)
espectively. The scaled metrics are given in Table 4.
The void aspect ratio has a considerable effect on the mean, stan-

ard deviation, and extreme values of the PDF of the equivalent plastic
train, as seen in Fig. 14(a). With increasing aspect ratio, the distribu-
ion stabilizes with larger moments. This results in a lower mean, but
igher values of both the standard deviation and the extreme values.
he Von-Mises stress and 𝜎33 have less pronounced effects, but the
verall trends are similar to that of the equivalent plastic strain.

.1.3. Effect of orientation
Finally, the effect of void orientation on the state variables is

ssessed from the morphology cases 4, 5, and 6 in Table 2. The void
n case 4 is oriented such that the shortest axis is parallel to the
oading direction 𝑧, and the longest axis parallel to the 𝑦 direction,
s shown in Fig. 12(a). For case 5, the void is oriented such that the
ntermediate and the shortest axis are both at 45◦ to the loading (𝑧) axis

s shown in Fig. 12(b), while for case 6 the intermediate axis is parallel
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Fig. 13. The aggregated PDFs (over 5 instantiations) of (a) the equivalent plastic strain, (b) Von-Mises stress, and (c) and 𝜎𝑧𝑧 for the SEMVEs containing 0%, 1% and 5% void
volume fractions.
Table 4
Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic strain, Von-Mises stress, and 𝜎𝑧𝑧 for SEMVEs with (i)
long ellipsoid void (case 4), (ii) intermediate ellipsoid void (case 8), (iii) short ellipsoid void (case 7), and (iv) sphere (case 2), all with 1%
void volume fraction.

Long ellipsoid Intermediate ellipsoid Short ellipsoid Sphere

𝜇̄𝐸𝑃𝑆 0.97802 0.991 0.99631 0.99257
𝜎̄𝐸𝑃𝑆 10.8326 6.5563 4.5247 5.8139
𝐹 (0.99)𝐸𝑃𝑆 2.4558 1.7896 1.4691 1.679
𝜇̄𝑉𝑀 0.9955 0.99481 0.99706 0.99776
𝜎̄𝑉𝑀 1.2186 1.0868 1.0531 1.111
𝐹 (0.99)𝑉𝑀 1.0179 1.0046 1.0011 0.99935
𝜇̄𝐿𝐶 0.95141 0.97081 0.98262 0.98081
𝜎̄𝐿𝐶 3.0904 2.3701 1.9882 2.1582
𝐹 (0.99)𝐿𝐶 1.2016 1.1203 1.0762 1.0788
to the loading (𝑧) direction as shown in Fig. 12(c). The PDFs of the
equivalent plastic strain, Von-Mises stress, and 𝜎𝑧𝑧 are aggregated for
the 5 SEMVEs and shown in Fig. 15(a–c). and the values of the scaled
metrics are given in Table 5.

The orientation of the void relative to the SEMVE has a considerable
effect on the mean, standard deviation, and extreme values of the PDF
of the equivalent plastic strain, as seen in Fig. 15(a). Analogous to the
aspect ratio, as the cross-sectional area of the void with respect to the
loading direction increases, the mean of the EPS decreases, and the
standard deviation and extreme values increase. These patterns are sim-
ilar for the Von-Mises stress metrics and 𝜎33 as shown in Figs. 15(b,c).

However, the results are significantly less pronounced.
6.1.4. Discussion of results in this analysis
While the volume fraction, aspect ratios, and orientation of voids

individually provide information on the effect on the distribution of
state variables, more insights may be obtained from the projected cross-
sectional area of the void normal to loading direction. Linear regression
curves of 𝜎̄𝐸𝑃𝑆 and 𝐹 (0.99)𝐸𝑃𝑆 are generated for each case and the
corresponding coefficient of determination 𝑅2 values are computed
as shown in Figs. 16. For both the standard deviation and the 99th
percentile metrics, about ≈ 85% of the variation between samples is
due to the difference in the cross-sectional area, which is a major
determinant of the material response. This analysis demonstrates that

for the same volume fraction, spherical voids have a significantly lower
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Fig. 14. The aggregated PDFs (over 5 instantiations) of (a) the equivalent plastic strain, (b) Von-Mises stress, and (c) 𝜎𝑧𝑧 for the SEMVEs with varying aspect ratios.
Table 5
Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic strain, Von-Mises stress, and 𝜎𝑧𝑧 for SEMVEs with
varying ellipsoidal void orientations: (i) Euler angles in case 4 (horizontal), (ii) Euler angles in case 5 (45 ◦ ), and (iii) Euler angles in case 6
(vertical).

Orientation for case 4 Orientation for case 5 Orientation for case 6

𝜇̄𝐸𝑃𝑆 0.97802 0.99075 1.0049
𝜎̄𝐸𝑃𝑆 10.8326 7.1038 2.4837
𝐹 (0.99)𝐸𝑃𝑆 2.4558 1.8711 1.2996
𝜇̄𝑉𝑀 0.9955 0.99822 0.99926
𝜎̄𝑉𝑀 1.2186 1.099 1.0113
𝐹 (0.99)𝑉𝑀 1.0179 1.0076 0.99822
𝜇̄𝐿𝐶 0.95141 0.97291 0.99725
𝜎̄𝐿𝐶 3.0904 2.4593 1.3249
𝐹 (0.99)𝐿𝐶 1.2016 1.1443 1.0333
effect on the PDFs than elongated voids which dominate the LOF voids.
This aligns well with experimental measurements in [29].

The results of this analysis demonstrate that spherical voids have
a significantly lower effect on the PDFs of state variables than voids
that are elongated on a per-volume fraction basis. From the physics of
the melting process, orientation of voids due to either lack of fusion
or keyholing can cause significant anisotropy in material response if
there is a strong bias of elongated voids in one direction. However
even without anisotropy in the pore orientation, the overall effect of
elongated voids is greater on the PDFs of state variables than more
spherical voids, even for the same volume fraction.
7. Conclusion

This paper builds a comprehensive image-based statistically equiv-
alent microstructural volume element (SEMVE) and associated crystal
plasticity constitutive relations for efficient micromechanical simula-
tion of AM-processed Ti-6Al-4V alloys characterized by Widmanstätten
morphology containing 12 HCP 𝛼 lath variants. A major step towards
gaining significant efficiency is the creation of an effective crystal plas-
ticity framework for parent 𝛽 grains with a parametric representation
of 𝛼 lath size, shape, orientation, and crystallography statistics. The
development identifies the crystallographic relationship of 𝛼 laths with
respect to their parent 𝛽 grains, and deploys a method to incorporate
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Fig. 15. The aggregated PDFs (over 5 instantiations) of (a) the equivalent plastic strain, (b) Von-Mises stress, and (c)𝜎𝑧𝑧 for the cases 4 (horizontal), 5 (45◦), and 6 (vertical) with
ellipsoidal voids and varying orientations.
Fig. 16. Plot of (a) 𝜎̄𝐸𝑃𝑆 and (b) 𝐹 (0.99)𝐸𝑃𝑆 as a function of the cross-sectional area of the void in the SEMVE (𝑅2 = 0.8504) for each morphological case in Table 2, showing a
smaller effect of spherical voids than elongated voids.
a parametric representation of 𝛼 lath statistics in 𝛽 grains. It is ex-
pected that this implicit representation will significantly enhance its
efficiency over other models that represent each 𝛼 lath explicitly in the
microstructure.
3D ellipsoidal shapes are assumed for the 𝛼 laths. The statisti-
cal representation process generates a set of most probable ellipsoids
through the use of stereology principles on the observed EBSD images
and constructs statistical functions that characterize the distribution of
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Table A.6
Slip system dependent parameters in Section 4.
Parameter Basal Prismatic < 𝑎 > Pyramidal < 𝑐 + 𝑎 > Pyramidal I & II

𝜃𝑟𝑒𝑓 300 ◦K 300 ◦K 300 ◦K 300 ◦K
𝜃̂𝑟𝑒𝑓 400 ◦K 200 ◦K 200 ◦K 160 ◦K
ℎ0 150 MPa 150 MPa 150 MPa 150 MPa
𝑔 470 MPa 570 MPa 570 MPa 1550 MPa
𝑔̄ 241 MPa 236 MPa 360 MPa 466 MPa
𝑐1 0.08 0.062 0.07 0.05
𝑐2 1 1 1 1
a
0
n

Table A.7
Additional material constants in the crystal plasticity
model of Section 4.
Parameter Value

K .162 𝑀𝑃𝑎
𝑚0.5

G 48 GPa
Q 2.5−19 J
c 500 MPa
d 100

the resulting 3D ellipsoids. A grain reconstruction algorithm is subse-
quently executed, allowing for the identification of the crystallographic
orientation of parent 𝛽 grains. The morphology of 𝛽 grains is quantified
and an algorithm is developed with the DREAM.3D software to generate
statistically equivalent instantiations of the 𝛽 grain microstructure.

The crystal plasticity model also accounts for porosity evolution
in the microstructure. The model is calibrated and validated with
results from tests performed on AM-processed Ti-6Al-4V KH1 and
stock samples. A contribution of this paper is the development of the
self-consistent boundary condition that are implemented through em-
bedding the SEMVE in a homogenized exterior domain in a concurrent
model. This boundary condition is necessary to overcome the limita-
tions of periodicity boundary conditions in modeling larger specimens.
The exterior domain in the concurrent model is modeled by an isotropic
rate-dependent plasticity model (IRDPM) that is calibrated from the
microstructural CPFE model. Experimental boundary conditions are
applied on the exterior boundary of the concurrent model, thereby
facilitating the simulation of experimental specimens.

Parametric studies are finally conducted with this model to ex-
amine the effect of the larger void size, shape, and orientation on
the mechanical response of the SEMVEs. The studies conclude that a
simple volume fraction-based approach to characterizing the effect of
void defects on the spatial distribution of state variables is insufficient.
Aspect ratios and orientation are equally important for determining
the overall effect on the material response. In summary, this paper
has developed a robust and unique platform that can be effectively
used to model additively manufactured metallic materials with complex
microstructures undergoing a variety of loading conditions.

CRediT authorship contribution statement

M. Pinz: Investigation, Methodology, Software, Formal analysis, Vi-
sualization, Writing – original draft. S. Storck: Investigation, Method-
ology, Formal analysis, Writing – review & editing. T. Montalbano:
Investigation, Methodology. B. Croom: Investigation, Methodology.
N. Salahudin: Methodology, Formal analysis. M. Trexler: Methodol-
ogy, Resources, Supervision. S. Ghosh: Conceptualization, Investiga-
tion, Methodology, Supervision, Writing – review & editing , Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

Data will be made available on request.

Acknowledgments

This work has been supported through a grant from the National
Science Foundation, Mechanics of Materials and Structures (MOMS)
Program (grant no. CMMI-1825115 Program Manager: Dr. Siddiq Qid-
wai) and a grant from the NASA Transformational Tools and Technolo-
gies (TTT) Program (award no. 80NSSC21M0097). The authors thank
Dr. Ed Glaessgen of NASA LaRC for program support and insights.
This work was carried out at the Advanced Research Computing at
Hopkins (ARCH) core facility (rockfish.jhu.edu), which is supported
by the AFOSR DURIP grant FA9550-21-1-0303. Additional computa-
tional support was provided by the Extreme Science and Engineering
Discovery Environment (XSEDE) bridges-2 cluster at the Pittsburgh
Supercomputing Center (PSC) is also gratefully acknowledged.

Appendix A. Calibrated crystal plasticity parameters

The interaction matrices between slip systems are given by the
following parameters: 𝑞𝛼𝛽 = 1, 𝜒𝛼𝛽𝐴𝐹 = 1, and 𝜒𝛼𝛽𝐴𝑃 = 1 for all slip system
pairs (see Table A.6 and Table A.7).

Appendix B. Rate-dependent isotropic plasticity model (RDIPM)
parameters

The table for the rate-dependent isotropic plasticity model (RDIPM)
parameters for the exterior domain is given in Table B.8.

Appendix C. Method for perturbing statistics of size, aspect ratio
and orientation

The beta distributions with parameters (𝑎𝐴𝐵 , 𝑏𝐴𝐵 , 𝑎𝐴𝐶 , 𝑏𝐴𝐶 ) for the
𝐵∕𝐴 and 𝐶∕𝐴 aspect ratios are randomly sampled a large number of
times (1000 for this example) with values in the interval [ 0,1]. These
are then inverted so they then represent A/C, and A/B ratios. Two
random numbers 𝑢 and 𝑣 are generated from a uniform pseudo-random
number generator between 0 and 1. Each element 𝑥 within the sampled
𝐴∕𝐶 list is modified as 𝑥∗ = (𝑥 − 1)(1 − 2𝑝 𝑓𝑙𝑜𝑜𝑟(𝑢, 0.5) + 𝑝) where 𝑝 is a
perturbation factor (set to 0.1). Subsequently, the modified 𝑥∗ sample
spect ratios are inverted back to 𝐶∕𝐴 so that they are again between
and 1. A beta distribution is fit to the modified 1∕𝑥∗ samples, and the
ew parameters are included in the trial parameters 𝑆𝑡𝑟3𝐷.

Table B.8
RDIPM parameters in Section 5.
Parameter Value

𝑌0 1.68 GPa
𝛽 3 10−3

𝐻̄ 1.75 GPa
𝛼̂ 400 MPa
𝜓 1
a 2
m 0.0105
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