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The detection of gravitational waves from compact binary mergers by the LIGO/Virgo Collaboration
has, for the first time, allowed us to test relativistic gravity in its strong, dynamical, and nonlinear regime,
thus opening a new arena to confront general relativity (and modifications thereof) against observations.
We consider a theory which modifies general relativity by introducing a scalar field coupled to a parity-
violating curvature term known as dynamical Chern-Simons gravity. In this theory, spinning black holes are
different from their general relativistic counterparts and can thus serve as probes to this theory. We study
linear gravito-scalar perturbations of black holes in dynamical Chern-Simons gravity at leading order in
spin and (i) obtain the perturbed field equations describing the evolution of the perturbed gravitational and
scalar fields, (ii) numerically solve these equations by direct integration to calculate the quasinormal mode
frequencies for the dominant and higher multipoles and tabulate them, (iii) find strong evidence that these
rotating black holes are linearly stable, and (iv) present general fitting functions for different multipoles for
gravitational and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling
parameter. Our results can be used to validate the ringdown of small-spin remnants of numerical relativity
simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards future
tests of this theory with gravitational wave ringdown observations.
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I. INTRODUCTION

General Relativity (GR) has passed a plethora of
experimental tests both in the Solar System [1] and in
binary pulsar systems [2,3] making it one of the most
successful physical theories. These tests probe situations in
which gravitational fields are either weak, as in the Solar
System, or systems where the field is strong but the system
is slowly varying, as in binary pulsars. However, the
observation of gravitational waves (GW) by the LIGO/
Virgo Collaboration offers a new arena, where the space-
time is highly dynamical and strongly curved, in which the
predictions of Einstein’s theory have been once more
shown to agree with observations [4]. Complementary,
GWobservations also allow one to constrain modifications
to GR [5–7] and with more ground-based and space-based
detectors in the future, these constraints will become more
stringent (see e.g., Refs. [8–12]).
But why should one study modifications to GR? There

are observational and theoretical anomalies that GR in its
simplest form (i.e., without additional “dark” components
or a UV completion) fails to answer. These include the

late-time acceleration of the Universe [13,14], the anoma-
lous galaxy rotation curves [15,16] and the matter-anti-
matter asymmetry of the Universe [17], and the
incompatibility of quantum mechanics with GR. A reso-
lution to these anomalies may reside in a modification to
Einstein’s theory that remains consistent with all current
observational tests, yet yields deviations in other extreme
regimes where the gravitational interaction is simultane-
ously strong, nonlinear, and highly dynamical. On the
theoretical side, the incompatibility of GR with quantum
mechanics has prompted efforts in a variety of unified
theories, including string theory and loop quantum gravity.
These issues have served as motivation to study various

extensions to GR [18,19], such as fðRÞ gravity and scalar-
tensor theories [20,21], tensor-vector-scalar theories [22],
massive gravity [23] and bigravity [24]. Whether these
attempts at modifying GR have any physical implications,
requires one to first derive the predictions of such theories
(in a given scenario) which should be followed by a
comparison of these predictions against observations.
Although the correct completion of GR is yet unknown,

GWs from compact binary coalescence observations can
help in constraining and excluding entire arrays of modified
theories of gravity. For instance, the GWs emitted in the*wagle2@illinois.edu
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inspiral of black hole binaries can tell us about the presence
of extra radiative degrees of freedom, which provide an
extra energy sink to which orbital energy and angular
momentum can be extracted from the binary and hence
affect the system’s orbital evolution (see e.g., Ref. [7]).
Here we concentrate on GWs emitted when the newly
formed black hole relaxes towards its final equilibrium
state, the so-called ringdown. The GWs emitted during the
ringdown can be described by a set of quasinormal modes
(QNMs)—complex-valued frequencies whose imaginary
part dictate how fast the mode decays in time. In GR, the
observation of two or more QNMs in the ringdown signal
allows one to uniquely infer the properties of the remnant
Kerr black hole, similar as to how the observation of
emission lines allows one to identify chemical elements
[25]. This “black hole spectroscopy” thus allows one to test
the “Kerr hypothesis” [26–28] i.e., that the BHs found in
nature are described by the Kerr metric. In general,
modified theories of gravity do not admit the Kerr metric
as a solution (see e.g., Ref. [19]) and even when they do so
[29–31], the presence of the modifications to GR can be
probed by perturbations to the Kerr metric [32]. This makes
BH spectroscopy a powerful probe into beyond-GR
physics.
Here we concentrate on modifications to GR which

introduce a scalar field nonminimally coupled to squared
curvature scalars, known as quadratic gravity theories
[33,34]. One subset of these theories, known as dynamical
Chern-Simons (dCS) gravity [35], was proposed as an
explanation to the matter-antimatter asymmetry of the
Universe by introducing additional parity-violating gravi-
tational interactions, challenging a fundamental pillar of
GR [36,37]. The theory is poorly constrained by Solar
System experiments (see [38] for an overview), and
remains unconstrained by both binary pulsars [39] and
GW [40] observations. Nonetheless, first constraints on
dCS were obtained through multimessenger neutron-star
observations in Ref. [41].
In dCS, nonrotating BHs are identical to their GR

counterparts, but when spun a nontrivial scalar field
configuration arises and whose presence affects the space-
time metric. Perturbations of spherically-symmetric BHs in
dCS were first studied in Ref. [42] who found the system of
equations to be coupled and complicated. Later work
decoupled these equations and studied them extensively
[43–45]. Here we extend all of these results to axisym-
metric, slowly-rotating BHs in dCS gravity and study their
QNM spectra and stability.

A. Executive summary

We study the QNM spectra of slowly-rotating BHs in
dCS gravity, generalizing Refs. [43,44] which focused on
the nonrotating case. To do so, we consider as a background
the BH solution found in Refs. [46,47] that captures the
leading-order corrections due to the dimensionless spin

(a=M) and Chern-Simons (CS) dimensionless coupling
strength (α=M2) to the Schwarzschild spacetime. Here
a ¼ J=M with J andM the Arnowitt-Deser-Misner angular
momentum and mass respectively, while α is the coupling
parameter (with dimensions of length squared in geometric
units) between of the CS (pseudo-) scalar field and the
Pontryagin density in the theory’s action.
We study the most general linear perturbations to this

solution, taking into consideration both gravitational and
scalar field perturbations. The outcome of this calculation is
a pair of coupled, inhomogenous ordinary differential
equations (ODEs) for the axial gravitational and scalar
perturbations and a single homogeneous equation for the
polar gravitational perturbations. All these equations are
found to have CS modifications when compared with their
counterparts for a slowly-rotating Kerr BH in GR [48].
With these equations in hand,we numerically calculate the

QNM frequenciesω, exploring their dependence on spin and
coupling strength. We find that the QNM spectra can be split
into two branches: (i) the scalar-led modes, whose frequen-
cies in the limit α=M2 → 0 reduce to that of a test scalar field
on a slowly-rotating Kerr BH background [48–50], and
(ii) the gravitational-led modes, whose frequencies in the
limitα=M2 → 0 reduce to that of the gravitationalmodes of a
slowly-rotating Kerr background [48].
Our results show that the isospectrality existent in GR

between axial and polar-parity gravitational modes [51]
(i.e., the equivalence between the QNM spectra of each
parity) is broken due to the scalar field. This was first
observed in [44] in the nonrotating limit and is shown here
to persist when rotation is added. The leading-order
corrections to QNM frequencies introduced by the CS
coupling are found to enter at the quadratic order in the CS
coupling for both the gravitational and the scalar modes.
We also found (at fixed spin a=M) that the axial

gravitational modes decay slower and oscillate faster in
dCS than in GR, with the latter being more sensitive to the
CS coupling. We find a positive correlation between a=M
and α=M2 on how they affect the real part of the QNMs; the
oscillation frequency increases in the same way by increas-
ing either of the two parameters while keeping the other
constant. This correlation is broken when considering
decay rates, because changing the CS coupling has a
negligible affect on the decay rate whereas a change in
the spin parameter leads to longer-lived modes. This result
is important because it breaks the degeneracy between spin
and CS coupling effects present in the real part of the QNM,
allowing one to, in principle, constrain dCS gravity with the
ringdown part of sufficiently high signal-to-noise-ratio GW
events. At fixed spin, these corrections scale with ðα=M2Þ2
due to dependence of the effective potential on the CS
coupling and the coupling between the scalar and axial
modes. In Table I, we summarize how each of the three set
of modes behave as we increase either spin or CS coupling
while keeping the other constant.
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We calculated a large set of QNM frequencies (see
Appendix C) which we used to obtain fitting formulas for
their real and imaginary parts as function of dimensionless
spin and CS coupling [cf. Eqs. (54a) and (54b)]. Our
exploration of the parameter space indicates that the QNMs
decay for all values of spin and CS coupling within the
limits of the slow rotation and small coupling approxima-
tion we use. This provides evidence that slowly rotating BH
solutions in dCS gravity are linearly stable against gravito-
scalar perturbations.
In the rest of this paper we show how these results were

obtained. In Sec. II we give a short overview of dCS gravity
and present the slowly-rotating BH solutions in this theory,
whose QNM frequencies we are interested in computing. In
Sec. III we review some general aspects of BH perturbation
theory and derive the master equations that govern linear
perturbations of our background BH spacetime. In Sec. IV
we explain how these equations can be integrated numeri-
cally, and in Sec. V we present our numerical results.
Finally, in Sec. VI we summarize our main findings and
discuss some avenues for future work.
We adopt the following conventions unless stated other-

wise. We work in 4-dimensions with metric signature
ð−;þ;þ;þÞ as in [52]. Greek indices (α; β:…) represent
spacetime indices, round brackets around indices represent
symmetrization, ∂μ partial derivatives, ∇μ covariant deriv-
atives, and □ ¼ ∇μ∇μ the d’Alembertian operator. The
Einstein summation convention is used throughout and we
work in geometrical units in which G ¼ 1 ¼ c.

II. DYNAMICAL CHERN-SIMONS GRAVITY

A. Basics

Let us start with a brief review of dCS gravity and
establish some notation [37]. In vacuum, the theory is
described by the action

S ¼ SEH þ Sϑ þ SCS; ð1Þ

where the Einstein-Hilbert term is

SEH ¼ κ
Z

d4x
ffiffiffiffiffiffi−gp

R; ð2Þ

where κ ¼ ð16πÞ−1, R is the Ricci scalar, and g is the
determinant of the metric gαβ. The action for the scalar
field is

Sϑ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi−gp ½gμνð∇μϑÞð∇νϑÞ þ 2VðϑÞ&; ð3Þ

where ∇μ is the covariant derivative operator compatible
with the metric, while VðϑÞ is a potential for the scalar that
we set to zero. The scalar field is nonminimally coupled to
the Pontryagin density 'RR as

SCS ¼
α
4

Z
d4x

ffiffiffiffiffiffi−gp
ϑ'RR; 'RR ¼ 'Rμ

ν
κδRν

μκδ; ð4Þ

where α is the CS coupling constant with units of ½Length&2
and 'Rμ

ν
κδ is the dual Riemann tensor

'Rμ
ν
κδ ¼ 1

2
ϵμναβRαβκδ; ð5Þ

and ϵμναβ is the Levi-Civita tensor.
The field equations are obtained by varying the action in

Eq. (1) with respect to the (inverse) metric gμν and scalar
field ϑ. Variation with respect to gμν gives

Gμν þ
α
κ
Cμν ¼

1

2κ
Tϑ
μν; ð6Þ

where Gμν is the Einstein tensor, Cμν is the (trace-free)
C-tensor

Cμν ¼ ð∇σϑÞϵσδαðμ∇αRνÞδ þ ð∇σ∇δϑÞ'Rδ
ðμνÞ

σ; ð7Þ

which contains derivatives of the scalar field, and Tϑ
μν is the

canonical scalar field stress-energy tensor

Tϑ
μν ¼

"
ð∇μϑÞð∇νϑÞ −

1

2
gμνð∇σϑÞð∇σϑÞ

#
: ð8Þ

Variation with respect to ϑ gives the inhomogenous wave
equation

□ϑ ¼ −
α
4
'RR: ð9Þ

One can show that 'RR vanishes for static, spherically
symmetric spacetimes, resulting in ϑ ¼ const as the only
regular solutions of dCS in BH spacetimes with these
symmetries [35,42]. This is no longer the case when these
symmetries are lifted as we will see next.

TABLE I. Summary of the behavior of fundamental dominant
QNM frequency as we increase either the dimensionless spin
a=M or the dimensionless CS coupling α=M2 while keeping the
other constant. ↑, ↓ and ∼ indicate an increase, decrease or
almost constant behavior of the QNM frequency, respectively.
Here, the subscript g represents the gravitational-led and the
subscript s, the scalar-led mode.

a=M α=M2

Reðωaxial
g Þ ↑ ↑

Imðωaxial
g Þ ↓ ∼

ReðωsÞ ↓ ↓
ImðωsÞ ↑ ∼
Reðωpolar

g Þ ↑ ∼
Imðωpolar

g Þ ↓ ∼
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Throughout this paper, we treat dCS gravity as a low-
energy effective field theory. What this means is that we will
be working perturbatively in the coupling of the theory,
considering only small deformations away from GR. Since
this topic has been covered in literature in thorough detail, we
redirect a reader unfamiliar with this topic to Refs. [53–56].

B. Slowly-rotating black holes

Slowly-rotating BH solutions in dCS are known both
analytically [46,47,57,58] and numerically [59]. Here we
will consider the solution found in Refs. [46,47], which was
obtained by solving the field equations (6) and (8)
perturbatively to linear order in spin a and to quadratic
order in the coupling strength α. Following the notation of
[46], the line element of this solution is

ds̄2 ¼ ds2SR þ 5

4

α2

κ
a
r4

$
1þ 12

7

M
r
þ 27

10

M2

r2

%
sin2 θdtdϕ;

ð10Þ

where ds̄2 is the background line element for the slowly
rotating BH in dCS gravity to leading order in the
dimensionless spin parameter and CS coupling constant
and ds2SR is the line element for a slowly-rotating Kerr BH

ds2SR ¼ −fðrÞdt2 − 4Ma sin2 θ
r

dtdϕþ fðrÞ−1dr2

þ r2dθ2 þ r2 sin2 θdϕ2; ð11Þ

and fðrÞ ¼ 1–2M=r is the Schwarzschild factor. The
solution also contains a nontrivial scalar field,

ϑ̄ ¼ 5

8

aα
M

cos θ
r2

$
1þ 2M

r
þ 18M2

5r2

%
: ð12Þ

A far-field analysis shows that the BH has a scalar dipole
charge of value −ð5=8Þðaα=MÞ.

We see from Eq. (10) that the metric for slowly-rotating
BHs in dCS gravity has an additional modification in the
(tϕ) component when compared to the metric in GR given
in Eq. (11). This modifies the horizon angular frequencyΩH

as observed by a zero angular momentum observer at the
horizon location rH at first order in spin and second order in
α [46] as

ΩH ¼ a
4M2

−
709α2a

28672κM6
¼ a

4M2

$
1 −

709

7168
ζ

%
; ð13Þ

where we defined

ζ ¼ α2=ðM4κÞ: ð14Þ

As we will see later, this α2-term affects the QNMs.

III. BLACK HOLE PERTURBATION THEORY

A. Decomposition of the fundamental fields

We consider linear perturbations

gμν ¼ ḡμν þ ϵδμν; ϑ ¼ ϑ̄þ ϵδϑ; ð15Þ

to the background BH spacetime [cf. Eqs. (10) and (12)],
where ϵ is a bookkeeping parameter and both δgμν and δϑ
are functions of the coordinates of the metric.
The angular dependence of these perturbations can be

described by scalar, vector and tensor spherical harmonics.
The metric decomposition comes from the transformation
properties of the ten components of the perturbation tensor
δgμν under a rotation of the frame of origin [60]. These
quantities transform as three SO(2) scalars δgMN , two SO
(2) vectors δgmN and one SO(2) second rank tensor δgab
which can be expanded into a complete basis formed by
spherical harmonics of different corresponding ranks.
Under a parity transformation (i.e., the simultaneous shifts
θ → π − θ and ϕ → ϕþ π) the aforementioned metric
quantities can be separated into odd (or “axial”) and even
(or “polar”) sectors respectively, depending on whether
they pick up a factor of ð−1Þlþ1 and ð−1Þl. This allows us
to decompose δgμν as

δgμνðt; r; θ;ϕÞ ¼ δgoddμν ðt; r; θ;ϕÞ þ δgevenμν ðt; r; θ;ϕÞ; ð16Þ

where

δgoddμν ¼

0

BBB@

0 0 hlm0 ðt; rÞSlmθ ðθ;ϕÞ hlm0 ðt; rÞSlmϕ ðθ;ϕÞ

' 0 hlm1 ðt; rÞSlmθ ðθ;ϕÞ hlm1 ðt; rÞSlmϕ ðθ;ϕÞ
' ' 0 0

' ' ' 0

1

CCCA;

ð17Þ

and

δgevenμν ¼

0

BBB@

Hlm
0 ðt; rÞYlmðθ;ϕÞ Hlm

1 ðt; rÞYlmðθ;ϕÞ 0 0

' Hlm
2 ðt; rÞYlmðθ;ϕÞ 0 0

' ' r2Klmðt; rÞYlmðθ;ϕÞ 0

' ' ' r2 sin2 θKlmðt; rÞYlmðθ;ϕÞ

1

CCCA; ð18Þ
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where the asterisk denotes symmetric components,
Ylmðθ;ϕÞ are the scalar spherical harmonics, while

Slmθ ðθ;ϕÞ ¼ −
1

sin θ
∂ϕYlmðθ;ϕÞ; ð19Þ

Slmϕ ðθ;ϕÞ ¼ sin θ∂θYlmðθ;ϕÞ; ð20Þ

and a sum over l and m in the usual sense (l ≥ 0 and
jmj ≤ l) is implicit. Equations (17) and (18) hold under the
Regge-Wheeler gauge [60], which can be applied in
theories with a massless graviton that support the usual
two polarizations. In certain modified theories, a graviton
can propagate with up to six polarizations, thereby leaving
no residual gauge freedom. However, for the case of dCS
gravity, GWs continue to propagate with only two polar-
izations (as measured at future null infinity) [61,62], and
thus, one retains enough gauge freedom to impose the
Regge-Wheeler gauge. Such a decomposition separates the
axial and polar perturbations with different harmonic index
l, i.e., for a given l, we have two systems of evolution
equations, one for the axial sector and one for the polar
sector. These separate sets of equations completely char-
acterize the linear response of the system.
Additional fields in the system, such as vectors and

scalars, can be decomposed into spherical harmonics of the
corresponding type. For scalar fields, we use scalar
spherical harmonics and the perturbed scalar field reads

δϑðt; r; θ;ϕÞ ¼ Rlmðr; tÞ
r

Ylmðθ;ϕÞ: ð21Þ

B. Evolution equations for perturbations
of a slowly-rotating black hole

Having established the background spacetime and
explained how the linear perturbations can be decomposed
into scalar and tensor harmonics, we can now derive the
perturbed form of the field equations in dCS gravity. The
procedure is as follows:

(i) Substitute the linear perturbations (15) into the field
equations (6) and (9) and expand to linear order in ϵ.

(ii) Expand the perturbed field equations to linear order
in the spin parameter a (slow-rotation approxima-
tion) and quadratic order in the coupling parameter α
(small-coupling approximation).

(iii) Use the orthogonality properties of the spherical
harmonics presented in Appendix A to eliminate
the angular dependence of the functions Aa ∈
fh0; h1; H0; H1; H2; K; Rg, making them functions
of t and r only. Moreover, assume a harmonic time
dependence in time, i.e.,

Aa
lmðt; rÞ ¼ e−iωtAa

lmðrÞ: ð22Þ

(iv) The previous steps yields a system of 11 equations;
10 from the metric field equation (6) and one from

the scalar field equation (9). The latter gives the
evolution equation for the scalar field perturbations,
whereas three of the metric equations reduce to the
axial-gravitational perturbation equation and the
remaining seven give an expression for the polar-
gravitational perturbation equation.

(v) This system of equations can then be expressed in
general by an equation of the form

DΨj þ VjΨj ¼ Sj½Ψk; ∂rΨk&; ð23Þ

where j ∈ fR; RW; ZMg, k ∈ ffR; RW; ZMg − jg
with fR; RW; ZMg denoting the scalar, axial, and
polar gravitational perturbations respectively, D is a
second-order radial differential operator, which in
tortoise coordinates ðr'Þ reduces to d2=dr2', and Vj
is the effective potential. The source term Sj is found
to be a linear combination of theΨk master functions
and its first radial derivatives, e.g., when j ¼ R, the
master functionΨR ¼ Rlm, and the source term SR is
a function of ΨRW and ΨZM and their first radial
derivatives.

In the next subsections, we provide the final expressions
for the perturbation equations for the scalar and gravita-
tional sectors.

1. Scalar sector

The full equation describing the scalar field perturbation
Rlm is given by

fðrÞ2∂rrRlm þ 2M
r2

fðrÞ∂rRlm þ ½ω2 − VS
effðr; a; α2Þ&Rlm

¼ αfðrÞf½gðrÞ þ amhðrÞ&ΨRW
lm þ amjðrÞ∂rΨRW

lm g
þ αafqlm½k1ðrÞΨZM

l−1;m þ k2ðrÞ∂rΨZM
l−1;m&

þ qlþ1;m½k3ðrÞΨZM
lþ1;m þ k4ðrÞ∂rΨZM

lþ1;m&g; ð24Þ

where fðrÞ ¼ 1–2M=r,

qlm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

s

; ð25Þ

and ∂r denotes radial derivatives. In Eq. (24), the functions
g, h, j, and ki (i ¼ 1;…; 4) also depend on l and the mass
of the black hole M in addition to the radial coordinate.
Their explicit forms are shown in Appendix B and in a
Mathematica notebook [63].
We also followed [48] and defined a CS modified

Regge-Wheeler function ΨRW
lm , which to leading order in

a is given by

ΨRW
lm ¼ fðrÞ

r

$
1þ 2mMa

r3ω
− α2aδΨRWðrÞ

%
hlm1 ; ð26Þ
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where hlm1 comes from Eq. (17); the quantiy δΨRWðrÞ is a
function of the radial coordinate included in the definition to
allow us to maintain a form of the left-hand side of Eq. (24)
and other perturbed field equations similar to the form held
by the Regge-Wheeler and Zerilli-Moncrief equation in GR.
Similarly, we introduced the Zerilli-Moncrief function ΨZM

lm ,
which to leading order in a is given by

ΨZM
lm ¼ ðz1=z2Þ − aðz3=z4Þ þ α2aδΨZMðrÞ; ð27Þ

where

z1 ¼ −2iHlm
1 ðr − 2MÞ þ 2Klmr2ω; ð28aÞ

z2 ¼ ð6M þ λlrÞω; ð28bÞ

z3 ¼ −4imMω½Hlm
1 ðr − 2MÞ þ iKlmr2ω&

× f48M3 − 24M2rþ λlr3ðλl þ 2r2ω2Þ
þ 2Mr2ðλ2l þ 6r2ω2Þg; ð28cÞ

z4 ¼ lðlþ 1Þr4z32; ð28dÞ

with λl ¼ ðlþ 2Þðl − 1Þ, and Hlm
1 and Klm coming from

Eq. (18). The quantity δΨZMðrÞ serves a similar purpose to
δΨRWðrÞ. The forms of both δΨRWðrÞ and δΨZMðrÞ are
provided in a separate Mathematica notebook [63].

2. Metric sector

The full equation describing the axial gravitational
perturbation λlm is given by

fðrÞ2∂rrΨRW
lm þ 2M

r2
fðrÞ∂rΨRW

lm þ ½ω2 − VA
effðr; a; α2Þ&ΨRW

lm

¼ αfðrÞf½vðrÞ þ amnðrÞ&Rlm þ ampðrÞ∂rR0
lmg

þ afqlm½p1ðrÞΨZM
l−1;m þ p2ðrÞ∂rΨZM

l−1;m&

þ qlþ1;m½p3ðrÞΨZM
lþ1;m þ p4ðrÞ∂rΨZM

lþ1;m&g; ð29Þ

where the functions v, n, p and pi (i ¼ 1;…; 4) also
depend on l and M in addition to the radial coordinate.
Their explicit forms are given in Appendix B and in a
Mathematica notebook available upon request.
Finally, the polar gravitational perturbation Zlm satisfies

the equation

fðrÞ2∂rrΨZM
lm þ 2M

r2
fðrÞ∂rΨZM

lm þ ½ω2 − VP
effðr; a; α2Þ&ΨZM

lm

¼ αafðrÞfqlmðs1ðrÞRl−1;m þ s2ðrÞ∂rRl−1;mÞ
þ qlþ1;mðs3ðrÞRlþ1;m þ s4ðrÞ∂rRlþ1;mÞg
þ afqlmðr1ðrÞΨRW

l−1;m þ r2ðrÞ∂rΨRW
l−1;mÞ

þ qlþ1;mðr3ðrÞΨRW
lþ1;m þ r4ðrÞ∂rΨRW

lþ1;mÞg; ð30Þ

where the functions si and ri (i ¼ 1;…; 4) depend on r, l
and M. Their explicit forms are shown in Appendix B and
in a Mathematica notebook [63].

3. Selection rule and propensity rule

The perturbation equations [(24), (29). and (30)] show
explicitly that l modes couple to l modes and l( 1
modes. However, as for slowly-rotating BHs in GR, these
equations possess a selection rule [64,65]. In GR and at
linear order in spin, the selection rule is that the lth axial
(polar) mode couples to the l( 1 polar (axial) mode; at
second order in spin, this simple selection rule needs to be
modified [65]. Similarly, in dCS gravity and at linear order
in spin, the same selection rule applies to the perturbation
equations. The only modification is that in dCS gravity we
have two fields with axial parity; the scalar field (encoded
in Rlm) and the Regge-Wheeler function (encoded inΨRW

lm ).
Thus, in dCS gravity, Rlm (ΨRW

lm ) couples toΨRW
lm (Rlm) and

to ΨZM
l(1;m, while ΨZM

lm couples to both Rl(1;m and ΨRW
l(1;m.

In addition to this selection rule, the perturbation
equations also suggest a propensity rule. More specifically,
we see that when l ¼ jmj, which dominates the linear
response of the system, Eq. (25) yields qlm ¼ 0, and thus
the coupling of l modes with l − 1 modes is suppressed.
This is similar in nature to the propensity rule of atomic
physics, which states that transitions involving l → lþ 1
are favored over those involving l → l − 1 [64]. Thus, we
expect that the dominant modes are coupled only to the l or
the lþ 1 modes, after imposing the selection rule.

C. Simplification of the perturbation equations

Mode coupling between perturbation of different l-
modes leads to a rich spectrum of solutions, but this paper
is concerned with the QNM frequencies, which, as it turns
out, are not affected by mode coupling to leading order in
spin. Indeed, in GR this has been known since the 1990s,
thanks to the work of Kojima and others [65–68]. Let us
then establish the same result in dCS gravity to leading
order in spin and second order in coupling parameter.
Without loss of generality, let us rewrite the perturbation
equations as

Alm þmaÃlm þ aðqlP̂l−1;m þ qlþ1P̂lþ1;mÞ ¼ 0; ð31Þ

Plm þmaP̃lm þ aðqlÂl−1;m þ qlþ1Âlþ1;mÞ ¼ 0: ð32Þ

In these equations, Alm, Ãlm, and Âl(1;m are linear
combinations of odd (axial) perturbations, which include
the Regge-Wheeler function ΨRW

lm and its derivatives, and
also the scalar field perturbation Rlm and its derivatives; we
remind the reader that the scalar field perturbations are of
odd (axial) parity as seen from Eq. (9). The prefactors of α0

and α1 have also been suppressed in the above functions for
simplicity of notation. Similarly, Plm, P̃lm, and P̂l(1;m are
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linear combinations of polar perturbations encoded in the
Zerilli-Moncrief function ΨZM

lm and its derivatives.
In GR, Kojima [66] showed using symmetry arguments

for the m ¼ 0 mode that the terms P̂l(1;m and Âl(1;m in
Eqs. (31) and (32) make no contribution to the QNMs. This
argument was later extended to other values of m in
Ref. [65] for massive vector field perturbations of the
slowly-rotating Kerr metric in GR. Following Ref. [65], we
now extend this argument to slowly rotating BHs in dCS
gravity.
Consider a simultaneous transformation,

xl;m → ∓xl;−m; yl;m → (yl;−m;

m → −m; a → −a; ð33Þ

where xlm and ylm represent the axial and polar perturba-
tion variables respectively, with indices ðl; mÞ given in
Eqs. (31) and (32) which remain invariant under such a
transformation. The boundary conditions for QNMs of
slowly rotating BHs in dCS (see Sec. IVA) are also
invariant under such transformation. Then, in the slow
rotation limit, the QNM frequencies can be expanded as

ω ¼ ω0 þmaω1 þ aω2 þOða2Þ; ð34Þ

where ω0 is the eigenfrequency of the nonrotating BH in
dCS gravity, which in our case is just a Schwarzschild BH.
The effective potential presented in Sec. III B is propor-
tional to a0 and ma, but not to a alone (see Appendix B).
Hence, ω2 ¼ 0, because the above potential would not
source such a term.1

The only terms that could source ω2, at least in principle,
are ðP̂l(1;m; Âl(1;mÞ. This is because the second terms in
Eqs. (31) and (32) are explicitly proportional to m, and
because ðÃlm; P̃lmÞ cannot be inversely proportional to m.
Whether ðP̂l(1;m; Âl(1;mÞ source ω2 depends on if they are
independent of m or not. However, since the second and
third terms in Eqs. (31) and (32) are linear in a, both the
functions ðÃlm; P̃lmÞ and ðP̂l(1;m; Âl(1;mÞ must be kept
only to Oða0Þ. Therefore, they correspond to perturbations
of a nonrotating BH, which is necessarily spherically
symmetric, implying in particular that ðP̂l(1;m; Âl(1;mÞ
are actually independent ofm. But since ω2 vanishes by the
arguments presented above, it follows that ðP̂l(1;m; Âl(1;mÞ
need not be included when computing the QNM spectrum.
Since the mode coupling terms can be neglected, our

perturbation equations reduce to

fðrÞ2∂rrRlmþ2M
r2

fðrÞ∂rRlmþ½ω2−VS
effðr;a;α2Þ&Rlm

¼ αfðrÞf½gðrÞþamhðrÞ&ΨRW
lm þamjðrÞ∂rΨRW

lm g; ð35aÞ

fðrÞ2∂rrΨRW
lm þ2M

r2
fðrÞ∂rΨRW

lm þ½ω2−VA
effðr;a;α2Þ&ΨRW

lm

¼ αfðrÞf½vðrÞþamnðrÞ&RlmþampðrÞ∂rRlmg; ð35bÞ

fðrÞ2∂rrΨZM
lm þ 2M

r2
fðrÞ∂rΨZM

lm þ ½ω2 − VP
effðr; a; α2Þ&ΨZM

lm

¼ 0; ð35cÞ

where the values of all these functions are the same as
before and are given in Appendix B.
Equations (35) can be recast in a Schrödinger-like form

by introducing tortoise coordinates r',

r' ¼ rþ 2M log
$

r
2M

− 1

%
: ð36Þ

However, when solving these equations, we will stick to the
form given above to avoid confusion. Note in passing
that the tortoise coordinate is typically used to map
Schwarzschild coordinates to a horizon-penetrating (typi-
cally ingoing Eddington-Finkelstein) coordinate system,
which is well adapted to imposing boundary conditions at
the BH horizon. The standard transformation known in GR,
however, may need to be modified by terms of Oðα2a2Þ to
transform a dCS BH to horizon-penetrating coordinates.
Since we are here working to a lower order in perturbation
theory, we do not need to worry about such details.

D. dCS coupling dependence of ω through
a Fermi estimate

As seen from the previous section, for the calculation of
the QNM frequencies, the perturbed equations take the
form of Eqs. (35). In this subsection, we discuss the
dependence of the QNM frequency ω on the dCS coupling
parameter α.
From Eq. (35c), we see that the polar gravitational sector

satisfies a homogeneous equation that lacks a direct
coupling to the scalar field, although the effective potential
VP
eff is dependent on the CS coupling parameter α. Thus, the

QNM frequencies for the polar sector are proportional to
second order in the CS coupling parameter. On the other
hand, Eqs. (35a) and (35b) have a nonvanishing linear-in-α
source term in addition to the effective potential having
quadratic dependence on the CS coupling parameter.
What does this imply on the dCS corrections to the QNM

frequencies ω? We can answer this question with a Fermi
estimate in which we replace any radial derivative by a
characteristic radius ∂r → 1=R and evaluate the equation at
this characteristic radius. Doing this in the perturbation
equations (35a) and (35) gives

1Another (more physical) way to see this is by considering the
a → −a transformation of Eq. (33). Such a transformation would
physically correspond to inverting the direction of the BH’s spin
angular momentum. However, the QNM frequencies should not
change due to the spin orientation. Hence, in general, ω2 ¼ 0
making Eq. (34) invariant under the symmetry in Eq. (33).
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½GðRÞ þ ω2 − ðVS
1ðRÞ þ α2VS

2ðRÞÞ&Rlm ¼ αHðRÞΨlm
RW;

ð37aÞ

½GðRÞ þ ω2 − ðVA
1 ðRÞ þ α2VA

2 ðRÞÞ&Ψlm
RW ¼ αIðRÞRlm;

ð37bÞ

where the effective potentials have been written as a linear
combination of terms at zeroth and second order in the CS
coupling parameter and GðRÞ; HðRÞ; IðRÞ, are polyno-
mials in the radial coordinate r evaluated at r ¼ R, namely

GðRÞ ¼ fðRÞ2

r2
þ 2MfðRÞ

R3
; ð38Þ

HðRÞ ¼ fðRÞ
"
gðRÞ þ am

$
hðRÞ þ jðRÞ

R

%#
; ð39Þ

IðRÞ ¼ fðRÞ
"
vðRÞ þ am

$
nðRÞ þ pðRÞ

R

%#
: ð40Þ

Equation (37a) can be solved for Rlm and then inserted into
Eq. (37b), which leads to an equation for ω only, sinceΨRW

lm
cancels and the ω dependence in HðRÞ and IðRÞ cancels
when they are multiplied together. Doing so, one finds

½Gþ ω2 − ðVS
1 þ α2VS

2Þ&½Gþ ω2 − ðVA
1 þ α2VA

2 Þ&
¼ α2IH; ð41Þ

where we have suppressed the argument of the functions.
This is a quadratic equation for ω2, which we can solve
perturbatively in α ≪ 1 to find

ω ¼ ωGR þ ζδωþOðα3Þ; ð42Þ

where, recall, ζ ¼ α2=ðM4κÞ and

ωGR ¼ ðVA
eff − GÞ1=2; ð43Þ

δω ¼ ( IH þ ðVA
1 − VS

1ÞVA
2

2ðVA
1 − GÞ1=2ðVA

1 − VS
1Þ
: ð44Þ

One may worry that the above Fermi estimate for δω may
diverge because the denominator of Eq. (44) may vanish,
but this does not occur anywhere outside the horizon. If we
evaluate these expressions at R ¼ 3M, which is close to
where the effective potentials VA

eff and VS
eff are extremized,

we find for the l ¼ 2 mode at a ¼ 0 that MωGR ¼ 1=3
(≈0.333) and Mδω ¼ −2=81 (≈ − 0.025), both of which
are close to the real part of the correct numerical answers
we will find later. The precise numerical factors, however,
do not matter here. What matters is that the above Fermi
estimate shows explicitly that the dCS corrections to the
QNM frequencies will be of Oðα2Þ. These corrections for

the axial gravitational sector come from the second-order
correction to the effective potential as well as the linear-
order coupling with scalar field.
Equation (42) also suggests that the QNM frequencies

are even in the CS coupling. We have verified this with our
numerical calculations shown in Sec. V by taking α → −α
and found no change in the QNM frequency thereby
supporting the results from the Fermi estimate.

IV. CALCULATION OF THE
QUASINORMAL MODES

The late-time GW signal from a perturbed BH is
generally dominated by a sum of exponentially damped
sinusoids known as the QNMs. These correspond to the
characteristic vibrational modes of the spacetime [69] and
are complex valued. The real part represents the temporal
oscillations whereas the imaginary part represents an
exponentially decaying temporal part of the oscillations.
Using the slowly-rotating approximation for finding QNMs
of BHs allows us to use well-established numerical
methods for their calculation. In this section, we show
the boundary conditions and the numerical integration
technique that will be used to calculate the QNMs.

A. Boundary conditions

The QNMs are solutions of the inhomogeneous wave
equations [Eqs. (35a)–(35c)] with appropriate boundary
conditions. For the case of slowly-rotating BHs, we have
two boundaries; one at spatial infinity and the other at the
horizon rH. The horizon of the BH described by the metric
of Eq. (10) coincides with the Schwarzschild horizon (they
are both located at r ¼ 2M in Schwarzschild-like coor-
dinates) at leading order in spin.
A QNM represents waves which are of purely ingoing at

the horizon rH and purely outgoing at spatial infinity, which
are characterized by complex frequency ω with ReðωÞ ≥ 0.
These boundary conditions are

Ψj ∝
&
e−iωHr' ; r → rH;

eiωr' ; r → ∞;
ð45Þ

where recall that Ψj ¼ fRlm;ΨRW
lm ;ΨZM

lm g, r' is the tortoise
coordinate and ωH ¼ ω −mΩH, withΩH, given by Eq. (13),
is the horizon angular frequency for the BH under
consideration.

B. Evaluation of the QNMs: Direct integration

To compute the QNMs, we use the direct integration
method. In this method, we integrate the equations twice,
once from finite distance outside the horizon towards
spatial infinity, and once from a finite distance far from
the horizon but inwards towards the event horizon. The
integrations are started using the boundary conditions
presented above, with a given choice of ω. We then
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compare the two numerical solutions at a matching point rm
that is somewhere between the horizon and spatial infinity,
to check whether the master functions and their radial
derivatives are continuous at rm. Typically, this is not the
case, so we then iterate this process over various values ofω
until one finds a choice of the complex frequency that leads
to continuous and differentiable solutions. In practice, this
can be done by finding the value of ω for which the
Wronskian W of the two solutions vanishes at rm [51].
However, as simple as this approach appears, it is

numerically difficult to implement due to inherent numeri-
cal instabilities. If one chooses the wrong value for ω then
the trial integrations will tend to diverge as one approaches
spatial infinity (for the outward solution) or as one
approaches the BH horizon (for the inward solution).
Also, since numerically we cannot start the integrations
exactly at the horizon or at spatial infinity, the boundary
conditions are not sufficiently accurate in general.
To improve numerical stability, one can improve the

boundary conditions by finding analytic asymptotic sol-
utions to the perturbation equations about spatial infinity
and the horizon. More specifically, we can write [70],

Ψj ∝
& e−iωHr'

P∞
k¼0ðγkÞjðr − rHÞk; r → rH;

eiωr'
P∞

k¼0ðηkÞjr−k; r → ∞;
ð46Þ

where the coefficients γk and ηk can be determined order by
order in a series expansion of the perturbation equations
around spatial infinity or the horizon. These coefficients
can all be written entirely in terms of ðγ0Þj and ðη0Þj, but
they are long and not illuminating, so we will not present
them in the paper, and instead they will be made available
through aMathematica notebook upon request. We will use
these boundary conditions for our numerical integrations.
We will here compute the QNMs adapting the procedure

in [71] to our case. We begin by constructing two square
matrices Wo and We, which is four dimensional for the
axial case due to the coupling between ΨRW

lm and Rlm, and
two dimensional for the polar case due to the lack of
coupling. The columns ofWo;e are independent solutions of
the perturbation equations, so

Wo ¼

0

BBBBBB@

HΨ
RWð1Þ
lm IΨ

RWð1Þ
lm HΨ

RWð2Þ
lm IΨ

RWð2Þ
lm

∂rHΨ
RWð1Þ
lm ∂rIΨ

RWð1Þ
lm ∂rHΨ

RWð2Þ
lm ∂rIΨ

RWð2Þ
lm

HR
ð1Þ
lm IR

ð1Þ
lm HR

ð2Þ
lm IR

ð2Þ
lm

∂rHR
ð1Þ
lm ∂rIR

ð1Þ
lm ∂rHR

ð2Þ
lm ∂rIR

ð2Þ
lm

1

CCCCCCA
;

ð47Þ

We ¼
$

HΨZM
lm IΨZM

lm

∂rHΨZM
lm ∂rIΨZM

lm

%
; ð48Þ

where the presubscript to the perturbation function H;IΨ
denote whether the solutions is obtained by integration
from the horizon to rm, or from spatial infinity to rm, while
the superscriptsΨð1Þ;ð2Þ denote two solutions evaluated with
different initial conditions at the boundaries.
In principle, any set of independent solutions will

do for the calculation of these Wo;e matrices, but in this
paper we make the following choices. For the even sector,
we choose the solution to be that obtained by integrating
the perturbation equations with the boundary conditions in
Eq. (46) and ½ðγ0ÞZM; ðη0ÞZM& ¼ ð1; 1Þ. For the odd sector,
we choose the two solutions to be those obtained by
integrating with the boundary conditions in Eq. (46) and
with ½ðγ0ÞRW; ðη0ÞRW; ðγ0ÞR; ðη0ÞR& ¼ ð1; 1; 0; 0Þ or with
½ðγ0ÞRW;ðη0ÞRW;ðγ0ÞR;ðη0ÞR&¼ð0;0;1;1Þ. In general, these
solutions are linearly independent, unless ω is the correct
QNM frequency, in which case

detðWÞjr¼rm ¼ 0: ð49Þ

We can use a root-finding algorithm to find the ω such that
the Wronskian vanishes at the matching point.
Using this method, we have calculated the QNMs of a

slowly-rotating BH in dCS gravity. In practice, all numeri-
cal integrations that start at the horizon are initiated at
rinitial;rþ ¼ ð2þ 10−4ÞM, while those that start at spatial
infinity are initiated at rinitial;i0 ¼ 60M, with the matching
always performed at rm ¼ 20M. We have checked the
numerical stability of the QNM frequencies against
changes in the values of rinitial;rþ , rinitial;i0 and rm. All
numerical integrations are done with the NDSolve package
of Mathematica, with accuracy and precision set to ten
digits.

V. NUMERICAL RESULTS

In this section, we present our numerical results for the
QNM frequencies. For clarity, we have divided this section
into three parts. First, we take the GR limit (i.e., α=M2 ¼ 0)
of our equation and discuss the associated QNMs of a
slowly-rotating Kerr BH with the metric expanded to
leading-order in spin. We compare these results with the
exact Kerr QNMs obtained using Leaver’s continued-
fraction method [72]. This preliminary step will give us
an estimate of where the slow-rotation approximation
breaks down and how the numerical errors due to this
approximation compare against the modifications to the
QNM frequencies due to the CS coupling. Second, we
consider a nonzero CS coupling α=M2 and study in detail
how the QNMs behave as functions of this coupling and of
the BH spin. Third, we construct fitting formulas for the
real and imaginary parts of the QNMs, valid within the
errors associated to the slow-rotation approximation.
In the main body of this paper, we will show numerical

results for the fundamental n ¼ 0, l ¼ m ¼ 2 frequencies
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since these are dominant for tensorial perturbations. We
leave our results for the QNM frequencies for the funda-
mental mode with l ¼ 2, l ¼ 3 and l ¼ 4 modes, and all
mmodes to Appendix C. To aid in the presentation of these
numerical results, we will work with dimensionless param-
eters by rescaling a, α and ω as

a → a=M; α → α=M2; and ω → ωM: ð50Þ

In our numerical calculations, we work in code units, in
which M ¼ 1, thus making the code quantities a, α and ω
dimensionless.

A. Slow rotation: GR

The calculation of the QNMs of a slow-rotating Kerr BH
in GR were presented in [48], but to our knowledge a
comparison between these results and those obtained using
the exact Kerr metric has not appeared in the literature. (See
[73,74] for complementary studies.) This comparison is
important for our purposes for two reasons. First, it will tell
us up to what values of a we can trust our slow-rotation
approximation. Second, it will tell us whether the errors due
to this approximation are degenerate with modifications to
the GR QNMs introduced by the CS coupling. We refer the
interested reader to [75] for a similar analysis, but in a
different context.
In the GR limit (α=M2 ¼ 0) the perturbation equations

[cf. Eqs. (24), (29), and (30)] decouple and each of them
reduces to equations of the form

fðrÞ2y00lmþð2=r2ÞfðrÞy0lmþ½ω2þveffðr;aÞ&ylm¼0; ð51Þ

for the field variables and effective potential pairs
fylm; veffg ¼ fRlm; VS

effg, fΨRW
lm ; VA

effg and fΨZM
lm ; V

P
effg.

For the gravitational perturbations these equations agree
with those in [48], whereas for the scalar perturbation they
agree with the small-a limit of that in [76]. Moreover, in
this limit, the axial and the polar gravitational equation
become isospectral.
As a benchmark for our numerical code, we calculated

the gravitational and scalar QNMs of a Schwarzschild BH
by taking the nonrotating limit (a ¼ 0). We find excellent
agreement with the well-known result summarized e.g., in
[77,78]. Next, we computed the QNMs associated with
Eq. (51) and compared them against the QNMs obtained
using the exact Kerr metric (i.e., without performing any
small-a expansion) by means of the continuous fraction
method [72] and tabulated in [77,78].

Figure 1 presents the results of this exercise, focusing on
the fundamental mode with l ¼ m ¼ 2. The top panels
show a comparison between the behavior of the real (left)
and the imaginary (right) parts of the QNM frequencies for
the slowly-rotating Kerr metric (solid) and the exact Kerr
metric (dashed) as a function of the spin parameter a for
both the scalar (green curves) and the gravitational modes
(blue curves). The bottom panels show the relative percent
error due to the slow rotation approximation, which we
define via

FIG. 1. Comparison between the fundamental dominant l ¼ m ¼ 2 gravitational and scalar QNMs calculated using the exact Kerr
metric and its expansion to leading-order in a. The dependence of the real (imaginary) part of the frequency on the spin a is shown in the
left (right) top panel. The left (right) bottom panel shows the relative error defined by Eq. (52). The colors distinguish the scalar (green)
and gravitational (blue) QNMs. Unsurprisingly, we see that the relative percent error δω increases with spin a=M, doing so faster for the
imaginary part of the frequency, although the absolute error is Oða2Þ. The legends shown in the left panels apply to the corresponding
right panels as well.
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δðImωÞ ¼ j1 − ðImωSRÞ=ðImωKÞj × 100; ð52aÞ

δðReωÞ ¼ j1 − ðReωSRÞ=ðReωKÞj × 100; ð52bÞ

where, ωK are the QNM frequencies calculated from the
exact Kerr metric [72,77], whereas ωSR are the QNM
frequencies we calculated for the Kerr metric expanded to
linear order in a=M.

We can extract several conclusions from this figure.
First, the relative error introduced by the slow-rotation
approximation is larger for the imaginary part of the
frequency than for the real part. For instance, when
a=M ¼ 0.1, the relative error is approximately eight times
larger on the imaginary part than on the real part for both
gravitational and scalar-led modes. In addition, we also find
that the absolute error jωSR − ωKj is of Oða2Þ for both the
real and imaginary parts of the QNM frequencies. This
naturally follows from the fact that the error should indeed
be of Oða2Þ, since we have evaluated ω to leading order in
the spin parameter. The results show that the approximation
introduces errors smaller than 10%when a=M ≲ 0.2 for the
real part and a=M ≲ 0.04 for the imaginary part. Here, we
have not included the errors due to our numerical integra-
tion scheme since the total error is dominated by the error
introduced in the slow rotation approximation.

B. Slow rotation: dCS

In this subsection, we show how the QNM frequencies
discussed in the previous subsection are modified by the
presence of a nonzero CS coupling α=M2 for the dominant
n ¼ 0, l ¼ m ¼ 2 mode. Tabulated values for the QNM
frequencies for the fundamental mode with l ¼ 2;l ¼ 3,
and l ¼ 4 and all m can be found in Appendix C.
As we discussed in Sec. III B 3, our calculations are valid

to linear order in spin a=M, but second order in the CS
coupling α=M2. Recall that the polar QNM frequencies
[governed by Eq. (35c)] are independent of the coupling
with the scalar field or with the axial parity sector due to the
dependence of the effective potential on the CS coupling2

[79]. We therefore focus on the coupled system of
Eqs. (35b) and (35a) and the Eq. (35c) separately and
use the numerical procedure described in Sec. IV to
calculate the QNMs in different parity sectors.

1. Axial gravitational and scalar sector

Our results for the fundamental modes are summarized
in Figs. 2 and 3. In Fig. 2 we show the dependence
of the real and imaginary values of gravitational- and

FIG. 2. Real (Imaginary) parts of the QNM frequencies for the n ¼ 0, l ¼ m ¼ 2 mode as a function of the spin parameter for slowly
rotating BHs in dCS gravity with different CS couplings α=M2 are shown in the top (bottom) panels for the axial gravitation-led (left)
and scalar-led (right) modes. Additionally, we have also shown the exact Kerr QNMs for BHs in GR for quick comparison calculated in
[77]. The individual QNM frequencies increase for the gravitational-led modes with spin parameter a=M as well as with the CS coupling
α=M2, whereas the scalar-led modes increase with spin parameter, but decrease with the CS coupling. The imaginary part of Mωaxial

g

decreases slightly in magnitude with increasing α=M2 for spins a=M ≲ 0.06, while it increases slightly in magnitude for spins
a=M ≳ 0.06. Since our slow-rotation approximation is valid up to spin values of approximately at most 0.04, overall these modes
become less damped in dCS gravity. The legends apply to all panels.

2We thank Pablo A. Cano and Thomas Hertog for bringing this
to our attention.
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scalar-led QNMs as function of spin parameter a=M for
α=M2 ¼ f0; 0.05; 0.10g. In Fig. 3 we complement this
analysis, by showing the dependence of the QNMs on
α=M2 for a=M ¼ f0; 0.05; 0.10; 0.15g. These two figures
can be thought of as showing the slow-rotation corrections
to the nonrotating BH QNM frequencies in dCS and
the dCS modifications to the GR QNM frequencies
respectively.
As seen from Figs. 2 and 3, the behaviors of the real and

the imaginary part for gravitational-led and the scalar-led
sectors are distinct. Thus, we present individual analysis
for each.

(i) Real gravitational-led QNM (top left panel of
Figs. 2 and 3). The Reðωaxial

g Þ increases with BH
spin just as in GR (see Sec. VA) for constant CS
coupling, and it increases as the CS coupling
increases for constant spin.

(ii) Imaginary gravitational-led QNM (bottom left panel
of Figs. 2 and 3). The Imðωaxial

g Þ decreases with BH
spin for a constant CS coupling just like in GR,
whereas it remains constant with increasing CS
coupling for a constant spin.

(iii) Real scalar-led QNM (top right panel of Figs. 2
and 3). The ReðωsÞ initially shows a sinusoidal
behavior as we increase spin and hold the CS
coupling constant up to a ¼ 0.05, and then it
increases with BH spin. On the other hand, the

ReðωsÞ decreases monotonically with the CS cou-
pling while keeping the BH spin constant.

(iv) Imaginary scalar-led QNM (bottom right panel of
Figs. 2 and 3). The ImðωsÞ initially increases with BH
spin for constant CS coupling, reaches a minimum
and then decreases again. On the other hand, the
ImðωsÞ remains essentially constant as we change the
CS coupling for constant spin.

Figures 2 and 3 shows that the real part of QNM
frequencies has a similar functional behavior with spin,
for different values of the CS coupling. These frequencies
depend quadratically on the CS coupling, as required by the
order reduction scheme employed in this paper (see e.g.,
Ref. [46]), which is also displayed in the figures.
The modes presented above show a nonmonotonic

behavior with respect to the spin parameter in contrast
with the equations being linear in this parameter. This is
mainly because the equations (35) are nonlinear in the
QNM frequency ω (this can be seen explicitly from the
occurrences of ω in the various functions these equations).
Since we are not linearizing ω with respect to the spin
parameter to avoid loss of information from the equations,
we obtain a nonlinear behavior for the QNM frequencies of
the gravitational-led modes and, more evidently, for the
scalar-led modes.
These results have interesting implications for GW

observations. GW detectors will be sensitive directly only

FIG. 3. Real (Imaginary) parts of the QNM frequencies as a function of the CS coupling for slowly rotating BH in dCS gravity for
different values of the spin parameter a are shown in the top (bottom) panels for the gravitational-led (left) and scalar-led (right) modes.
We see that increasing the spin a=M shifts the curves upward in all panels. In addition, we see that the real part ofMωaxial

g increases as we
increase the CS coupling, whereas it decreases for the real part ofMωs. This is behavior happens for all constant-spin curves. For higher
spins, we see that the changes to the decay rates are negligible as the CS coupling is increased for both sectors. This behavior may be a
consequence of the slow rotation approximation we use. Finally, for a fixed value of spin, the curves exhibit a quadratic order
dependence on the CS coupling supporting our estimate in Sec. III D. The legends apply to all panels.
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to the gravitational wave modes, not the scalar modes.
Focusing on the real part of ωaxial

g , we then see that there is a
degeneracy through a positive correlation between α and a;
increasing a while keeping α constant has the same effect
as increasing α while keeping a constant. However, this
correlation breaks when considering the imaginary part of
ωaxial
g ; increasing a leads to longer lived modes (smaller

imaginary frequencies) for constant α, while increasing α
does not change much the lifetime for constant a. This then
suggests that, in principle it may be possible to separate the
effects of spin and CS coupling parameter given a ringdown
observation that is loud enough.

2. Polar gravitational sector

The results for the fundamental modes for the polar
gravitational sector is summarized in Fig. 4. We show the
dependence of the real and imaginary values of polar
gravitational QNMs as a function of spin parameter
a=M for α=M2 ¼ f0; 0.05; 0.10g. Tabulated values for
the QNM frequencies for the fundamental mode with
l ¼ 2 and l ¼ 3 and l ¼ 4 for all jmj ≤ l can be found
in Appendix C.
As seen from Fig. 4, the behavior of the real and the

imaginary part for polar gravitational sector is distinct.
Therefore, we present individual analysis for each.

(i) Real gravitational-led QNM (left panel of Fig. 4).
The Reðωpolar

g Þ increases with BH spin just as in GR
(see Sec. VA) for constant CS coupling, while it
remains almost constant as the CS coupling in-
creases for constant spin.

(ii) Imaginary gravitational-led QNM (right panel of
Fig. 4). The Imðωpolar

g Þ decreases with BH spin for a
constant CS coupling just like in GR, whereas it
remains almost constant with increase in CS cou-
pling for a constant spin.

The modes decay for all values of spin parameter and CS
coupling within the limits of our approximation, giving

strong evidence that slowly-rotating BHs in dCS gravity are
linearly stable against gravito-scalar perturbations, extend-
ing the results of [44,45] to small spins.

3. Regime of validity of numerical results
and implications

In interpreting the figures, especially Fig. 2, one must be
careful to take into account the approximate nature of our
results. The numerical calculations we have performed are
only valid in the slow-rotation approximation (to leading
order in the BH spin and second order in the CS coupling).
This is why we included a discussion in Sec. VA, which
quantify approximately the error in the slow-rotation
approximation. When the spin is large enough that this
error becomes comparable to the dCS correction, then our
numerical results should not be trusted any longer. This
occurs roughly at a=M ≳ 0.2 for Reðωg;sÞ, a=M ≳ 0.05 for
ImðωgÞ and a=M ≳ 0.07 for ImðωsÞ, for both axial or polar
modes due to their isospectrality, where we have a
maximum relative error of around 10% due to the slow
rotation approximation as shown in Fig. 1. Therefore, to be
conservative, henceforth we restrict our attention to the
regime a=M ≤ 0.0375, where the errors introduced by the
slow-rotation approximation are very small and the dCS
corrections we have calculated are meaningful.
Our results allow us to estimate the magnitude of the dCS

deviations with respect to the GR QNMs. As an example,
let us saturate the best constraint to date on the CS coupling
parameter, α1=2 ≤ 8.5 km (at 90% confidence), obtained in
[41], and consider the smallest remnant BH mass observed
so far (M ≈ 18 M⊙), the product of the event GW170608
[80]. Combining this value of M with the maximum value
of α allowed from [41], we find α=M2 ≈ 0.1. We can now
use the data presented in Tables IVand V (see also Fig. 2) to
find that the maximum deviations from the GR QNMs is
about 2% (2%) for the oscillation frequency and about 9%
(6%) for the decay rate for the fundamental dominant

FIG. 4. Real (left panel) and imaginary parts (right panel) of the QNM frequencies for the n ¼ 0, l ¼ m ¼ 2 polar gravitational-led
mode as functions of the spin parameter for slowly rotating BHs in dCS gravity with different CS couplings α=M2.We have also shown the
exact Kerr QNMs for BHs in GR for comparison taken from [77]. The individual QNM frequencies increase for the polar gravitational-led
modeswith spin parametera=M, but decrease slightlywith theCS couplingα=M2. The imaginary part is also almost constant inmagnitude
with increasing α, suggesting that damping of modes is almost independent of the CS coupling. The legends apply to all panels.
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l ¼ m ¼ 2 axial gravitational-led (scalar-led) modes and a
BH with spin a=M ¼ 0.0375 (i.e., at the upper limit of our
slow-rotation approximation).
Let us reiterate that a GW detector responds only to

gravitational degrees of freedom that propagate from the
source to the detector (taken to be at spatial infinity), which
in dCS gravity was shown to consist of the standard “plus”
and “cross” transverse-traceless polarization modes, just as
in GR [62]. This means that, in practice only, deviations to
the gravitational-led modes can be used to test dCS gravity,
since these are the modes that affect the detector. To
constrain the modest deviations predicted here one would
require a very high signal-to-noise ratio event, in addition to
detection and characterization of at least two ringdown
modes (to break degeneracies between mass, spin and dCS
coupling). One should bear in mind however, that the small
deviations found here may be a consequence of the small-
spin approximation. For BHs in dCS gravity, the larger the
spin, the larger the deformations away from the Kerr metric
become, which in turn may reflect on larger deviations in
the QNM frequencies. This implies that tests of dCS gravity
through BH spectroscopy would benefit from an extension
of our work to larger spin values.

C. Fitting formulas for the QNMs

We have calculated a large catalog of QNM frequencies
from which we can construct ready-to-use fitting formulas
for the fundamental mode with l ¼ m ¼ 2, as well as other
multipoles. This catalog allows for the fast evaluation of
QNM frequencies without having to redo the numerical
calculations, which are computationally nontrivial, requiring
approximately 20 hours of CPU time per curve in the figures
above.We first focus our attention on the axial gravitational-
led and scalar-led modes. For a given value of α, and a given
value of n, l and m, let us use the fitting functions

MωgðM; aÞ ¼ ag þ bgð1 − a=MÞcg ; ð53aÞ

MωsðM; aÞ ¼ as þ bsð1 − a=MÞcs ; ð53bÞ

where ðag; bg; cgÞ and ðas; bs; csÞ are fitting coefficients
for the axial gravitational-led and the scalar-led sectors of
the QNMs, respectively. Table II presents the numerical
values of these coefficients for the fundamental dominant
n ¼ 0, l ¼ 2, m ¼ 2 mode, and selected values of the CS
coupling α=M2.
The fitting coefficients show a quadratic dependence on

α, in agreement with the arguments presented in Sec. III D.
Thus, we can fit ðag; bg; cgÞ and ðas; bs; csÞ as functions of
ζ ¼ α2=ðM4κÞ, recasting the fitting functions in Eq. (53) to
their final form, given by

Mωaxial
g ðM; a; αÞ ¼ f1 þ f2κζ þ ðf3 þ f4κζÞ

× ð1 − a=MÞf5þf6κζ; ð54aÞ

MωsðM; a; αÞ ¼ g1 þ g2κζ þ ðg3 þ g4κζÞ
× ð1 − a=MÞg5þg6κζ; ð54bÞ

These fitting coefficients vary for different values of n, l,
andm. For the fundamental dominant mode. i.e., n ¼ 0 and
l ¼ m ¼ 2, the fitting coefficients are presented in
Table III. These functional forms are only chosen for
simplicity, and to stay in line with the form for rotating
BHs in GR given in [27].
The average (maximum) relative error of these fit to our

data is 0.4% (0.6%) and 0.7% (0.9%) for the real and
imaginary parts of the axial gravitational-led modes respec-
tively, and 0.4% (0.6%) and 1.6% (1.86%) for the ReðωsÞ
and ImðωsÞ respectively in the regime a=M ≤ 0.0375 and
ζ ≤ 0.01=ðκM4Þ. We can fit the QNM frequencies of other
l ¼ 2multipoles and other higher multipoles with the same
functional form as that presented above. The numerical
values of these fitting functions and their average errors are
tabulated in Appendix C.
Let us now focus on the polar modes. The functional

forms for the fitting function describing the polar gravita-
tional QNMs can be obtained using a similar treatment. We
will choose a functional form similar to that in Eq. (54a) but
with f2 ¼ 0 ¼ f4. The fitting equation for the l ¼ m ¼ 2
will then be

MReðωpolar
g ðM;a;αÞÞ

¼ 0.907205−0.53423ð1−a=MÞ0.483296−5.57144κζ; ð55aÞ

MImðωpolar
g ðM;a;αÞÞ

¼0.511681−0.601668ð1−a=MÞ0.382411−2.17102κζ; ð55bÞ

In the limit a → 0, these fitting functions also recover the
polar QNM frequencies for nonrotating BH in dCS [43,44]
with a 0.1% error in both the real and imaginary parts. The
average (maximum) relative error of these fits to our data is
0.12%ð0.28%Þ and 0.67%ð1.15%Þ for the real and imagi-
nary parts respectively.

TABLE II. Fitting coefficients for Eqs. (53a) (top) and (53b)
(bottom) with fixed CS coupling parameter, to model both the
real (superscript r) and imaginary (superscript i) QNM frequen-
cies describing the gravitational (top) and scalar (bottom) sectors.

α=M2 arg brg crg aig big cig
0.00 0.7081 −0.3350 0.5502 0.5854 −0.6756 0.3964
0.05 0.8836 −0.5084 0.3787 0.5132 −0.6023 0.4169
0.10 0.8814 −0.4990 0.4536 0.5042 −0.5897 0.3399

α=M2 ars brs crs ais bis cis
0.00 0.0309 0.4566 0.8835 0.5062 −0.6053 0.0140
0.05 0.0314 0.4534 0.8836 0.5033 −0.6024 0.0240
0.10 0.0334 0.4422 0.9184 0.4528 −0.5523 0.0684
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In Fig. 5 we show the behavior of the real and imaginary
parts of the QNM frequencies as a function of the
dimensionless spin a=M and the CS coupling constant
α=M2 in the form of a heat map. This figure clear shows the
positive correlation on the dependency of the axial gravi-
tational-led mode with respect to changes in spin and CS
coupling, as discussed in Sec. V. We also see how the
imaginary part for the axial gravitational sector is almost
independent of the strength of the CS coupling. Altogether,
this figure complements our conclusions from Sec. V.
In addition, in Fig. 6 we present a second heat map that

shows the fractional difference between the dCS QNM
frequencies relative to their GR values, as function of both

a=M and α=M2. To do so, we used the fitting formulas (54)
and (55) to calculate

δðReωÞ ¼ 1 − ðReωÞ=ðReωGRÞ; ð56aÞ

δðImωÞ ¼ 1 − ðImωÞ=ðImωGRÞ; ð56bÞ

This complements the results shown in previous section
and include information about how strong the deviation
gets as the strength of the CS coupling is increased. We see
in particular that the imaginary part of the axial gravita-
tional-led mode is the most sensitive, with a maximum
percent change of about 6% relative to its GR value.

(a) (b) (c)

(d) (e) (f)

FIG. 5. Values of the QNM frequencies as functions of dimensionless spin (a=M) and CS coupling (α=M2) relative to their GR values
as calculated with Eq. (56). Top row: from the left-most to right-most panel we show the values of the real part of the axial gravitational-
led, the scalar-led and polar gravitational-led modes. Bottom row: the same, but for the imaginary part.

TABLE III. Fitting coefficients for Eqs. (54a) (top) and (54b) (bottom) for the n ¼ 0; l ¼ 2; m ¼ 2 mode, which
allow us to approximate both the real and the imaginary parts of the QNM frequencies as a function of both the spin
and the CS coupling.

f1 f2 f3 f4 f5 f6 % error

ReðωgÞ 0.7814 9.4099 −0.4092 −8.2154 0.4547 3.5368 0.4
ImðωgÞ 0.5454 −1.4771 −0.6360 2.0641 0.3950 −1.2499 0.7

g1 g2 g3 g4 g5 g6 % error

ReðωsÞ 0.0326 −1.3089 0.4528 −0.1552 0.8750 5.1813 0.4
ImðωsÞ 0.4943 −0.4121 −0.5929 0.2087 0.0348 −1.4985 0.7
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VI. DISCUSSION

We investigated the QNMs of slowly-rotating BHs in
dCS gravity. We began by finding the perturbation equa-
tions that describe the evolution of scalar and tensorial
perturbations. These triply-coupled set of ODEs generalize
the slowly rotating versions of the Regge-Wheeler and the
Zerilli-Moncrief master equations to the case of dCS
gravity. Using symmetry arguments, we showed that not
all terms in these equations contribute to the QNM
frequencies, thus simplifying our set of equations into
two sets; two coupled equations for the axial and the scalar
sectors, and an homogeneous equation describing the polar
sector. The latter was found to be independent of the
coupling with the scalar field but included a CS modifi-
cation to the effective potential thereby modifying the
QNM frequencies.
We then solved these equations to calculate numerically

the QNM frequencies. We found that the dCS corrections to
the QNM frequencies scale with the square of the CS
coupling. This was verified by means of a Fermi estimate as
well as numerically. We also found that, in general, slowly-
rotating BHs in dCS gravity have a decay time that is

mostly independent of the CS coupling, so these BHs return
to their stationary configuration on the same time-scale as
in GR, but oscillating faster. Indeed, their (real) frequency
of oscillation increases with the CS coupling at fixed spin-
value for the axial gravitational-led modes, whereas it
decreases for scalar-led modes while remaining effectively
remaining almost constant (slightly decreasing) for polar
gravitation-led modes. Finally, we constructed fitting
functions for the real and imaginary parts of the gravita-
tional and scalar QNM frequencies as a function of the BH
mass, spin and CS coupling for the fundamental (n ¼ 0)
mode and all l ≤ 4 harmonics. We also found that the
modes decay for all values of spin and CS coupling, a
strong evidence that BHs described by Eq. (10) are stable
against gravito-scalar perturbations, thus extending the
results of [44,45] to include spin. We have also verified
our findings with those of [79] who calculated the scalar
QNM frequencies for a rotating BH solution in dCS gravity
for a scalar field satisfying a homogeneous wave equation
instead of Eq. (9).
What are the observational implications of our findings?

Since GW detectors are capable of measuring only gravi-
tational effects through GWs, the scalar modes of ringdown

(a) (b) (c)

(d) (e) (f)

FIG. 6. Fractional difference between the dCS QNM frequencies with respect to their GR values [calculated with Eq. (56)] as
functions of dimensionless spin (a=M) and CS coupling (α=M2) parameters. Top row: from the left-most to right-most panel we show
the fractional changes to the real part of the axial gravitational-led, the scalar-led and polar gravitational-led modes. Bottom row: the
same, but for the imaginary part. In all cases, we see that the deviations become larger as we increase both a=M and α=M2. For the range
of these two parameters considered here, the largest deviation (of about 6%) occurs for the imaginary part of axial gravitational-led mode
(bottom-left panel).
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are not detectable with current technology. As a result, let
us now focus only on the gravitational sector. Specifically
in the axial gravitational sector, we find a degeneracy
through a positive correlation between a and α for the
oscillatory frequencies; this is because the QNM frequency
increases with increasing a while keeping α constant and
vice versa. This correlation is, however, found to break
when considering the decay rates, because a change in the
CS coupling barely affects the decay rate whereas a change
in the spin parameter leads to longer-lived modes. This
result suggests that it may be possible to separate the effects
of spin and the CS coupling for a loud enough ringdown
observation.
The work presented here allows for many extensions

along different directions. First, as it should be clear from
our paper, we have here only considered perturbations to
leading order in the spin parameter. A natural extension of
our work then would be to go to higher order in spin, which
should produce more accurate results for BHs that are not
as slowly spinning. Extending this calculation to second
order, however, will be very difficult because of mode
coupling between the odd- and even-parity sectors, just as
in the GR case [65].
Another interesting extension of our work would be to

develop a continued fraction approach for the calculation of
the QNM frequencies in dCS gravity. Such a method was
introduced by Leaver in 1985, but its extension to modified
gravity theories is not obvious [44]. One could therefore
use dCS gravity as a toy problem to extend such methods,
and then compare the results from the continued fraction
method to the numerical results found in this paper.
Additionally, this method can then be used in calculating
the overtones for QNMs in dCS gravity, which is a
limitation of the direct integration method used by us.
Knowing the fundamental mode and at least one overtone,
one can in principle constrain these modified theories of
gravity using BH spectroscopy [81–83].

The results that we presented in this paper can also serve
as a way to verify numerical simulation of BH binaries that
result in slowly-rotating BH remnants, such as the head-on
collisions performed in [50]. A natural and important
extension of our work, would be to extend the validity
of our calculations to larger values of spin. Currently, the
only way to find the QNM frequencies of not-slowly-
spinning BHs in dCS is through numerical relativity
simulations of BH mergers which are computationally
expensive. Another interesting path for future research
would then be to find a modified Teukolsky equation for
dCS gravity. Such a task, however, may not be possible
given that the BHs of dCS gravity are Petrov type I and not
Petrov type D [57,84], as assumed in the work of
Teukolsky [85,86].
Another interesting calculation would be to map our

theory-specific numerical results to the theory-agnostic
QNM parametrization introduced in [73] (see also [87]).

Our numerical results could also be used to quantify the
error in theory-agnostic QNMs calculations due to the
geometrical optics approximation, as done in [88–90]. Yet
another possible avenue for future work is to apply the tools
developed here to study the oscillation spectra of rotating
neutron stars in dCS gravity [39,91]. Such an analysis
could have applications to GW asteroseismology [92,93].
Finally, these results technically allow for the construc-

tion of ringdown templates that could be used by the LIGO-
Virgo-Kagra Collaboration to place constraints on dCS
gravity. This would of course only be possible for ringdown
signals produced by slowly-rotating BH remnants, which in
turn only occurs when the inspiraling binary components
have the right spin magnitude and orientation prior to
merger. Whether the remnant is spinning or not, however,
cannot currently be determined accurately enough because
the signals detected so far do not have sufficiently high
signal-to-noise ratio [94], and thus the posteriors on the
spin are very wide [95,96]. Moreover, such ringdown tests
would require the unambiguous detection of more than
one QNM mode [82,97,98] As the signal-to-noise ratio
increases, it may be possible to carry out such a test, and in
the meantime, it would be highly desirable to extend our
results to more rapidly-rotating BH backgrounds.
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APPENDIX A: SPHERICAL HARMONICS—
ORTHOGONALITY RELATIONS

In this appendix we are providing some useful ortho-
gonality relations for scalar, vector and tensor spherical
harmonics. The scalar spherical harmonics satisfy a fun-
damental identity,

Ylm
;θθ þ cot θYlm

;θ þ 1

sin2 θ
Ylm
;ϕϕ ¼ −lðlþ 1ÞYlm: ðA1Þ

They also satisfy the orthogonality relation given by

hYlm; Yl0m0 i ¼ δll
0
δmm0

: ðA2Þ

Vector spherical harmonics hold the following orthogon-
ality relations,

hYlm
a ; Ylm

a i ¼ hSlma ; Slma i ¼ ðl − 1Þðlþ 2Þ þ 2; ðA3Þ
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where the polar and axial vector harmonics have been
defined as

Ylm
a ¼ ðYlm

;θ ; Ylm
;ϕ Þ;

Slma ¼
$
−
Ylm
;θ

sin θ
; sin θYlm

;θ

%
: ðA4Þ

Finally, the tensor spherical harmonics are given by

hZlm
ab ; Z

l0m0

ab i ¼ hSlmab ; Sl
0m0

ab i

¼ 2lðl − 1Þðlþ 1Þðlþ 2Þδll0
δmm0

: ðA5Þ

There are additional orthogonality relations which can be
found in [48]. The additional relations that we have used in
this work are

cosθYlm¼qlþ1;mYlþ1;mþql;mYl−1;m;

sinθYlm
;θ ¼qlþ1;mlYlþ1;m−ql;mðlþ1ÞYl−1;m

Al0m0 hYlm;sinθYl0m0

;θ i¼ðl−1ÞqlmAl−1;m

−ðlþ2Þqlþ1;mAlþ1;m; ðA6Þ

where qlm is defined in Eq. (25). Alm is the operator
defined to separate the angular dependence of the linearized
field equations within the slow-rotation approximation.

APPENDIX B: COEFFICENTS OF THE
PERTURBATION EQUATIONS

In this Appendix, we list the explicit forms of the
coefficients appearing in the perturbation equations pre-
sented in Sec. III B. These coefficients have prefactors of a
combination of α, a and m which have already been shown

in the expression for the perturbation equations. However,
it is worth noting that there is no direct correspondence
between these coefficients. The potentials are given by

VS
eff ¼

$
1−

2M
r

%"
lðlþ1Þ

r2
þ2M

r3

#

þ2amω

"
4M
r3

−α2
189M2þ120Mrþ70r2

112κr8

#
; ðB1Þ

VA
eff ¼

$
1−2M

r

%"
lðlþ1Þ

r2
−6M

r3
þam

ω
24Mð3r−7MÞ
lðlþ1Þr6

#

þ2amω

"
4M
r3

−α2
1

112κλllðlþ1ÞMr13ω2

X6

i¼0

Θiðr;l;ωÞMir6−i
#
;

ðB2Þ

VP
eff ¼

$
1 −

2M
r

%"
2M
r3

þ 1

3
λl

$
1

r2
þ 2λlðl2 þ lþ 1Þ

ð6M þ λlrÞ2

%#

þ 4amM
r8lðlþ 1Þðλlrþ 6MÞ4ω

"X7

i¼0

ξiðr;l;ωÞMir7−i

−
α2

448Mr5κ

X10

i¼0

υiðr;l;ωÞMir10−i
#
: ðB3Þ

where λl ¼ ðlþ 2Þðl − 1Þ and the functions ξi are the same
as those found for slowly-rotating Kerr BHs in GR [48]. We
also provide all other functions in a Mathematica notebook
that can be made available upon request. The other functions
in the perturbed field equations that contribute to the QNM
frequencies [See Eqs. (35)] are given by

gðrÞ ¼ 6iλllðlþ 1ÞM
r5ω

; ðB4aÞ

hðrÞ ¼ −
iðr4ω2ð12ð2lðlþ 1Þ − 1ÞM2 þ 15Mrþ 5r2Þ þ 144M3ð2M − rÞÞ

2Mr9ω2
; ðB4bÞ

jðrÞ ¼ 72iM2ðr − 2MÞ
r8ω2

; ðB4cÞ

and

vðrÞ ¼ −
6iMω
κr5

; ðB5aÞ

nðrÞ ¼ ið−4224M4 þ 3306M3rþ 48M2r2ðr2ω2 − 15Þ þ 5Mr3 þ 15r4Þ
4κlðlþ 1ÞMr9

; ðB5bÞ

pðrÞ ¼ 12iMð12M − 5rÞð2M − rÞ
κlðlþ 1Þr8

: ðB5cÞ
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All the other functions such as ki, pi, si and ri (i ¼ 1;…; 4)
are rather lengthy and nonilluminating and hence not pro-
vided here. Instead these can be found in a Mathematica
notebook which can be made available upon request.

APPENDIX C: QNM FREQUENCIES OF
DIFFERENT MULTIPOLES AND

FITTING COEFFICIENTS

In this Appendix we have tabulated the values of
QNM frequencies for all multipoles of l ¼ 2 and

l ¼ 3. l ¼ 4 values have been compiled into a data file
available upon request. In Tables IV–VII and Tables XII–
XIII, we have shown the values for the real and imaginary
parts of the QNM frequencies for both gravitational- and
scalar-led modes.
We then proceed to present the numerical values for the

fitting functions shown in Eqs. (54) for both the gravita-
tional and scalar QNM frequencies in Tables VIII–XI and
Tables XIV–XV. We have also calculated the average
percent error in these fits and presented these in the tables
below.

1. Axial gravitational and scalar sectors

TABLE IV. QNM frequencies for axial gravitational-led sector with n ¼ 0, l ¼ 2 for slowly rotating BHs in dCS gravity. The format
used is MðReðωÞ;−ImðωÞ). To save space, the leading zeros have been omitted.

a=M α=M2 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2

0.0 0.0 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889
0.05 0.3757, 0.0879 0.3757, 0.0879 0.3757, 0.0879 0.3757, 0.0879 0.3756, 0.0879
0.1 0.3828, 0.0846 0.3829, 0.0846 0.3829, 0.0846 0.3829, 0.0846 0.3828, 0.0846

0.01 0.0 0.3723, 0.0881 0.3729, 0.0887 0.3737, 0.0889 0.3743, 0.0887 0.3749, 0.0881
0.05 0.3744, 0.0872 0.375, 0.0877 0.3757, 0.0879 0.3763, 0.0877 0.3770, 0.0871
0.1 0.3816, 0.0839 0.3822, 0.0844 0.3829, 0.0846 0.3836, 0.0844 0.3845, 0.0839

0.02 0.0 0.3709, 0.0859 0.3723, 0.0881 0.3737, 0.0889 0.3749, 0.0881 0.3764, 0.0857
0.05 0.373, 0.085 0.3744, 0.0872 0.3757, 0.0879 0.377, 0.0871 0.3786, 0.0849
0.1 0.3806, 0.0821 0.3816, 0.0839 0.3829, 0.0846 0.3845, 0.0839 0.3865, 0.0823

0.03 0.0 0.3693, 0.0829 0.3716, 0.0871 0.3737, 0.0889 0.3756, 0.0870 0.3783, 0.0825
0.05 0.3716, 0.0822 0.3737, 0.0862 0.3829, 0.0846 0.3778, 0.0862 0.3806, 0.0819
0.1 0.3796, 0.0796 0.3811, 0.0831 0.3829, 0.0846 0.3854, 0.0832 0.3889, 0.0799

0.04 0.0 0.3678, 0.0796 0.3709, 0.0859 0.3737, 0.0889 0.3764, 0.0857 0.3805, 0.0792
0.05 0.3702, 0.0791 0.373, 0.085 0.3671, 0.0926 0.3786, 0.0849 0.3829, 0.0788
0.1 0.3786, 0.0769 0.3806, 0.0821 0.3829, 0.0846 0.3865, 0.0823 0.3915, 0.0773

TABLE V. Same as Table IV but for the scalar-led sector with n ¼ 0, l ¼ 2.

a=M α=M2 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2

0.0 0.0 0.4836, 0.0967 0.4836, 0.0967 0.4836, 0.0967 0.4836, 0.0967 0.4836, 0.0967
0.05 0.4810, 0.0967 0.4810, 0.0967 0.4810, 0.0967 0.4810, 0.0967 0.4810, 0.0967
0.1 0.4720, 0.0970 0.4720, 0.0970 0.4720, 0.0970 0.4720, 0.0970 0.4720, 0.0970

0.01 0.0 0.4817, 0.0976 0.4828, 0.0969 0.4836, 0.0967 0.4843, 0.0969 0.4846, 0.0967
0.05 0.4790, 0.0976 0.4801, 0.0970 0.4810, 0.0967 0.4816, 0.097 0.4819, 0.0976
0.1 0.470, 0.0979 0.4711, 0.0973 0.4720, 0.0970 0.4726, 0.0972 0.4729, 0.0979

0.02 0.0 0.4787, 0.1010 0.4817, 0.0976 0.4836, 0.0967 0.4846, 0.0976 0.4839, 0.1004
0.05 0.4759, 0.1010 0.4790, 0.0976 0.4810, 0.0967 0.4819, 0.0976 0.4812, 0.1004
0.1 0.4667, 0.1012 0.4701, 0.0979 0.4720, 0.0970 0.4729, 0.0979 0.4718, 0.1008

0.03 0.0 0.4719, 0.1085 0.4803, 0.0988 0.4836, 0.0967 0.4846, 0.0987 0.4782, 0.1044
0.05 0.4689, 0.1082 0.4776, 0.0988 0.4810, 0.0967 0.4819, 0.0987 0.4754, 0.1040
0.1 0.4577, 0.1082 0.4686, 0.0992 0.4720, 0.0970 0.4727, 0.0991 0.4652, 0.1038

0.04 0.0 0.4537, 0.107 0.4787, 0.1007 0.4836, 0.0967 0.4840, 0.1004 0.4692, 0.1005
0.05 0.4512, 0.107 0.4759, 0.1010 0.4810, 0.0967 0.4812, 0.1006 0.4666, 0.1002
0.1 0.4424, 0.1049 0.4667, 0.1012 0.4720, 0.0970 0.4718, 0.1008 0.4573, 0.0994
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TABLE VI. Same as Table IV but for the axial gravitational-led sector with n ¼ 0, l ¼ 3.

a=M α=M2 m ¼ −3 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

0.0 0.0 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927
0.05 0.6078, 0.0911 0.6078, 0.0911 0.6078, 0.0911 0.6078, 0.0911 0.6078, 0.0911 0.6078, 0.0911 0.6078, 0.0911
0.1 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6380, 0.1251

0.01 0.0 0.5970, 0.0911 0.5979, 0.0919 0.5987, 0.0925 0.5994, 0.0927 0.6001, 0.0925 0.6007, 0.0919 0.6013, 0.0911
0.05 0.6055, 0.0896 0.6063, 0.0904 0.6069, 0.0909 0.6078, 0.0911 0.6085, 0.0909 0.6092, 0.0904 0.6100, 0.0895
0.1 0.6347, 0.1263 0.6363, 0.1256 0.6373, 0.1251 0.6381, 0.1251 0.6387, 0.1254 0.6389, 0.1260 0.6386, 0.1267

0.02 0.0 0.5941, 0.0874 0.5961, 0.0900 0.5979, 0.0919 0.5994, 0.0927 0.6007, 0.0919 0.6019, 0.0899 0.6035, 0.0871
0.05 0.6032, 0.0859 0.6048, 0.0885 0.6063, 0.0904 0.6092, 0.0904 0.5799, 0.0955 0.6108, 0.0884 0.6128, 0.0858
0.1 0.6265, 0.1254 0.6322, 0.1267 0.6363, 0.1256 0.6381, 0.1251 0.6390, 0.1260 0.6375, 0.1269 0.6354, 0.1250

0.03 0.0 0.5912, 0.0829 0.5942, 0.0874 0.5971, 0.0911 0.5994, 0.0927 0.6013, 0.0911 0.6034, 0.0871 0.6064, 0.0825
0.05 0.6008, 0.0816 0.6032, 0.0859 0.6055, 0.0896 0.6078, 0.0911 0.6100, 0.0895 0.6128, 0.0858 0.6162, 0.0816
0.1 0.6198, 0.1209 0.6265, 0.1254 0.6347, 0.1263 0.6381, 0.1251 0.6386, 0.1267 0.6354, 0.1250 0.6348, 0.1200

0.04 0.0 0.5883, 0.0787 0.5922, 0.0844 0.5961, 0.0900 0.5994, 0.0927 0.6019, 0.0899 0.6053, 0.0841 0.6099, 0.0782
0.05 0.5984, 0.0775 0.6016, 0.0829 0.6048, 0.0885 0.6078, 0.0911 0.6108, 0.0884 0.6150, 0.0830 0.6202, 0.0777
0.1 0.6146, 0.1161 0.6218, 0.1225 0.6322, 0.1267 0.6381, 0.1251 0.6375, 0.1269 0.6347, 0.1217 0.6363, 0.1150

TABLE VII. Same as Table IV but for the scalar-led sector with n ¼ 0, l ¼ 3.

a=M α=M2 m ¼ −3 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

0.0 0.0 0.6753, 0.0965 0.6753, 0.0965 0.6753, 0.0965 0.6753, 0.0965 0.6753, 0.0965 0.6753, 0.0965 0.6753, 0.0965
0.05 0.6656, 0.0969 0.6656, 0.0969 0.6656, 0.0969 0.6656, 0.0969 0.6656, 0.0969 0.6656, 0.0969 0.6656, 0.0969
0.1 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251 0.6381, 0.1251

0.01 0.0 0.6714, 0.0974 0.6731, 0.0969 0.6744, 0.0966 0.6753, 0.0965 0.6759, 0.0966 0.6761, 0.0968 0.6758, 0.0971
0.05 0.6616, 0.0979 0.6634, 0.0973 0.6647, 0.0970 0.6656, 0.0969 0.6661, 0.0973 0.6662, 0.0973 0.6658, 0.0976
0.1 0.6347, 0.1263 0.6363, 0.1256 0.6373, 0.1251 0.6381, 0.1251 0.6387, 0.1254 0.6390, 0.1260 0.6386, 0.1267

0.02 0.0 0.6630, 0.0989 0.6693, 0.0979 0.6731, 0.0969 0.6753, 0.0965 0.6761, 0.0968 0.6750, 0.0974 0.6720, 0.0969
0.05 0.6525, 0.0994 0.6593, 0.0985 0.6634, 0.0973 0.6656, 0.0969 0.6662, 0.0973 0.6648, 0.0979 0.6614, 0.0971
0.1 0.6265, 0.1254 0.6322, 0.1267 0.6363, 0.1256 0.6381, 0.1251 0.6390, 0.1260 0.6375, 0.1269 0.6354, 0.1250

0.03 0.0 0.6515, 0.0961 0.6630, 0.0989 0.6715, 0.0973 0.6753, 0.0965 0.6758, 0.0972 0.6720, 0.0969 0.6679, 0.0919
0.05 0.6411, 0.0959 0.6526, 0.0994 0.6616, 0.0979 0.6656, 0.0969 0.6658, 0.0976 0.6614, 0.0971 0.6572, 0.0917
0.1 0.6198, 0.1209 0.6265, 0.1254 0.6347, 0.1263 0.6381, 0.1251 0.6386, 0.1267 0.6354, 0.1250 0.6348, 0.1200

0.04 0.0 0.6428, 0.0903 0.6551, 0.0976 0.6693, 0.0979 0.6753, 0.0965 0.6750, 0.0974 0.6689, 0.0939 0.6671, 0.0855
0.05 0.6326, 0.0902 0.6446, 0.0976 0.6593, 0.0985 0.6656, 0.0969 0.6648, 0.0979 0.6582, 0.0938 0.6563, 0.0852
0.1 0.6146, 0.1161 0.6218, 0.1225 0.6322, 0.1267 0.6381, 0.1251 0.6375, 0.1269 0.6347, 0.1218 0.6363, 0.1150

TABLE VIII. Same as Table III but for the axial gravitational-led sector and the n ¼ 0, l ¼ 2 mode for real (top)
and imaginary (bottom) parts.

m f1 f2 f3 f4 f5 f6 % error

2 0.7814 9.4099 −0.4092 −8.2154 0.4546 3.5368 0.4
1 0.7156 4.0846 −0.3431 −2.8854 0.2028 5.2968 0.2
0 0.6864 0.60529 −0.3137 0.60431 ≈0 ≈0 0.02
−1 0.8109 −21.339 −0.4382 22.535 −0.2552 24.736 0.3
−2 0.8669 −24.001 −0.4942 25.188 −0.4277 34.662 0.3

m f1 f2 f3 f4 f5 f6 % error

2 0.5454 −1.4771 −0.6360 2.0641 0.395 −1.2499 0.7
1 0.4953 −1.5226 −0.5854 2.1208 0.1549 −1.6087 0.5
0 0.4327 0.44203 −0.5222 0.15251 ≈0 ≈0 0.04
−1 0.4951 0.13356 −0.5851 0.46337 0.1453 −0.18332 0.6
−2 0.505 3.826 −0.5956 −3.2381 0.404 −1.4359 0.6
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TABLE IX. Same as Table III but for the scalar-led sector and the n ¼ 0, l ¼ 2mode for real (top) and imaginary
(bottom) parts.

m g1 g2 g3 g4 g5 g6 % error

2 0.0358 −1.309 0.4527 −0.15518 0.875 5.1813 0.4
1 0.4108 −8.4164 0.07448 7.0422 0.267 8.7201 0.6
0 0.755 −1.3916 −0.2705 −0.014878 ≈0 ≈0 0.1
−1 0.2332 −5.1311 0.2517 3.7652 0.5398 4.8022 0.7
−2 0.09331 32.873 0.3645 −33.706 0.6074 7.751 0.4

m g1 g2 g3 g4 g5 g6 % error

2 0.4943 −0.41208 −0.5929 0.20877 0.03482 −1.4985 1.6
1 0.4565 0.34382 −0.5519 −0.53517 −0.1934 −2.8791 1.5
0 0.5237 −0.66988 −0.6199 0.47395 ≈0 ≈0 0.2
−1 0.4395 −1.6133 −0.5347 1.4324 −0.2306 −6.1669 1.2
−2 0.6585 −13.538 −0.79 11.594 −0.5339 38.21 1.9

TABLE X. Same as Table III but for the axial gravitational-led sector and the n ¼ 0, l ¼ 3 mode.

m f1 f2 f3 f4 f5 f6 % error

3 1.233 −14.389 −0.6342 17.589 0.4971 −3.4131 0.2
2 1.058 −23.33 −0.4581 25.753 0.4438 −41.871 0.3
1 0.9376 −40.147 −0.339 44.144 0.2295 6.0011 0.1
0 0.8008 1.8508 −0.202 2.0534 ≈0 ≈0 0.1
−1 0.4219 −11.592 0.1769 15.583 0.4033 9.1724 0.05
−2 0.3243 −20.236 0.2745 24.276 0.5383 24.935 1.2
−3 0.2394 −19.856 0.3595 23.803 0.6471 29.555 1.6

m f1 f2 f3 f4 f5 f6 % error

3 0.5702 3.2919 −0.6672 0.25096 0.5459 0.94723 3.9
2 0.5219 −8.7958 −0.6164 10.14 0.4255 −41.399 0.5
1 0.5218 −0.1413 −0.6106 −3.3617 0.1519 −19.551 3.5
0 0.4929 0.6282 −0.5811 −4.164 ≈0 ≈0 2.5
−1 0.5013 0.74239 −0.5901 −4.2191 0.1513 −19.53 4.5
−2 0.5151 −4.5501 −0.6043 0.9326 0.3959 −20.313 4.6
−3 0.5943 4.3365 −0.6836 −8.0688 0.5481 −17.372 4.2

TABLE XI. Same as Table III but for the scalar-led sector and the n ¼ 0, l ¼ 3 mode.

m g1 g2 g3 g4 g5 g6 % error

3 0.3327 47.358 0.3429 −51.198 0.7484 −75.948 0.3
2 0.2805 15.019 0.3965 −18.848 0.5196 −9.7528 0.2
1 0.5433 −3.161 0.1326 −0.54931 0.2796 1.0592 0.1
0 0.7772 5.2469 −0.102 −8.9636 −0.002274 0.2666 0.0
−1 0.3250 −2.8674 0.3509 −0.83273 0.508 −0.5176 0.1
−2 0.0359 6.9322 0.6421 −10.778 0.9033 −9.3872 0.2
−3 0.1106 −4.7023 0.5367 2.9615 0.842 6.626 3.0

m g1 g2 g3 g4 g5 g6 % error

3 0.7327 −7.5698 −0.8297 4.5338 0.4339 −2.4478 3.5
2 0.4974 0.56638 −0.5926 −3.6759 0.2108 0.9019 3.1
1 0.4444 7.1089 −0.5377 −10.199 −0.03791 −1.074 2.8
0 0.5231 −0.92939 −0.6165 −2.1366 ≈0 ≈0 2.5
−1 0.4454 7.1024 −0.5385 −10.188 −0.08306 2.8145 2.7
−2 0.4852 −2.369 −0.5797 −0.76727 0.03384 15.112 2.8
−3 0.6379 −0.79127 −0.731 −2.4876 0.3901 1.2141 5.1
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2. Polar gravitational sector

TABLE XIII. Same as Table IV but for the polar gravitational-led sector with n ¼ 0, l ¼ 3.

a=M α=M2 m ¼ −3 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 3

0.0 0.0 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927
0.05 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927
0.1 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927 0.5994, 0.0927

0.01 0.0 0.5972, 0.0911 0.5980, 0.0920 0.5987, 0.0925 0.5994, 0.0927 0.6001, 0.0925 0.6008, 0.0919 0.6014, 0.0911
0.05 0.5972, 0.0912 0.5980, 0.0920 0.5988, 0.0925 0.5994, 0.0927 0.6001, 0.0925 0.6008, 0.0920 0.6014, 0.0911
0.1 0.5971, 0.0913 0.5980, 0.0921 0.5988, 0.0925 0.5994, 0.0927 0.6001, 0.0926 0.6008, 0.0919 0.6015, 0.0912

0.02 0.0 0.5947, 0.0874 0.5963, 0.0901 0.5980, 0.0919 0.5994, 0.0927 0.6008, 0.0919 0.6022, 0.0899 0.6038, 0.0872
0.05 0.5947, 0.0875 0.5963, 0.0901 0.5980, 0.0919 0.5994, 0.0927 0.6008, 0.0920 0.6022, 0.0900 0.6038, 0.0872
0.1 0.5946, 0.0877 0.5961, 0.0901 0.5980, 0.0920 0.5994, 0.0927 0.6008, 0.0920 0.6021, 0.0902 0.6037, 0.0876

0.03 0.0 0.5917, 0.0831 0.5945, 0.0874 0.5972, 0.0911 0.5994, 0.0927 0.6015, 0.0911 0.6038, 0.0872 0.6069, 0.0827
0.05 0.5915, 0.0832 0.5945, 0.0875 0.5972, 0.0912 0.5994, 0.0927 0.6015, 0.0911 0.6038, 0.0873 0.6068, 0.0828
0.1 0.5912, 0.0835 0.5942, 0.0877 0.5973, 0.0913 0.5994, 0.0927 0.6015, 0.0912 0.6037, 0.0876 0.6066, 0.0832

0.04 0.0 0.5888, 0.0787 0.5927, 0.0845 0.5964, 0.0901 0.5994, 0.0927 0.6022, 0.0899 0.6047, 0.0869 0.6103, 0.0785
0.05 0.5987, 0.0790 0.5925, 0.0846 0.5964, 0.0901 0.5994, 0.0927 0.6022, 0.0900 0.6045, 0.0869 0.6102, 0.0787
0.1 0.5882, 0.0794 0.5922, 0.0849 0.5965, 0.0903 0.5994, 0.0927 0.6022, 0.0902 0.6041, 0.0872 0.6099, 0.0792

TABLE XII. QNM frequencies for polar gravitational-led sector with n ¼ 0, l ¼ 2 for slowly rotating BHs in dCS gravity. The format
used is MðReðωÞ;−ImðωÞ). To save space, the leading zeros have been omitted.

a=M α=M2 m ¼ −2 m ¼ −1 m ¼ 0 m ¼ 1 m ¼ 2

0.0 0.0 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889
0.05 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889
0.1 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889 0.3737, 0.0889

0.01 0.0 0.3726, 0.0881 0.3730, 0.0888 0.3737, 0.0889 0.3744, 0.0888 0.3751, 0.0882
0.05 0.3726, 0.0881 0.3730, 0.0888 0.3737, 0.0889 0.3744, 0.0888 0.3751, 0.0882
0.1 0.3726, 0.0881 0.3731, 0.0887 0.3737, 0.0889 0.3744, 0.0887 0.3752, 0.0883

0.02 0.0 0.3712, 0.0861 0.3725, 0.0882 0.3737, 0.0889 0.3751, 0.0882 0.3768, 0.0859
0.05 0.3712, 0.0861 0.3725, 0.0882 0.3737, 0.0889 0.3751, 0.0882 0.3768, 0.0859
0.1 0.3712, 0.0861 0.3726, 0.0883 0.3737, 0.0889 0.3752, 0.0883 0.3768, 0.0861

0.03 0.0 0.3699, 0.0832 0.3719, 0.0872 0.3737, 0.0889 0.3759, 0.0873 0.3789, 0.0829
0.05 0.3699, 0.0832 0.3719, 0.0874 0.3737, 0.0889 0.3759, 0.0873 0.3789, 0.0829
0.1 0.3699, 0.0832 0.3719, 0.0875 0.3737, 0.0889 0.3759, 0.0874 0.3789, 0.0832

0.04 0.0 0.3682, 0.0801 0.3711, 0.0862 0.3737, 0.0889 0.3767, 0.0859 0.3811, 0.0799
0.05 0.3682, 0.0805 0.3713, 0.0861 0.3737, 0.0889 0.3810, 0.0801 0.3829, 0.0788
0.1 0.3682, 0.0809 0.3713, 0.0863 0.3737, 0.0889 0.3766, 0.0859 0.3805, 0.0809
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