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ARTICLE INFO ABSTRACT
Keywords: The increase in additively manufactured (AM) Ti-6Al-4V alloys in high-performance industrial applications
Additively manufactured Ti-6Al-4V has necessitated the development of robust computational models that can aid in their qualification and

Statistically equivalent microstructural volume
element (SEMVE)

«a lath variants

Effective crystal plasticity model
Self-consistent boundary conditions

certification. Physics-based micromechanical models, relating the AM-processed material microstructure and
defect state with the overall material response and life, can play an important role in reducing uncertainty in
component behavior and increasing acceptance. Motivated by this need, the present paper develops a novel
image-based crystal plasticity finite element model (CPFEM) for efficient micromechanical simulation of the
additively manufactured Ti-6Al-4V alloy, whose Widmanstétten microstructure is characterized by 12 HCP
«a lath variants in the parent f grain. A unique feature of this work is the creation of an efficient crystal
plasticity framework for the parent § grain polycrystalline ensembles with parametric representation of the
«a lath statistics of size, shape, orientation, and crystallography. This statistical representation is expected to
significantly enhance its efficiency over models that represent each a lath explicitly in the microstructure.
Defects in the form of voids are represented at two scales. The smaller voids in the microstructure are
manifested as porosity or void volume fraction distribution in the crystal plasticity model. Larger voids are
represented explicitly in the statistically equivalent microstructural volume element (SEMVE) model. The
models are built from experimentally acquired electron back scatter diffraction (EBSD) and micro-focus X-ray
computed tomography (XCT) images and calibrated and validated with mechanical testing data. This paper
extends the developments in Pinz et al. (2022) through the development of a special self-consistent boundary
condition in the context of a concurrent model to overcome limitations of periodicity boundary conditions.
The concurrent model embeds the SEMVE in a homogenized exterior domain represented by a rate-dependent
isotropic plasticity model. Parametric studies are conducted to comprehend the effect of void size, shape and
orientation on the overall material response.

1. Introduction The additively manufactured Ti-6Al-4V alloy, studied in this paper,
has shown considerable promise for high-performance, mission-critical

Laser powder bed fusion (LPBF) and electron beam powder bed components with complex topological configurations. Its microstruc-
fusion (EBPBF) are commonly used additive manufacturing (AM) meth- ture consists of HCP lattice-based a phase and BCC lattice-based g
ods for fabricating metallic components from powder-based feedstock phase, whose volume fractions are dependent on the material compo-
[1]. While these methods have made tremendous advances, their gen- sition and heat treatment. In the LPBF process, the powder feedstock

eral adoption in major applications has been impaired due to the
inability to qualify and certify AM-processed materials and compo-
nents [2]. Inconsistencies in material behavior and life due to variations
in the microstructural morphology and defects, such as porosity and
surface imperfections, are largely responsible for these impediments [3,
4]. Effective computational models that can relate the microstructure
to the overall response of these materials must be developed to address
these issues.

is first melted. Upon re-solidification, the material first assumes the f
phase till it cools below the g transus temperature that is approximately
950°C. Below this temperature, a laths nucleate and grow to proliferate
the entire microstructure. The crystallographic orientation of each of
the 12 « laths is related to that of the parent # grain through a unique
Burgers relationship, giving rise to 12 unique variants. The high rates
of cooling in AM processes lead to frequent nucleation in the bulk,
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resulting in smaller « laths (than other conventional processes), and
Widmanstétten or basketweave type microstructures. Build parameters
such as hatch spacing, laser power, scan speed, etc., greatly affect the
material thermal history and consequently the morphology of the «
phase.

While the literature on image-based crystal plasticity models of
conventionally processed a/f phase Ti-6Al-4V alloy is quite extensive
viz. [5-10], there have been relatively fewer developments for AM-
processed Ti-6A1-4V alloy with Widmanstétten microstructures [11].
In part, this was due to the difficulty of obtaining 3D virtual repre-
sentations of the a lath microstructure. The recent years are however
seeing an emergence of crystal plasticity-based micromechanical mod-
eling of AM-processed Ti-6A1-4V alloy with complex microstructures.
For example, the effects of powder and processing on porosity and
properties have been analyzed in [12], grain-level residual stresses
have been incorporated in crystal plasticity models in [13], phase-
field and crystal plasticity models have been integrated for predicting
structure-property relations in [14], anisotropic tensile behavior has
been explored in [15], and tensile properties have been predicted
in [16]. Physics-based approaches for generating virtual instantiations
of Widmanstétten microstructures have been pursued in [17-20] by
varying the energy of formation for different crystallographic orienta-
tions as a function of the material stress state. While these methods are
promising, many require highly refined spatial resolutions that make
them computationally intensive for larger simulation volumes.

Recently, an effective crystal plasticity model representing the mi-
crostructure of additively manufactured Ti-6Al-4V alloy along with
porosity distributions has been developed in [21]. This model circum-
vents the need to construct explicit « laths by introducing a parametric
representation of the statistics of size, shape, and variant volume frac-
tion of each of the 12 « lath variants in the crystal plasticity constitutive
law. The overall mechanical response of all « lath variants is manifested
through a volume fraction-based weighted averaging rule. A statis-
tically equivalent microstructural volume element (SEMVE) is con-
structed containing explicit representations of the § grain morphology,
with « lath descriptors assigned to each p grain. The Burgers relation
then describes the crystallography of the a laths with respect to the ex-
plicitly defined g grain. Perspectives on the micromechanical modeling
of the impact of porosity variations in additively manufactured metal
microstructures have also been given in [22].

The present paper extends the developments in [21] to conduct a
parametric study of the effect of defects in the microstructure that are
inherent to the additively manufactured Ti-6Al-4V alloy. Microstruc-
tural voids and porosity are observed in two forms, viz. key-holing
(KH) and lack of fusion (LoF) voids. KH is typically caused by an
excess of energy in a localized area, resulting in gas pockets being
trapped while the material is still in a molten state [23]. LoF is the
result of insufficient energy density, resulting in feedstock that has
not fused. By varying the material processing conditions such as beam
speed, power, beam width, raster pattern, etc., the material processing
conditions can be tightly controlled to minimize both types of voids
and porosity. However, even under ideal processing conditions, both
types of porosity simultaneously exists, highlighting the difficulty of
eliminating porosity altogether. While many studies have focused on
how to reduce porosity in AM processed materials [24], less research
has been done on modeling the interplay between the microstructure
and voids. The size distribution of non-densified defects spans orders
of magnitude, from a few pm to over 100 pm. In this paper, different
modeling approaches are proposed for the defects depending on their
size. The micro-focus X-ray computed tomography (XCT) scanner has
a maximum resolution corresponding to a defect size of 24 pm. Defects
that are less than 24 pm are represented in the form of porosity or
void volume fraction and are incorporated as an evolving parameter
in the constitutive relation as developed in [25]. For defects larger
than 24 pm the voids are represented explicitly in the micromechanical
models. An important feature is the use of self-consistent boundary

conditions [26,27] on the micromechanical domains to avoid over-
constraining issues with imposed periodicity boundary conditions. The
interaction between the o« Widmanstitten microstructure and voids is
critical to the material performance and life and is accounted for in this
micromechanical model for reliable predictions.

An overview of material description, build processes, mechani-
cal testing experiments, and image acquisition methods is given in
Section 2. In Section 3, the image processing pipeline and cleanup
procedures, including void and porosity identification are discussed.
The effective crystal plasticity model, parametrically incorporating the
effect of the « lath variants and the porosity evolution, is discussed in
Section 4. The results of simulations with the model are analyzed in
Section 6. Section 7 summarizes the developments in this paper.

2. Overview of the material, manufacturing process, and mechan-
ical testing

The AM-processed Ti-6Al1-4V alloy (5.82% by weight Al, 4% V, 0.2%
Fe, 0.1% O and the rest Ti) modeled in this study has a Widmanstitten
microstructure with a/f phases. The microstructural electron backscat-
ter diffraction (EBSD) scan shows > 98% « phase area fraction, implying
that nearly all deformation will occur on HCP slip systems. The «
phase is characterized by interlocking laths that can be adequately
approximated by as ellipsoids. The Burgers relationships (0001), ||
(101); and [1120], || [111], [28] describes the crystallography of each
« variant with respect to the parent g grain.

2.1. Material build parameters

The samples used in this study are processed on an EOS M290 metal
laser powder bed fusion (LPBF) system in argon shielding gas using
a 400w yb-fiber laser with a spot size of 100 pm. Grade 5 Ti powder
is procured from EOS with chemical composition in accordance with
ASTM F1472 and ASTM F2924. Using a camsizer particle size analyzer,
the powder size distribution is determined to fall within the specified
range 10 — 63 pm particle size distribution with a mean size 36.7 pm,
and the 10th and 90th percentile sizes being 22.4 pm and 46.3 pm
respectively. Two different processing conditions are employed in this
study, viz. (i) a control set referred to as Stock, and (ii) a set designed
to generate keyhole voids referred to as KHI. The Stock samples are
processed at a volumetric energy density of 55.56 J/mm? with a laser
power of 280w, a scan speed of 1200 mm/s, hatch spacing of 140 pm,
and a layer height of 30 pum. The KH1 set, designed to impart keyhole
porosity but not substantially impact the microstructure, is generated at
a volumetric energy density of 83.33 J/mm? by lowering the scan speed
to 800 mm/s. This introduces approximately 0.10% keyhole porosity
as described in [29]. Samples are tested in the as-printed condition
with no post-manufacturing heat treatment to maximize the influence
of microstructure.

2.2. Mechanical testing

Tensile specimens with geometric dimensions shown in Fig. 1(a)
are fabricated by laser powder bed fusion and then removed from
the build plate via wire electric discharge machining (EDM). The
samples are then tested on an electromechanical Instron 5984, using
custom fixturing to interface with the self-aligning grip ends of the
sample. All specimens are tested at a constant displacement rate of
8E-3 mm/s. The strain is measured using an Instron AVE2 non-contact
video extensometer, with a gauge length of 8.5 mm.



M. Pinz et al.

25.79

.06

tw‘t o

»

4

(b)

< o

Fig. 1.
the Keyhole 1 (KH1) build condition. The IPF keys are given in Fig. 2(d).

2.3. Imaging and data acquisition

The built samples are embedded in a slow-cure epoxy and ground
with finer SiC paper. Subsequently, they are polished with a 1 pm
alumina suspension. For acceptable surface finish of the EBSD scans,
the samples are installed on a VibroMet™ 2 for approximately 17 h
with 0.02 pm colloidal silica. EBSD scans are performed on a Thermo
Scientific Scios scanning electron microscope equipped with an Oxford
NordlysMax3 detector. An Oxford AZTEC data acquisition software
is used to acquire and store the diffraction patterns at 100 nm or
1.2 pum resolutions, with an acceleration voltage of 25 kV. The high
resolution 100 nm scans allow for the accurate identification of the
individual « lath morphology. The lower-resolution 1.2 pm scans are
able to capture a substantially larger area of the microstructure and
are employed primarily to reconstruct the prior g microstructure. The
Oxford Instruments Channel 5 software processes the raw EBSD data.

Following the ingestion of the raw EBSD data, an automated EBSD
image cleanup and segmentation pipeline is established to obtain «
lath morphological and crystallographic parameters at both scan res-
olutions. The high resolution, smaller area (200 pm x 200 pm) scans in
the XY plane are shown in Fig. 1, while the lower-resolution, larger
area (3.6 mm X 2.3 mm) scans contain information from both the XY
and XZ planes. The figure shows gradients in the « lath dimensions,
which is a consequence of significant thermal gradients and internal
stresses during solidification [30,31]. With the micrographs shown in
Fig. 2 imported into the microstructure builder DREAM.3D suite [32],
the following image processing pipeline is applied to both the « and g
images.

1. A bad data filter removes pixels that have a confidence index <
0.1. Subsequently, a nearest neighbor fill approach is conducted
for the bad data.

2.00

(a) Geometry of the tensile specimen with dimensions in mm, (b) inverse pole figures (IPF) for the manufacturer recommended (Stock) build condition, and (c) IPF for

2. Contiguous grains with a 3° misorientation tolerance are identi-
fied.

3. A minimum size filter of 20 pixels is employed to eliminate

imaging artifacts and over-segmentation of grain boundaries.

The average crystallographic orientation and the best-fit ellipse

are identified for every segmented grain, generating axis lengths

and orientation.

4.

The result of this pipeline is a fully segmented micrograph of «
lath colonies, that contains statistical descriptors of each lath, viz.
aspect ratio, orientation, axis lengths, equivalent sphere diameter, and
crystallographic orientation.

2.4. Void characterization

The size and spatial distribution of voids are characterized by micro-
focus X-ray computed tomography (XCT). Representative cylindrical
6 mm diameter specimens, built under the stock and KH1 conditions,
are volumetrically imaged with a voxel size of 6 pm. X-ray tomographs
are acquired using a North Star Imaging X-50 system with a 225
keV X-ray source. Each specimen is scanned with the SubPix super-
resolution mode using 2401 projections and 2x frame averaging, while
operating at 100 keV accelerating voltage and 130 pA source current.
Each scan lasts about 53 min. Scans are subsequently reconstructed
using the standard filtered back-projection algorithm implemented in
the NorthStar Imaging reconstruction software.

The scans are post-processed using VolumeGraphics software VGStu-
dioMax [33] to characterize the porosity. Pores are segmented using
the EasyPore local thresholding algorithm, and pores smaller than 32
voxels (equivalent to a sphere with diameter of 24 pm) are excluded.
The segmentation is manually inspected, and spurious pores due to
ring artifacts are manually deleted. The location, volume, and diameter
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of all pores in each volume are subsequently exported, which allows
their size and spatial distribution statistics to be evaluated. Two distinct
classes of non-densified defects are defined, viz. voids with a diameter
greater than 24 pm, and void volume fraction or porosity corresponding
to those with a diameter less than 24 pum. The former class is represented
explicitly as voids in the microstructure of the micromechanical model,
while the latter is represented as a porosity density or void volume
fraction parameter in the crystal plasticity constitutive relation [25].

3. Generating statistically equivalent microstructural volume ele-
ments (SEMVE)

Statistically equivalent microstructural volume elements (SEMVEs)
[34,35] are statistically optimal computational domains with respect to
microstructural descriptors, used in the direct micromechanical simu-
lations for evaluating material properties and local response variables.
The SEMVEs of the AM-processed Ti-6Al-4V alloy represent ensembles
of parent f grains, with « lath statistics manifested through parametric
forms of representative ellipsoids in the accompanying crystal plasticity
constitutive model. Details of this model have been given in [21].
Identical statistics are employed to generate different instantiations
of the SEMVEs. Their volumes are taken to be sufficiently large such
that random instantiations of the microstructure behave similarly, and
deviations caused by random perturbations of unbiased statistical re-
constructions are minimal. The « lath crystallographic orientations are
determined from the parent f grain orientation by the Burgers relations.

The SEMVEs modeled has a length-scale that is of the same order
as the test specimens, and hence their deformation modes can manifest
non-homogeneity and non-periodicity such as necking. Correspond-
ingly, it is not prudent to constrain the SEMVEs with periodic boundary
conditions that do not accommodate inhomogeneous deformation. Con-
ventional boundary conditions, such as displacement, periodicity, or
traction boundary conditions can result in inaccuracies in the local
state variables, particularly near the domain boundary [36]. A self-
consistent boundary condition has been proposed in [26,27], where
a concurrent multiscale domain as shown in Fig. 11(a) is constructed
by embedding the SEMVE domain for crystal plasticity-based microme-
chanical simulations in an exterior domain modeled with self-consistent
homogenized constitutive relations. A rate-dependent isotropic elasto-
plastic constitutive model is calibrated for the exterior domain in the
concurrent model.

3.1. Identification of parent beta grains

During solidification in the LPBF process, the parent § grains with
BCC lattice structure are formed with processing condition-dependent
shape and orientations [37]. The a laths, with orientations following
the Burgers relation, nucleate with cooling below the g transus tem-
perature ~ 950°, and subsequently grow to cover the entire domain
with further cooling. Alternative methods for reconstructing the parent
p microstructure from observed a EBSD images have been proposed
in [38,39]. A novel algorithm developed in [21] is used in this paper
for the generation of § grain ensembles from microstructural « laths
as shown in Fig. 2(a). This method first segments individual « laths
into contiguous regions and lists all neighbors for each lath. For each
neighboring lath-pair, a misorientation measure determines if these
neighbors are derived from the same parent f grain, prior to being
assigned to a common g grain candidate. This process is continued for
all neighboring « lath-pairs for potential inclusion within a common f
grain. Crystallographic orientation of the parent f grain candidate is
calculated from those that share less than a threshold misorientation of
5°, and aggregated into a larger grain. Fig. 2(b) shows a representative
p grain ensemble generated by this process.

3.2. Sampling volume fractions of variants

The statistical description of the « lath variant volume fractions is
integral to the micromechanical crystal plasticity modeling of the addi-
tively manufactured Ti-6Al-4V SEMVEs [21]. The aggregated material
response of the 12 variants is evaluated through a volume fraction-
based weighted averaging. Hence, it is necessary to ensure unbiased
sampling of the statistically equivalent sets of « lath variant volume
fractions in the generation of SEMVEs.

For a given parent # grain, a 12-dimensional vector represents the
volume fraction of its variants, with each dimension being the volume
fraction of an individual variant. The construction of a 12-dimensional
random variable with a large number of constraints would necessitate
several assumptions on the relationship between the different dimen-
sions. Instead of generating a probability density function (PDF) from
which to sample, the approach used in this study matches critical
cross-sections of the 12-dimensional PDF. Five necessary conditions are
satisfied to ensure unbiased sampling with reasonable accuracy [21].
These are expressed as:

1. The number distribution of independent « variant volume frac-
tions in the parent f grain must converge to the experimental
distributions for a large sample, as seen in Fig. 3(a);

2. The volume fractions of all variants should add up to unity,
ie. ) lljl vif =1 for the entire parent f grain population;

3. The volume fraction distribution of a variants must converge to
the experimental distribution for a large number of f grains, as
in Fig. 3(b). This constraint is not placed on any one parent f
grain, but on the population as a whole;

4. The total volume fraction distribution of each variant should
closely match the experimental distribution, as shown in 3(c);

5. The pairwise correlation of « variant volume fractions calculated

N i J .
as: ¢, = Zk” M V i,j € [1,12], as shown in 3(d), must be
U, U

preserved.

A sampling method for generating statistically equivalent variant
volume fractions has been described in [21]. For every f grain in the
microstructure, the number N of different volume fractions is sampled
from the experimental scan data. Next, N — 1 points are randomly
sampled from the [0,1] interval. The volume fraction assigned to the
ith variant is defined by the distance between each of these points.
Subsequently, the 12 variant IDs with assigned volume fractions are
rearranged to satisfy the experimental variant ID distribution over all
p grains. As shown in Fig. 3(d), the pairwise correlation c;; between
the variants is quite weak. The random sampling does not produce sta-
tistically significant correlations, and hence this needs to be accounted
for.

3.3. Alpha lath characterization and statistics acquisition

Generating SEMVEs of the 3D Widmanstéitten microstructure is a
challenging enterprise. Physics-based approaches to generating syn-
thetic microstructures, e.g. the phase-field models [17-20] can be com-
putationally expensive. Furthermore, the very high resolution needed
to represent individual laths in the SEMVE makes their micromechan-
ical analysis computationally intractable. To circumvent the overhead
associated with explicit representation of large microstructural regions,
the « lath statistics of the Widmanstétten microstructure are paramet-
rically incorporated in the crystal plasticity constitutive model with
underlying physics considerations. In this representation, the « laths
are assumed to be adequately represented by ellipsoids, shown in Fig. 4,
with parametric equations:

(2 (5) + (&)=
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Fig. 2. (a) High resolution (1.2 pm) « lath image after preprocessing using steps in Section 2.2, (b) corresponding parent # grain ensemble constructed by an algorithm developed
in [21], (c) inverse pole figure (IPF) key for the BCC parent f grains, and (d) IPF key for the HCP a grains images. The IPFs apply to all figures in this paper.
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Fig. 3. (a) Histogram of PDF of the number of independent variants for each experimentally observed parent § grain, (b) comparison of the PDF of the average volume fraction
in a parent § grain with that generated by the sampling method for a given variant, (c) histogram of PDF of the volume fraction for each of the 12 potential variants, and (d)
pairwise correlation matrix c;; of variant IDs relative to predicted values across all variants.
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A, B,C are the semi-major, intermediate, and semi-minor axis lengths a reference coordinate system with unit vectors (e, ey, €;) along the
respectively, and x, y,Z are coordinates of a point on the surface in ellipsoid axes, with its origin x, at the centroid. The plane normal to
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€z ng = {112} nq = {1100}

Fig. 4. The representative 3D « lath ellipsoid with its principal axes showing the
relation between the z axis direction n, and the g grain crystallographic direction
nﬂ‘

e; is defined as the habit plane. As shown in Fig. 4, the minor z axis
direction n, and the § grain crystallographic direction n; follow the
Burgers relationship {1100} || {112} [40].

The most probable 3D « lath ellipsoid is determined by a sampling
process given in [21]. With known principal axis z, the other two axes
x and y are selected randomly about it. The most probable ellipsoid
aspect ratios A/C and A/B are established by a sampling method in
which 2D ellipses, extracted from the intersection of the 3D ellipsoid
with a centroidal XY plane, best match the aspect ratios from EBSD
scans. Subsequently, the ellipsoid size is estimated from the relation
between principal axis lengths (4, B, C) and the semi-minor axis length
of the 2D ellipse, resulting from the intersection of the most probable
3D ellipsoid with the XY plane.

For each segmented « lath, the corresponding variant ID € [1 — 12]
and p orientation are identified, and the normal to the habit plane is
calculated. Next, about 50 ellipsoids are generated by sampling the
aspect ratios A/B and A/C from the most probable distributions, and
randomly selecting a rotation about the e, axis that defines the e;
and e; axis orientations. 2D projections of each randomly generated
ellipsoid are taken through the centroid of the 3D ellipsoid on the
imaging plane. Due to the uncertainty in calculating the orientation
of the observed 2D ellipses, only the aspect ratios of the resultant 2D
ellipses are used to determine the best-fit metric. Note that the absolute
size of the ellipsoids can be scaled independently of the aspect ratio and
orientation. The semi-minor axis length C is bounded by the smallest of
2D ellipse axis lengths measured in EBSD scans. For each g grain in the
SEMVE, 12 statistically equivalent « laths are sampled and assigned to
each variant. The characteristic ellipsoids ascribed to the variants are
dispersed uniformly over the g grains, and hence they do not display
spatial variation in the SEMVEs.

The 3D «a lath generation results for the AM Ti-6Al-4V microstruc-
tures of the KH1 (with keyhole voids) and Stock samples are plotted
in Figs. 5(a—c). The resultant A/C aspect ratio in Fig. 5(a) shows very
little difference between the two samples. A log-normal distribution
is chosen for parameterizing the distributions of all quantities with a
reasonable fit. The difference between the samples is minimal for the
overall minor (C) semi-axis length in Fig. 5(b). With similar statistics,
the microstructure reconstruction process going forward uses the com-
bined statistics from both the KH1 and Stock samples. The semi-axis
lengths for these combined statistics along with their log-normal fit are
plotted in Fig. 5(c).

3.4. Characterization and SEMVE reconstruction for the parent f grain

3D statistical representation of the parent § microstructure in the
SEMVE:s is necessary for micromechanical analysis. Building 3D virtual

microstructural images from image stack data generated by FIB-SEM-
based serial sectioning methods [34,35] can be an extremely resource-
intensive procedure. Alternatively, statistically equivalent 3D virtual
microstructures have been developed from 2D orthogonal EBSD/SEM
scans, whose 2D statistics in the orthogonal planes match the extracted
images [10,41]. The approach in this paper for validating the 3D SEVMs
of parent f grains incorporates the following modules: (i) generation
of 3D virtual microstructures from a data set of 3D statistics, (ii) ex-
traction of orthogonal slices from the reconstructed microstructure, (iii)
comparison of the 2D statistics extracted from sections of the 3D mi-
crostructure to reference statistics from 2D experimental observations,
and (iv) iterative enhancement of the 3D microstructure statistics.

The statistics of parent f grain morphology and crystallography
are first extracted from orthogonal XY and XZ plane EBSD scans and
processed using the DREAM.3D software [32], augmented with an
in-house wrapper code. The DREAM.3D software uses an equivalent
ellipsoidal grain generator to create pseudo-grains with size, shape,
and orientation distributions equivalent to those in the experimental
EBSD scans. This is followed by a constrained grain packer from spatial
distribution statistics that places the generated pseudo-grains inside of
a representative polycrystalline microstructural volume using a seed
point generator and a constrained Voronoi tessellation method [42,43].

For the AM Ti-6Al-4V microstructures, contiguous parent f§ grains
in the 2D EBSD images, obtained in Section 2.3 and depicted in
Figs. 7(a,b), are segmented and parametrized as 2D ellipses in
DREAM.3D. The distribution functions of three characteristic param-
eters of the ellipses, viz. (i) equivalent grain size represented by an
equivalent sphere (circle) diameter (ES D), (ii) aspect ratio (AR), and
(iii) an angle of rotation for the longest axis, are used as discrimi-
nating metrics to validate the equivalence of the experimental and
reconstructed microstructures. The equivalent diameter is calculated
as ESD = 2\/Z , where A, corresponds to the 2D grain area observed
in the EBSD scans. Its distribution is approximated by the log-normal
distribution with mean upg, and standard deviation oggp. The 2D
aspect ratio AR is fit to a normal distribution with mean u,; and
standard deviation ¢ 4 . The distribution of the rotation angle of ellipses
in the 2D section images is characterized through a PDF of the rotation
angle f(0) with an Epanechnikov kernel distribution [44], for which
the kernel bandwidth is theoretically optimal for normal distributions.
The distribution functions for ESD, AR and the orientation from the
EBSD scans constitute a reference data set.

Additional assumptions are made in building the parent g grain
virtual microstructures. The 3D ellipsoidal pseudo f# grains are found to
share a common set of Euler angles describing their spatial orientation.

Their overall size distribution across all orientations is described by
_ Un®-pupsp)’

202

a log-normal distribution f(x) = ESD with mean

1
XO'ESD\/E ¢
and standard deviation parameters upg, and opgp respectively. The
3D aspect ratios C/A and B/A are characterized by a g distribution,
given as f(x) = W, where I’ is the gamma function
and a,p,byp, asc. byc are i)arameters. The aspect ratios and size are
found to be minimally correlated. With these assumptions, the par-
ent f grain microstructure is parametrized by a set of parameter
statistics S5, with components: (i) the Euler angles (¢, @, ¢,) describ-
ing the orientation of the grains, (ii) the size distribution parameters
(ugsp-oesp), and (iii) the aspect ratio distribution function parameters
(asp.bagsasc,bac)- The objective is to find an optimal set of statistical
parameters S3; that minimizes the goodness of fit metrics GOF,,,
GOFpgp and GOF,y described in Eq. (2). The goodness of fit GOF
functions represent the difference between the statistics of the EBSD
data and that from 2D sections of the reconstructed 3D microstructures,
for the rotation angle (9), equivalent sphere diameter (E.SD), and
aspect ratio (AR). For a specific 3D microstructural instantiation, the
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Fig. 5. (a) A/C aspect ratio of « laths for the AM Ti-6Al-4V microstructures of the KH1 (with keyhole voids) and Stock samples, (b) minor (C) semi-axis length distribution for
the KH1 and Stock samples, along with their combined statistics, and (c) PDF of the semi-axis length distributions A, B, C.

functions are defined as:

ndir

T
GOF,, = Y 1- / F5m @) £eXP(0)do
0
ndir (2)
GOFpsp = 2luisy = upspD) + oy, —ors,
ndir

exp
AR

GOFyp = Z 2(|usim -
where 1 < ndir < 3 refers to the total number of orthogonal images
available from experiments. The superscript sim corresponds to statis-
tics of simulated microstructures, whereas superscript exp corresponds
to those from the EBSD scans. The orientation direction is not explicitly
specified in these equations. Statistics belonging to the same 2D plane
are summed over all available directions. While the XY and XZ sections
are accounted for in this work, the formulation is flexible to accommo-
date a third plane if available. The following steps are executed in the
3D SEMVE reconstruction.

exp sim
'uARl) + |O-AR -0

+ With initial estimates for the set Ssp, (¢, D, ¢, Hpsp: Crsps daps
bapsauc.bac), evaluated from 2D statistics in the EBSD scans,
an initial 3D virtual microstructure is generated in DREAM.3D.
A series of XY and XZ sections are digitally extracted from the
3D image at a 20 voxel spacing. A minimum cutoff size of 10 pm
is assumed for estimating f grains in each section. The PDFs of
size, aspect ratio, and orientation of each section in the XY and
XZ planes are then compiled as previously described.

+ An iterative optimization scheme, implementing a Monte-Carlo
type approach, sequentially minimizes the GO F metrics in Eq. (2)

for the aspect ratio, equivalent sphere diameter, and Euler angles.
Upon calculation of GOF, for the initial 3D microstructure,
the aspect ratio parameters in Syp, i.e. (asp,bap,auc,bac) are
perturbed to create a trial set of 3D microstructural statistical
parameters Sy, using a method described in Appendix C. A new
virtual microstructure is created in DREAM.3D using the set S}
and the corresponding GOFY, is evaluated. If GOF{, < GOF g,
then the set is upgraded to S3p = SY,), else S, is discarded for a
different trial set. The process is repeated for 30 iterations in this
study.

The next step entails the minimization of the goodness of fit
metric GOFggp. The 3D virtual microstructure resulting from the
previous step is sectioned, and 2D ESD statistics are extracted
to generate GOFpgp. A trial set of 3D microstructural statistics
Sy, is created with random sampling-based perturbed log-normal
distribution parameters u . = ppsp(l +2up — p) and o ) =
opsp(1+2vp—p), where p is a perturbation factor (taken as 0.1 in
this study), and u,v € [0, 1] are randomly generated parameters.
The corresponding 3D microstructure, created in DREAM.3D, is
sectioned and the metric GOF_  is evaluated. The statistics set

ESD
is upgraded to S3p = S}, only if GOF; < GOFggp. This loop

is executed for 30 iterations in this stufi;%)
The next minimization process is for the goodness of fit metric
GOF,,, of the set S5, containing 3D ellipsoidal grains with the
orientation (Euler angles) represented by a rotation matrix R.
Subsequent to the initial microstructure generation, sectioning
and evaluation of GOF,,, trial Euler angles are obtained by
perturbing the existing set of Euler angles through a random
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Fig. 6. Comparing the PDFs of the reconstructed pseudo-p grain sections and experimental EBSD scans: (a) aspect ratio in the XY plane, (b) aspect ratio in the XZ plane, and (c)

Euler angle distribution in the XZ plane.

angle 6 € [0, 0,,,,], where 0,,,, represents the maximum allowable
perturbation in Euler angles. A rotation axis is chosen randomly
from a unit sphere and the corresponding rotation matrix R,
representing a rotation about this axis by and angle 0 is generated.
The effective rotation matrix describing the orientation of the
ellipsoids is expressed as R"™ = R,R. The software package
MTEX [45] is used to convert the rotation R to an Euler angle
representation, which is then included in the trial set S7. As with
the other metrics, the corresponding 3D microstructure created in
DREAM.3D is sectioned and the metric GOF},, is evaluated. The
statistics set is upgraded to S = Sy, only if GOF}}, < GOF,,.
This procedure is iterated for 15 iterations in this study.

The individual optimization processes are executed within an
outer iteration loop (8 in this study), to ensure convergence of
the microstructural statistics.

The PDFs of aspect ratios in the XY and XY planes and the Euler
angles representing the orientation of the equivalent ellipsoids for
the reconstructed microstructures are compared with the experimental
distributions in 6. The comparison is found to be reasonable, given the
assumptions made in the reconstruction, e.g. the Euler angles for all
grains in the microstructure are within a small tolerance with respect
to each other, as well as the constraints imposed in the DREAM.3D
software. Fig. 7(c,d) shows the XY and XZ grain section maps of the
reconstructed parent f# microstructure. The figures demonstrate that
grains are elongated in the build direction, but relatively equiaxed
in the XY plane. This is also seen in the PDF plots of the optimized
equivalent sphere diameter and the aspect ratios in Figs. 8. For this data

set, it may be inferred that only the build direction has a discernible
difference in the morphology, as the processing conditions in the other
directions are similar.

4. Effective crystal plasticity model for parent g grains

An effective crystal plasticity model has been developed for parent
B grains of AM-processed Ti-6Al-4V, with a parametric representation
of a lath variant statistics in [21]. It accounts for the 12 « lath HCP
slip systems [46,47], and porosity evolution of the smaller voids <
24 pm [25]. The microstructural models in this study use combined
statistics from the KH1 and Stock samples due to their statistical
similarity. This section summarizes the major equations in the crystal

plasticity constitutive model from [21,25].

« Stress-Strain Relation:

M=C,S, where §=CE, 3

where M is the Mandel stress, C, is the right Cauchy-Green
tensor, E, is the Green-Lagrange strain tensor, § is the second
Piola—Kirchhoff stress in an intermediate configuration, and C is
a fourth-order anisotropic elasticity tensor.

* Plastic Velocity Gradient Tensor for an a Lath Variant:

N N,
SF slip a a
del 0t

L= 2= Y So5u “)
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Fig. 7. Comparison of the experimental and reconstructed images of the parent f microstructure: (a) IPF of the XY plane EBSD image, (b) IPF of the XZ plane EBSD image, (c)
XY grain section map of the reconstructed microstructure, and (d) XZ grain section map of the reconstructed microstructure. The IPF keys for (a,b) are given in Fig. 2(c).
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where e = my—j‘rl ;—,, is an effective slip potential for each
0

variant, f is the void volume fraction, wi is a weighting pa-

rameter, ¥ is the effective resolved shear stress, Ng; and N ;'“p
are respectively the total number of slip families and number
of slip systems in the i—th slip family. For HCP crystals Ngp =
5 corresponding to the (a)-basal, (a)-prismatic, (a)-pyramidal,

(¢ + a) pyramidal I, and (c + a) pyramidal II slip families. gj is

the initial slip-system resistance, and y; and m are the reference
slip-rate and rate sensitivity exponent respectively.
* Void Volume Fraction Evolution:

f=0- N, 5)
* Effective Resolved Shear Stress t; Equation:

¢ : @ Mezq a aMI%l a 2
— | +wiuif +2fwf{ cosh | w, p —1-w{f)"=0 (6)

™ (r2)? b
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1 3 .
where M,, = —3Tr(M) and M,, = |/5M;;M,; are respectively
the hydrostatic and equivalent Mandel stress, 7, = M : s7 is the
resolved shear stress on the a slip plane, and s is the Schmid

tensor.
« Slip System Weighting Parameters (in Egs. (4) and (6)):
w? = a% + b tanh (—d:(f;of())), for {k=1,2) @
where constants a, by, d; for each k and wj have been calibrated
in [21,25].
* Plastic Slip Rate for a Slip System a:
1
. ) % — /Ya — m
ye = }’;“ w sign (T: — X") (8)
g% + ToF "
where 7% is a reference slip rate, m is a rate sensitivity exponent,
x* is the back-stress, () is the Macaulay bracket, 7, and (. are

resolved shear stress components contributing to the parallel and
forest geometrically necessary dislocations (GNDs) respectively.
Slip System Resistance due to Statistically-Stored Dislocations (SSDs):

0~ ero‘tef
s O=g+ay, -8 (1-ow( —; ©

where g%, gg, or, 7 and 6 are temperature-dependent constants,

which have been calibrated in [48]. In this study 6 = 298 K
corresponding to room temperature. gf, , = % is the hardening

component contributing to the Hall-Petch effect, where K is a
coefficient calibrated in [49] and D* =

Aes - m(")’)2 + B(e; - mg’)2 +C(e; - mg)2 is the dislocation mean
free path along the slip direction m{ across the ellipsoidal « lath
delineated in Eq. (1). The evolution equations for the hardness
£%(1) and back-stress y* have been given in [21,48].
Hardening Stress Components due to Parallel and Forest GND Inter-
actions:

Qtl

N Pl X1 a

Top = G O\ PGp + Paps Tor = wapa2 V Por+ Par 10
)

where Pep and P are GND densities parallel and normal to the
slip plane «. They are calculated from the Nye tensor given as
A=VxF, [48].

GND Augmentation Accounting for the Absence of Explicit a Lath
Boundaries: p"/; P and p‘;‘\ F in Eq. (10) are GND augmentation terms
needed to compensate for the absence of explicit « lath bound-
aries in the equivalent parent f grain model. The augmented GND
density is approximated from [50] as:

a

v
pgNchsm (11)

where y¢ is the cumulative slip and 5% is the length of the Burgers
vector on a given slip system. The corresponding parallel and
forest augmented GNDs are given as:

N N
Par = Z )(Zf;lPﬁGND sin(n®,1#)| , p%, = Z}(ZilpﬂGND cos(n®, 1%)|
B B

(12)
;(/‘;’ﬂF is the interaction matrix between slip systems given in [48].
+ Cauchy Stress Tensor for a Material Point:
12
— (k) (k)
c= z vie (13)
k=1
-T T
where the kth variant stress is %) = —L-F" MWF® "
detF,

This effective crystal plasticity model is implemented in a FEM
framework for very efficient CPFEM simulations.

4.1. Calibration of the effective crystal plasticity parameters

Various parameters in the crystal plasticity and porosity evolution
models are taken from previous studies in [21,25,48,49]. Only the criti-
cal resolved shear stresses and the elastic constants are calibrated in this
paper. The following calibrations are for the specific material modeled
in this paper and may not be generalizable to other pedigrees of AM-
processed Ti-6Al1-4V alloys. For calibration, 5 SEMVEs are generated as
shown in Fig. 9 and meshed into ~ 115,000 3D TET4 elements using the
meshing package Simmetrix [51]. Displacement boundary conditions
representing a strain-rate of 1073 s~! are applied up to an engineering
strain of €y;,, = 6%. For the calibration process, a percentage error in
the strain energy for experiments and simulations is defined as:

1

D(c > Osi = max(, e -
(o'exp(e) Osim(€)) max(t_fex[,)efmal

€final

/0 [Gexp(€) — Gyim(e)lde (14
where 6,,, and G, are respectively the experimental and simulated
engineering stress components, computed from nodal forces in the
loading direction. The calibrated parameters for a given tolerance is
D(G,y,(€), 5y (€)) < 0.0065 are given in column 2 of Table 1. The results
of the calibration process are given in Appendix A. The experimental
and SEMVE simulation-based material responses are shown in Fig. 10.
Since the experimental stress-strain response of the KH1 and Stock
samples are similar, an average response is shown in this figure.

5. Homogenized rate dependent isotropic plasticity model (RDIPM)
for self-consistent boundary conditions in the concurrent FE model

The morphological non-uniformity of the g grain SEMVEs neces-
sitates the application of effective boundary conditions that do not
over-constrain simulations as with periodicity boundary conditions.
A self-consistent boundary condition has been developed in [27] to
avert over-constraining the SEMVE problem. The boundary condition
is applied through a concurrent model shown in Fig. 11, in which the
SEMVE is embedded in an exterior domain modeled by self-consistent
homogenized constitutive relations.

The exterior domain of the concurrent model is modeled by a rate-
dependent isotropic plasticity model (RDIPM) with an associative flow
rule that are summarized here. The plastic deformation gradient F, is
decomposed into a symmetric part D, and an antisymmetric part W,
representing plastic spin, which is assumed to be negligible [52]. A
power-law type flow rule is expressed as:

1

Y \m

L,~D,=D, <7> N (15)
0

where D, is the reference slip rate, m is the rate sensitivity exponent, Y,

is the flow stress, and N is the normal to the yield function Y, expressed

as:

Y = (A D% + (Al + (145h7) 16)

A1, 44, and Az are the principal values of the deviatoric part of the sec-

ond Piola—Kirchhoff stress tensor S in the intermediate configuration,

and the exponent a determines the shape of the yield surface. For an

associative flow rule (15), the direction of the plastic strain-rate is given
by:

_or_

_ _os™®

_or_

‘asdw

a7

The evolution of the flow stress Y;, is formulated by a modified
Voce-type law [53], given as:

E\V
Yo = YO+&exp<<%f> ) 1 e, as)

where Y, is the initial yield stress, A, f, &, and y are parameters that
describe the material hardening behavior, and ¢, = /0’ \/ %15; : ljl’Jdt

represents the effective plastic strain, 15;; being the deviatoric part of

D,
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Table 1
The convergence @ metric in Eq. (14) between (i) the experimental and SEMVE-CPFEM simulation results, (ii) the rate-dependent isotropic
plasticity model (RDIPM) and SEMVE-CPFEM simulation results, and (iii) the RDIPM simulation and experiment results.

Convergence metric: Experiment-SEMVE RDIPM-SEMVE
] 0.0064836

RDIPM-Experiment
0.0092336

0.0044927
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Fig. 9. Reconstructed parent f grain SEMVEs generated with 5 random initial conditions for calibration and prediction simulations. Colors represent individual grains in the
ensemble. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

x108 6. Simulations and parametric studies with the SEMVE model
12 T T T T T I
Simulations with the SEMVE model are conducted using the self-
10 F 4 consistent boundary conditions to avoid over-constraining with period-
icity conditions, as explained in [27,36]. As shown in Fig. 11(a), this
E st | approach uses a concurrent model in which the SEMVE is embedded
v in a homogenized exterior material modeled by the rate-dependent
§ isotropic plasticity model (RDIPM) developed in Section 5. The mesh in
“g 61 T the exterior domain is graded from a fine resolution at the interface to a
£ coarse resolution away from it for significant computational efficiency.
S 4t g Boundary conditions that mimic the experimental testing are applied to
% the boundary of the exterior domain. As demonstrated in Figs. 11(b,c),
S >t === SEMVE CPFEM Simulations the self-consistent boundary condition facilitates continuity in the de-
Homogenized Isotropic Plasticity formation and stress fields across the interface between the exterior and
Experimental Results SEMVE domains. The set of 5 SEMVEs shown in Fig. 9 is simulated in
0 ! ' ' ! ! this section to avoid a particular microstructural bias in the results.
0 0.01 0.02 0.03 0.04 0.05 0.06

Engineering Strain 6.1. Parametric study with explicit representation of voids in the SEMVE
Fig. 10. Comparing engineering stress-strain curves from CPFEM simulation of the 5
SEMVEs with experimentally obtained response. The figure also shows the response
predicted by the homogenized rate-dependent isotropic plasticity model.

A parametric study is conducted in this section for the effect of
larger keyhole (KH) and lack of fusion (LOF) voids in the microstruc-
ture. To represent these voids, spherical (representing KH) and ellip-
soidal (representing LOF) voids are explicitly inserted into the SEMVE
models as shown in Fig. 12. While these are only approximate represen-
tations of the void morphologies, they provide a means of parametric
5.1. Calibration of rate-dependent elasto-plastic isotropic plasticity param- representation with a relatively small number of parameters. The study
eters in this paper gives a preliminary understanding of the effect of these
void morphologies on the local stress fields, which can eventually
influence microstructural damage. An important observation from the

The parameters Y, f, H, & w of the rate-dependent isotropic
plasticity model are calibrated from the volume-averaged engineering
stress-engineering strain curve in Fig. 10 to achieve consistency in the
behavior between the SEMVE and exterior domains. The results of
the calibration process are given in Appendix B. The stress—strain re-
sponse obtained by this self-consistent homogenized constitutive model
is compared with the volume-averaged SEMVE and experimental re-
sponses in Fig. 10. Excellent convergence of the strain energy by this
model to those by the SEMVE-CPFEM simulations and experiments are
demonstrated in Table 1.

experimental CT analysis is that the voids have no radial spatial re-
lationship to one another. This is shown with the radial distribution
function g(r) in Fig. 11(d), which corresponds to the probability that
the centroids of a pair of voids are at a distance r apart. The figure
shows the experimental g(r)**?, and two test distributions viz. a random
distribution g(r)"? (where voids can overlap one another), and a hard
sphere distribution g(r)"S (where random voids have a no penetration
condition). Excellent agreement is seen between the experimental and
the hard sphere distributions, which demonstrates that the spatial
placement of the voids in space are random with respect to the radial
dimension.
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Fig. 11. Parent p SEMVE simulations with the self-consistent boundary conditions: (a) the concurrent model and mesh with the SEMVE embedded in an exterior domain modeled
by the RDIPM, (b) equivalent plastic strain field, (c) Von-Mises stress in the concurrent model, exhibiting continuity in the fields across the interface, and (d) radial distribution

functions g(r)***, g(r)™“, and g(r)'* with Epanechnikov smoothing.

Table 2

Void characteristics for each of the 8 morphology cases. The aspect ratios correspond to (g, g, 1) where A > B > C are the principal axis

lengths and Euler angles correspond to their orientations.

Morphology case Void type Aspect ratios Volume fraction (%) Euler angles
1 None N/A 0% N/A

2 KH N/A 1% N/A

3 KH N/A 5% N/A

4 LOF 8,4,1 1% 7/2,0,0

5 LOF 8,4,1 1% 7.7/2.37/2
6 LOF 8,4,1 1% m, /4,37 /4
7 LOF 2,1.5,1 1% 7/2,0,0

8 LOF 6,3,1 1% 7/2,0,0

For this study, 8 different void morphologies, described in Table 2,
are placed within each of the 5 SEMVEs in the concurrent model of
Fig. 11(a). This corresponds to a total of 40 simulations for the 8 cases.
Minimum boundary conditions are applied to the exterior domain
boundary, while the material is loaded up to 6% engineering strain at
a strain-rate of 10~ s~!. The initial void volume fraction for the crystal
plasticity model is taken as f = 0.11%. The parametric study identifies
the morphological characteristics that have the most influence on the
material response.

Three state variables, viz. the equivalent plastic strain (EPS), the
Von-Mises stress (VM), and the loading direction Cauchy stress com-
ponent o,, (LC), are studied in this example. For each of these state
variables, the PDFs for each of the morphology cases are aggregated
from simulations of the 5 SEMVE instantiations in Fig. 9. The metrics
chosen to represent the response of these PDFs are the mean (uZPS,
uM 4 LCY standard deviation (¢EPS, 6™, 5LC), and value at the
99th percentile of the distribution (F(0.99)7S, F(0.99)V ™, F(0.99):€).
This last metric is chosen to represent the extreme values of the
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(o)

Fig. 12. Schematic of voids embedded in the SEMVE region of the concurrent model for (a) LOF void represented by case 4, (b) LOF void represented by case 5, and (c) LOF
void represented by case 4 in Table 2. The colors represent different grains. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 3
Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic
strain, Von-Mises stress, and o.. for SEMVEs with spherical voids of 1% and 5% volume
fraction.

Keyhole 1% Keyhole 5%

atrs 0.99257 1.0086
GEPS 5.8139 7.7067
F(0.99)EPS 1.679 2.0704
a'm 0.99776 0.99469
"M 1.111 1.2663
F(0.99)"M 0.99935 0.99741
atc 0.98081 0.95751
&lc 2.1582 2.7465
F(0.99)F¢ 1.0788 1.1434

response that are most likely to lead to material failure. The metrics

are scaled by the values from simulations of the morphology case 1
EPS/VM/LC EPS/VM/LC

( ids), i.e. gEPS/VMILC _ K _EPS/VM/LC _ 9

no vo. , L.E. j; = ”EPS/VM/LC’ o; = EPS/VMJLC>

1 1

EPS/VM/LC _ FO99)FFSIVMILC

EPS/VM/LC

and F(0.99); = o)
B 1

response.

to yield a relative measure of

6.1.1. Effect of volume fraction

The effect of the void volume fraction on the state variables is
determined by comparing the morphology cases 1, 2, and 3 in Table 2.
Each of the cases embeds a void in the 5 SEMVEs of Fig. 9, as shown
in Fig. 12. The PDFs of the equivalent plastic strain, Von-Mises stress,
and o, are aggregated for simulations of the 5 SEMVEs containing the
voids and plotted in Fig. 13(a—c) respectively. The values of the scaled
metrics are given in Table 3.

A comparison of the scaled results for 1% and 5% void volume
fraction in Table 3 infers that an increase in the void volume does
not significantly affect the mean of the equivalent plastic strain PDF.
However, the standard deviation increases by a factor of 5.8 from 0
to 1% void volume fraction, and by a factor of 7.7 from 0 to 5%
void volume fraction. Similarly, there is an increase by a factor of
1.67 and 2.07 in the 99th percentile strain for the 1% and 5% cases
respectively, which corresponds to a substantial localized deformation.

Fig. 13(a) shows that increasing void volume fraction leads to a bi-
modal distribution in the PDF of the equivalent plastic strain. For the
Von-Mises stress, the mean or the 99th percentile does not change
much with increasing void volume fraction. However, the standard
deviation is considerably larger with increased volume fraction. This
is also observed in Fig. 13(b). For the loading direction stress o,,
the mean decreases with increasing volume fraction indicating stress
redistribution to the surrounding homogenized region. An increase in
the standard deviation and extreme value is also seen as corroborated
in Fig. 13(c).

6.1.2. Effect of aspect ratio

The effect of aspect ratio on the state variables is determined by
comparing the cases 2, 4, 8, and 9 in Table 2. Again each case embeds
a void in the 5 SEMVEs as shown in Fig. 12. The voids are oriented with
the shortest axis parallel to the loading direction, and the total volume
fraction considered for this study is 1%. The voids correspond to (i) long
ellipsoid with an aspect ratio =8 (case 4), (ii) the intermediate ellipsoid
with an aspect ratio =6 (case 8), (iii) short ellipsoid with an aspect
ratio =2 (case 7), and (iv) sphere (case 2). The other aspect ratios are
given in Table 2. The aggregated PDFs of the equivalent plastic strain,
Von-Mises stress, and loading direction ¢,, are shown in Figs. 14(a—c)
respectively. The scaled metrics are given in Table 4.

The void aspect ratio has a considerable effect on the mean, stan-
dard deviation, and extreme values of the PDF of the equivalent plastic
strain, as seen in Fig. 14(a). With increasing aspect ratio, the distribu-
tion stabilizes with larger moments. This results in a lower mean, but
higher values of both the standard deviation and the extreme values.
The Von-Mises stress and o33 have less pronounced effects, but the
overall trends are similar to that of the equivalent plastic strain.

6.1.3. Effect of orientation

Finally, the effect of void orientation on the state variables is
assessed from the morphology cases 4, 5, and 6 in Table 2. The void
in case 4 is oriented such that the shortest axis is parallel to the
loading direction z, and the longest axis parallel to the y direction,
as shown in Fig. 12(a). For case 5, the void is oriented such that the
intermediate and the shortest axis are both at 45° to the loading (z) axis
as shown in Fig. 12(b), while for case 6 the intermediate axis is parallel
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Fig. 13. The aggregated PDFs (over 5 instantiations) of (a) the equivalent plastic strain, (b) Von-Mises stress, and (c) and o, for the SEMVEs containing 0%, 1% and 5% void

volume fractions.

Table 4

Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic strain, Von-Mises stress, and o,. for SEMVEs with (i)
long ellipsoid void (case 4), (ii) intermediate ellipsoid void (case 8), (iii) short ellipsoid void (case 7), and (iv) sphere (case 2), all with 1%

void volume fraction.

Long ellipsoid Intermediate ellipsoid Short ellipsoid Sphere
aktrs 0.97802 0.991 0.99631 0.99257
GEPS 10.8326 6.5563 4.5247 5.8139
F(0.99)EPS 2.4558 1.7896 1.4691 1.679
arM 0.9955 0.99481 0.99706 0.99776
VM 1.2186 1.0868 1.0531 1.111
F(0.99)"™ 1.0179 1.0046 1.0011 0.99935
atc 0.95141 0.97081 0.98262 0.98081
&Le 3.0904 2.3701 1.9882 2.1582
F(0.99)t¢ 1.2016 1.1203 1.0762 1.0788

to the loading (z) direction as shown in Fig. 12(c). The PDFs of the
equivalent plastic strain, Von-Mises stress, and o,, are aggregated for
the 5 SEMVEs and shown in Fig. 15(a—c). and the values of the scaled
metrics are given in Table 5.

The orientation of the void relative to the SEMVE has a considerable
effect on the mean, standard deviation, and extreme values of the PDF
of the equivalent plastic strain, as seen in Fig. 15(a). Analogous to the
aspect ratio, as the cross-sectional area of the void with respect to the
loading direction increases, the mean of the EPS decreases, and the
standard deviation and extreme values increase. These patterns are sim-
ilar for the Von-Mises stress metrics and o33 as shown in Figs. 15(b,c).
However, the results are significantly less pronounced.

6.1.4. Discussion of results in this analysis

While the volume fraction, aspect ratios, and orientation of voids
individually provide information on the effect on the distribution of
state variables, more insights may be obtained from the projected cross-
sectional area of the void normal to loading direction. Linear regression
curves of 58PS and F(0.99)PS are generated for each case and the
corresponding coefficient of determination R’ values are computed
as shown in Figs. 16. For both the standard deviation and the 99th
percentile metrics, about ~ 85% of the variation between samples is
due to the difference in the cross-sectional area, which is a major
determinant of the material response. This analysis demonstrates that
for the same volume fraction, spherical voids have a significantly lower
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Table 5

Scaled mean, standard deviation, and extreme value of the aggregated equivalent plastic strain, Von-Mises stress, and o,. for SEMVEs with
varying ellipsoidal void orientations: (i) Euler angles in case 4 (horizontal), (ii) Euler angles in case 5 (45 ° ), and (iii) Euler angles in case 6

(vertical).
Orientation for case 4 Orientation for case 5 Orientation for case 6
atrs 0.97802 0.99075 1.0049
GEPS 10.8326 7.1038 2.4837
F(0.99)EPS 2.4558 1.8711 1.2996
M 0.9955 0.99822 0.99926
G'M 1.2186 1.099 1.0113
F(0.99)"M 1.0179 1.0076 0.99822
atc 0.95141 0.97291 0.99725
slc 3.0904 2.4593 1.3249
F(0.99)L¢ 1.2016 1.1443 1.0333

effect on the PDFs than elongated voids which dominate the LOF voids.
This aligns well with experimental measurements in [29].

The results of this analysis demonstrate that spherical voids have
a significantly lower effect on the PDFs of state variables than voids
that are elongated on a per-volume fraction basis. From the physics of
the melting process, orientation of voids due to either lack of fusion
or keyholing can cause significant anisotropy in material response if
there is a strong bias of elongated voids in one direction. However
even without anisotropy in the pore orientation, the overall effect of
elongated voids is greater on the PDFs of state variables than more
spherical voids, even for the same volume fraction.

7. Conclusion

This paper builds a comprehensive image-based statistically equiv-
alent microstructural volume element (SEMVE) and associated crystal
plasticity constitutive relations for efficient micromechanical simula-
tion of AM-processed Ti-6Al-4V alloys characterized by Widmanstitten
morphology containing 12 HCP « lath variants. A major step towards
gaining significant efficiency is the creation of an effective crystal plas-
ticity framework for parent § grains with a parametric representation
of « lath size, shape, orientation, and crystallography statistics. The
development identifies the crystallographic relationship of a laths with
respect to their parent § grains, and deploys a method to incorporate
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smaller effect of spherical voids than elongated voids.

a parametric representation of « lath statistics in # grains. It is ex- 3D ellipsoidal shapes are assumed for the « laths. The statisti-

pected that this implicit representation will significantly enhance its
efficiency over other models that represent each « lath explicitly in the

cal representation process generates a set of most probable ellipsoids
through the use of stereology principles on the observed EBSD images

microstructure. and constructs statistical functions that characterize the distribution of
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Table A.6
Slip system dependent parameters in Section 4.

Parameter Basal Prismatic < a > Pyramidal < c¢+a> Pyramidal I & II
O, 300 °K 300 °K 300 °K 300 °K
BA“,f 400 °K 200 °K 200 °K 160 °K
hy 150 MPa 150 MPa 150 MPa 150 MPa
g 470 MPa 570 MPa 570 MPa 1550 MPa
I3 241 MPa 236 MPa 360 MPa 466 MPa
¢ 0.08 0.062 0.07 0.05
o 1 1 1 1
Table A.7 Data availability

Additional material constants in the crystal plasticity
model of Section 4.

Parameter Value

K 162 I
G 48 GPa
Q 25719 g
c 500 MPa
d 100

the resulting 3D ellipsoids. A grain reconstruction algorithm is subse-
quently executed, allowing for the identification of the crystallographic
orientation of parent f grains. The morphology of § grains is quantified
and an algorithm is developed with the DREAM. 3D software to generate
statistically equivalent instantiations of the f grain microstructure.

The crystal plasticity model also accounts for porosity evolution
in the microstructure. The model is calibrated and validated with
results from tests performed on AM-processed Ti-6Al-4V KH1 and
stock samples. A contribution of this paper is the development of the
self-consistent boundary condition that are implemented through em-
bedding the SEMVE in a homogenized exterior domain in a concurrent
model. This boundary condition is necessary to overcome the limita-
tions of periodicity boundary conditions in modeling larger specimens.
The exterior domain in the concurrent model is modeled by an isotropic
rate-dependent plasticity model (IRDPM) that is calibrated from the
microstructural CPFE model. Experimental boundary conditions are
applied on the exterior boundary of the concurrent model, thereby
facilitating the simulation of experimental specimens.

Parametric studies are finally conducted with this model to ex-
amine the effect of the larger void size, shape, and orientation on
the mechanical response of the SEMVEs. The studies conclude that a
simple volume fraction-based approach to characterizing the effect of
void defects on the spatial distribution of state variables is insufficient.
Aspect ratios and orientation are equally important for determining
the overall effect on the material response. In summary, this paper
has developed a robust and unique platform that can be effectively
used to model additively manufactured metallic materials with complex
microstructures undergoing a variety of loading conditions.
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Appendix A. Calibrated crystal plasticity parameters

The interaction matrices between slip systems are given by the
following parameters: g%/ = 1, )(Z’; =1, and )(Zf, =1 for all slip system
pairs (see Table A.6 and Table A.7).

Appendix B. Rate-dependent isotropic plasticity model (RDIPM)
parameters

The table for the rate-dependent isotropic plasticity model (RDIPM)
parameters for the exterior domain is given in Table B.8.

Appendix C. Method for perturbing statistics of size, aspect ratio
and orientation

The beta distributions with parameters (a,p, b p,a4¢,bsc) for the
B/A and C/A aspect ratios are randomly sampled a large number of
times (1000 for this example) with values in the interval [ 0,1]. These
are then inverted so they then represent A/C, and A/B ratios. Two
random numbers « and v are generated from a uniform pseudo-random
number generator between 0 and 1. Each element x within the sampled
A/C list is modified as x* = (x — 1)(1 — 2p floor(u,0.5) + p) where p is a
perturbation factor (set to 0.1). Subsequently, the modified x* sample
aspect ratios are inverted back to C/A so that they are again between
0 and 1. A beta distribution is fit to the modified 1/x* samples, and the
new parameters are included in the trial parameters S},).

Table B.8
RDIPM parameters in Section 5.
Parameter Value
Y, 1.68 GPa
I 31073
H 1.75 GPa
a 400 MPa
v 1
a 2
m 0.0105
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