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State-dependent pupil dilation rapidly shifts 
visual feature selectivity


Katrin Franke1,2,3,4,9 ✉, Konstantin F. Willeke5,6,9, Kayla Ponder3,4, Mario Galdamez3,4, Na Zhou3,4, 
Taliah Muhammad3,4, Saumil Patel3,4, Emmanouil Froudarakis3,4,7, Jacob Reimer3,4, 
Fabian H. Sinz3,4,5,6,10 & Andreas S. Tolias3,4,8,10

To increase computational flexibility, the processing of sensory inputs changes with 
behavioural context. In the visual system, active behavioural states characterized by 
motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the 
preferred stimuli of neurons unchanged2–9. Here we find that behavioural state also 
modulates stimulus selectivity in the mouse visual cortex in the context of coloured 
natural scenes. Using population imaging in behaving mice, pharmacology and deep 
neural network modelling, we identified a rapid shift in colour selectivity towards 
ultraviolet stimuli during an active behavioural state. This was exclusively caused by 
state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone 
photoreceptors, thereby extending their role beyond night and day vision. The 
change in tuning facilitated the decoding of ethological stimuli, such as aerial 
predators against the twilight sky10. For decades, studies in neuroscience and 
cognitive science have used pupil dilation as an indirect measure of brain state. Our 
data suggest that, in addition, state-dependent pupil dilation itself tunes visual 
representations to behavioural demands by differentially recruiting rods and cones 
on fast timescales.

Neuronal responses in animals are modulated by their behavioural 
and internal states to flexibly adjust information processing to differ-
ent behavioural contexts. This phenomenon has been well described 
across animal species, from invertebrates11,12 to primates4,9. In the mam-
malian visual cortex, neuronal activity is desynchronized and sensory 
responses are enhanced during an active behavioural state1–3,5,7,8, which 
is characterized by pupil dilation1 and locomotion activity2. Mecha-
nistically, these effects have been linked to neuromodulators such as  
acetlycholine and noradrenaline (reviewed in refs. 13,14). Other than 
changes in response gain, the tuning of visual neurons, such as orien-
tation selectivity, typically does not change across quiet and active  
states2,3,5,7,8. So far, however, this has largely been studied in non- 
ecological settings using simple synthetic stimuli.

In this work, we study how behavioural state modulates cortical 
visual tuning in mice in the context of naturalistic scenes. Crucially, 
these scenes include the colour domain of the visual input due to its 
ethological relevance across species (reviewed in ref. 15). Mice, like 
most mammals, are dichromatic and have two types of cone photo-
receptor that express ultraviolet (UV)-sensitive and green-sensitive 
short-wavelength and medium-wavelength opsins (S-opsin and 
M-opsin, respectively)16. These UV-sensitive and green-sensitive 
cone photoreceptors predominantly sample the upper and the lower 
visual field, respectively, through uneven distributions across the  
retina16,17.

To systematically study the relationship between neuronal tuning 
and behavioural state in the context of naturalistic scenes, we combined 
in vivo population calcium imaging of the primary visual cortex (V1) 
in awake, head-fixed mice with deep convolutional neural network 
(CNN) modelling. We extended a recently described model18,19 to pre-
dict neuronal responses on the basis of both the visual input and the 
behaviour of the animal jointly. This enabled us to characterize the 
relationship between neuronal tuning and behaviour in extensive in 
silico experiments without the need to experimentally control the 
behaviour. Finally, we experimentally confirmed in vivo the in silico 
model predictions18,20.

Using this approach, we demonstrate that colour tuning of mouse V1 
neurons rapidly shifts towards higher UV sensitivity during an active 
behavioural state. By pharmacologically manipulating the pupil, 
we show that this is solely caused by pupil dilation. Dilation during 
active behavioural states sufficiently increases the amount of light 
entering the eye to cause a dynamic switch between rod-dominated 
and cone-dominated vision, even for constant ambient light levels. 
Finally, we show that the increased UV sensitivity during active periods 
may tune the mouse visual system to improved detection of preda-
tors against the UV background of the sky. Our results identify a new 
functional role of state-dependent pupil dilation: to rapidly tune visual 
feature representations to changing behavioural requirements in a 
bottom-up manner.

https://doi.org/10.1038/s41586-022-05270-3

Received: 5 December 2021

Accepted: 23 August 2022

Published online: 28 September 2022

 Check for updates

1Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany. 2Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany. 3Department of Neuroscience, 
Baylor College of Medicine, Houston, TX, USA. 4Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA. 5Institute for Bioinformatics and Medical 
Informatics, Tübingen University, Tübingen, Germany. 6Department of Computer Science, Göttingen University, Göttingen, Germany. 7Institute of Molecular Biology and Biotechnology, 
Foundation for Research and Technology Hellas, Heraklion, Greece. 8Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA. 9These authors contributed 
equally: Katrin Franke and Konstantin F. Willeke. 10These authors jointly supervised this work: Fabian H. Sinz and Andreas S. Tolias. ✉e-mail: katrin.franke@uni-tuebingen.de

https://doi.org/10.1038/s41586-022-05270-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-022-05270-3&domain=pdf
mailto:katrin.franke@uni-tuebingen.de


Nature  |  Vol 610  |  6 October 2022  |  129

CNNs identify optimal coloured stimuli
Here we studied the relationship between neuronal tuning in mouse 
V1 and the behaviour of the animal, specifically focusing on colour 
processing because of its behavioural relevance (reviewed in ref. 15). We 
presented coloured naturalistic images (Extended Data Fig. 1) to awake, 
head-fixed mice positioned on a treadmill (Fig. 1a) while recording 
the calcium activity of L2/3 neurons in V1 using two-photon imaging 
(Fig. 1c,d). We simultaneously recorded locomotion activity, pupil size 
and instantaneous changes in pupil size, which have all been associ-
ated with distinct behavioural states1,2. Visual stimuli were presented 
using a projector with UV and green light-emitting diodes (LEDs)21 
(Fig. 1b), which enabled the differential activation of UV-sensitive 
and green-sensitive mouse photoreceptors. We recorded neuronal 
responses along the posterior–anterior axis of V1 (Fig. 1c), sampling 
from various vertical positions across the visual field. This choice was 
motivated by the gradient of spectral sensitivity of mouse cone pho-
toreceptors across the retina16,17.

We used a deep CNN to learn an in silico model of the recorded neu-
ron population as a function of the visual input and the behaviour of 
the animal18 (Fig. 1e). The CNN had the following input channels: (1) 
UV and green channels of the visual stimulus; (2) three channels set 
to the recorded behavioural parameters (that is, pupil size, change 
in pupil size and locomotion); and (3) two channels that were shared 
across all inputs encoding the x and y pixel positions of the stimulus 
image. The third criterion was previously shown to improve CNN model 
performance in cases for which feature representations depend on 
image position22, similar to the gradient in mouse colour sensitivity 
across visual space. Our neural predictive models also included a shifter 
network18 that spatially shifted the receptive fields of model neurons 
according to the recorded pupil position traces. For each dataset, we 
trained an ensemble of four-layer CNN models end-to-end19 to predict 
the neuronal responses to individual images and behavioural param-
eters. The prediction performance of the resulting ensemble model 
(Extended Data Fig. 2) was comparable to state-of-the-art predictive 
models of mouse V1 (ref. 19).

Using our CNN ensemble model as a ‘digital twin’ of the visual cortex, 
we synthesized maximally exciting inputs (MEIs) for individual neurons 
(Fig. 1f and Extended Data Fig. 3a). To this end, we optimized the UV 
and green colour channels of a contrast-constrained image to produce 
the highest activation in the given model neuron using regularized 
gradient ascent18,20. For most of the neurons, MEI colour channels were 
positively correlated, which indicated that colour opponency is rare 
given our stimulus paradigm (Extended Data Figs. 3 and 4). Inception 
loop experiments18 confirmed that the computed MEIs strongly drive 
the recorded neurons. For these experiments, we randomly selected 
MEIs of 150 neurons above a response reliability threshold for pres-
entation on the next day (Fig. 1g). For most neurons, the MEIs were 
indeed the most exciting stimuli: responses of neurons to their own 
MEI were significantly larger than to other MEIs (Fig. 1h; for statistics, 
see figure legends and Supplementary Methods). Together, these find-
ings demonstrate that our modelling approach accurately captures 
the tuning properties of mouse V1 neurons in the context of coloured 
naturalistic scenes.

V1 colour tuning changes with behaviour
To study how cortical colour tuning changes with behavioural 
state, we performed detailed in silico characterizations using the 
above-described trained CNN model. To that end, we focused on two 
well described and spontaneously occurring behavioural states1,2: (1) a 
quiet state with no locomotion and a small pupil (3rd percentile of loco-
motion and pupil size across all trials) and (2) an active state indicated 
by locomotion and a larger pupil (97th percentile). For each neuron and 
distinct behavioural state, we optimized a MEI and then generated a 
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Fig. 1 | Deep neural networks capture mouse V1 tuning properties in the 
context of coloured naturalistic scenes. a, Schematic of the experimental 
setup. Awake, head-fixed mice on a treadmill were presented with UV-coloured 
and green-coloured naturalistic scenes (Extended Data Fig. 1). b, Normalized 
(Norm.) sensitivity spectra of mouse S-opsin and M-opsin expressed by cones 
and rhodopsin expressed by rods, with LED spectra for visual stimulation.  
c, Cortical surface of a transgenic mouse expressing GCaMP6s, with positions 
of three scan fields ((i)–(iii), 650 × 650 μm each). The bottom image shows cells 
(n = 478) selected for further analysis. d, Neuronal activity (shown in arbitrary 
units (a.u.); n = 150 cells) in response to coloured naturalistic scenes and 
simultaneously recorded behavioural data (pupil size and locomotion speed). 
e, Schematic of the model architecture. The model input consists of two image 
channels, three behaviour channels and two position channels that encode 
the x and y pixel position of the input images22. A four-layer convolutional core 
is followed by a Gaussian readout and a nonlinearity19. Readout positions were 
adjusted using a shifter network18. Traces on the right show average responses 
(grey) to test images of two example neurons and corresponding model 
predictions (black). f, MEI images of three example neurons (from n = 658). See 
also Extended Data Fig. 3. g, Response reliability to natural images plotted 
against model prediction performance of all cells of one scan. Neurons 
selected for experimental verification (inception loop) are indicated in black. 
h, Confusion matrix of the inception loop experiment18 depicting the activity 
of each selected neuron to presented MEIs. Neurons are ordered on the basis of 
the response to their own MEI (>65% showed the strongest response to their 
own MEI). Responses of neurons to their own MEI (along the diagonal) were 
significantly larger than to other MEIs (P = 0 for a one-sided permutation test, 
n = 10,000 permutations).
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colour-tuning curve by predicting the activity of the neuron to varying 
colour contrasts of this MEI (Fig. 2a and Extended Data Fig. 5).

For both behavioural states, the optimal spectral contrast of neurons 
systematically varied along the anterior–posterior axis of V1 (Fig. 2b). 
The UV sensitivity significantly increased from anterior to posterior V1, 
which is in line with the distribution of cone opsins across the retina16,17 
and with previous studies of V1 (ref. 23) and the dorsal lateral genicu-
late nucleus24. Nevertheless, for quiet behavioural periods, nearly all 
neurons preferred a green-biased stimulus (Fig. 2b, left), even the ones 
positioned in the posterior V1, which receives input from the ventral 
retina, where cones are largely sensitive to UV light17. This distribution 
of V1 colour preferences indicates that visual responses during quiet 
states are largely driven by rod photoreceptors that are sensitive to 
green light25.

By contrast, during active periods, the colour tuning of neurons 
systematically shifted towards higher UV sensitivity (Fig. 2b–d). This 
was accompanied by an overall increase in neuronal activation pre-
dicted by the model (Fig. 2c and Extended Data Fig. 6a,d), which is 
in agreemnt with previous results2,5. The shift in colour selectivity 
was observed across animals for both the posterior and anterior V1 
(Fig. 2e). As a result, neurons in the posterior V1 exhibited UV-biased 

MEIs, whereas neurons in the anterior V1 largely maintained their pref-
erence for green-biased stimuli. This is consistent with a cortical dis-
tribution of colour tuning expected from a shift from rod-dominated 
to cone-dominated visual responses25. Notably, the spatial structure 
of the MEIs was largely unchanged across behavioural states (Fig. 2c 
and Extended Data Fig. 5).

The shift in colour selectivity with behavioural state was fast, operat-
ing on the timescale of seconds (Fig. 2f). To test the temporal dynamics 
of the shift in tuning, we identified state changes from quiet to active 
periods by detecting rapid increases in pupil size after a prolonged 
quiet period. Then we sampled active trials within different time bins 
after the state change, trained CNN models on this subselection of 
active trials and all quiet trials and optimized MEIs as described above. 
The shift in colour selectivity with behavioural state was evident for a 
10-s readout window for all animals tested. Notably, for the majority 
of animals (n = 4 out of 6), the shift was already present when training a 
model based on active trials that sampled just 1 s after the state change.

We wanted to confirm the above prediction from our in silico analysis 
that mouse V1 colour tuning rapidly shifts towards higher UV sensitivity 
during active periods. To that end, we used a well-established sparse 
noise paradigm for mapping the receptive fields of visual neurons 
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Fig. 2 | V1 colour-tuning changes with the behavioural state. a, MEIs 
optimized for a quiet state (3rd percentile of pupil and locomotion) and model 
activations for varying MEI spectral contrasts (n = 50) of two example neurons 
(from n = 1,759). Example stimuli are shown below. Arrows indicate the cortical 
position of neurons. b, Neurons (n = 1,759 neurons, n = 3 scans, n = 1 mouse) 
along the posterior–anterior V1, colour-coded on the basis of the spectral 
contrast of quiet and active state (97th percentile) MEIs. Inset shows the scan 
positions within V1. Bottom shows MEI spectral contrasts of neurons from the 
top, with binned average and s.d. shading. The spectral contrast significantly 
varied across the anterior–posterior V1 axis (P = 10–16 for the smooth term  
on the cortical position of the generalized additive model (GAM); see 
Supplementary Methods for more details). c, MEIs of an example neuron 
optimized for a quiet and an active state, with colour-tuning curves shown 
below. d, Population mean with s.d. shading of peak-normalized colour-tuning 
curves from b and c aligned with respect to the peak of the tuning curves from 
the quiet state. The optimal spectral contrast shifted significantly towards 

higher UV sensitivity during active periods (P = 10–16 for the behavioural state 
coefficient of the GAM). e, Mean MEI spectral contrast of quiet and active states 
across animals (n = 478 (mouse 1, posterior), 623 (mouse 1, medial), 658 (mouse 
1, anterior), 843 (mouse 2), 711 (mouse 3), 822 (mouse 4), 769 (mouse 5), 
706 (mouse 6) cells, n = 8 scans, n = 6 animals). Error bars indicate the s.d. across 
neurons. Wilcoxon signed-rank test (two-sided): P = 10–78 (mouse 1, posterior), 
10–103 (mouse 1, medial), 10–109 (mouse 1, anterior), 10–139 (mouse 2), 10–50 (mouse 
3), 10–136 (mouse 4), 10–127 (mouse 5), 10–111 (mouse 6). f, Pupil size and treadmill 
velocity over time. Dashed line indicates the state change from quiet to active. 
Red dots indicate active trials used for analyses for a 3-s readout period. 
Bottom, change in mean MEI spectral contrast (n = 6 animals) between quiet 
and active states for different readout lengths after the state change, with 
mean across animals (black). All, all trials; Shuffle, shuffled behaviour relative 
to responses. One-sample t-test across animals (two-sided): P = 0.038 (1 s), 
P = 0.029 (2 s), P = 0.053 (3 s), P = 0.03 (5 s), P = 0.021 (10 s), P = 0.001 (All), 
P = 0.92 (Shuffled).
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(Extended Data Fig. 7a). Trials were separated into quiet (<50th per-
centile) and active periods (>75th percentile) using the simultane-
ously recorded pupil size trace. For each neuron and behavioural state, 
we estimated a spike-triggered average (STA) that represented the 
preferred stimulus of the neuron in the context of the sparse noise 
input (Extended Data Fig. 7b). Consistent with the in silico analysis, 
we observed that most V1 neurons preferred a green-biased stimulus 
during the quiet behavioural state (Extended Data Fig. 7c). Moreover, 
neurons in the posterior and medial V1 showed increased UV sensitivity 
during active periods (Extended Data Fig. 7c,d). The UV shift was also 
present in the anterior V1, but only for more extreme pupil size thresh-
olds (20th and 85th percentiles; Extended Data Fig. 7e). Finally, we 
confirmed that V1 colour preference shifted within a few seconds after 
onset of an active behavioural state (Extended Data Fig. 7e). Together, 
these results confirm the prediction of the CNN model that mouse V1 
colour tuning rapidly changes with behavioural state, particularly for 
neurons that sample the upper visual field.

Pupil dilation shifts neuronal tuning
Next, we investigated the mechanism underlying the observed 
behaviour-related changes in colour tuning of mouse V1 neurons. On 
the one hand, the behavioural state of the animal affects neuronal activ-
ity through neuromodulation that acts on multiple stages of the visual 

system6,8,26–28. On the other hand, state-dependent pupil dilation results 
in higher light intensities at the level of the retina that might also affect 
visual processing29,30.

To experimentally test the relative contribution of these two mecha-
nisms, we dissociated state-dependent neuromodulatory effects from 
changes in pupil size by pharmacologically dilating and constricting the 
pupil with atropine and carbachol eye drops, respectively (Fig. 3a,f). 
We recorded visual responses to naturalistic scenes during control and 
pharmacology conditions and trained separate CNN models (Extended 
Data Fig. 2c).

Pupil dilation with atropine eye drops was sufficient to shift the col-
our tuning of neurons towards higher UV sensitivity, whereas locomo-
tion activity was not necessary. During a quiet state with no locomotion, 
MEI colour tuning systematically shifted towards higher UV sensitivity 
for the dilated pupil compared with the control condition (Fig. 3b–d). 
We confirmed the role of pupil size in modulating colour tuning of 
mouse V1 neurons by also recording visual responses to the sparse noise 
stimulus after dilating the pupil with atropine (Extended Data Fig. 8).

To test whether pupil dilation is not only sufficient but also neces-
sary for the behavioural shift in colour tuning, we dissociated pupil 
dilation from neuromodulation during active periods by temporar-
ily constricting the pupil with carbachol eye drops (Extended Data 
Fig. 2f). The gain increase of neuronal responses with locomotion 
persisted under these pharmacological manipulations of the pupil6,26,28 
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(black) and dilated (red) conditions (top) and peak-normalized colour-tuning 
curves (bottom). Neurons were matched anatomically across recordings.  
c, Neurons (n = 1,101) recorded in two experiments for the control (from Fig. 2) 
and the dilated condition, colour coded on the basis of the spectral contrast  
of the quiet state MEI. The spectral contrast significantly varied across the 
anterior–posterior V1 axis for the dilated condition (n = 1,859, P = 10–16 for the 
smooth term on the cortical position of the GAM; see Supplementary Methods 
for more details). d, Mean spectral contrasts of quiet state MEIs in the control 
compared with the dilated condition (n = 478 (mouse 1, posterior, control), 
623 (mouse 1, medial, control), 658 (mouse 1, anterior, control), 711 (mouse 2, 
control), 1,109 (mouse 3, drug), 464 (mouse 1, posterior, drug), 689 (mouse 1, 
medial, drug), 706 (mouse 1, anterior, drug), 723 (mouse 2, drug), 1,090 (mouse 3, 
drug) cells, n = 10 scans, n = 3 animals). Error bars indicate the s.d. across 
neurons. Two-sample t-test (two-sided): P = 0 for all scans. e, Mean activity of 

neurons from c during the quiet and active behavioural periods in the control 
and dilated conditions. f,g, Same as a (f) and b (g), but for pupil constriction 
with carbachol. h, Neurons recorded in posterior V1 (n = 751 (control) and 518 
(constricted)), colour coded on the basis of the spectral contrast of a quiet 
state MEI. Bottom shows the mean spectral contrast of quiet state MEIs in 
control compared with the constricted condition (n = 822 (mouse 1, control), 
769 (mouse 2, control), 1,109 (mouse 3, control), 751 (mouse 1, drug), 
1,037 (mouse 2, drug), 1,028 (mouse 3, drug) cells, n = 6 scans, n = 3 mice).  
Error bars indicate the s.d. across neurons. Two-sample t-test (two-sided): 
P = 0 (mouse 1), 0 (mouse 2), 10–38 (mouse 3). i, Spectral contrast of quiet state 
MEIs compared with the spectral contrast of active state MEIs (n = 778 neurons, 
n = 6 scans, n = 3 mice), for the control (grey) and the constricted conditions 
(black). Only neurons with a test correlation value of >0.3 are shown. Wilcoxon 
signed-rank test (two-sided): P = 10–134 (mouse 1, control), 10–127 (mouse 2, 
control), 10–170 (mouse 3, control), P = 0.98 (mouse 1, constricted), 
0.0003 (mouse 2, constricted), 10–6 (mouse 3, constricted). j, Same as e, but  
for neurons from h in the control and the constricted conditions.
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(Fig. 3e,j), which indicated that this well-known effect of neuromodu-
lation was unaffected. For quiet periods, pupil constriction resulted 
in a systematic shift towards higher green sensitivity compared with 
the control condition (Fig. 3g,h). Notably, we did not observe a sig-
nificant shift towards higher UV sensitivity during active periods for 
the constricted condition, whereas the shift was evident in the control 
condition (Fig. 3i). This suggests that neuromodulation or other inter-
nal state-dependent mechanisms during active behavioural periods 
are not sufficient to drive the shift in colour tuning with behaviour, 
whereas state-dependent pupil dilation is necessary for the effect.

Tuning shift is caused by photoreceptors
Previous studies have shown that in mice, pupil size regulates reti-
nal illuminance levels by more than one-order of magnitude31. This 
affects the relative activation levels of the green-sensitive rods and 
UV-sensitive and green-sensitive cones, thereby changing cortical 
colour preferences in anaesthetized mice25. To test whether our data 
could be explained by a shift from rod to cone photoreceptors dur-
ing active behavioural periods because of a larger pupil (Fig. 4a), we 
estimated activation levels of mouse photoreceptors as a function of 
pupil size10. For our experiments, we observed up to a tenfold increase 
in pupil area and an equal increase in the estimated photoisomeriza-
tion rate for an active compared with a quiet behavioural state (Fig. 4a, 
bottom). Therefore, the change in retinal light level due to pupil dila-
tion during an active state is probably sufficient to dynamically shift 
the mouse visual system from a rod-dominated to a cone-dominated 
operating regimen.

If this was true, we would expect that the shift in colour selectivity 
can be reproduced for constant pupil sizes by changing ambient light 
levels. We experimentally confirmed this prediction by reducing the 
light intensity of the visual stimulus by 1.5-orders of magnitude while 
keeping the pupil size constant across recordings through pharmaco-
logical dilation with atropine (Fig. 4b). The low-light-intensity condition 
was expected to predominantly activate rod photoreceptors, which are 
green sensitive. Indeed, V1 neurons exhibited more green-biased MEIs 
for the low compared with the high light condition. Together with our 
pupil dilation and constriction experiments, this result strongly sug-
gests that pupil dilation during active states results in a dynamic shift 
from rod-driven to cone-driven visual responses and a corresponding 
shift in spectral sensitivity.

Tuning shift affects population decoding
Next, we tested whether the shift in colour tuning during an active 
state might increase visual performance at the level of large popula-
tions of neurons in response to naturalistic stimuli. First, we applied 
a contrast-constrained image reconstruction paradigm32 using the 
above-described trained CNN model (Extended Data Fig. 9a). Stimulus 
reconstruction from neuronal activity has previously been used to 
infer the most relevant visual features encoded by the neuron popula-
tion33, such as the colour sensitivity of neurons. Most reconstructed 
images for a quiet behavioural state exhibited higher contrast in 
the green channel, whereas the contrast was shifted towards the UV 
channel during active states (Extended Data Fig. 9b,c). This indicated 
that the increase in UV sensitivity during active periods observed at 
the single-cell level might contribute to specific visual tasks such 
as stimulus discrimination performed by populations of neurons 
in mouse V1.

We experimentally confirmed this prediction by showing that the 
decoding of UV objects selectively improved during active periods. To 
that end, we modified a recent object-decoding paradigm34. Mice pas-
sively viewed movie clips with two different objects presented in either 
the UV or green image channel (Fig. 5b) while recording the population 
calcium activity in the posterior V1 as described above. We estimated 

the discriminability of object identity of UV and green objects from 
the recorded neuronal responses using a nonlinear support vector 
machine (SVM) decoder (Fig. 5a). Consistent with previous reports1,35,36, 
decoding discriminability was higher during active compared with 
quiet behavioural periods (Fig. 5c). However, the increase in decoding 
discriminability of UV objects was larger than for green objects, which 
is consistent with an increase in UV sensitivity during active behav-
ioural periods. This result was statistically significant compared with 
the result of a permutation test that shuffled quiet and active trials. 
The selective increase in decoding discriminability of UV objects was 
also present for a subset of recordings with modified stimuli, such as 
with reduced object contrast or different object polarity (Extended 
Data Fig. 10).

We then considered the behavioural relevance of this increase in UV 
sensitivity during an active state for mice. It has recently been shown 
that during dusk and dawn, aerial predators in the natural environ-
ment of mice are more visible in the UV than the green wavelength 
range10 (Fig. 5d). Therefore, an increase in UV sensitivity of mouse visual 
neurons for an alert behavioural state might facilitate the detection 
of predators visible as dark silhouettes in the sky. To investigate this 
hypothesis on the level of populations of neurons, we presented para-
metric stimuli inspired by these natural scenes, which contained either 
only noise or an additional dark object in the green or UV image channel, 
to passively viewing mice (Fig. 5e). This experiment revealed that decod-
ing detection of the behaviourally relevant stimulus—corresponding to 
the dark object being presented in the UV channel—was substantially 
increased for an active behavioural state. Decoding detection of the 
green objects did not increase to a similar extent (Fig. 5f). This result 
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suggests that on the population level, the shift towards higher UV sen-
sitivity might be behaviourally relevant as it selectively improves the 
decoding detection of dark objects in the UV channel, analogous to a 
predatory bird flying in a UV-bright sky.

Discussion
Our work identified a new mechanism by which state-dependent pupil 
dilation dynamically tunes the feature selectivity of the mouse visual 
system to behaviourally relevant stimuli.

The fact that sensory responses are modulated by the motor activ-
ity and the internal state of the animal was first demonstrated in 
elegant studies of invertebrates many decades ago11,37. Since then, modu-
lation of sensory responses as a function of behavioural and internal 
states, such as attention, has been described in many animals2,4,38,39. 
Across animal species, state-dependent modulation predominantly 
affects neuronal responsiveness2,9,27,28, which results in better behavioural 
performance7,35,36,40. In a few cases, however, the tuning properties of 
sensory circuits are also affected by this modulation. In the visual system, 
this has been reported, for instance, for temporal tuning in Drosophila12, 
rabbits39 and mice41, as well as for direction selectivity in primates4. In 
these cases, the visual system might bias processing towards visual fea-
tures relevant for current behavioural goals, such as higher temporal 
frequencies during periods of walking, running or flying.

Here, we demonstrated a shift in neuronal tuning with behavioural 
state in mice, focusing on the colour domain, which has rarely been 
studied in the context of behavioural modulation. Our results suggested 
that the shift towards higher UV sensitivity during active behavioural 
periods may help support ethological tasks, such as the detection of 
predators in the sky. In particular, UV vision has been implicated in 
predator and prey detection in several animal species as an adaptation 
to living in different natural environments (reviewed in ref. 42). This 
is related to the stronger scattering of short wavelength light in gen-
eral as well as ozone absorption43 in the sky, which probably facilitate 

the detection of objects as dark silhouettes against a UV-bright back-
ground in the sky10, underwater and against the snow42. However, it will 
be important to directly test the behavioural relevance of the described 
shift in colour tuning during an active state for mouse predator detec-
tion. For example, combining an overhead detection task of a looming 
stimulus presented in UV or green light conditions44 with pharmaco-
logical pupil manipulations or careful tracking of pupil dynamics45 will 
reveal whether pupil dilation results in better behavioural detection 
of UV stimuli, as suggested by our results.

Mechanistically, state-dependent modulation of visual responses has 
been linked to neuromodulators such as acetylcholine and noradrena-
line (reviewed in refs. 13,14), which are released with active behavioural 
states and alert internal states. Our results demonstrated that in addi-
tion to internal brain state mechanisms, dynamic changes in pupil 
size are both sufficient and necessary to affect cortical tuning (see 
also Supplementary Discussion). We propose that this mechanism 
changes colour sensitivity through differential rod versus cone activa-
tion, which is reminiscent of the Purkinje shift described in humans46, 
although acting on faster timescales. A recent neurophysiological 
study25 that used anaesthetized mice demonstrated that pharmaco-
logical pupil dilation at constant ambient light levels is sufficient to 
induce a shift from rod-driven to cone-driven visual responses in V1. 
Our data indicated that a switch between the rod and cone system can 
also happen dynamically at the timescale of seconds in behaving mice 
as a consequence of changes in pupil size across distinct behavioural 
states. As rod and cone photoreceptors differ with respect to spatial 
distribution, temporal resolution and degree of nonlinearity (discussed 
in ref. 47), dynamically adjusting their relative activation might influence 
the sensory representation of the visual scene far beyond the colour 
domain of the visual input.

Changes in pupil size driven by behavioural and internal states of 
the animal are common features shared across most vertebrate spe-
cies studied so far (reviewed in ref. 48), including amphibians, birds 
and mammals (see also Supplementary Discussion). Notably, pupil 
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dilation is probably under voluntary control for some animals such as 
birds and reptiles (discussed in ref. 49), and potentially even for some 
humans50. We propose that state-dependent pupil size changes might 
act as a general mechanism across species to rapidly switch between 
the rod-driven and cone-driven operating regimen, thereby tuning 
the visual system to different features, as suggested here for preda-
tor detection in mice during dusk and dawn. Our findings provide a 
functional explanation to the long-standing debate of why pupil size 
is modulated with internal and behavioural states.
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Methods

Neurophysiological experiments
All procedures were approved by the Institutional Animal Care and 
Use Committee of Baylor College of Medicine. Owing to the explana-
tory nature of our study, we did not use randomization or blinding. No 
statistical methods were used to predetermine sample sizes.

Mice of either sex (Mus musculus, n = 13; 6 weeks to 5 months of age) 
expressing GCaMP6s in excitatory neurons through the Slc17a7-Cre 
and the Ai162 transgenic lines (stock numbers 023527 and 031562, 
respectively, The Jackson Laboratory) were anaesthetized, and a 4-mm 
craniotomy was made over the visual cortex of the right hemisphere as 
previously described1,51. For functional recordings, awake mice were 
head-mounted above a cylindrical treadmill, and calcium imaging was 
performed using a Ti-Sapphire laser tuned to 920 nm and a two-photon 
microscope equipped with resonant scanners (Thorlabs) and a ×25 
objective (MRD77220, Nikon). The laser power after the objective was 
kept below 60 mW. The rostral–caudal treadmill movement was meas-
ured using a rotary optical encoder with a resolution of 8,000 pulses 
per revolution. We used light diffusing from the laser through the pupil 
to capture eye movements and pupil size. Images of the pupil were 
reflected through a hot mirror and captured with a GigE CMOS camera 
(Genie Nano C1920M; Teledyne Dalsa) at 20 fps at 1,920 × 1,200 pixel 
resolution. The contour of the pupil for each frame was extracted using 
DeepLabCut52, and the centre and major radius of a fitted ellipse were 
used as the position and dilation, respectively, of the pupil.

For image acquisition, we used ScanImage. To identify V1 boundaries, 
we used pixelwise responses to drifting bar stimuli of a 2,400 × 2,400 μm 
scan at 200 μm depth from the cortical surface53, recorded using 
a large-field-of-view mesoscope54 not used for other functional 
recordings. In V1, imaging was performed using 512 × 512 pixel scans 
(650 × 650 μm) recorded at approximately 15 Hz and positioned within 
L2/3 at around 200 μm from the surface of the cortex. Imaging data 
were motion-corrected, automatically segmented and deconvolved 
using the CNMF algorithm55; cells were further selected by a classifier 
trained to detect somata based on the segmented masks. In addition, 
we excluded cells with low stimulus correlation. For this, we computed 
the first principal component (PC) of the response matrix of the size 
number of neurons × number of trials. For each neuron, we then esti-
mated the linear correlation of its responses to the first PC, as the first 
PC captured unrelated background activity. We excluded neurons with a 
correlation lower or higher than –0.25 or 0.25, respectively. This resulted 
in 450–1,100 selected soma masks per scan depending on the response 
quality and the blood vessel pattern. A structural stack encompassing the 
scan plane and imaged at 1.6 × 1.6 × 1 μm xyz resolution with 20 repeats 
per plane was used to register functional scans of the same neurons into a 
shared xyz frame of reference. Cells registered to the same 3D stack were 
then anatomically matched for distances of <10 μm. For inception loop 
experiments, we confirmed the anatomical matching with a functional 
matching procedure, using the responses of cells to the same set of test 
images (see also ref. 18) and only included anatomically matched neurons 
with a response correlation of >0.5 for further analysis. To bring different 
recordings of the same animal across the posterior–anterior axis of V1 
into the same frame of reference, we manually aligned the mean image 
of each functional recording to the mean image of the 2,400 × 2,400 μm 
scan acquired at the mesoscope (see above) using the blood vessel pat-
tern. Then, each cell within the functional scan was assigned a new xy 
coordinate (in μm) in the common frame of reference. To illustrate coarse 
differences across visual space, scan fields were manually assigned into 
three broad location categories within V1 (posterior, medial and anterior) 
depending on their position relative to V1 boundaries.

Visual stimulation
Visual stimuli were presented to the left eye of the mouse on a 42 × 26 cm 
light-transmitting Teflon screen (McMaster-Carr) positioned 12 cm 

from the animal, covering approximately 120 × 90° visual angle. Light 
was back-projected onto the screen by a DLP-based projector (EKB 
Technologies)21 with UV (395 nm) and green (460 nm) LEDs that differ-
entially activated mouse S-opsin and M-opsin. LEDs were synchronized 
with the scan retrace of the microscope. Note that the UV LED not only 
drives UV-sensitive S-opsin but also slightly activates green-sensitive 
M-opsin and rhodopsin because of their sensitivity tail for shorter 
wavelengths (β-band). This cross-activation could be addressed by 
using a silent substitution protocol, whereby one type of photoreceptor 
is selectively stimulated by presenting a steady excitation to all other 
photoreceptor types using a counteracting stimulus. However, this 
comes at the cost of overall contrast. We considered that our imperfect 
spectral separation of photoreceptor types was suitable to investigate 
most questions concerning chromatic processing in the visual system 
(discussed in ref. 21), especially as photoreceptor-type-isolating stimula-
tion in natural scenes is rare.

Light intensity (measured as the estimated photoisomerization 
rate, P*(cone s–1)) was calibrated using a spectrometer (USB2000+, 
Ocean Optics) to result in equal activation rates for mouse M-opsin 
and S-opsin (for details see ref. 21). In brief, the spectrometer output 
was divided by the integration time to obtain counts per s and then 
converted into electrical power (in nW) using the calibration data (in 
μJ per count) provided by Ocean Optics. The intensity (in μW) of the 
entire screen set to maximal intensity (255 pixel values) was approxi-
mately 1.28 and 1.39 for green and UV LEDs, respectively. To obtain 
the estimated photoisomerization rate per photoreceptor type, we 
first converted electrical power into energy flux (in eV s–1) and then 
calculated the photon flux (in photons s–1) using the photon energy (in 
eV). The photon flux density (in photons s–1 μm–2) was then computed 
and converted into the photoisomerization rate using the effective 
activation of mouse cone photoreceptors by the LEDs and the light 
collection area of cone outer segments. In addition, we considered both 
the wavelength-specific transmission of the mouse optical apparatus56 
and the ratio between pupil size and retinal area57. See the calibration 
iPython notebook provided online (https://github.com/katrinfranke/
open-visual-stimulator) for further details. For a pupil area of 0.2 mm2 
during quiet trials and maximal stimulus intensities (255 pixel values), 
this resulted in 400 P*(cone s–1) corresponding to the mesopic range. 
During active periods, the pupil area increased to 1.9 mm2, resulting in 
4,000 P*(cone s–1) corresponding to the low photopic regimen.

Before functional recordings, the screen was positioned such that 
the population receptive field across all neurons, estimated using an 
achromatic sparse noise paradigm, was within the centre of the screen. 
The screen position was fixed and kept constant across recordings 
of the same neurons. We used Psychtoolbox in MatLab for stimulus 
presentation and showed the following light stimuli.

Natural images. We presented naturalistic scenes from the available 
ImageNet online database58. We selected images on the basis of two 
criteria (Extended Data Fig. 1). First, to avoid an intensity bias in the 
stimulus, we selected images with no significant difference in the 
mean intensity of the blue and green image channels across all im-
ages. Second, we selected images with high pixelwise mean squared 
error (MSE > 85) across colour channels to increase chromatic con-
trast, resulting in a lower pixel-wise correlation across colour channels 
compared with a random selection. Then, we presented the blue and 
green image channels using the UV and green LEDs of the projector, 
respectively. For a single scan, we presented 4,500 unique coloured and 
750 monochromatic images in UV and green, respectively. We added 
monochromatic images to the stimulus to include images without cor-
relations across colour channels, thereby diversifying the input to the 
model. As the test set, we used 100 coloured and 2 × 25 monochromatic 
images that were repeated 10 times uniformly spread throughout the 
recording. Each image was presented for 500 ms, followed by a grey 
screen (UV and green LEDs at 127 pixel value) for 300–500 ms, sampled 

https://github.com/katrinfranke/open-visual-stimulator
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uniformly from that range. The mean intensity of presented natural 
images across the green and UV colour channels varied between 5 and 
204 (8-bit, gamma-corrected). For a small pupil during quiet states, this 
corresponded to approximately 8 and 320 photoisomerizations (P*) 
per cone and second (P*(cone s–1)). Each natural image was preceded 
by a grey blank period (all pixel values set to 127), which reduced the 
range of monitor intensities to approximately 57.2–213 P*(cone s–1) 
when integrating over 1 s, spanning less than one-order of magnitude. 
For the light intensities we were using, previous studies have found 
that the pupil size is relatively constant for changes in ambient light 
intensities below one-order of magnitude31,59. Indeed, we found that 
ambient monitor intensity does not contribute strongly to the recorded 
changes in pupil size (Extended Data Fig. 1).

Sparse noise. To map the receptive fields of V1 neurons, we used a 
sparse noise paradigm. UV and green bright (pixel value of 255) and dark 
(pixel value of 0) dots of approximately 10° visual angle were presented 
on a grey background (pixel value of 127) in a randomized order. Dots 
were presented for eight and five positions along the horizontal and 
vertical axis of the screen, respectively, excluding screen margins. 
Each presentation lasted 200 ms and each condition (for example, UV 
bright dot at position x = 1 and y = 1) was repeated 50 times. For a subset 
of recordings (n = 2 animals, n = 3 scan fields; compare with Extended 
Data Fig. 7e), each condition was repeated 150 times to increase the 
number of trials for more extreme behavioural states.

Full-field binary white noise. We used a binary full-field noise stimulus 
of UV and green LEDs to estimate temporal kernels of V1 neurons. The 
intensity of UV and green LEDs was determined independently by a 
balanced 15-min random sequence updated at 10 Hz. A similar stimu-
lus was recently used in recordings of mouse60 and zebrafish retina61.

Coloured objects. To test for object discrimination, we used two syn-
thesized objects rendered in Blender (https://www.blender.org) as 
previously described34. In brief, we smoothly varied object position, 
size, tilt and axial rotation. For bright objects, we also varied either 
the location or energy of four light sources. Stimuli were rendered as 
bright objects on a black screen and Gaussian noise in the other colour 
channel (condition 1), bright and dark objects on a grey screen and 
Gaussian noise in the other colour channel (conditions 2 and 3) or as 
bright objects on a black screen without Gaussian noise (condition 4). 
Per object and condition, we rendered movies of 875 s, which we then 
divided into 175 5-s clips. We presented the clips with different condi-
tions and objects in a random order.

Images with dark objects. For the object detection task, we gener-
ated images with independent Perlin noise62 in each colour channel 
using the perlin-noise package for Python (https://pypi.org/project/
perlin-noise/). For all images except the noise images, we added a dark 
ellipse (pixel value of 0) of varying size, position and angle to one of 
the colour channels. We adjusted the contrast of all images with a dark 
object to match the contrast of noise images, such that the distribution 
of image contrasts did not differ between noise and object images. We 
presented 2,000 unique noise images and 2,000 unique images with 
a dark object in the UV and green image channels, respectively. Each 
image was presented for 500 ms, followed by a grey screen (UV and 
green LEDs at 127 pixel value) for 300–500 ms, sampled uniformly 
from that range.

For the presentation of naturalistic scenes and object movies and 
images, we applied a gamma function of 1.9 to the 8-bit pixel values 
of the monitor.

Preprocessing of neuronal responses and behavioural data
Neuronal responses were first deconvolved using constrained 
non-negative calcium deconvolution55. For all stimulus paradigms 

except the full-field binary white noise stimulus, we subsequently 
extracted the accumulated activity of each neuron between 50 ms 
after stimulus onset and offset using a Hamming window. For the pres-
entation of objects, we segmented the 5-s clips into 9 bins of 500 ms, 
starting 250 ms after stimulus onset. Behavioural traces were extracted 
using the same temporal offset and integration window as deconvolved 
calcium traces. To train our models, we isotropically downsampled 
stimuli images to 64 × 36 pixels. Input images, the target neuronal 
activities, behavioural traces and pupil positions were normalized 
across the training set during training.

Pharmacological manipulations
To pharmacologically dilate and constrict the pupil, we applied 1–3% 
atropine and carbachol eye drops, respectively, to the left eye of the 
animal facing the screen for visual stimulation. Functional recordings 
started after the pupil was dilated or constricted. Pharmacological 
pupil dilation lasted >2 h, enabling the use of all the data for further 
analysis. By contrast, carbachol eye drops constricted the pupil for 
approximately 30 min and were re-applied once during the scan. For 
analysis, we only selected trials with constricted pupils and we matched 
data analysed in the control scans to the same trial numbers.

Sparse noise spatial receptive field mapping
We estimated spatial STAs of V1 neurons in response to the sparse noise 
stimulus by multiplying the stimulus matrix with the response matrix 
of each neuron63 separately for each stimulus colour and polarity as 
well as behavioural state. For the behavioural state, we separated trials 
into small (<50th percentile) and large pupil trials (>75th percentile). 
We used different pupil size thresholds for the two behavioural states 
compared to the model owing to the shorter recording time. For record-
ings with pupil dilation, we used locomotion speed instead of pupil 
size to separate trials into two behavioural states. For each behavioural 
state, STAs computed on the basis of on and off dots were averaged to 
produce one STA per cell and stimulus colour. Green and UV STAs of the 
same behavioural state were peak-normalized to the same maximum. To 
assess STA quality, we generated response predictions by multiplying 
the flattened STA of each neuron with the flattened stimulus frames and 
compared the predictions to the recorded responses by estimating the 
linear correlation coefficient. For analysis, we only included cells for 
which the correlation was >0.2 for at least one of the stimulus conditions.

In contrast to the modelling results, the STA spectral contrast for a 
quiet state varied only slightly across the anterior–posterior axis of 
the V1. This was probably due to the different pupil size thresholds for 
quiet and active state used in the STA paradigm compared to the model. 
To verify this, we used the data in response to natural images (Fig. 2) to 
train a separate model without behaviour as input channels on trials 
with small pupil (<50th percentile) and subsequently optimized MEIs, 
which is a procedure more similar to the STA paradigm. When looking 
at the spectral contrast of the resulting MEIs, we observed a smaller 
variation of colour preference across the anterior–posterior axis of 
V1, thereby confirming our prediction (data not shown).

To confirm that the shift in colour preference with behaviour in 
response to the sparse noise was not dependent on the specific pupil 
size thresholds we used, we presented 150 instead of 50 repeats per 
stimulus condition in a subset of experiments. The larger number of 
trials for more extreme behavioural states allowed us to compute STAs 
for behavioural states more similar to the model (<20th versus >85th 
percentile). This resulted in a stronger shift in colour preference during 
active periods compared with the lower thresholds of pupil sizes (data 
not shown), which indicated that we had probably underestimated the 
effect for the shorter recordings shown in Extended Data Fig. 7a–c.

Full-field binary noise temporal receptive field mapping
We used the responses to the 10 Hz full-field binary noise stimulus of UV 
and green LEDs to compute temporal STAs of V1 neurons. Specifically, 
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we upsampled both stimulus and responses to 60 Hz and then multi-
plied the stimulus matrix with the response matrix of each neuron. 
Per cell, this resulted in a temporal STA in response to UV and green 
flickers, respectively. The kernel quality was measured by comparing 
the variance of each temporal STA with the variance of the baseline, 
defined as the first 100 ms of the STA. Only cells with at least five times 
more variance of the kernel compared with baseline were considered 
for further analysis.

Simulated data using Gabor neurons
We simulated neurons with Gabor receptive fields with varying Gabor 
parameters across the two colour channels. We normalized each 
Gabor receptive field to have a background of 0 and an amplitude 
range between –1 and 1. To generate responses of simulated neurons, 
we used the same set of training images presented during functional 
recordings. First, we subtracted the mean across all images from the 
training set, multiplied each Gabor receptive field with each training 
image and computed the sum of each multiplication across the two 
colour channels c. We then passed the resulting scalar response per 
neuron through a rectified linear unit (ReLU) to obtain the simulated 
response r, such that

∑r = ReLU ( image Gabor ),
c x y
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with x x θ y θ′ = cos( ) + sin( )c c  and y x θ y θ′ = − sin( ) + cos( )c c . We varied 
orientation θ, size σ, spatial aspect ratio γ, phase ψ and colour prefer-
ence α independently for each colour channel and neuron, while keep-
ing spatial frequency λ constant across all neurons. Finally, we passed 
the simulated responses r through a Poisson process and normalized 
the responses by the respective standard deviation of the responses 
across all images. We used the responses of the simulated Gabor neu-
rons together with the natural images to train the model (see below). 
Our model recovered both the colour opponency and the colour pref-
erence of simulated neurons. Only extreme colour preferences were 
slightly underestimated by our model, which is probably due to high 
correlations across the colour channels of natural scenes.

In silico tuning characterization
It has been our main interest to investigate the change in tuning prop-
erties with the behavioural state of animals. Ideally, this includes 
manipulating the behaviour of the animal and investigating the 
resulting effect on different visual tuning properties. Although this 
is experimentally challenging and time-consuming, it is straightfor-
ward with a deep-learning-based neuronal predictive model that 
emulates the biological circuit. This allowed us to selectively study 
how tuning to colour or spatial features changes with behaviour. To 
perform our in in silico tuning characterization, we created a CNN 
model, which was split into two parts: the core and the readout. The 
core computed latent features from the inputs, which were shared 
among all neurons. The readout was learned per neuron and mapped 
the output features of the core onto the neuronal responses through 
regularized regression.

Core of the CNN model. We based our model on the work from ref. 19, as 
it was demonstrated to set the state of the art for predicting the respons-
es of a population of mouse V1 neurons. In brief, we modelled the core as 
a 4-layer CNN, with 64 feature channels per layer. Each layer consisted 
of a 2D convolutional layer followed by a batch-normalization layer and 
ELU nonlinearity64,65. Except for the first layer, all convolutional layers 

were depth-separable convolutions66, which led to better performance 
while reducing the number of core parameters. Each depth-separable 
layer consisted of a 1 × 1 pointwise convolution followed by a 7 × 7 
depth-wise convolution, again followed by a 1 × 1 pointwise convolu-
tion. Without stacking the outputs of the core, the output tensor of the 
last layer was passed on to the readout.

Readout of the CNN model. To obtain the scalar firing rate for each 
neuron, we computed a linear regression between the core output 
tensor of dimensions x ∈ w h c× ×R  (w, width; h, height; c, channels) and 
the linear weight tensor ∈ c w h× ×Rw , followed by an exponential linear 
unit (ELU) offset by one (ELU+1) to keep the response positive. We made 
use of the recently proposed Gaussian readout19, which considerably 
simplifies the regression problem. Our Gaussian readout learned the 
parameters of a 2D Gaussian distribution N μ( , Σ )n n  and sampled a loca-
tion of height and width in the core output tensor in each training step 
for every image and neuron. Given a large enough initial Σn to ensure 
gradient flow, Σn, that is, the uncertainty about the readout location, 
decreased during training for more reliable estimates of the mean loca-
tion μn, which represented the centre of the receptive field of a neuron. 
At inference time (that is, when evaluating our model), we set the read-
out to be deterministic and to use the fixed position μn. We therefore 
learned a position of a single point in core feature space for each neuron. 
In parallel to learning the position, we learned the weights of the weight 
tensor of the linear regression of size c per neuron. Furthermore, we 
made use of the retinotopic organization of V1 by coupling the record-
ed cortical 2D coordinates p R∈n

2 of each neuron with the estimation 
of the receptive field position μn of the readout. We achieved this by 
learning a common function μn = f(pn), which is shared by all neurons. 
We set f to be a randomly initialized linear fully connected network of 
size 2-2 followed by tanh nonlinearity.

Shifter network. Because we used a free viewing paradigm when pre-
senting the visual stimuli to the head-fixed mice, the receptive field 
positions of the neurons with respect to the presented images had 
considerable trial-to-trial variability due to eye movements. To inform 
our model of the trial-dependent shift of the receptive fields of neu-
rons, we shifted μn, the receptive field centre of the model neuron, 
using the estimated pupil centre (see the section ‘Neurophysiologi-
cal experiments’). We accomplished this by passing the pupil centre 
through a small shifter network, a three-layer fully connected network 
with n = 5 hidden features, again followed by a tanh nonlinearity, that 
calculates the shift Δx and Δy per trial. The shift was then added to μn 
of each model neuron.

Input of behaviour and image position encoding. In addition to 
the green and UV channels of the visual stimulus, we appended five 
extra channels to each input to the model. We added three channels 
of the recorded behavioural parameters in each given trial (pupil 
size, instantaneous change of pupil size and locomotion speed), such 
that each channel simply consisted of the scalar for the respective 
behavioural parameter, transformed into the stimulus dimensions. 
This enabled the model to predict neuronal responses as a func-
tion of both visual input and behaviour and therefore to learn the 
relationship between behavioural states and neuronal activity. This 
modification enabled us to investigate the effect of behaviour by se-
lecting different inputs in the behavioural channels while optimizing 
the image channels. Furthermore, we added a positional encoding 
to the inputs, which consisted of two channels that encoded the 
horizontal and vertical pixel positions of the visual stimulus. These 
encodings can be thought of as simple greyscale gradients in either 
direction, with values from [−1, …, 1]. Appending position encod-
ings of this kind has been shown to improve the ability of CNNs to 
learn spatial relationships between pixel positions of the input image 
and high level feature representations22. We found that including 
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the position embedding increased the performance of our model 
(Extended Data Fig. 2b). We also observed a smoother gradient of 
colour tuning across the different scan fields (Fig. 2b and Extended 
Data Fig. 6b) when adding the position encoding. This indicated 
that the model learned the well-described colour sensitivity tuning 
of mouse cone photoreceptors across visual space.

Model training and evaluation
We first split the unique training images into the training and validation 
set, using a split of 90% to 10%, respectively. Then we trained our  
networks with the training set by minimizing the Poisson loss 

r r r∑ (ˆ − logˆ )m i
m i i i1
=1

( ) ( ) ( ) , where m denotes the number of neurons, r̂  the 
predicted neuronal response and r the observed response. After each 
full pass through the training set (that is, epoch), we calculated the 
correlation between the predicted and the measured responses across 
all neurons on the validation set: if the correlation failed to increase 
during a fixed number of epochs, we stopped the training and restored 
the model to its state after the best performing epoch. After each stop-
ping, we either decreased the learning rate or stopped training alto-
gether if the number of learning-rate decay steps was reached. We 
optimized the parameters of the network through stochastic gradient 
descent using the Adam optimizer67. Furthermore, we performed an 
exhaustive hyperparameter selection using a Bayesian search on a 
held-out dataset. All parameters and hyperparameters can be found 
in our GitHub repository (see the Code availability section). When 
evaluating our models on the test set (Extended Data Fig. 2a–c), we 
used two different types of correlation. First, referred to as test cor-
relation, we computed the correlation between the prediction by the 
model and neuronal responses across single trials, including the trial-
by-trial variability across repeats. Second, we computed the correlation 
of the predicted responses with the average responses across repeats 
and refer to it here as the correlation to average. We also computed the 
fraction of variance explained, using r̂ER

2  proposed in ref. 68, which pro-
vides an unbiased estimate of the variance explained based on the 
expected neuronal response across image repetitions. However, our 
model computed different predictions for each repetition of a given 
test set image because we also fed the behavioural parameters of each 
trial into the model. We therefore simply averaged the model responses 
across repetitions and calculated the r̂ER

2  accordingly. When evaluating 
the model performance for the pharmacology conditions (Extended 
Data Fig. 2c), we found that they led to a lower model performance 
compared with the control condition. This could be due to the fact that 
for the dilated condition, we did not incorporate pupil-related behav-
ioural parameters into the model owing to difficulties in pupil tracking 
for this pharmacological condition. For the drug condition with car-
bachol, we selected a subset of trials in which the pupil was constricted 
(see the ‘Pharmacological manipulations’ section), which led to fewer 
trials to train the models with. Finally, for some of our datasets that 
had either a low number of trials or a low yield of neurons, we trained 
a single model on multiple datasets19, such that the convolutional core 
of the model was trained with more examples. The training of the per-
neuron readout was unaffected by this joint training of datasets. We 
assigned a model identifier to each trained model (which can be found 
in Supplementary Table 1) such that datasets that were trained together 
in one model could be easily identified.

Ensemble models
For all analyses and for the generation of MEIs, we used an ensemble 
of models rather than individual models. Instead of training just one 
model for each dataset, we trained ten individual models that were 
initialized with different random seeds. We then selected the five best 
models as measured by their performance on the validation set to be 
part of a model ensemble. The inputs to the ensemble model were 
passed to each member, and the resulting predictions were averaged 
to obtain the final model prediction.

Generation of MEIs
We used a variant of regularized gradient ascent on our trained deep 
neural network models to obtain a MEI image for each neuron, given 
by x ∈ h w c× ×R . Because of our particular model inputs (see the section 
‘Input of behavioural parameters and image position encoding’), each 
MEI, like the natural images used for training, had seven channels of 
which we optimized only the first two: the green and UV colour chan-
nels. To obtain MEIs, we initialized a starting image with Gaussian white 
noise. We set the behavioural channels of the starting image to the 
desired behavioural values (usually <3rd and >97th percentile for quiet 
and active states, respectively). In addition, we set the position chan-
nels to the default position encoding. Then, in each iteration of our 
gradient ascent method, we presented the image to the model and 
computed the gradients of the first two image channels (green and UV) 
with respect to the model activation of a single neuron. During gradi-
ent descent optimization, we smoothed the gradient by applying Gauss-
ian blur with a σ of 1 pixel. To constrain the contrast of the image, we 
calculated the Euclidean (L2) norm of the resulting MEI
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across all pixels MEIijk of the two colour channels c and compared the 
L2 norm to a fixed norm budget b, which we set to 10. The norm budget 
can be effectively thought of as a contrast constraint. An L2 norm of 10, 
calculated across all pixel intensities of the image, proved to be optimal 
such that the resulting MEI had minimal and maximal values similar 
to those found in our training natural image distribution. If the image 
exceeded the norm budget during optimization, we divided the entire 
image by factor fnorm with fnorm = ∥MEI∥2/b. Additionally, we made sure 
that the MEI could not contain values outside the 8-bit pixel range by 
clipping the MEI outside these bounds, corresponding to 0 or 255 pixel 
intensity. As an optimizer, we used stochastic gradient descent with a 
learning rate of 3. We ran each optimization for 1,000 iterations, without 
an option for early stopping. Our analyses showed that the resulting MEIs 
were spatially highly correlated across behavioural states (Extended 
Data Fig. 5a–c). To validate this finding, we performed a control experi-
ment using two separate models exclusively trained on trials from active 
or quiet states. We again split the trials into quiet and active periods 
using pupil size (quiet, <50th percentile; active, >75th percentile). When 
inspecting the MEIs generated from these two models, we found that 
the MEIs were again highly correlated across colour channels, albeit less 
than for the model that was trained on the entire data. This can partially 
be explained by the limited amount of data for the model trained with 
trials from the active state that occurred less frequently in our data. 
Furthermore, we found that the spatial structure of MEIs of anatomically 
matched neurons across the control and pharmacology conditions was 
highly similar, which suggested that the two models trained separately 
both converged on the same tuning properties, despite differences in 
the prediction performance (Extended Data Fig. 2)

Spectral contrast
For estimating the chromatic preference of the recorded neurons, we 
used spectral contrast (SC). It is estimated as a Michelson contrast 
ranging from –1 to 1 for a neuron responding solely to UV and green 
image contrast, respectively. We decided to quantify the spectral 
sensitivity in relative terms for each behavioural state because visual 
responses to both green and UV stimuli are gain modulated in an active 
state. Therefore, interpretation of absolute response amplitudes to 
UV and green stimuli across behavioural states can be challenging. 
See Extended Data Fig. 6a,d for an illustration of how responses to 
stimuli of diverse spectral contrasts are gain modulated during an 
active state. We define SC as
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where rgreen and rUV correspond to the following criteria: (1) the norm of 
the green and UV MEI channels to estimate the chromatic preference of 
neurons in the context of naturalistic scenes; (2) the amplitude (mean of 
all pixels >90th percentile) of the UV and green spatial STAs to estimate 
the chromatic preference of neurons in the context of the sparse noise 
paradigm; (3) the norm of the green and UV channels of reconstructed 
images to quantify chromatic preference at a populational level; and 
(4) the norm of the green and UV channels of simulated Gabor recep-
tive fields to obtain each simulated chromatic preference of neurons.

In silico colour-tuning curves
To generate in silico colour-tuning curves for recorded V1 neurons, we 
systematically varied the L2-norm of the green and UV MEI channels 
while keeping the overall norm across colour channels constant (with 
norm = 10). We used n = 50 spectral contrast levels, ranging from all 
contrast in the UV channel to all contrast in the green channel. We then 
presented the modified MEIs to the model and plotted the predicted 
responses across all n = 50 spectral contrast levels. Modified MEIs were 
either presented to the model for a quiet or active state (see also above).

Temporal dynamics of shift in colour tuning with behaviour
To investigate the timescale of the shift in colour selectivity with behav-
iour, we tested how fast we could observe the shift after a transition 
from a quiet to an active behavioural state. To achieve this, we identified 
state changes from quiet to active periods by detecting rapid increases 
in pupil size above a certain threshold (>95th percentile of differenti-
ated pupil size trace) after a prolonged quiet state period (>5 s below 
the 50th percentile of pupil size). Results were consistent across varying 
thresholds (data not shown). We then sampled active trials with pupil 
sizes >75th percentile of pupil size for varying readout windows (1, 2, 
3, 5 and 10 s) after that state change. Model training was performed 
on all quiet trials (<50th percentile of pupil size) and the selection of 
active trials. MEIs and STAs were then estimated as described above.

Reconstruction analysis
We visualized which image features the population of model neurons 
are sensitive to by using a new resource-constrained image reconstruc-
tion method based on the responses of a population of model neurons32. 
The reasoning behind the resource-constrained reconstruction is to 
recreate the responses of a population of neurons when presented with 
a target image by optimizing a new image and matching the responses 
of neurons given that new image as close as possible to the responses 
of the target image. By limiting the image contrast of the reconstructed 
image during the optimization, the reconstructions will only contain 
the image features that are most relevant to recreate the population 
responses, thereby visualizing the sensitivities and invariances of the 
population of neurons. As target images for our reconstruction, we 
chose natural images from our test set. For each reconstruction, we 
first calculated the responses f(x0) of all model neurons when presented 
with target image x0. We then initialized an image (x) with Gaussian 
white noise as the basis for reconstruction of the target image by min-
imizing the squared loss between the target responses and the 
responses from the reconstructed image f f( , ) = ( ) − ( )0 0

2x x x xℓ ∥ ∥  
subject to a norm constraint. In this work, we set the contrast (that is, 
L2-norm, see section ‘Generation of MEIs’ for details) of the reconstruc-
tions to 40, which corresponds to about 60% of the average norm of 
our natural image stimuli. We chose this value to be high enough to 
still allow for qualitative resemblance between the reconstructed image 
and the target while keeping the constraint tight enough to avoid an 
uninformative trivial solution; that is, the identical reconstruction of 
the target. We improved the quality of the reconstructions by using an 

augmented version of our model, which reads out each neuronal 
response not from the actual receptive field position μ of the model 
neuron (see ‘Readout’ for details), but from all height × width positions 
in feature space, except the n = 10 pixels around each border to avoid 
padding artefacts. This yielded 18 × 46 = 828 copies per neuron, and 
with the N = 478 original model neurons of mouse 1 in Extended  
Data Fig. 9c, this resulted in overall n = 395,784 augmented neurons 
for our reconstruction analyses. A stochastic gradient descent with a 
learning rate of 1,000 produced the qualitatively best reconstructions, 
resulting in images with the least amount of noise. We always optimized 
for 5,000 steps per image, without the early stopping step of the opti-
mization process.

Decoding analysis
We used a SVM classifier with a radial basis function kernel to estimate 
the decoding accuracy between the neuronal representations of two 
stimulus classes: either object 1 and object 2 (object discrimination) 
or dark object and no object (object detection). We used all neurons 
recorded within one scan and built four separate decoders for UV and 
green stimuli and small and large pupil trials, respectively. Then we 
trained each decoder with randomly selected training trials (usually 176 
trials, but only 60–126 trials for n = 3 scans owing to the lower number 
of trials with locomotion activity), tested its accuracy with randomly 
selected test trials (15% of train trials) and computed the mean accuracy 
across n = 10 different training–test trial splits. Finally, we converted 
the decoding accuracy into discriminability, the mutual information 
(MI) between the true class and its estimate using
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where Pij is the probability of observing the true class i and predicted 
class j and Pi: and P:j denote the respective marginal probabilities.

To quantify the significance for each animal, we compared the 
observed shift in decoding performance of UV versus green objects 
across behavioural states per animal with a distribution of shifts 
(n = 500) obtained when shuffling the labels of quiet and active trials 
using bootstrapping. Specifically, we sampled half of the training data 
and test data from quiet trials, and the other half from active trials at ran-
dom. We then trained SVMs to compute the decoding accuracy based on 
this particular shuffling. We repeated this n = 500 times and obtained 
a P value by computing the upper quantile of the real shift given the 
distribution of shifts obtained when shuffling the behavioural states.

Response reliability
We calculated the signal-to-noise ratio (SNR)68 as our measure for 
response reliability. It is defined as follows:
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∑ ( − )

ˆ
m i

m
i

1
=1

2
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The SNR expresses the ratio of the variance in the expected responses 
against trial-by-trial variability across repeats. Here, μi corresponds to 
the expected response to the ith stimulus, with the average expected 
response given as

∑μ
m

μ=
1

i

m

i
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The trial-by-trial variance σ̂ 2 was computed by averaging the variance 
across repeats over all stimuli. We assumed that σ̂ 2 is constant across 
all responses to different stimuli. This is achieved by a variance stabiliz-
ing transform of the responses r, for which we used the Anscombe 
transformation. We therefore obtained the transformed responses r̂  
as follows:
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The SNR is a reliable estimate of data quality for neuronal responses 
across diverse recording modalities and brain regions68.

Statistical analysis
We used generalized additive models (GAMs) to analyse the relationship 
of MEI spectral contrast, cortical position and behavioural state (see 
Supplementary Methods for details). GAMs extend the generalized 
linear model by allowing the linear predictors to depend on arbitrary 
smooth functions of the underlying variables69. In practice, we used 
the mgcv-package for R to implement GAMs and perform statistical 
testing. For all other statistical tests, we used Wilcoxon signed-rank 
test and two-sampled or one-sampled t-test.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The stimulus images and neuronal data used in this paper are stored 
at https://gin.g-node.org/cajal/Franke_Willeke_2022.

Code availability
Our coding framework uses general tools such as PyTorch, Numpy, 
scikit-image, matplotlib, seaborn, DataJoint70, Jupyter and Docker. 
We also used the following custom libraries and code: neuralpredic-
tors (https://github.com/sinzlab/neuralpredictors) for torch-based 
custom functions for model implementation; nnfabrik (https://github.
com/sinzlab/nnfabrik) for automatic model training pipelines using 
DataJoint; nndichromacy for utilities, (https://github.com/sinzlab/
nndichromacy); and mei (https://github.com/sinzlab/mei) for stimulus 
optimization.
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Extended Data Fig. 1 | Selection of coloured naturalistic scenes and pupil 
changes with monitor intensity. a, Mean intensity in 8-bit pixel space of green 
and blue channel of randomly sampled ImageNet images (light gray; n=6.000) 
and selected images (dark gray; n=6.000). Images were selected such that the 
distribution of mean intensities of blue and green image channels were not 
significantly different. Selected images can be downloaded from the online 
repository (see Data Availability in Methods section). b, Distribution of 
correlation and mean squared error (MSE) across green and blue image 
channels. To increase chromatic content, only images with MSE > 85 were 

selected for visual stimulation. c, Mean screen intensity (top) and pupil size 
changes (bottom) for n=50 trials. Dotted lines in the bottom indicate 5th and 
95th percentile, respectively. d, Screen-intensity triggered pupil traces (top) for 
n=3 scans performed in different animals. Vertical dotted line indicates time 
point of screen intensity increase. Bottom shows mean change in pupil size 
(black; s.d. shading in gray) upon increase in screen intensity. Compared to 
pupil dilation induced by the behavioural state, the changes in monitor 
intensity over time only elicited minor changes in pupil size.
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Extended Data Fig. 2 | Model performance and descriptive analysis of 
behaviour. a, Response reliability plotted versus test correlation (left) and 
correlation to average (right) for data shown in Fig. 2 (n=1.759 cells, n=3 scans, 
n=1 mouse). b, Mean Poisson loss (lower is better) for different models trained 
on the dataset from (a). The default model is used for all analysis, while models 
1-3 are shown for comparison. Dotted line marks mean Poisson loss of default 
model. The default model had significantly lower Poisson loss values compared 
to all three alternative models (Wilcoxon signed rank test (two-sided), n=1,759: 
p < 10−288 (model 1), 10−200 (model 2), 10−18 (model 3)). Error bars show 95% 
confidence interval. c, Mean response reliability, test correlation and 
correlation to average across neurons (error bars: s.d. across neurons; n=478 to 
n=1,160 neurons per recording) for n=10 models, with control and drug 

condition indicated below. d, Pupil size and locomotion speed trace of example 
animal, with active trials indicated by red dots. Trials were considered active if 
pupil size > 60th percentile and/or locomotion speed > 90th percentile. Plots on 
the right show mean pupil size across trials versus mean locomotion speed 
across trials. Dotted lines indicate 60th and 90th percentile of pupil size and 
locomotion speed, respectively. e, Example frames of eye camera for a quiet 
and active behavioural period for control and dilated condition. For the dilated 
condition, the eye was often squinted during quiet periods. f, Same as (e), but 
for control and constricted condition. Right plots show pupil size versus 
locomotion speed of trials used for model training for control and constricted 
condition.



Extended Data Fig. 3 | Spatial and temporal colour opponency of mouse V1 
neurons. a, MEIs of 21 exemplary neurons illustrate structural similarity across 
colour channels. b, Distribution of correlation across colour channels for 
dataset shown in Fig. 2. MEIs on top show example cells with relatively low 
correlation across colour channels. c, Schematic illustrating paradigm of  
10 Hz full-field binary white noise stimulus and corresponding response of 
exemplary neuron. d, Temporal kernels estimated from responses to full-field 
noise stimulus from (c) of three exemplary neurons and distribution of kernel 
correlations (n=924 neurons, n=1 scan, n=1 mouse; scan 1 from (e)). Dotted line 
indicates correlation threshold of -0.25 – cells with a kernel correlation lower 
than this threshold were considered colour-opponent. A fraction of neurons 

(<5%) exhibited colour-opponent temporal receptive fields (see also 71) in 
response to this full-field binary noise stimulus – in line with recent retinal  
work 60. e, Neurons recorded in 3 consecutive scans at different positions 
within V1, colour-coded based on colour-opponency (red: opponent).  
f, Temporal kernels in response to full-field coloured noise stimulus of three 
exemplary neurons (left) and MEIs of the same neurons. Neurons were 
anatomically matched across recordings by alignment to the same 3D stack. 
This indicates that colour-opponency of mouse V1 neurons depends on 
stimulus condition, similar to neurons in mouse dLGN 72, which might be  
due to e.g. differences in activation of the neuron’s surround or static versus 
dynamic stimuli.
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Extended Data Fig. 4 | Model recovers colour opponency and colour 
preference of simulated neurons. a, We simulated neurons with Gabor 
receptive fields (RFs) of varying size, orientation, spectral contrast and 
colour-opponency (correlation across colour channels). Then, responses of 
simulated neurons with Gabor RFs were generated by multiplication of the RFs 
with the natural images also used during experiments. Corresponding 
responses were passed through a non-linearity and a poisson process before 
model training. Model predictions and optimized MEIs closely matched the 
simulated responses and Gabor RFs, respectively. b, Gabor RFs and 

corresponding MEIs of four example neurons, some of them with 
colour-opponent RFs and MEIs. c, Spectral contrast of Gabor RFs plotted 
versus spectral contrast of computed MEIs. The model faithfully recovered the 
simulated neurons’ colour preference. Only extreme colour preferences were 
slightly underestimated by our model, which is likely due to correlations across 
colour channels of natural scenes. This also suggests that it is unlikely that the 
low number of colour-opponent MEIs (Extended Data Fig. 3) is due to an artifact 
of modelling. d, Correlation of the MEI with the ground truth gabor RF.



Extended Data Fig. 5 | MEI structure is consistent across quiet and active 
states. a, MEIs optimized for a quiet (top row of each sub-panel) and active 
(bottom row) behavioural state of 18 example neurons illustrate structural 
similarity of MEIs across states. b, MEIs of two exemplary neurons with low 
correlation across behavioural states. c, Distribution of MEI correlation across 
states (n=1,759 neurons, n=3 scans, n=1 mouse). d, MEI activation for 
incongruent behavioural state (n=1,759 neurons, n=3 scans, n=1 mouse). Gray: 

Model activation of MEI optimized for a quiet state presented to the model for 
active state relative to model activation of MEI optimized and presented for 
active state (activation=1). Red: Model activation of MEI optimized for active 
state presented to the model for quiet state relative to model activation of MEI 
optimized and presented for quiet state (activation=1). This suggests that MEIs 
optimized for different behavioural states lead to similar activations in the 
model and thus share similar tuning properties for the majority of neurons.
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Extended Data Fig. 6 | Behavioural modulation of colour tuning of mouse 
V1 neurons - additional data. a, MEIs optimized for quiet and active state of 
exemplary neuron and corresponding colour tuning curves. b, Neurons 
recorded in posterior V1 colour coded based on spectral contrast of their quiet 
state MEI (top) and distribution of spectral contrast along posterior-anterior 
axis of V1 in an additional example animal. Black line corresponds to binned 
average (n=10 bins), with s.d. shading in gray. c, Like (b), but for active state.  
d, Mean of colour tuning curves of neurons from (b, c), aligned with respect to 
peak position of quiet state tuning curves. Shading: s.d. across neurons from 
this scan. Top shows higher model activation for active state tuning curves, in 
line with gain modulation of visual responses. Bottom shows peak-normalized 

tuning curves, illustrating (i) a shift towards lower spectral contrast values for 
the peak response, (ii) lower activation relative to peak for green-biased stimuli 
for an active state and (iii) stronger activation relative to peak for UV-biased 
stimuli for an active state. This suggests that during an active state, the 
increase in UV-sensitivity is accompanied by a decrease in green-sensitivity.  
e, Density plot of model activation in response to MEIs optimized for a quiet 
versus an active behavioural state, for n=6,770 neurons from n=7 mice. f, Mean 
of peak-normalized colour tuning curves of quiet (black) and active state (red), 
aligned with respect to peak position of quiet state tuning curves for n=3 scans 
from n=3 mice. Shading: s.d. across neurons.



Extended Data Fig. 7 | Behavioural shift of colour preference of mouse V1 
neurons in the context of a coloured sparse noise paradigm. a, Activity of 
n=50 exemplary V1 neurons in response to UV and green On and Off dots (10∘ 
visual angle) flashed for 0.2 seconds and simultaneously recorded locomotion 
speed and pupil size. Horizontal dashed lines indicate thresholds for quiet 
(black; < 50th percentile of pupil size) and active trials (red, > 75th percentile of 
pupil size). We adjusted the definition of quiet and active state compared to  
our in-silico analysis to ensure a sufficient number of trials in each state despite 
the shorter recording time (25 minutes for sparse noise versus 120 minutes  
for naturalistic images). Shading below in red and gray highlights trials above 
or below these thresholds. Bottom images show single stimulus frames.  
b, Spike-triggered average (STA) of 4 example neurons estimated from quiet 
and active trials, separated by posterior and anterior recording position. STAs 
estimated based on On and Off stimuli were combined to yield one STA per cell 
and pupil size. c, Neurons recorded in three consecutive experiments along the 
posterior-anterior axis of V1 (n=981 neurons, n=3 scans, n=1 mouse), colour 
coded based on spectral contrast of their STA estimated for quiet (left) and 
active trials (right). Bottom shows spectral contrast along the posterior- 
anterior axis of V1 of cells from (c, top), with binned average (black, n=10 bins) 
and s.d. shading (gray). Spectral contrast varied only slightly, but significantly 
along the anterior-posterior axis of V1 for quiet periods (n=981, p=10−7 for 
smooth term on cortical position of Generalized Additive Model (GAM); see 
Supplementary Methods). The small change in spectral contrast across the 
anterior-posterior axis of V1 is likely due to the fact that we pooled data from a 

wider range of pupil sizes. For an active state, optimal spectral contrast also 
changed with behavioural state (n=981, p=10−16 for behavioural state 
coefficient of GAM), with a significant interaction between cortical position 
and behavioural state modulation (p=10−7; see Supplementary Methods). d, 
Mean STA spectral contrast of quiet versus active state for n=6 scans from n=3 
mice. Error bars: s.d. across neurons recorded in one scan that passed quality 
threshold. Marker shape and filling indicate mouse ID and cortical position 
along the posterior-anterior axis, respectively. STA spectral contrast was 
significantly shifted (p=10−101/3.68*10−51/10−59/10−303, Wilcoxon signed rank test 
(two-sided)) towards UV for posterior and medial scan fields. The shift was not 
evident in anterior V1. This was likely due to the different definitions of quiet 
and active state in the model compared to the sparse noise recordings: For 
pupil size thresholds more similar to the ones used in the model (20th and 85th 
percentile), we observed a stronger UV-shift in STA colour preference with 
behaviour, also for anterior V1. e, Top: pupil size trace with state changes from 
quiet to active indicated by vertical dashed lines. Red dots show selected trials 
using a 3 second read-out window. Bottom: difference in STA spectral contrast 
of quiet versus active state for different read-out times after state change. All: 
all trials with quiet and active trials defined as < 20th and > 85th percentile of 
pupil size. Shuffle: all trials with shuffled behaviour parameters relative to 
neuronal responses. Dashed horizontal line indicates delta spectral 
contrast=0. Data shows mean and s.d. across neurons (n=996/702/964 cells, 
n=3 scans, n=3 animals).
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Extended Data Fig. 8 | Pharmacological pupil dilation replicates shift in 
colour selectivity with sparse noise stimulus. a, STAs of three example 
neurons, estimated for quiet trials in control condition (black) and dilated 
condition (red). b, Neurons recorded in three consecutive experiments across 
the posterior-anterior axis of V1 (n=1,079 neurons, n=3 scans, n=1 mouse), 
colour coded based on STA estimated for quiet trials in the dilated condition. 
See Extended Data Fig. 7 for STAs estimated for the control condition of the 
same animal. c, Spectral contrast of STAs of neurons from (b) along the 
posterior-anterior axis of V1 (red dots), with binned average (n=10 bins; red line) 
and s.d. shading. Black line and gray shading corresponds to binned average 
and s.d. of neurons recorded at the same cortical positions in control condition 
(cf. Extended Data Fig. 7). Spectral contrast significantly varied across 
anterior-posterior axis of V1 for the dilated condition (n=1,079, p=10−16 for 
smooth term on cortical position of GAM). Optimal spectral contrast  
changed with pupil dilation (n=1,079 (dilated) and n=943 (control), p=10−16  
for condition coefficient of GAM), with a significant interaction between 
cortical position and behavioural state modulation (see Supplementary 
Methods). d, Mean spectral contrast of quiet state STAs in control condition 
versus spectral contrast of quiet state STAs in dilated condition (n=10 scans, 
n=3 mice). Error bars: s.d. across neurons. Two-sample t-test (two-sided):  
p=10−135/10−20/10−29/10−194/0.0006.



Extended Data Fig. 9 | Reconstructions of coloured naturalistic scenes 
predict colour tuning shift for a population of neurons. a, Schematic 
illustrating reconstruction paradigm. As the receptive fields of neurons 
recorded within one of our scans only covered a fraction of the screen, we used 
an augmented version of our CNN model for image reconstruction where the 
receptive field of each model neuron was copied to each pixel position of the 
image except the image margins. For a given target input image (image 1), this 
results in a predicted response vector (R1) of length number of neurons times 
number of pixels. During image reconstruction, a novel image (image 2) is 

optimized such that its corresponding response vector (R2) matches the 
response vector of the target image as closely as possible. b, Green and UV 
image channels of exemplary test image (top) and reconstructions of this 
image for a quiet (middle) and active state (bottom). For reconstructions, 
neurons from scan 1 in Fig. 2 were used. c, Spectral contrasts of reconstructed 
test images (n=100) in quiet state versus active state for n=3 models trained on 
scans from n=3 animals. Wilcoxon signed rank test (two-sided): 
p=10−18/10−18/10−18.
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Extended Data Fig. 10 | Additional data and stimulus conditions for 
decoding paradigm. a, Exemplary frames of stimulus condition with lower 
object contrast than in Fig. 5c due to gray background in the object colour 
channel. Right: Scatter plot of decoding discriminability of green versus UV 
objects for quiet (gray) and active (red) trials for n=3 animals. Each marker 
represents the decoding performance of the SVM decoder trained on all 
neurons of the respective scan. The decoding performance for the two 
behavioural states are connected with gray lines, with slopes larger than one 
for all animals, corresponding to a larger increase in decoding performance for 
UV versus green objects. P-values obtained from a one-sided permutation 
test: < 0.012 (Mouse 1), < 0.032 (Mouse 2), < 0.112 (Mouse 3). b, Like (a), but for 
stimulus condition with objects as dark silhouettes and noise in the other 

colour channel. P-values obtained from a one-sided permutation test: < 0.02 
(Mouse 1), < 0.1 (Mouse 2), < 0.038 (Mouse 3). c, Like (a), but for stimulus 
condition with high contrast objects and no noise in the other colour channel. 
P-values obtained from a one-sided permutation test (see Methods for detail): 
0.44 (Mouse 1), 0.404 (Mouse 2), 0.024 (Mouse 3). The observed variability in 
(a) and (b) across animals might be related to different recording positions 
along the anterior-posterior axis of V1 and differences in the animal’s 
behaviour, i.e. the time spent in a quiet versus active behavioural state. For the 
stimulus condition in (c), we might also observe a ceiling effect caused by the 
fact that these stimuli are relatively easy to discriminate, as indicated by high 
object discriminability even during quiet behavioural periods.
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