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State-dependent pupil dilation rapidly shifts
visual feature selectivity
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Toincrease computational flexibility, the processing of sensory inputs changes with
behavioural context. In the visual system, active behavioural states characterized by

motor activity and pupil dilation'? enhance sensory responses, but typically leave the
preferred stimuli of neurons unchanged?®®. Here we find that behavioural state also
modulates stimulus selectivity in the mouse visual cortex in the context of coloured
natural scenes. Using populationimaging in behaving mice, pharmacology and deep
neural network modelling, we identified a rapid shift in colour selectivity towards
ultraviolet stimuli during an active behavioural state. This was exclusively caused by
state-dependent pupil dilation, which resulted in adynamic switch fromrod to cone
photoreceptors, thereby extending their role beyond night and day vision. The
change in tuning facilitated the decoding of ethological stimuli, such as aerial
predators against the twilight sky™. For decades, studies in neuroscience and
cognitive science have used pupil dilation as an indirect measure of brain state. Our
datasuggest that, in addition, state-dependent pupil dilation itself tunes visual
representations to behavioural demands by differentially recruiting rods and cones

onfast timescales.

Neuronal responses in animals are modulated by their behavioural
andinternal states to flexibly adjust information processing to differ-
ent behavioural contexts. This phenomenon has been well described
across animal species, frominvertebrates™ " to primates*®. In the mam-
malianvisual cortex, neuronal activity is desynchronized and sensory
responses are enhanced during an active behavioural state’>>”%, which
is characterized by pupil dilation' and locomotion activity’. Mecha-
nistically, these effects have been linked to neuromodulators such as
acetlycholine and noradrenaline (reviewed in refs. *'*). Other than
changes in response gain, the tuning of visual neurons, such as orien-
tation selectivity, typically does not change across quiet and active
states**>78, So far, however, this has largely been studied in non-
ecological settings using simple synthetic stimuli.

In this work, we study how behavioural state modulates cortical
visual tuning in mice in the context of naturalistic scenes. Crucially,
these scenes include the colour domain of the visual input due to its
ethological relevance across species (reviewed in ref. ). Mice, like
most mammals, are dichromatic and have two types of cone photo-
receptor that express ultraviolet (UV)-sensitive and green-sensitive
short-wavelength and medium-wavelength opsins (S-opsin and
M-opsin, respectively)’. These UV-sensitive and green-sensitive
cone photoreceptors predominantly sample the upper and the lower
visual field, respectively, through uneven distributions across the
retina'®"’,

To systematically study the relationship between neuronal tuning
and behavioural state in the context of naturalistic scenes, we combined
in vivo population calcium imaging of the primary visual cortex (V1)
in awake, head-fixed mice with deep convolutional neural network
(CNN) modelling. We extended a recently described model™®* to pre-
dict neuronal responses on the basis of both the visual input and the
behaviour of the animal jointly. This enabled us to characterize the
relationship between neuronal tuning and behaviour in extensive in
silico experiments without the need to experimentally control the
behaviour. Finally, we experimentally confirmed in vivo the in silico
model predictions'®?°,

Using this approach, we demonstrate that colour tuning of mouse V1
neurons rapidly shifts towards higher UV sensitivity during an active
behavioural state. By pharmacologically manipulating the pupil,
we show that this is solely caused by pupil dilation. Dilation during
active behavioural states sufficiently increases the amount of light
entering the eye to cause a dynamic switch between rod-dominated
and cone-dominated vision, even for constant ambient light levels.
Finally, we show that theincreased UV sensitivity during active periods
may tune the mouse visual system to improved detection of preda-
tors against the UV background of the sky. Our results identify a new
functional role of state-dependent pupil dilation: to rapidly tune visual
feature representations to changing behavioural requirementsina
bottom-up manner.
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CNNs identify optimal coloured stimuli

Here we studied the relationship between neuronal tuning in mouse
V1 and the behaviour of the animal, specifically focusing on colour
processing because of its behavioural relevance (reviewed in ref.”). We
presented coloured naturalisticimages (Extended Data Fig. 1) to awake,
head-fixed mice positioned on a treadmill (Fig. 1a) while recording
the calcium activity of L2/3 neurons in V1 using two-photon imaging
(Fig.1c,d). We simultaneously recorded locomotion activity, pupil size
and instantaneous changes in pupil size, which have all been associ-
ated with distinct behavioural states2. Visual stimuli were presented
using a projector with UV and green light-emitting diodes (LEDs)*
(Fig. 1b), which enabled the differential activation of UV-sensitive
and green-sensitive mouse photoreceptors. We recorded neuronal
responses along the posterior-anterior axis of V1 (Fig. 1c), sampling
from various vertical positions across the visual field. This choice was
motivated by the gradient of spectral sensitivity of mouse cone pho-
toreceptors across the retina’®".

We used adeep CNNtolearnaninsilico model of the recorded neu-
ron population as a function of the visual input and the behaviour of
the animal® (Fig. 1e). The CNN had the following input channels: (1)
UV and green channels of the visual stimulus; (2) three channels set
to the recorded behavioural parameters (that is, pupil size, change
in pupil size and locomotion); and (3) two channels that were shared
across all inputs encoding the x and y pixel positions of the stimulus
image. The third criterion was previously shown toimprove CNN model
performance in cases for which feature representations depend on
image position?, similar to the gradient in mouse colour sensitivity
across visual space. Our neural predictive models alsoincluded a shifter
network™ that spatially shifted the receptive fields of model neurons
according to the recorded pupil position traces. For each dataset, we
trained an ensemble of four-layer CNN models end-to-end” to predict
the neuronal responses to individual images and behavioural param-
eters. The prediction performance of the resulting ensemble model
(Extended Data Fig. 2) was comparable to state-of-the-art predictive
models of mouse V1 (ref. ).

Using our CNN ensemble model as a‘digital twin’ of the visual cortex,
we synthesized maximally exciting inputs (MEIs) for individual neurons
(Fig. 1f and Extended Data Fig. 3a). To this end, we optimized the UV
and green colour channels of acontrast-constrained image to produce
the highest activation in the given model neuron using regularized
gradient ascent’®°, For most of the neurons, MEI colour channels were
positively correlated, which indicated that colour opponency is rare
given our stimulus paradigm (Extended Data Figs. 3 and 4). Inception
loop experiments'® confirmed that the computed MEIs strongly drive
the recorded neurons. For these experiments, we randomly selected
MEIs of 150 neurons above a response reliability threshold for pres-
entation on the next day (Fig. 1g). For most neurons, the MEIs were
indeed the most exciting stimuli: responses of neurons to their own
MEl were significantly larger than to other MEIs (Fig. 1h; for statistics,
see figure legends and Supplementary Methods). Together, these find-
ings demonstrate that our modelling approach accurately captures
the tuning properties of mouse V1 neurons in the context of coloured
naturalistic scenes.

V1 colour tuning changes with behaviour

To study how cortical colour tuning changes with behavioural
state, we performed detailed in silico characterizations using the
above-described trained CNN model. To that end, we focused on two
well described and spontaneously occurring behavioural states'* (1) a
quiet state withnolocomotion and asmall pupil (3rd percentile of loco-
motion and pupil size across all trials) and (2) an active stateindicated
by locomotion and alarger pupil (97th percentile). For each neuronand
distinct behavioural state, we optimized a MEl and then generated a
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Fig.1|Deep neural networks capture mouse V1tuning propertiesinthe
context of coloured naturalisticscenes. a, Schematic of the experimental
setup. Awake, head-fixed mice onatreadmill were presented with UV-coloured
and green-coloured naturalistic scenes (Extended Data Fig.1). b, Normalized
(Norm.) sensitivity spectra of mouse S-opsin and M-opsin expressed by cones
and rhodopsin expressed by rods, with LED spectra for visual stimulation.

¢, Cortical surface of atransgenic mouse expressing GCaMP6s, with positions
ofthree scan fields ((i)-(iii), 650 x 650 pm each). The bottom image shows cells
(n=478) selected for further analysis. d, Neuronal activity (showninarbitrary
units (a.u.); n=150 cells) inresponse to coloured naturalistic scenes and
simultaneously recorded behavioural data (pupil size and locomotion speed).
e, Schematic of the model architecture. The model input consists of two image
channels, three behaviour channels and two position channels thatencode
the xandy pixel position of the inputimages?. A four-layer convolutional core
is followed by a Gaussian readout and a nonlinearity”. Readout positions were
adjusted using a shifter network'®. Traces on the right show average responses
(grey) to testimages of two example neurons and corresponding model
predictions (black). f, MElimages of three example neurons (fromn = 658).See
alsoExtended DataFig. 3. g, Responsereliability to naturalimages plotted
against model prediction performance of all cells of one scan. Neurons
selected for experimental verification (inception loop) areindicated in black.
h, Confusion matrix of the inception loop experiment'® depicting the activity
of eachselected neuronto presented MEIs. Neurons are ordered on the basis of
theresponse to their own MEI (>65% showed the strongest response to their
own MEI). Responses of neurons to their own MEI (along the diagonal) were
significantly larger than to other MEIs (P=0 for aone-sided permutation test,
n=10,000 permutations).
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Fig.2|V1colour-tuning changes with the behavioural state.a, MEIs
optimized for a quiet state (3rd percentile of pupil and locomotion) and model
activations for varying MEl spectral contrasts (n = 50) of two example neurons
(fromn=1,759). Example stimuliare shown below. Arrows indicate the cortical
positionof neurons. b, Neurons (n=1,759 neurons, n =3 scans, n =1 mouse)
alongthe posterior-anterior V1, colour-coded on the basis of the spectral
contrastof quiet and active state (97th percentile) MEIs. Inset shows the scan
positions within V1. Bottom shows MEI spectral contrasts of neurons from the
top, withbinned average ands.d. shading. The spectral contrast significantly
varied across the anterior-posterior V1axis (P=10"* for the smooth term
onthe cortical position of the generalized additive model (GAM); see
Supplementary Methods for more details). ¢, MEIs of an example neuron
optimized foraquietandanactive state, with colour-tuning curves shown
below.d, Population mean withs.d. shading of peak-normalized colour-tuning
curvesfromband caligned with respect to the peak of the tuning curves from
the quiet state. The optimal spectral contrast shifted significantly towards

colour-tuning curve by predicting the activity of the neuron to varying
colour contrasts of this MEI (Fig. 2a and Extended Data Fig. 5).

Forboth behavioural states, the optimal spectral contrast of neurons
systematically varied along the anterior-posterior axis of V1 (Fig. 2b).
The UV sensitivity significantly increased fromanterior to posterior V1,
whichisinline with the distribution of cone opsins across the retina'®"
and with previous studies of V1 (ref. ) and the dorsal lateral genicu-
late nucleus®. Nevertheless, for quiet behavioural periods, nearly all
neurons preferred agreen-biased stimulus (Fig. 2b, left), eventhe ones
positioned in the posterior V1, which receives input from the ventral
retina, where cones are largely sensitive to UV light”. This distribution
of V1 colour preferences indicates that visual responses during quiet
states are largely driven by rod photoreceptors that are sensitive to
green light®.

By contrast, during active periods, the colour tuning of neurons
systematically shifted towards higher UV sensitivity (Fig. 2b—-d). This
was accompanied by an overall increase in neuronal activation pre-
dicted by the model (Fig. 2c and Extended Data Fig. 6a,d), which is
in agreemnt with previous results*’. The shift in colour selectivity
was observed across animals for both the posterior and anterior V1
(Fig. 2e). As aresult, neurons in the posterior V1 exhibited UV-biased
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higher UV sensitivity during active periods (P=10" for the behavioural state
coefficient of the GAM). e, Mean MEl spectral contrast of quiet and active states
across animals (n =478 (mouse1, posterior), 623 (mouse 1, medial), 658 (mouse
1, anterior), 843 (mouse 2), 711 (mouse 3), 822 (mouse 4), 769 (mouse 5),
706 (mouse 6) cells, n=8scans, n = 6 animals). Error barsindicate thes.d. across
neurons. Wilcoxon signed-rank test (two-sided): P=107% (mouse 1, posterior),
1073 (mouse1, medial), 10’ (mouse 1, anterior), 10 *° (mouse 2), 10’ (mouse
3),10™%¢ (mouse 4),10 ¥ (mouse 5),10 ™ (mouse 6). f, Pupil size and treadmill
velocity over time. Dashed line indicates the state change from quiet to active.
Red dotsindicateactivetrials used for analyses fora3-sreadout period.
Bottom, change in mean MEIspectral contrast (n = 6 animals) between quiet
and active states for different readout lengths after the state change, with
mean across animals (black). All, all trials; Shuffle, shuffled behaviour relative
toresponses. One-sample t-test across animals (two-sided): P=0.038 (1s),
P=0.029(25),P=0.053(35),P=0.03(5s),P=0.021(10s), P=0.001 (All),
P=0.92 (Shuffled).

MEIs, whereas neurons in the anterior V1 largely maintained their pref-
erence for green-biased stimuli. This is consistent with a cortical dis-
tribution of colour tuning expected from a shift from rod-dominated
to cone-dominated visual responses®. Notably, the spatial structure
of the MEIs was largely unchanged across behavioural states (Fig. 2¢
and Extended Data Fig. 5).

Thesshiftin colour selectivity with behavioural state was fast, operat-
ing onthe timescale of seconds (Fig. 2f). To test the temporal dynamics
of the shiftin tuning, we identified state changes from quiet to active
periods by detecting rapid increases in pupil size after a prolonged
quiet period. Then we sampled active trials within different time bins
after the state change, trained CNN models on this subselection of
activetrialsand all quiet trials and optimized MEIs as described above.
The shiftin colour selectivity with behavioural state was evident for a
10-s readout window for all animals tested. Notably, for the majority
of animals (n =4 out of 6), the shift was already present when training a
modelbased onactive trials that sampled just 1s after the state change.

We wanted to confirm the above predictionfromourinsilico analysis
that mouse V1 colour tuning rapidly shifts towards higher UV sensitivity
during active periods. To that end, we used a well-established sparse
noise paradigm for mapping the receptive fields of visual neurons
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¢, Neurons (n=1,101) recorded in two experiments for the control (from Fig. 2)
and the dilated condition, colour coded on the basis of the spectral contrast
ofthe quiet state MEIL. The spectral contrast significantly varied across the
anterior-posterior V1axis for the dilated condition (n =1,859, P=10"* for the
smoothtermonthe cortical position of the GAM; see Supplementary Methods
for more details). d, Mean spectral contrasts of quiet state MEls in the control
compared with the dilated condition (n = 478 (mouse 1, posterior, control),
623 (mouse 1, medial, control), 658 (mouse 1, anterior, control), 711 (mouse 2,
control), 1,109 (mouse 3, drug), 464 (mouse1, posterior, drug), 689 (mouse1,
medial, drug), 706 (mouse1, anterior, drug), 723 (mouse 2, drug), 1,090 (mouse 3,
drug) cells,n=10scans, n=3animals). Error barsindicate the s.d. across
neurons. Two-sample t-test (two-sided): P= 0 for all scans. e, Mean activity of

(Extended Data Fig. 7a). Trials were separated into quiet (<50th per-
centile) and active periods (>75th percentile) using the simultane-
ously recorded pupil size trace. For each neuron and behavioural state,
we estimated a spike-triggered average (STA) that represented the
preferred stimulus of the neuron in the context of the sparse noise
input (Extended Data Fig. 7b). Consistent with the in silico analysis,
we observed that most V1 neurons preferred a green-biased stimulus
during the quiet behavioural state (Extended Data Fig. 7c). Moreover,
neuronsinthe posterior and medial V1showed increased UV sensitivity
during active periods (Extended Data Fig. 7c,d). The UV shift was also
presentinthe anterior V1, but only for more extreme pupil size thresh-
olds (20th and 85th percentiles; Extended Data Fig. 7e). Finally, we
confirmed that V1colour preference shifted within a few seconds after
onset of anactive behavioural state (Extended DataFig. 7e). Together,
these results confirm the prediction of the CNN model that mouse V1
colour tuning rapidly changes with behavioural state, particularly for
neurons that sample the upper visual field.

Pupil dilation shifts neuronal tuning

Next, we investigated the mechanism underlying the observed
behaviour-related changes in colour tuning of mouse V1 neurons. On
theonehand, the behavioural state of the animal affects neuronal activ-
ity through neuromodulation that acts on multiple stages of the visual
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0.0003 (mouse 2, constricted), 10® (mouse 3, constricted).j, Same as e, but
forneurons fromhinthe control and the constricted conditions.

system®32¢28 On the other hand, state-dependent pupil dilation results
inhigherlightintensities at the level of the retina that might also affect
visual processing®?.

To experimentally test the relative contribution of these two mecha-
nisms, we dissociated state-dependent neuromodulatory effects from
changes in pupil size by pharmacologically dilating and constricting the
pupil with atropine and carbachol eye drops, respectively (Fig. 3a,f).
Werecorded visual responses to naturalistic scenes during control and
pharmacology conditions and trained separate CNN models (Extended
DataFig. 2c).

Pupil dilation with atropine eye drops was sufficient to shift the col-
our tuning of neurons towards higher UV sensitivity, whereaslocomo-
tionactivity was not necessary. During a quiet state with nolocomotion,
MEI colour tuning systematically shifted towards higher UV sensitivity
forthe dilated pupil compared with the control condition (Fig.3b-d).
We confirmed the role of pupil size in modulating colour tuning of
mouse Vlneurons by alsorecording visual responses to the sparse noise
stimulus after dilating the pupil with atropine (Extended Data Fig. 8).

To test whether pupil dilation is not only sufficient but also neces-
sary for the behavioural shift in colour tuning, we dissociated pupil
dilation from neuromodulation during active periods by temporar-
ily constricting the pupil with carbachol eye drops (Extended Data
Fig. 2f). The gain increase of neuronal responses with locomotion
persisted under these pharmacological manipulations of the pupil®2*%
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(Fig.3e,j), whichindicated that this well-known effect of neuromodu-
lation was unaffected. For quiet periods, pupil constriction resulted
in a systematic shift towards higher green sensitivity compared with
the control condition (Fig. 3g,h). Notably, we did not observe a sig-
nificant shift towards higher UV sensitivity during active periods for
the constricted condition, whereas the shift was evidentin the control
condition (Fig. 3i). This suggests that neuromodulation or other inter-
nal state-dependent mechanisms during active behavioural periods
are not sufficient to drive the shift in colour tuning with behaviour,
whereas state-dependent pupil dilation is necessary for the effect.

Tuning shiftis caused by photoreceptors

Previous studies have shown that in mice, pupil size regulates reti-
nal illuminance levels by more than one-order of magnitude®. This
affects the relative activation levels of the green-sensitive rods and
UV-sensitive and green-sensitive cones, thereby changing cortical
colour preferences in anaesthetized mice®. To test whether our data
could be explained by a shift from rod to cone photoreceptors dur-
ing active behavioural periods because of a larger pupil (Fig. 4a), we
estimated activation levels of mouse photoreceptors as a function of
pupilssize'. For our experiments, we observed up to a tenfoldincrease
in pupil area and an equal increase in the estimated photoisomeriza-
tionrate foranactive compared with a quiet behavioural state (Fig. 4a,
bottom). Therefore, the change in retinal light level due to pupil dila-
tion during an active state is probably sufficient to dynamically shift
the mouse visual system from a rod-dominated to a cone-dominated
operating regimen.

If this was true, we would expect that the shift in colour selectivity
canbereproduced for constant pupil sizes by changing ambient light
levels. We experimentally confirmed this prediction by reducing the
light intensity of the visual stimulus by 1.5-orders of magnitude while
keeping the pupil size constant across recordings through pharmaco-
logical dilation with atropine (Fig.4b). The low-light-intensity condition
was expected to predominantly activate rod photoreceptors, which are
greensensitive.Indeed, V1 neurons exhibited more green-biased MEIs
for the low compared with the high light condition. Together with our
pupil dilation and constriction experiments, this result strongly sug-
gests that pupil dilation during active states results in a dynamic shift
fromrod-driven to cone-driven visual responses and a corresponding
shiftin spectral sensitivity.

Tuning shift affects population decoding

Next, we tested whether the shift in colour tuning during an active
state mightincrease visual performance at the level of large popula-
tions of neurons in response to naturalistic stimuli. First, we applied
a contrast-constrained image reconstruction paradigm? using the
above-described trained CNN model (Extended Data Fig. 9a). Stimulus
reconstruction from neuronal activity has previously been used to
infer the most relevant visual features encoded by the neuron popula-
tion*, such as the colour sensitivity of neurons. Most reconstructed
images for a quiet behavioural state exhibited higher contrast in
the green channel, whereas the contrast was shifted towards the UV
channel duringactive states (Extended Data Fig. 9b,c). This indicated
that the increase in UV sensitivity during active periods observed at
the single-cell level might contribute to specific visual tasks such
as stimulus discrimination performed by populations of neurons
inmouse V1.

We experimentally confirmed this prediction by showing that the
decoding of UV objects selectively improved during active periods. To
thatend, we modified arecent object-decoding paradigm?*. Mice pas-
sively viewed movie clips with two different objects presentedin either
the UV or greenimage channel (Fig. 5b) while recording the population
calcium activity in the posterior V1as described above. We estimated
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the discriminability of object identity of UV and green objects from
the recorded neuronal responses using a nonlinear support vector
machine (SVM) decoder (Fig. 5a). Consistent with previous reports**?¢,
decoding discriminability was higher during active compared with
quiet behavioural periods (Fig. 5c). However, the increasein decoding
discriminability of UV objects was larger than for green objects, which
is consistent with an increase in UV sensitivity during active behav-
ioural periods. This result was statistically significant compared with
the result of a permutation test that shuffled quiet and active trials.
The selective increase in decoding discriminability of UV objects was
also present for a subset of recordings with modified stimuli, such as
with reduced object contrast or different object polarity (Extended
DataFig.10).

We then considered the behavioural relevance of this increasein UV
sensitivity during an active state for mice. It has recently been shown
that during dusk and dawn, aerial predators in the natural environ-
ment of mice are more visible in the UV than the green wavelength
range' (Fig. 5d). Therefore, anincrease in UV sensitivity of mouse visual
neurons for an alert behavioural state might facilitate the detection
of predators visible as dark silhouettes in the sky. To investigate this
hypothesis on the level of populations of neurons, we presented para-
metric stimuliinspired by these natural scenes, which contained either
only noise or anadditional dark object inthe green or UVimage channel,
to passively viewing mice (Fig. 5e). This experiment revealed that decod-
ing detection of the behaviourally relevant stimulus—corresponding to
the dark object being presented in the UV channel—was substantially
increased for an active behavioural state. Decoding detection of the
green objects did not increase to a similar extent (Fig. 5f). This result
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Fig.5|Shiftin colour preference duringanactive state facilitates decoding
of behaviourally relevant stimuli. a, Schematicillustrating the decoding
paradigm. Neuronal responses for either quiet or active trialsto green or UV
objectswere used to trainanonlinear SVM decoder to predict stimulus classes.
b, Example stimulus frames of green and UV objects on top of noise. Stimulus
conditions were presented as 5-s movie clipsinrandom order. ¢, Scatter plot of
the decoding discriminability of green compared with UV objects for quiet and
activetrials (n = 4 animals) foraSVM decoder trained on all neurons of each
scan (n=1,090 (mouse1l), 971 (mouse 2), 841 (mouse 3), 918 (mouse 4) cells).
Greylines connect the quiet and the active state performance of the same
animal, withslopeslarger thanoneindicatingalargerincreasein decoding
performance for UV versus green objects. P values obtained from one-sided
permutationtest: P<0.002 (mouse 1), P< 0.044 (mouse 2), P<0.024

suggeststhat onthe population level, the shift towards higher UV sen-
sitivity might be behaviourally relevant as it selectively improves the
decoding detection of dark objects in the UV channel, analogous to a
predatory bird flying in a UV-bright sky.

Discussion

Our workidentified anew mechanism by which state-dependent pupil
dilation dynamically tunes the feature selectivity of the mouse visual
system to behaviourally relevant stimuli.

The fact that sensory responses are modulated by the motor activ-
ity and the internal state of the animal was first demonstrated in
elegantstudies of invertebrates many decades ago™?. Since then, modu-
lation of sensory responses as a function of behavioural and internal
states, such as attention, has been described in many animals**3%%,
Across animal species, state-dependent modulation predominantly
affects neuronal responsiveness>®??, which results inbetter behavioural
performance”?***°,In a few cases, however, the tuning properties of
sensory circuits are also affected by thismodulation. In the visual system,
thishasbeenreported, forinstance, for temporal tuning in Drosophila®,
rabbits* and mice*, as well as for direction selectivity in primates*. In
these cases, the visual system might bias processing towards visual fea-
tures relevant for current behavioural goals, such as higher temporal
frequencies during periods of walking, running or flying.

Here, we demonstrated a shift in neuronal tuning with behavioural
state in mice, focusing on the colour domain, which has rarely been
studiedinthe context of behaviouralmodulation. Our results suggested
that the shift towards higher UV sensitivity during active behavioural
periods may help support ethological tasks, such as the detection of
predators in the sky. In particular, UV vision has been implicated in
predator and prey detectionin several animal species as an adaptation
to living in different natural environments (reviewed in ref. *). This
isrelated to the stronger scattering of short wavelength light in gen-
eral as well as ozone absorption*® in the sky, which probably facilitate

Detection green (bits)

(mouse 3), P<0.01(mouse 4).d, Natural scene recorded

atsunrise with a custom camera adjusted to the spectral sensitivity of mice',
withadrone mimickinganaerial predator. Rightimages show single colour
channels of acroppedimage from the left, with the mock predator highlighted
by awhite dashed opencircle. e, Parametric stimuliinspired by natural scenein
dshowingadark objectin either the UV or the greenimage channel (top)
ornoise only (bottom), with the object present or absent as the decoding
objective. Stimuliwere shown for 0.5 swith 0.3-0.5-s periods of grey screenin
between.f, Similar to ¢, but for decoding detection of green versus UV dark
objectsfrome (n=773 (mouse1),1,049 (mouse 2),1,094 (mouse 3) cells).
Pvalues were obtained from one-sided permutation test (see Methods for
detail): P <0.008 (mouse 1), P < 0.009 (mouse 2), P< 0.008 (mouse 3).

the detection of objects as dark silhouettes against a UV-bright back-
ground in the sky'®, underwater and against the snow*2. However, it will
beimportantto directly test the behavioural relevance of the described
shiftin colour tuning during anactive state for mouse predator detec-
tion. For example, combining an overhead detection task of alooming
stimulus presented in UV or green light conditions** with pharmaco-
logical pupil manipulations or careful tracking of pupil dynamics* will
reveal whether pupil dilation results in better behavioural detection
of UV stimuli, as suggested by our results.

Mechanistically, state-dependent modulation of visual responses has
beenlinked to neuromodulators suchasacetylcholine and noradrena-
line (reviewed in refs. ***), which are released with active behavioural
statesand alertinternal states. Our results demonstrated thatin addi-
tion to internal brain state mechanisms, dynamic changes in pupil
size are both sufficient and necessary to affect cortical tuning (see
also Supplementary Discussion). We propose that this mechanism
changes colour sensitivity through differential rod versus cone activa-
tion, whichis reminiscent of the Purkinje shift described in humans*¢,
although acting on faster timescales. A recent neurophysiological
study?® that used anaesthetized mice demonstrated that pharmaco-
logical pupil dilation at constant ambient light levels is sufficient to
induce a shift from rod-driven to cone-driven visual responses in V1.
Our dataindicated thataswitch between therod and cone system can
alsohappendynamically at the timescale of seconds in behaving mice
as a consequence of changes in pupil size across distinct behavioural
states. As rod and cone photoreceptors differ with respect to spatial
distribution, temporal resolution and degree of nonlinearity (discussed
inref.*), dynamically adjusting their relative activation mightinfluence
the sensory representation of the visual scene far beyond the colour
domain of the visual input.

Changes in pupil size driven by behavioural and internal states of
the animal are common features shared across most vertebrate spe-
cies studied so far (reviewed in ref. *%), including amphibians, birds
and mammals (see also Supplementary Discussion). Notably, pupil
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dilationis probably under voluntary control for some animals such as
birds and reptiles (discussed in ref. *°), and potentially even for some
humans®. We propose that state-dependent pupil size changes might
act as a general mechanism across species to rapidly switch between
the rod-driven and cone-driven operating regimen, thereby tuning
the visual system to different features, as suggested here for preda-
tor detection in mice during dusk and dawn. Our findings provide a
functional explanation to the long-standing debate of why pupil size
ismodulated with internal and behavioural states.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
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1. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet
wakefulness. Neuron 84, 355-362 (2014).

2. Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral state in mouse
visual cortex. Neuron 65, 472-479 (2010).

3. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal and locomotion make
distinct contributions to cortical activity patterns and visual encoding. Neuron 86,
740-754 (2015).

4.  Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical
areas MT and MST. Nature 382, 539-541(1996).

5.  Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system.
Curr. Biol. 24, 2899-2907 (2014).

6. Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic
activity in cortex. Nat. Commun. 7, 13289 (2016).

7. Bennett, C., Arroyo, S. & Hestrin, S. Subthreshold mechanisms underlying
state-dependent modulation of visual responses. Neuron 80, 350-357 (2013).

8. Liang, L. et al. Retinal inputs to the thalamus are selectively gated by arousal. Curr. Biol.
30, 3923-3934.€9 (2020).

9. McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of
single neurons in macaque cortical area V4. J. Neurosci. 19, 431-441(1999).

10. Qiu, Y. etal. Natural environment statistics in the upper and lower visual field are
reflected in mouse retinal specializations. Curr. Biol. 31, 3233-3247.e6 (2021).

1. Rowell, C. H. Variable responsiveness of a visual interneurone in the free-moving locust,
and its relation to behaviour and arousal. J. Exp. Biol. 55, 727-747 (1971).

12.  Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed
sensitivity in Drosophila motion vision. Curr. Biol. 20, 1470-1475 (2010).

13. Busse, L. The influence of locomotion on sensory processing and its underlying neuronal
circuits. eNeuroforum 24, A41-A51(2018).

14. Schneider, D. M. Reflections of action in sensory cortex. Curr. Opin. Neurobiol. 64, 53-59
(2020).

15.  Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ.
Outreach 1, 476-486 (2008).

16.  Szél, A. etal. Unique topographic separation of two spectral classes of cones in the
mouse retina. J. Comp. Neurol. 325, 327-342 (1992).

17.  Baden, T. et al. A tale of two retinal domains: near-optimal sampling of achromatic
contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80,
1206-1217 (2013).

18.  Walker, E. Y. et al. Inception loops discover what excites neurons most using deep
predictive models. Nat. Neurosci. 22, 2060-2065 (2019).

19. Lurz, K.-K. et al. Generalization in data-driven models of primary visual cortex. In Proc.
International Conference on Learning Representations (2021).

20. Bashivan, P, Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis.
Science 364, eaav9436 (2019).

21.  Franke, K. et al. An arbitrary-spectrum spatial visual stimulator for vision research. eLife 8,
e48779 (2019).

134 | Nature | Vol 610 | 6 October 2022

22. Liu, R. etal. Anintriguing failing of convolutional neural networks and the CoordConv
solution. In Advances in Neural Information Processing Systems (2018).

23. Rhim, I., Coello-Reyes, G., Ko, H.-K. & Nauhaus, I. Maps of cone opsin input to mouse V1
and higher visual areas. J. Neurophysiol. 117, 1674-1682 (2017).

24. Denman, D. J., Siegle, J. H., Koch, C., Reid, R. C. & Blanche, T. J. Spatial organization of
chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37,
1102-1116 (2017).

25. Rhim, I., Coello-Reyes, G. & Nauhaus, I. Variations in photoreceptor throughput to mouse
visual cortex and the unique effects on tuning. Sci. Rep. 11, 11937 (2021).

26. Fu,Y.etal. A cortical circuit for gain control by behavioral state. Cell 156, 1139-1152 (2014).

27. Schréder, S. et al. Arousal modulates retinal output. Neuron 107, 487-495.e9 (2020).

28. Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C. C. H. Cholinergic signals in mouse
barrel cortex during active whisker sensing. Cell Rep. 9, 1654-1660 (2014).

29. Tikidji-Hamburyan, A. et al. Retinal output changes qualitatively with every change in
ambient illuminance. Nat. Neurosci. 18, 66-74 (2015).

30. Grimes, W.N., Schwartz, G. W. & Rieke, F. The synaptic and circuit mechanisms
underlying a change in spatial encoding in the retina. Neuron 82, 460-473 (2014).

31.  Pennesi, M. E., Lyubarsky, A. L. & Jr. Pugh, E. N. Extreme responsiveness of the pupil of the
dark-adapted mouse to steady retinal illumination. Invest. Ophthalmol. Vis. Sci. 39,
2148-2156 (1998).

32. Safarani, S. et al. Towards robust vision by multi-task learning on monkey visual cortex. In
Advances in Neural Information Processing Systems (2021).

33. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code.
Science 252, 1854-1857 (1991).

34. Froudarakis, E. et al. Object manifold geometry across the mouse cortical visual
hierarchy. Preprint at bioRxiv https://doi.org/10.1101/2020.08.20.258798 (2020).

35. Dadarlat, M. C. & Stryker, M. P. Locomotion enhances neural encoding of visual stimuli in
mouse V1. J. Neurosci. 37, 3764-3775 (2017).

36. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and
neuronal performance. Science 240, 338-340 (1988).

37. Wiersma, C. A. & Oberijat, T. The selective responsiveness of various crayfish oculomotor
fibers to sensory stimuli. Comp. Biochem. Physiol. 26, 1-16 (1968).

38. Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual
motion processing in Drosophila. Nat. Neurosci. 13, 393-399 (2010).

39. Bezdudnaya, T. et al. Thalamic burst mode and inattention in the awake LGNd. Neuron 49,
421-432 (20086).

40. de Gee, J. W. et al. Mice regulate their attentional intensity and arousal to exploit
increases in task utility. Preprint at bioRxiv https://doi.org/10.1101/2022.03.04.482962
(2022).

41.  Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L. & Reid, R. C. Functional
specialization of mouse higher visual cortical areas. Neuron 72, 1025-1039 (2011).

42. Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219,
2790-2801(2016).

43. Hulburt, E. O. Explanation of the brightness and color of the sky, particularly the twilight
sky. J. Opt. Soc. Am. 43, 113-118 (1953).

44. Storchi, R. et al. Measuring vision using innate behaviours in mice with intact and
impaired retina function. Sci. Rep. 9, 10396 (2019).

45. Meyer, A.F., Poort, J., O’Keefe, J., Sahani, M. & Linden, J. F. A head-mounted camera
system integrates detailed behavioral monitoring with multichannel electrophysiology in
freely moving mice. Neuron 100, 46-60.e7 (2018).

46. Wald, G. Human vision and the spectrum. Science 101, 653-658 (1945).

47. Lamb, T. D. Why rods and cones? Eye 30, 179-185 (2016).

48. Larsen, R. S. & Waters, J. Neuromodulatory correlates of pupil dilation. Front. Neural
Circuits 12, 21(2018).

49. Douglas, R. H. The pupillary light responses of animals; a review of their distribution,
dynamics, mechanisms and functions. Prog. Retin. Eye Res. 66, 17-48 (2018).

50. Eberhardt, L. V., Gron, G., Ulrich, M., Huckauf, A. & Strauch, C. Direct voluntary control of
pupil constriction and dilation: exploratory evidence from pupillometry, optometry, skin
conductance, perception, and functional MRI. Int. J. Psychophysiol. 168, 33-42 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing
agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2022


https://doi.org/10.1038/s41586-022-05270-3
https://doi.org/10.1101/2020.08.20.258798
https://doi.org/10.1101/2022.03.04.482962

Methods

Neurophysiological experiments

All procedures were approved by the Institutional Animal Care and
Use Committee of Baylor College of Medicine. Owing to the explana-
tory nature of our study, we did not use randomization or blinding. No
statistical methods were used to predetermine sample sizes.

Mice of either sex (Mus musculus, n =13; 6 weeks to 5 months of age)
expressing GCaMPé6s in excitatory neurons through the Slc17a7-Cre
and the Ail62 transgenic lines (stock numbers 023527 and 031562,
respectively, The Jackson Laboratory) were anaesthetized, and a4-mm
craniotomy was made over the visual cortex of the right hemisphere as
previously described*. For functional recordings, awake mice were
head-mounted above acylindrical treadmill, and calciumimaging was
performed using a Ti-Sapphire laser tuned to 920 nmand a two-photon
microscope equipped with resonant scanners (Thorlabs) and a x25
objective (MRD77220, Nikon). The laser power after the objective was
kept below 60 mW. The rostral-caudal treadmill movement was meas-
ured using a rotary optical encoder with a resolution of 8,000 pulses
per revolution. We used light diffusing from the laser through the pupil
to capture eye movements and pupil size. Images of the pupil were
reflected through a hot mirror and captured with a Gig CMOS camera
(Genie Nano C1920M; Teledyne Dalsa) at 20 fps at 1,920 x 1,200 pixel
resolution. The contour of the pupil for each frame was extracted using
DeepLabCut®?, and the centre and major radius of afitted ellipse were
used as the position and dilation, respectively, of the pupil.

Forimage acquisition, we used Scanlmage. To identify V1boundaries,
we used pixelwise responses to drifting bar stimuliofa 2,400 x 2,400 um
scan at 200 pum depth from the cortical surface®, recorded using
a large-field-of-view mesoscope® not used for other functional
recordings. In V1, imaging was performed using 512 x 512 pixel scans
(650 x 650 pm) recorded at approximately 15 Hzand positioned within
L2/3 at around 200 pm from the surface of the cortex. Imaging data
were motion-corrected, automatically segmented and deconvolved
using the CNMF algorithm®; cells were further selected by a classifier
trained to detect somata based on the segmented masks. In addition,
we excluded cells with low stimulus correlation. For this, we computed
the first principal component (PC) of the response matrix of the size
number of neurons x number of trials. For each neuron, we then esti-
mated the linear correlation of its responses to the first PC, as the first
PC captured unrelated background activity. We excluded neurons witha
correlation lower or higher than-0.25or 0.25, respectively. This resulted
in450-1,100 selected somamasks per scan depending on theresponse
quality and the blood vessel pattern. Astructural stack encompassing the
scan plane andimaged at 1.6 x 1.6 x 1 pm xyz resolution with 20 repeats
per plane was used to register functional scans of the same neuronsintoa
shared xyzframe of reference. Cellsregistered to the same 3D stack were
thenanatomically matched for distances of <10 um. Forinceptionloop
experiments, we confirmed the anatomical matching with afunctional
matching procedure, using the responses of cells to the same set of test
images (seealsoref.'®) and only included anatomically matched neurons
witharesponse correlation of >0.5for further analysis. To bring different
recordings of the same animal across the posterior-anterior axis of V1
into the same frame of reference, we manually aligned the mean image
of each functional recording to the meanimage of the 2,400 x 2,400 pm
scanacquired at the mesoscope (see above) using the blood vessel pat-
tern. Then, each cell within the functional scan was assigned a new xy
coordinate (in um) in the common frame of reference. Toillustrate coarse
differencesacross visual space, scan fields were manually assigned into
threebroad location categories within V1 (posterior, medial and anterior)
depending on their position relative to V1boundaries.

Visual stimulation
Visual stimuli were presented to the left eye of the mouse ona42 x 26 cm
light-transmitting Teflon screen (McMaster-Carr) positioned 12 cm

from the animal, covering approximately 120 x 90° visual angle. Light
was back-projected onto the screen by a DLP-based projector (EKB
Technologies)* with UV (395 nm) and green (460 nm) LEDs that differ-
entially activated mouse S-opsin and M-opsin. LEDs were synchronized
with the scanretrace of the microscope. Note that the UV LED not only
drives UV-sensitive S-opsin but also slightly activates green-sensitive
M-opsin and rhodopsin because of their sensitivity tail for shorter
wavelengths (B-band). This cross-activation could be addressed by
using asilent substitution protocol, whereby one type of photoreceptor
is selectively stimulated by presenting a steady excitation to all other
photoreceptor types using a counteracting stimulus. However, this
comes at the cost of overall contrast. We considered that ourimperfect
spectral separation of photoreceptor types wassuitable to investigate
most questions concerning chromatic processingin the visual system
(discussed inref.?), especially as photoreceptor-type-isolating stimula-
tionin natural scenes is rare.

Light intensity (measured as the estimated photoisomerization
rate, P*(cone s ™)) was calibrated using a spectrometer (USB2000+,
Ocean Optics) to result in equal activation rates for mouse M-opsin
and S-opsin (for details see ref. ). In brief, the spectrometer output
was divided by the integration time to obtain counts per s and then
converted into electrical power (in nW) using the calibration data (in
W per count) provided by Ocean Optics. The intensity (in uW) of the
entire screen set to maximal intensity (255 pixel values) was approxi-
mately 1.28 and 1.39 for green and UV LEDs, respectively. To obtain
the estimated photoisomerization rate per photoreceptor type, we
first converted electrical power into energy flux (in eV s™) and then
calculated the photon flux (in photons s ) using the photon energy (in
eV). The photon flux density (in photons s™ pm™) was then computed
and converted into the photoisomerization rate using the effective
activation of mouse cone photoreceptors by the LEDs and the light
collection area of cone outer segments. Inaddition, we considered both
the wavelength-specific transmission of the mouse optical apparatus’®
and the ratio between pupil size and retinal area®. See the calibration
iPython notebook provided online (https://github.com/katrinfranke/
open-visual-stimulator) for further details. For a pupil area of 0.2 mm?
during quiet trials and maximal stimulus intensities (255 pixel values),
this resulted in 400 P*(cone s™) corresponding to the mesopic range.
During active periods, the pupil areaincreased to 1.9 mm?, resultingin
4,000 P*(cone s™) corresponding to the low photopic regimen.

Before functional recordings, the screen was positioned such that
the population receptive field across all neurons, estimated using an
achromatic sparse noise paradigm, was within the centre of the screen.
The screen position was fixed and kept constant across recordings
of the same neurons. We used Psychtoolbox in MatLab for stimulus
presentation and showed the following light stimuli.

Natural images. We presented naturalistic scenes from the available
ImageNet online database’®. We selected images on the basis of two
criteria (Extended Data Fig. 1). First, to avoid an intensity bias in the
stimulus, we selected images with no significant difference in the
mean intensity of the blue and green image channels across all im-
ages. Second, we selected images with high pixelwise mean squared
error (MSE > 85) across colour channels to increase chromatic con-
trast, resulting in alower pixel-wise correlation across colour channels
compared with arandom selection. Then, we presented the blue and
green image channels using the UV and green LEDs of the projector,
respectively. For asingle scan, we presented 4,500 unique coloured and
750 monochromatic images in UV and green, respectively. We added
monochromaticimages to the stimulus to include images without cor-
relations across colour channels, thereby diversifying theinput to the
model. As the test set, we used 100 coloured and 2 x 25 monochromatic
images that were repeated 10 times uniformly spread throughout the
recording. Each image was presented for 500 ms, followed by a grey
screen (UVandgreen LEDs at 127 pixel value) for 300-500 ms, sampled
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uniformly from that range. The mean intensity of presented natural
images across the greenand UV colour channels varied between 5 and
204 (8-bit, gamma-corrected). For asmall pupil during quiet states, this
corresponded to approximately 8 and 320 photoisomerizations (P*)
per cone and second (P*(cone s™)). Each natural image was preceded
by a grey blank period (all pixel values set to 127), which reduced the
range of monitor intensities to approximately 57.2-213 P*(cone s™)
whenintegrating over1s, spanningless than one-order of magnitude.
For the light intensities we were using, previous studies have found
that the pupil size is relatively constant for changes in ambient light
intensities below one-order of magnitude® . Indeed, we found that
ambient monitor intensity does not contribute strongly to the recorded
changesin pupil size (Extended Data Fig. 1).

Sparse noise. To map the receptive fields of V1 neurons, we used a
sparse noise paradigm. UV and green bright (pixel value of 255) and dark
(pixel value of 0) dots of approximately 10° visual angle were presented
onagrey background (pixel value of 127) in arandomized order. Dots
were presented for eight and five positions along the horizontal and
vertical axis of the screen, respectively, excluding screen margins.
Each presentationlasted 200 ms and each condition (for example, UV
bright dotat positionx=1andy=1) was repeated 50 times. For asubset
of recordings (n =2 animals, n =3 scan fields; compare with Extended
Data Fig. 7e), each condition was repeated 150 times to increase the
number of trials for more extreme behavioural states.

Full-field binary white noise. We used abinary full-field noise stimulus
of UVand green LEDs to estimate temporal kernels of Vi neurons. The
intensity of UV and green LEDs was determined independently by a
balanced 15-min random sequence updated at 10 Hz. A similar stimu-
lus was recently used in recordings of mouse®® and zebrafish retina®.

Coloured objects. To test for object discrimination, we used two syn-
thesized objects rendered in Blender (https://www.blender.org) as
previously described®. In brief, we smoothly varied object position,
size, tilt and axial rotation. For bright objects, we also varied either
the location or energy of four light sources. Stimuli were rendered as
bright objects onablack screen and Gaussian noise in the other colour
channel (condition 1), bright and dark objects on a grey screen and
Gaussian noise in the other colour channel (conditions 2 and 3) or as
bright objects onablack screen without Gaussian noise (condition 4).
Per object and condition, we rendered movies of 875 s, whichwe then
divided into 175 5-s clips. We presented the clips with different condi-
tions and objects inarandom order.

Images with dark objects. For the object detection task, we gener-
ated images with independent Perlin noise® in each colour channel
using the perlin-noise package for Python (https://pypi.org/project/
perlin-noise/). For allimages except the noise images, we added a dark
ellipse (pixel value of 0) of varying size, position and angle to one of
the colour channels. We adjusted the contrast of allimages with adark
objectto match the contrast of noise images, such that the distribution
ofimage contrasts did not differ between noise and objectimages. We
presented 2,000 unique noise images and 2,000 unique images with
adark object in the UV and green image channels, respectively. Each
image was presented for 500 ms, followed by a grey screen (UV and
green LEDs at 127 pixel value) for 300-500 ms, sampled uniformly
fromthat range.

For the presentation of naturalistic scenes and object movies and
images, we applied agamma function of 1.9 to the 8-bit pixel values
of the monitor.

Preprocessing of neuronal responses and behavioural data
Neuronal responses were first deconvolved using constrained
non-negative calcium deconvolution®. For all stimulus paradigms

except the full-field binary white noise stimulus, we subsequently
extracted the accumulated activity of each neuron between 50 ms
after stimulus onset and offset usinga Hamming window. For the pres-
entation of objects, we segmented the 5-s clips into 9 bins of 500 ms,
starting 250 ms after stimulus onset. Behavioural traces were extracted
using the same temporal offset and integration window as deconvolved
calcium traces. To train our models, we isotropically downsampled
stimuli images to 64 x 36 pixels. Input images, the target neuronal
activities, behavioural traces and pupil positions were normalized
across the training set during training.

Pharmacological manipulations

To pharmacologically dilate and constrict the pupil, we applied 1-3%
atropine and carbachol eye drops, respectively, to the left eye of the
animal facing the screen for visual stimulation. Functional recordings
started after the pupil was dilated or constricted. Pharmacological
pupil dilation lasted >2 h, enabling the use of all the data for further
analysis. By contrast, carbachol eye drops constricted the pupil for
approximately 30 min and were re-applied once during the scan. For
analysis, we only selected trials with constricted pupils and we matched
data analysed in the control scans to the same trial numbers.

Sparse noise spatial receptive field mapping

We estimated spatial STAs of V1 neurons in response to the sparse noise
stimulus by multiplying the stimulus matrix with the response matrix
of each neuron® separately for each stimulus colour and polarity as
wellasbehavioural state. For the behavioural state, we separated trials
into small (<50th percentile) and large pupil trials (>75th percentile).
We used different pupil size thresholds for the two behavioural states
compared to the model owing to the shorter recording time. For record-
ings with pupil dilation, we used locomotion speed instead of pupil
sizeto separate trials into two behavioural states. For each behavioural
state, STAs computed on the basis of on and off dots were averaged to
produce one STA per cell and stimulus colour. Green and UV STAs of the
same behavioural state were peak-normalized to the same maximum. To
assess STA quality, we generated response predictions by multiplying
the flattened STA of each neuron with the flattened stimulus frames and
compared the predictionsto the recorded responses by estimating the
linear correlation coefficient. For analysis, we only included cells for
which the correlationwas >0.2 for at least one of the stimulus conditions.

In contrast to the modelling results, the STA spectral contrast for a
quiet state varied only slightly across the anterior-posterior axis of
the V1. This was probably due to the different pupil size thresholds for
quietand active state used in the STA paradigm compared to the model.
To verify this, we used the datain response to natural images (Fig. 2) to
train a separate model without behaviour as input channels on trials
with small pupil (<50th percentile) and subsequently optimized MEls,
whichis aprocedure more similar to the STA paradigm. Whenlooking
at the spectral contrast of the resulting MEIs, we observed a smaller
variation of colour preference across the anterior-posterior axis of
V1, thereby confirming our prediction (data not shown).

To confirm that the shift in colour preference with behaviour in
response to the sparse noise was not dependent on the specific pupil
size thresholds we used, we presented 150 instead of 50 repeats per
stimulus condition in a subset of experiments. The larger number of
trials for more extreme behavioural states allowed us tocompute STAs
for behavioural states more similar to the model (<20th versus >85th
percentile). Thisresulted in astronger shiftin colour preference during
active periods compared with the lower thresholds of pupil sizes (data
notshown), whichindicated that we had probably underestimated the
effect for the shorter recordings shown in Extended Data Fig. 7a-c.

Full-field binary noise temporal receptive field mapping
We used theresponses to the 10 Hz full-field binary noise stimulus of UV
and green LEDs to compute temporal STAs of V1 neurons. Specifically,
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we upsampled both stimulus and responses to 60 Hz and then multi-
plied the stimulus matrix with the response matrix of each neuron.
Per cell, this resulted in atemporal STAin response to UV and green
flickers, respectively. The kernel quality was measured by comparing
the variance of each temporal STA with the variance of the baseline,
defined as the first 100 ms of the STA. Only cells with at least five times
more variance of the kernel compared with baseline were considered
for further analysis.

Simulated data using Gabor neurons

We simulated neurons with Gabor receptive fields with varying Gabor
parameters across the two colour channels. We normalized each
Gabor receptive field to have a background of 0 and an amplitude
range between -1and 1. To generate responses of simulated neurons,
we used the same set of training images presented during functional
recordings. First, we subtracted the mean across all images from the
training set, multiplied each Gabor receptive field with each training
image and computed the sum of each multiplication across the two
colour channels c. We then passed the resulting scalar response per
neuron through arectified linear unit (ReLU) to obtain the simulated
response r, such that

r=ReLU () image,

X,y

‘x'yGaborc,x’y),

where
72 2,72
XTryy x’
Gabor, , ,= acexp[— T}COS[ZTIT + (pc)

with x”=xcos(6,) +ysin(6,) and y’ =-xsin(6,) +ycos(d.) . We varied
orientation 6, size o, spatial aspect ratio y, phase ¢ and colour prefer-
ence aindependently for each colour channeland neuron, while keep-
ing spatial frequency A constant across all neurons. Finally, we passed
the simulated responses rthrough a Poisson process and normalized
the responses by the respective standard deviation of the responses
across allimages. We used the responses of the simulated Gabor neu-
rons together with the natural images to train the model (see below).
Our modelrecovered both the colour opponency and the colour pref-
erence of simulated neurons. Only extreme colour preferences were
slightly underestimated by our model, which is probably due to high
correlations across the colour channels of natural scenes.

Insilico tuning characterization

It has been our maininterest to investigate the change in tuning prop-
erties with the behavioural state of animals. Ideally, this includes
manipulating the behaviour of the animal and investigating the
resulting effect on different visual tuning properties. Although this
isexperimentally challenging and time-consuming, it is straightfor-
ward with a deep-learning-based neuronal predictive model that
emulates the biological circuit. This allowed us to selectively study
how tuning to colour or spatial features changes with behaviour. To
perform our ininsilico tuning characterization, we created a CNN
model, which was splitinto two parts: the core and the readout. The
core computed latent features from the inputs, which were shared
among all neurons. The readout was learned per neuron and mapped
the output features of the core onto the neuronal responses through
regularized regression.

Core of the CNN model. We based our model on the work fromref.”, as
itwas demonstrated toset the state of the art for predicting the respons-
esofapopulationof mouse Vlneurons. In brief, we modelled the core as
a4-layer CNN, with 64 feature channels per layer. Each layer consisted
ofa2D convolutionallayer followed by a batch-normalization layer and
ELU nonlinearity®**. Except for the first layer, all convolutional layers

were depth-separable convolutions®®, which led to better performance
whilereducing the number of core parameters. Each depth-separable
layer consisted of a1 x 1 pointwise convolution followed by a7 x 7
depth-wise convolution, again followed by a1 x 1 pointwise convolu-
tion. Without stacking the outputs of the core, the output tensor of the
last layer was passed on to the readout.

Readout of the CNN model. To obtain the scalar firing rate for each
neuron, we computed a linear regression between the core output
tensor of dimensions X € R¥*" (w, width; h, height; ¢, channels) and
the linear weight tensorw € R”“*" followed by an exponential linear
unit (ELU) offset by one (ELU+1) to keep the response positive. We made
use of the recently proposed Gaussian readout'®, which considerably
simplifies the regression problem. Our Gaussian readout learned the
parameters of a2D Gaussian distribution My, ¥, )andsampledaloca-
tion of height and widthin the core output tensorin each training step
for every image and neuron. Given a large enough initial X, to ensure
gradient flow, X, that is, the uncertainty about the readout location,
decreased duringtraining for more reliable estimates of the mean loca-
tionpu,, which represented the centre of the receptive field of aneuron.
Atinference time (thatis, when evaluating our model), we set the read-
out to be deterministic and to use the fixed position y,,. We therefore
learned a position of asingle pointin core feature space for each neuron.
Inparallel tolearning the position, we learned the weights of the weight
tensor of the linear regression of size c per neuron. Furthermore, we
made use of the retinotopic organization of V1by coupling the record-
ed cortical 2D coordinatesp, € R2of each neuron with the estimation
of the receptive field position p, of the readout. We achieved this by
learning acommon function u,, = f(p,), whichis shared by all neurons.
We setfto be arandomly initialized linear fully connected network of
size 2-2 followed by tanh nonlinearity.

Shifter network. Because we used a free viewing paradigm when pre-
senting the visual stimuli to the head-fixed mice, the receptive field
positions of the neurons with respect to the presented images had
considerable trial-to-trial variability due to eye movements. To inform
our model of the trial-dependent shift of the receptive fields of neu-
rons, we shifted u,,, the receptive field centre of the model neuron,
using the estimated pupil centre (see the section ‘Neurophysiologi-
cal experiments’). We accomplished this by passing the pupil centre
through asmall shifter network, athree-layer fully connected network
with n =5 hidden features, again followed by a tanh nonlinearity, that
calculates the shift Ax and Ay per trial. The shift was then added to u,
of each model neuron.

Input of behaviour and image position encoding. In addition to
the green and UV channels of the visual stimulus, we appended five
extrachannels to eachinputto the model. We added three channels
of the recorded behavioural parameters in each given trial (pupil
size, instantaneous change of pupil size and locomotion speed), such
that each channel simply consisted of the scalar for the respective
behavioural parameter, transformed into the stimulus dimensions.
This enabled the model to predict neuronal responses as a func-
tion of both visual input and behaviour and therefore to learn the
relationship between behavioural states and neuronal activity. This
modification enabled us toinvestigate the effect of behaviour by se-
lecting differentinputsin the behavioural channels while optimizing
the image channels. Furthermore, we added a positional encoding
to the inputs, which consisted of two channels that encoded the
horizontal and vertical pixel positions of the visual stimulus. These
encodings canbe thought of as simple greyscale gradientsin either
direction, with values from [-1, ..., 1]. Appending position encod-
ings of this kind has been shown to improve the ability of CNNs to
learn spatial relationships between pixel positions of the input image
and high level feature representations®. We found that including



Article

the position embedding increased the performance of our model
(Extended Data Fig. 2b). We also observed a smoother gradient of
colour tuning across the different scan fields (Fig. 2b and Extended
Data Fig. 6b) when adding the position encoding. This indicated
that the model learned the well-described colour sensitivity tuning
of mouse cone photoreceptors across visual space.

Model training and evaluation

Wefirst split the unique training images into the training and validation
set, using a split of 90% to 10%, respectively. Then we trained our
networks with the training set by minimizing the Poisson loss
% (79 - rPlogi?), where m denotes the number of neurons, 7 the
predicted neuronal response and rthe observed response. After each
full pass through the training set (that is, epoch), we calculated the
correlationbetween the predicted and the measured responses across
all neurons on the validation set: if the correlation failed to increase
duringafixed number of epochs, we stopped the training and restored
the modeltoits state after the best performing epoch. After each stop-
ping, we either decreased the learning rate or stopped training alto-
gether if the number of learning-rate decay steps was reached. We
optimized the parameters of the network through stochastic gradient
descent using the Adam optimizer®. Furthermore, we performed an
exhaustive hyperparameter selection using a Bayesian searchona
held-out dataset. All parameters and hyperparameters can be found
in our GitHub repository (see the Code availability section). When
evaluating our models on the test set (Extended Data Fig. 2a-c), we
used two different types of correlation. First, referred to as test cor-
relation, we computed the correlation between the prediction by the
model and neuronal responses across single trials, including the trial-
by-trial variability across repeats. Second, we computed the correlation
ofthe predicted responses with the average responses across repeats
andrefertoithereasthe correlationto average. We alsocomputed the
fraction of variance explained, using 7¢; proposed in ref. %8, which pro-
vides an unbiased estimate of the variance explained based on the
expected neuronal response across image repetitions. However, our
model computed different predictions for each repetition of a given
test setimage because we also fed the behavioural parameters of each
trialinto the model. We therefore simply averaged the model responses
across repetitions and calculated the Fgz accordingly. When evaluating
the model performance for the pharmacology conditions (Extended
Data Fig. 2c), we found that they led to a lower model performance
compared with the control condition. This could be due to the fact that
forthe dilated condition, we did notincorporate pupil-related behav-
ioural parametersinto the model owing to difficulties in pupil tracking
for this pharmacological condition. For the drug condition with car-
bachol, we selected asubset of trials inwhich the pupil was constricted
(seethe ‘Pharmacological manipulations’section), whichled to fewer
trials to train the models with. Finally, for some of our datasets that
had either alow number of trials or a low yield of neurons, we trained
asingle model on multiple datasets”, such that the convolutional core
ofthe model was trained with more examples. The training of the per-
neuron readout was unaffected by this joint training of datasets. We
assigned amodelidentifier to each trained model (which canbe found
inSupplementary Table1) such that datasets that were trained together
in one model could be easily identified.

Ensemble models

For all analyses and for the generation of MEIs, we used an ensemble
of models rather than individual models. Instead of training just one
model for each dataset, we trained ten individual models that were
initialized with different random seeds. We then selected the five best
models as measured by their performance on the validation set to be
part of amodel ensemble. The inputs to the ensemble model were
passed to each member, and the resulting predictions were averaged
to obtain the final model prediction.

Generation of MEIs

We used a variant of regularized gradient ascent on our trained deep
neural network models to obtain a MEl image for each neuron, given
byx € R®*¢ Because of our particular modelinputs (see the section
‘Input of behavioural parameters and image position encoding’), each
ME], like the natural images used for training, had seven channels of
which we optimized only the first two: the green and UV colour chan-
nels. To obtain MEIls, we initialized a starting image with Gaussian white
noise. We set the behavioural channels of the starting image to the
desired behavioural values (usually <3rd and >97th percentile for quiet
and active states, respectively). In addition, we set the position chan-
nels to the default position encoding. Then, in each iteration of our
gradient ascent method, we presented the image to the model and
computed the gradients of the first two image channels (greenand UV)
with respect to the model activation of a single neuron. During gradi-
ent descent optimization, we smoothed the gradient by applying Gauss-
ian blur with a o of 1 pixel. To constrain the contrast of the image, we
calculated the Euclidean (L2) norm of the resulting MEI

c w h
IMEL|l,:= [ > ) MEI
i=1 j=1 k=1

across all pixels MEI of the two colour channels c and compared the
L2 normto afixed normbudget b, whichwe set to 10. The norm budget
canbeeffectively thought of asa contrast constraint. An L2 norm of 10,
calculated across all pixel intensities of theimage, proved to be optimal
such that the resulting MEI had minimal and maximal values similar
to those found in our training natural image distribution. If the image
exceeded thenormbudget during optimization, we divided the entire
image by factor f, ., With f,...m = IMEI||,/b. Additionally, we made sure
that the MEI could not contain values outside the 8-bit pixel range by
clipping the MEl outside these bounds, corresponding to 0 or 255 pixel
intensity. As an optimizer, we used stochastic gradient descent with a
learningrate of 3. We ran each optimization for1,000 iterations, without
anoptionforearly stopping. Our analyses showed that the resulting MEls
were spatially highly correlated across behavioural states (Extended
DataFig.5a-c). To validate this finding, we performed a control experi-
ment using two separate models exclusively trained ontrials fromactive
or quiet states. We again split the trials into quiet and active periods
using pupil size (quiet, <50th percentile; active, >75th percentile). When
inspecting the MEIs generated from these two models, we found that
the MEIs were again highly correlated across colour channels, albeit less
than for the model that was trained on the entire data. This can partially
be explained by the limited amount of data for the model trained with
trials from the active state that occurred less frequently in our data.
Furthermore, we found that the spatial structure of MEIs of anatomically
matched neuronsacross the controland pharmacology conditions was
highly similar, which suggested that the two models trained separately
both converged on the same tuning properties, despite differences in
the prediction performance (Extended Data Fig. 2)

Spectral contrast

For estimating the chromatic preference of the recorded neurons, we
used spectral contrast (SC). It is estimated as a Michelson contrast
ranging from -1to 1for aneuron responding solely to UV and green
image contrast, respectively. We decided to quantify the spectral
sensitivity in relative terms for each behavioural state because visual
responses tobothgreenand UV stimuli are gain modulated inan active
state. Therefore, interpretation of absolute response amplitudes to
UV and green stimuli across behavioural states can be challenging.
See Extended Data Fig. 6a,d for aniillustration of how responses to
stimuli of diverse spectral contrasts are gain modulated during an
active state. We define SC as
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where ry.., and ry, correspond to the following criteria: (1) the norm of
the greenand UV MEI channels to estimate the chromatic preference of
neuronsinthe context of naturalistic scenes; (2) the amplitude (mean of
all pixels >90th percentile) of the UV and green spatial STAs to estimate
the chromatic preference of neuronsinthe context of the sparse noise
paradigm; (3) the normof the green and UV channels of reconstructed
images to quantify chromatic preference at a populational level; and
(4) the norm of the green and UV channels of simulated Gabor recep-
tive fields to obtain each simulated chromatic preference of neurons.

Insilico colour-tuning curves

Togenerateinsilico colour-tuning curves for recorded V1 neurons, we
systematically varied the L2-norm of the green and UV MEI channels
while keeping the overall norm across colour channels constant (with
norm =10). We used n = 50 spectral contrast levels, ranging from all
contrastin the UV channel to all contrastin the green channel. We then
presented the modified MEIs to the model and plotted the predicted
responses across alln = 50 spectral contrast levels. Modified MEls were
either presented tothe modelforaquiet or active state (see also above).

Temporal dynamics of shift in colour tuning with behaviour
Toinvestigate the timescale of the shiftin colour selectivity with behav-
iour, we tested how fast we could observe the shift after a transition
froma quiettoanactive behavioural state. To achieve this, we identified
state changes from quiet to active periods by detecting rapid increases
in pupil size above a certain threshold (>95th percentile of differenti-
ated pupil size trace) after a prolonged quiet state period (>5 s below
the 50th percentile of pupil size). Results were consistent across varying
thresholds (datanot shown). We then sampled active trials with pupil
sizes >75th percentile of pupil size for varying readout windows (1, 2,
3,5and 10 s) after that state change. Model training was performed
on all quiet trials (<50th percentile of pupil size) and the selection of
active trials. MEIs and STAs were then estimated as described above.

Reconstruction analysis

We visualized which image features the population of model neurons
are sensitive to by using anew resource-constrained image reconstruc-
tion method based on the responses of a population of model neurons™.
The reasoning behind the resource-constrained reconstruction is to
recreate the responses of apopulation of neurons when presented with
atargetimage by optimizing anewimage and matching the responses
of neurons given that new image as close as possible to the responses
ofthetargetimage. By limiting the image contrast of the reconstructed
image during the optimization, the reconstructions will only contain
the image features that are most relevant to recreate the population
responses, thereby visualizing the sensitivities and invariances of the
population of neurons. As target images for our reconstruction, we
chose natural images from our test set. For each reconstruction, we
first calculated the responses f(x,) of allmodel neurons when presented
with target image X,,. We then initialized an image (x) with Gaussian
white noise as the basis for reconstruction of the target image by min-
imizing the squared loss between the target responses and the
responses from the reconstructed image #(x, X) = [ f(x) —f(x0)||2
subject to anorm constraint. In this work, we set the contrast (that is,
L2-norm, see section ‘Generation of MEIs’ for details) of the reconstruc-
tions to 40, which corresponds to about 60% of the average norm of
our natural image stimuli. We chose this value to be high enough to
stillallow for qualitative resemblance between the reconstructed image
and the target while keeping the constraint tight enough to avoid an
uninformative trivial solution; that s, the identical reconstruction of
thetarget. Weimproved the quality of the reconstructions by using an

augmented version of our model, which reads out each neuronal
response not from the actual receptive field position y of the model
neuron (see ‘Readout’ for details), but fromall height x width positions
infeature space, except the n =10 pixels around each border to avoid
padding artefacts. This yielded 18 x 46 = 828 copies per neuron, and
with the N =478 original model neurons of mouse 1 in Extended
DataFig. 9c, this resulted in overall n = 395,784 augmented neurons
for our reconstruction analyses. A stochastic gradient descent with a
learning rate of 1,000 produced the qualitatively best reconstructions,
resultinginimages with theleast amount of noise. We always optimized
for 5,000 steps perimage, without the early stopping step of the opti-
mization process.

Decoding analysis

We used a SVM classifier with aradial basis function kernel to estimate
the decoding accuracy between the neuronal representations of two
stimulus classes: either object 1 and object 2 (object discrimination)
or dark object and no object (object detection). We used all neurons
recorded within one scan and built four separate decoders for UV and
green stimuli and small and large pupil trials, respectively. Then we
trained each decoder withrandomly selected training trials (usually 176
trials, but only 60-126 trials for n = 3 scans owing to the lower number
of trials with locomotion activity), tested its accuracy with randomly
selected test trials (15% of train trials) and computed the mean accuracy
across n =10 different training-test trial splits. Finally, we converted
the decoding accuracy into discriminability, the mutual information
(MI) between the true class and its estimate using

Mi(c, &) = Z Z logzmD

where P;is the probability of observing the true class i and predicted
classjand P and P,denote the respective marginal probabilities.

To quantify the significance for each animal, we compared the
observed shift in decoding performance of UV versus green objects
across behavioural states per animal with a distribution of shifts
(n=500) obtained when shuffling the labels of quiet and active trials
using bootstrapping. Specifically, we sampled half of the training data
andtest datafrom quiet trials, and the other halffromactive trialsat ran-
dom. We then trained SVMs to compute the decoding accuracy based on
this particular shuffling. We repeated this n = 500 times and obtained
a Pvalue by computing the upper quantile of the real shift given the
distribution of shifts obtained when shuffling the behavioural states.

Response reliability
We calculated the signal-to-noise ratio (SNR)®® as our measure for
response reliability. It is defined as follows:

SNR- Z, 1(11 -p)?

The SNR expresses the ratio of the variance in the expected responses
against trial-by-trial variability across repeats. Here, y;corresponds to
the expected response to the ith stimulus, with the average expected
response given as

M=

"
A= 2t
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The trial-by-trial variance 62 was computed by averaging the variance
across repeats over all stimuli. We assumed that 6% is constant across
allresponses to different stimuli. This isachieved by a variance stabiliz-
ing transform of the responses r, for which we used the Anscombe
transformation. We therefore obtained the transformed responses 7
as follows:
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r+d
8

F=2
TheSNRisareliable estimate of data quality for neuronal responses
across diverse recording modalities and brain regions®®,

Statistical analysis

We used generalized additive models (GAMs) to analyse therelationship
of MEl spectral contrast, cortical position and behavioural state (see
Supplementary Methods for details). GAMs extend the generalized
linear model by allowing the linear predictors to depend on arbitrary
smooth functions of the underlying variables®. In practice, we used
the mgcv-package for R to implement GAMs and perform statistical
testing. For all other statistical tests, we used Wilcoxon signed-rank
test and two-sampled or one-sampled ¢-test.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The stimulus images and neuronal data used in this paper are stored
at https://gin.g-node.org/cajal/Franke_Willeke_2022.

Code availability

Our coding framework uses general tools such as PyTorch, Numpy,
scikit-image, matplotlib, seaborn, Datajoint’, Jupyter and Docker.
We also used the following custom libraries and code: neuralpredic-
tors (https://github.com/sinzlab/neuralpredictors) for torch-based
custom functions for modelimplementation; nnfabrik (https://github.
com/sinzlab/nnfabrik) for automatic model training pipelines using
DataJoint; nndichromacy for utilities, (https://github.com/sinzlab/
nndichromacy); and mei (https://github.com/sinzlab/mei) for stimulus
optimization.
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Extended DataFig.1|Selection of coloured naturalistic scenes and pupil
changes with monitor intensity. a, Mean intensity in 8-bit pixel space of green
and blue channel of randomly sampled ImageNet images (light gray; n=6.000)
andselectedimages (dark gray; n=6.000).Images were selected such that the
distribution of meanintensities of blue and greenimage channels were not
significantly different. Selected images can be downloaded from the online
repository (see Data Availability in Methods section). b, Distribution of
correlation and mean squared error (MSE) across green and blueimage
channels. Toincrease chromatic content, only images with MSE > 85 were

selected for visual stimulation. ¢, Mean screen intensity (top) and pupil size
changes (bottom) for n=50 trials. Dotted linesin the bottomindicate 5"and
95" percentile, respectively. d, Screen-intensity triggered pupil traces (top) for
n=3scans performed indifferentanimals. Vertical dotted line indicates time
pointof screenintensity increase. Bottom shows mean changein pupil size
(black;s.d.shadingin gray) uponincreaseinscreenintensity. Compared to
pupil dilationinduced by the behavioural state, the changesin monitor
intensity over time only elicited minor changes in pupil size.



Article

a Animal 1 - 3 scans b
Default: Responses, behavior, eye & pixel positions
1: Responses
2: Responses, behavior
3: Responses, behavior, eye position
[
0.9 0.9 —
c 7 had L & 11
S “ g o
© % © Vs '
- 0.6 ° 0.6 -
= 5 et e %]
o S o
So03 /7 = 0.3 . c
7] © o
Ny 2 i -i
(U 8 0~ fo9
0 0.3 06 09 0 03 06 09 Default 1
Response reliability Response reliability Model
(o
> 0.6 % 0.8
506 5 806
= >
= © 0.4 ©
204 o o
o = <04
[2] o c
50.2 =02 2
v 7 T02
3 = 2
© o 0 8§ o
Mouse 123456781384/58
Conditon CCCCCCCCAAACacCa
C: Control; A: Atropin; Ca: Carbachol
d Animal 1 Animal 2 Animal 3
Active trials n=2,584/6,439 active trials n=3,034/7,429 active trials n=3,056/7,475 active trials
m=emme; = - ame wm——— . 60th percentile 5
— < .
= 5 )
. WM . ot
E P é » percentile
5 g -2
| W -
1] o
3 o
- -
V
Animal 4 Animal 5 Animal 6
Small (1) Medium (2) Large (3) n=3,157/7,499 active trials n=3,196/7,493 active trials n=2,681/6,344 active trials
Pupil size
Control Dilated Control  Constricted Control; r=0.33 Constricted; r=-0.07

Quiet

Extended DataFig.2|Model performance and descriptive analysis of
behaviour. a,Responsereliability plotted versus test correlation (left) and
correlation to average (right) for datashownin Fig. 2 (n=1.759 cells, n=3 scans,
n=1mouse). b, Mean Poisson loss (lower is better) for different models trained
onthedataset from (a). The default model is used for all analysis, while models
1-3 are shown for comparison. Dotted line marks mean Poisson loss of default
model. The default model had significantly lower Poisson loss values compared
toall three alternative models (Wilcoxon signed rank test (two-sided), n=1,759:
p <1078 (model1),1072°° (model 2),10 ¥ (model 3)). Error bars show 95%
confidenceinterval.c, Meanresponse reliability, test correlation and

correlation to average across neurons (error bars:s.d. across neurons; n=478 to
n=1,160 neurons per recording) for n=10 models, with controland drug

Active

Locomotion
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Pupil size Pﬁpil size

conditionindicated below.d, Pupil size and locomotion speed trace of example
animal, with active trialsindicated by red dots. Trials were considered active if
pupilsize > 60" percentile and/or locomotion speed > 90" percentile. Plots on
the right show mean pupil size across trials versus mean locomotion speed
across trials. Dotted lines indicate 60" and 90" percentile of pupil size and
locomotion speed, respectively. e, Example frames of eye camerafor a quiet
and active behavioural period for control and dilated condition. For the dilated
condition, the eye was often squinted during quiet periods. f, Same as (e), but
for controland constricted condition. Right plots show pupil size versus
locomotion speed of trials used for model training for control and constricted
condition.
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Extended DataFig.3|Spatial and temporal colour opponency of mouse V1
neurons. a, MEIs of 21exemplary neuronsillustrate structural similarity across
colour channels. b, Distribution of correlation across colour channels for
dataset shownin Fig.2. MEls on top show example cells with relatively low
correlationacross colour channels. ¢, Schematicillustrating paradigm of

10 Hz full-field binary white noise stimulus and corresponding response of
exemplary neuron.d, Temporal kernels estimated from responses to full-field
noise stimulus from (c) of three exemplary neurons and distribution of kernel
correlations (n=924 neurons, n=1scan, n=1 mouse; scan1from (e)). Dotted line
indicates correlation threshold of -0.25 - cells with akernel correlation lower
than this threshold were considered colour-opponent. A fraction of neurons
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(<5%) exhibited colour-opponent temporal receptive fields (see also ! in
responseto this full-field binary noise stimulus - inline with recent retinal
work®. e, Neuronsrecorded in 3 consecutive scans at different positions
within V1, colour-coded based on colour-opponency (red: opponent).

f, Temporal kernelsinresponse to full-field coloured noise stimulus of three
exemplary neurons (left) and MEIs of the same neurons. Neurons were
anatomically matched across recordings by alignment to the same 3D stack.
Thisindicates that colour-opponency of mouse V1 neurons depends on
stimulus condition, similar to neuronsinmouse dLGN 72, which might be
duetoe.g.differencesinactivation of the neuron’ssurround or static versus
dynamic stimuli.
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Extended DataFig.4|Model recovers colour opponency and colour
preference of simulated neurons. a, We simulated neurons with Gabor
receptive fields (RFs) of varying size, orientation, spectral contrast and
colour-opponency (correlation across colour channels). Then, responses of
simulated neurons with Gabor RFs were generated by multiplication of the RFs
with the naturalimages also used during experiments. Corresponding
responses were passed through anon-linearity and a poisson process before
model training. Model predictions and optimized MEIs closely matched the
simulated responses and Gabor RFs, respectively. b, Gabor RFs and
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corresponding MEIs of four example neurons, some of them with
colour-opponent RFsand MEIs. ¢, Spectral contrast of Gabor RFs plotted
versus spectral contrast of computed MEIs. The model faithfully recovered the
simulated neurons’ colour preference. Only extreme colour preferences were
slightly underestimated by our model, whichis likely due to correlations across
colour channels of natural scenes. This also suggests that itis unlikely that the
low number of colour-opponent MEIs (Extended Data Fig. 3) isdue to anartifact
of modelling.d, Correlation of the MEl with the ground truth gabor RF.
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Extended DataFig. 5| MEIstructureis consistentacross quietand active
states. a, MEIs optimized fora quiet (top row of each sub-panel) and active
(bottom row) behavioural state of 18 example neuronsillustrate structural
similarity of MEls across states. b, MEIs of two exemplary neurons with low
correlationacross behavioural states. ¢, Distribution of MEI correlation across
states (n=1,759 neurons, n=3 scans, n=1 mouse).d, MEl activation for
incongruent behavioural state (n=1,759 neurons, n=3 scans, n=1 mouse). Gray:
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Model activation of MEl optimized for a quiet state presented to the model for
active staterelative to model activation of MEl optimized and presented for
active state (activation=1). Red: Model activation of MEl optimized for active
state presented to the model for quiet state relative to model activation of MEI
optimized and presented for quiet state (activation=1). This suggests that MEIs
optimized for differentbehavioural states lead to similaractivationsin the
model and thus share similar tuning properties for the majority of neurons.



Article

a uv b Quiet state

Green

Quiet state

Active

6
=
2
c =
o 2
=1 c
© ©
= ul
g
E)
3
2 o
-0.4 0 0
Spectral contrast
e f
8 -
(] e
- 7
©
o]
(4 c
o <]
z 5
5 y 70 %
S @©
= z £
g / 5 £
= e ) o
&) o @ z
0 - 0 04 Co—
8

Activation quiet state

Extended DataFig. 6| Behavioural modulation of colour tuning of mouse
Vlneurons-additional data. a, MEIs optimized for quiet and active state of
exemplary neuron and corresponding colour tuning curves. b, Neurons
recordedin posterior V1colour coded based onspectral contrast of their quiet
state MEI (top) and distribution of spectral contrast along posterior-anterior
axisofVlinanadditional example animal. Black line corresponds to binned
average (n=10 bins), with s.d. shadingin gray.c, Like (b), but for active state.

d, Mean of colour tuning curves of neurons from (b, c), aligned with respect to
peak position of quiet state tuning curves. Shading: s.d. across neurons from
thisscan. Top shows higher model activation for active state tuning curves, in
line with gain modulation of visual responses. Bottom shows peak-normalized
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tuning curves, illustrating (i) a shift towards lower spectral contrast values for
the peakresponse, (ii) lower activation relative to peak for green-biased stimuli
foranactive state and (iii) stronger activation relative to peak for UV-biased
stimuli foranactive state. This suggests that during an active state, the
increase in UV-sensitivity isaccompanied by adecreasein green-sensitivity.

e, Density plot of model activationin response to MEIs optimized for a quiet
versus anactive behavioural state, for n=6,770 neurons from n=7 mice. f, Mean
of peak-normalized colour tuning curves of quiet (black) and active state (red),
aligned withrespect to peak position of quiet state tuning curves for n=3scans
fromn=3 mice.Shading:s.d.across neurons.
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Extended DataFig.7 | Behavioural shift of colour preference of mouse V1
neuronsinthe context ofacoloured sparse noise paradigm. a, Activity of
n=50 exemplary Vlneuronsinresponse to UV and green Onand Off dots (10
visual angle) flashed for 0.2 seconds and simultaneously recorded locomotion
speed and pupil size. Horizontal dashed linesindicate thresholds for quiet
(black; < 50" percentile of pupil size) and active trials (red, > 75" percentile of
pupil size). We adjusted the definition of quiet and active state compared to
our in-silico analysis to ensure asufficient number of trials in each state despite
the shorter recording time (25 minutes for sparse noise versus 120 minutes

for naturalisticimages). Shading below in red and gray highlights trials above
or below these thresholds. Bottomimages show single stimulus frames.

b, Spike-triggered average (STA) of 4 example neurons estimated from quiet
and active trials, separated by posterior and anterior recording position. STAs
estimated based on On and Off stimuli were combined to yield one STA per cell
and pupil size.c, Neuronsrecorded in three consecutive experiments along the
posterior-anterior axis of V1 (n=981 neurons, n=3 scans, n=1 mouse), colour
codedbased onspectral contrast of their STA estimated for quiet (left) and
activetrials (right). Bottom shows spectral contrast along the posterior-
anterior axis of V1of cells from (c, top), with binned average (black, n=10 bins)
ands.d. shading (gray). Spectral contrast varied only slightly, but significantly
along the anterior-posterior axis of V1 for quiet periods (n=981, p=107 for
smoothtermon cortical position of Generalized Additive Model (GAM); see
Supplementary Methods). The small change inspectral contrast across the
anterior-posterior axis of V1islikely due to the fact that we pooled datafroma

wider range of pupil sizes. For an active state, optimal spectral contrast also
changed withbehavioural state (n=981, p=10"" for behavioural state
coefficient of GAM), with asignificantinteraction between cortical position
and behavioural state modulation (p=107; see Supplementary Methods).d,
Mean STA spectral contrast of quiet versus active state for n=6 scans fromn=3
mice. Error bars:s.d.across neurons recorded in one scan that passed quality
threshold. Marker shape and filling indicate mouse ID and cortical position
along the posterior-anterior axis, respectively. STA spectral contrast was
significantly shifted (p=10""/3.68*10/10?/107%, Wilcoxon signed rank test
(two-sided)) towards UV for posterior and medial scan fields. The shift was not
evidentin anterior V1. This was likely due to the different definitions of quiet
and active state inthe model compared to the sparse noise recordings: For
pupil size thresholds more similar to the ones used in the model (20" and 85"
percentile), we observed astronger UV-shiftin STA colour preference with
behaviour, also for anterior V1. e, Top: pupil size trace with state changes from
quiet toactiveindicated by vertical dashed lines. Red dots show selected trials
using a3 second read-out window. Bottom: difference in STA spectral contrast
of quiet versus active state for different read-out times after state change. All:
alltrials with quiet and active trials defined as < 20" and > 85" percentile of
pupil size. Shuffle: all trials with shuffled behaviour parameters relative to
neuronal responses. Dashed horizontal line indicates delta spectral
contrast=0.Datashows meanands.d. across neurons (n=996/702/964 cells,
n=3scans, n=3 animals).
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Extended DataFig. 8| Pharmacological pupil dilation replicates shiftin
colourselectivity with sparse noise stimulus. a, STAs of three example
neurons, estimated for quiet trialsin control condition (black) and dilated
condition (red).b, Neuronsrecordedin three consecutive experimentsacross
the posterior-anterior axis of V1(n=1,079 neurons, n=3 scans, n=lmouse),
colour coded based on STA estimated for quiet trials in the dilated condition.
See Extended DataFig. 7 for STAs estimated for the control condition of the
same animal. ¢, Spectral contrast of STAs of neurons from (b) along the
posterior-anterior axis of V1(red dots), with binned average (n=10 bins; red line)
ands.d. shading. Blackline and gray shading corresponds to binned average
ands.d. of neuronsrecorded at the same cortical positionsin control condition
(cf.Extended Data Fig. 7). Spectral contrast significantly varied across
anterior-posterior axis of V1for the dilated condition (n=1,079, p=10 " for
smooth termon cortical position of GAM). Optimal spectral contrast

changed with pupil dilation (n=1,079 (dilated) and n=943 (control), p=107¢

for condition coefficient of GAM), with asignificantinteraction between
cortical position and behavioural state modulation (see Supplementary
Methods). d, Mean spectral contrast of quiet state STAs in control condition
versusspectral contrast of quiet state STAs in dilated condition (n=10 scans,
n=3mice). Errorbars:s.d.across neurons. Two-sample t-test (two-sided):
p=10"%/102°/10"°/107""*/0.0006.
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Extended DataFig. 9 |Reconstructions of coloured naturalistic scenes
predict colour tuning shift for apopulation of neurons. a, Schematic
illustrating reconstruction paradigm. As the receptive fields of neurons
recorded within one of our scans only covered afraction of the screen, we used
anaugmented version of our CNN model forimage reconstruction where the
receptive field of each model neuronwas copied to each pixel position of the
image except theimage margins. Foragiventargetinputimage (image1), this
resultsinapredicted response vector (R1) of length number of neurons times
number of pixels. Duringimage reconstruction, anovel image (image 2) is
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optimized such thatits corresponding response vector (R2) matches the
response vector of the targetimage as closely as possible. b, Greenand UV
image channels of exemplary testimage (top) and reconstructions of this
image for a quiet (middle) and active state (bottom). For reconstructions,
neurons fromscanlinFig.2wereused.c, Spectral contrasts of reconstructed
testimages (n=100) in quiet state versus active state for n=3 models trained on
scans from n=3 animals. Wilcoxon signed rank test (two-sided):
p=107%/10"8/107'%.
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Extended DataFig.10|Additional data and stimulus conditions for
decoding paradigm. a, Exemplary frames of stimulus condition with lower
object contrast thaninFig. 5c due to gray backgroundin the object colour
channel. Right: Scatter plot of decoding discriminability of green versus UV
objects for quiet (gray) and active (red) trials for n=3 animals. Each marker
represents the decoding performance of the SVM decoder trained on all
neurons of the respective scan. The decoding performance for the two
behavioural states are connected with gray lines, with slopes larger thanone
forallanimals, correspondingto alargerincreasein decoding performance for
UV versus green objects. P-values obtained from aone-sided permutation
test: <0.012 (Mouse1), <0.032 (Mouse 2), < 0.112 (Mouse 3). b, Like (a), but for
stimulus condition with objects as dark silhouettes and noise in the other
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colour channel. P-values obtained from a one-sided permutation test: < 0.02
(Mousel),<0.1(Mouse2),<0.038 (Mouse 3). ¢, Like (a), but for stimulus
conditionwith high contrast objects and no noise in the other colour channel.
P-values obtained froma one-sided permutation test (see Methods for detail):
0.44 (Mouse1), 0.404 (Mouse 2),0.024 (Mouse 3). The observed variability in
(a) and (b) across animals might be related to different recording positions
along the anterior-posterior axis of V1and differencesin the animal’s
behaviour,i.e.thetimespentinaquiet versus active behavioural state. For the
stimulus conditionin (c), we might also observe a ceiling effect caused by the
factthatthese stimuliare relatively easy to discriminate, asindicated by high
object discriminability even during quiet behavioural periods.
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Data exclusions  Cells were excluded from analysis based on quality filtering with respect to their responses to visual stimuli and/or model prediction
performance. This is described in detail in the Methods.
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