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ABSTRACT 
In this study, a 13 degrees of freedom (DOFs) three-

dimensional (3D) human arm model and a 10 DOFs 3D robotic 
arm model are used to validate the grasping force for human-
robot lifting motion prediction. The human arm and robotic arm 
are modeled in Denavit-Hartenberg (DH) representation. In 
addition, the 3D box is modeled as a floating-base rigid body 
with 6 global DOFs. The human-box and robot-box interactions 
are characterized as a collection of grasping forces. The joint 
torque squares of human arm and robot arm are minimized 
subjected to physics and task constraints. The design variables 
include (1) control points of cubic B-splines of joint angle 
profiles of the human arm, robotic arm, and box; and (2) the 
discretized grasping forces during lifting. Both numerical and 
experimental human-robot liftings were performed with a 2 kg 
box. The simulation reports the human arm’s joint angle profiles, 
joint torque profiles, and grasping force profiles. The 
comparisons of the joint angle profiles and grasping force 
profiles between experiment and simulation are presented. The 
simulated joint angle profiles have similar trends to the 
experimental data. It is concluded that human and robot share 
the load during lifting process, and the predicted human 
grasping force matches the measured experimental grasping 
force reasonably well. 

Keywords: Motion planning, human-robot interaction, force 
sensors, sawyer robot, and inverse dynamic optimization. 

1. INTRODUCTION
Human-robot collaboration is a topic of study with a wide

range of applications and a significant economic impact. 

1 Corresponding author: yujiang.xiang@okstate.edu 

Collaboration between humans and robots can significantly 
accelerate production processes, enhance manufacturing quality, 
and lower structural costs. However, it is necessary to predict the 
human-robot lifting motion with grasping forces to avoid any 
human injuries. 

Researchers have developed various biomechanical 
prediction models for lifting over the previous few decades [1-
6]. Furthermore, human-robot interaction research has made 
great progress. Different learning techniques are currently being 
used by researchers to anticipate and execute lifting tasks 
successfully. Evrard et al. [7] presented a probabilistic 
framework for conducting a human-robot collaborative task with 
the help of a human operator. DelPreto and Rus [8] used EMG 
signals to estimate the human's intention in a real-time interface 
for controlling collaborative object lifting tasks. Calinon et al. 
[9] studied a robotic learning system to reproduce collaborative
lifting with a haptic interface. Xiang and Arefeen [4] developed
a human-human collaborative lifting motion prediction with
grasping forces. In addition, an optimization-based human-robot
collaborative lifting motion prediction has been developed in
previous research [10].

 This work extends our previous collaborative lifting 
prediction for the 3D and 2D skeleton models [4, 10]. This study 
aims to predict, measure, and validate the grasping force for 
human-robot lifting motion prediction. To predict the 
collaborative lifting motion and hand grasping forces, an inverse 
dynamics optimization formulation is proposed. A nonlinear 
programming (NLP) optimization problem is used to address the 
human-robot lifting problem. The objective function is the sum 
of human and robot joint torques squared, which is minimized 
using the SQP algorithm [11]. The optimization and 
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experimental results are presented, and a valid comparison is 
established. 
 
2. METHOD 
 
2.1 Human-robot system 

This study takes into account a 13 DOF 3D human skeleton 
arm model and a 10 DOF robotic arm model. A floating-base 
rigid box with 6 DOF is also utilized for lifting, as illustrated in 
Figure 1. The DH approach was used to construct all models 
[12]. Furthermore, two grasping force vectors (𝐟𝐟1𝑐𝑐 and 𝐟𝐟2𝑐𝑐) act on 
the box's two bottom edges. The equations of motion (EOM) of 
human, robot, and box systems are set up using the recursive 
Lagrangian dynamics formulation [4, 13]. The system's 
dynamics equation can be written as: 

τ𝑖𝑖 = tr �∂𝐀𝐀i
∂𝑞𝑞𝑖𝑖

𝐃𝐃𝑖𝑖� − 𝐠𝐠T 𝜕𝜕𝐀𝐀𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖

𝐄𝐄𝑖𝑖 − 𝐟𝐟𝑘𝑘T
𝜕𝜕𝐀𝐀𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝐆𝐆𝑖𝑖T𝐀𝐀𝑖𝑖−1𝐳𝐳0                   (1) 
 
where the first term is inertia and Coriolis torque, the second 
term is the torque due to gravity, the third term is the torque due 
to external forces, and the fourth term is the torque due to 
external moments in equation (1). Here, 𝐟𝐟𝑘𝑘 =
[𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 0]T is the external force applied on link k, and 
details refer to [4]. 
 

      
(a)                                          (b) 
 

 
(c) 

FIGURE 1: (a) THE 3D HUMAN SKELETAL ARM MODEL, (b) 
3D BOX MODEL, AND (c) SAWYER ROBOTIC ARM 

2.2 External forces as design variables 
 

External forces can be expressed in equation (1) as fixed or 
variable quantities. This study treats the grasping external forces 
between the human and the box as unknowns (design variables). 
As a result, the EOM's joint torques are a function of both state 
variables 𝒒𝒒 and varying external forces (grasping forces). In 
order to use gradient-based optimization, the sensitivity of joint 
torque with respect to external force are determined. The joint 
torques are affected by the external load in the vertical direction 
𝑓𝑓𝑘𝑘𝑘𝑘 in two ways: explicitly (𝜏𝜏𝑖𝑖𝑜𝑜) through the EOM and implicitly 
(𝜏𝜏𝑖𝑖~) through the passive ground reaction forces (GRF). The 
differentiation of 𝜏𝜏𝑖𝑖𝑜𝑜 with respect to 𝑓𝑓𝑘𝑘𝑘𝑘 can be calculated directly 
from the third term on the RHS of equation (1) as: 

 
∂𝜏𝜏𝑖𝑖

𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
= [0 1 0 0] 𝜕𝜕𝐀𝐀𝑖𝑖

𝜕𝜕𝑞𝑞𝑖𝑖
𝐅𝐅𝑖𝑖                                                     (2) 

 
Furthermore, the GRF is derived using an active-passive 
algorithm [4] from human global joint torques, as shown in 
Figure 2. 

 
 

FIGURE 2: ACTIVE-PASSIVE (GRF) FEEDBACK 

Here, 𝐟𝐟𝐺𝐺𝐺𝐺𝐺𝐺 = [𝑓𝑓𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺(𝜏𝜏1~3
𝑜𝑜 ), 𝑓𝑓𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺(𝜏𝜏1~3

𝑜𝑜 ), 𝑓𝑓𝑧𝑧𝐺𝐺𝐺𝐺𝐺𝐺(𝜏𝜏1~3
𝑜𝑜 ), 0]T 

is defined as a function of 𝜏𝜏1~3
𝑜𝑜  (active global joint torques). The 

chain rule is then used to compute the sensitivity of joint torque 
𝜏𝜏𝑖𝑖~ with respect to 𝑓𝑓𝑘𝑘𝑘𝑘 due to GRF: 
 
∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑘𝑘𝑘𝑘
= ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺
∂𝑓𝑓𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺

∂𝜏𝜏1~3
𝑜𝑜

∂𝜏𝜏1~3
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
+ ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺
∂𝑓𝑓𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺

∂𝜏𝜏1~3
𝑜𝑜

∂𝜏𝜏1~3
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
+ ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑧𝑧𝐺𝐺𝐺𝐺𝐺𝐺
∂𝑓𝑓𝑧𝑧𝐺𝐺𝐺𝐺𝐺𝐺

∂𝜏𝜏1~3
𝑜𝑜

∂𝜏𝜏1~3
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
           (3) 

 ∂𝜏𝜏𝑖𝑖
~

∂𝑓𝑓𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺
= [1 0 0 0] 𝜕𝜕𝐀𝐀𝑖𝑖

𝜕𝜕𝑞𝑞𝑖𝑖
𝐅𝐅𝑖𝑖                                                  (4) 

 ∂𝜏𝜏𝑖𝑖
~

∂𝑓𝑓𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺
= [0 1 0 0] 𝜕𝜕𝐀𝐀𝑖𝑖

𝜕𝜕𝑞𝑞𝑖𝑖
𝐅𝐅𝑖𝑖                                                  (5) 

 ∂𝜏𝜏𝑖𝑖
~

∂𝑓𝑓𝑧𝑧𝐺𝐺𝐺𝐺𝐺𝐺
= [0 0 1 0] 𝜕𝜕𝐀𝐀𝑖𝑖

𝜕𝜕𝑞𝑞𝑖𝑖
𝐅𝐅𝑖𝑖                                                  (6) 

 
Finally, the sum of equations (2) and (3) gives the sensitivity of 
the joint torque with respect to the active external load 𝑓𝑓𝑘𝑘𝑘𝑘. 
 
  ∂𝜏𝜏𝑖𝑖
∂𝑓𝑓𝑘𝑘𝑘𝑘

= ∂𝜏𝜏𝑖𝑖
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
+ ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑘𝑘𝑘𝑘
                                                                  (7) 

 
Similarly, the external loads 𝑓𝑓𝑘𝑘𝑘𝑘 and 𝑓𝑓𝑘𝑘𝑘𝑘 sensitivity can be 
computed as follows: 
  ∂𝜏𝜏𝑖𝑖
∂𝑓𝑓𝑘𝑘𝑘𝑘

= ∂𝜏𝜏𝑖𝑖
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
+ ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑘𝑘𝑘𝑘
                                                                  (8) 

  ∂𝜏𝜏𝑖𝑖
∂𝑓𝑓𝑘𝑘𝑘𝑘

= ∂𝜏𝜏𝑖𝑖
𝑜𝑜

∂𝑓𝑓𝑘𝑘𝑘𝑘
+ ∂𝜏𝜏𝑖𝑖

~

∂𝑓𝑓𝑘𝑘𝑘𝑘
                                                                   (9)  
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2.3 Human-robot lifting experiment 
 

The IRB-approved collaborative human-robot lifting study 
was conducted at Oklahoma State University with a single 
healthy male. OptiTrack motion capture (MOCAP) was used to 
obtain 3D kinematic data at 120 Hz. The room was surrounded 
by twelve prime 13W cameras. The subject was instructed to lift 
a 2 kg box with the robot collaboratively for the lifting task. The 
data was processed using the motion capture software Motive 2.2 
after the experiment. The data were smoothed and transformed 
into a C3D file after all markers were labeled. After that, the C3D 
file was imported into Visual 3D. (C-Motion, Inc.). Following 
the marker protocol used in the experiments, a skeleton model 
was built. Coordinates, joint angles, and joint moments were 
generated using this skeleton model. The subject's 
anthropometric data were used to generate separate and accurate 
skeletal models, which enabled more precise calculations. 

The human hand grasping force was collected using force 
sensitive resistor (FSR) pads. These FSRs were attached to the 
lifting weight (box) (Figure 3). This weight was a wooden board. 
There were four sensors on the bottom of the box and two on the 
top. A metal plate was attached to each set on the top and bottom 
to distribute the force evenly between FSRs. The human grips 
the board with their thumb contacting the top set of sensors, and 
their other four fingers contacting the bottom set of sensors. The 
resistance of each FSR was measured using a voltage divider 
circuit connected to an Arduino. The Arduino was controlled by 
a desktop computer running a MATLAB data acquisition system 
through a wired connection. The red arrows in Figure 3 represent 
the location of the force vectors of the human’s fingers. 
 

 
 (a) TOP VIEW (b) BOTTOM VIEW 

FIGURE 3: LIFTING BOX 
 

The data collected by the Arduino was a voltage difference 
curve for each sensor over time. In order to determine the force 
corresponding to the detected voltages, the sensors were 
calibrated. A sensor was placed on a scale and incrementally 
loaded. The voltage and scale weight values were recorded. This 
calibration process was performed four times, and a spline curve 
was fit to this data. The spline served as a correlation between 
the recorded voltage and the actual force. A period of time was 
recorded for the sensors to determine if there was a voltage offset 
when they were unloaded. This value for each sensor was 

subtracted from the recorded data to correct for preloading in the 
system. 

A graphical user interface (GUI) was coded in MATLAB to 
start and stop the data recording and plot the sensor data as it was 
being collected (Figure 4). After the experiment, the force from 
the top resistors was summed to get the force applied by the 
thumb, and the sum of the force of the bottom resistors 
determined the force applied by the four fingers. The four-finger 
force minus the thumb force determined the total experimental 
hand reaction (grasping) force. 

 

 
FIGURE 4: DATA COLLECTION GUI 

 
3. OPTIMIZATION FORMULATION 
 
3.1 Design variables 
 

The design variables (x) are joint angle control points Phuman, 
Probot, and Pbox for human, robot, and the box, since the joint angle 
profiles are discretized by cubic B-splines. Furthermore, the 
grasping forces (𝐟𝐟1𝑐𝑐 and 𝐟𝐟2𝑐𝑐) between human and box, and robot 
and box, are treated as additional design variables. So, 𝐱𝐱 =
[𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢T ,𝐏𝐏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟T ,𝐏𝐏𝑏𝑏𝑏𝑏𝑏𝑏T , 𝐟𝐟1𝑐𝑐T, 𝐟𝐟2𝑐𝑐T]T. 

 
3.2 Objective functions 

 
The objective function is the sum of joint torque squares for 

human and robot [4, 10]. 
 

𝐽𝐽(𝐱𝐱) = 𝑤𝑤1 ∑ ∫ {𝜏𝜏𝑖𝑖(ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
2 (𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , 𝐟𝐟1𝑐𝑐)}𝑑𝑑𝑑𝑑 +𝑇𝑇

0
𝑛𝑛_ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑖𝑖=6

              𝑤𝑤2 ∑ ∫ {𝜏𝜏𝑖𝑖(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
2 (𝐏𝐏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝐟𝐟2𝑐𝑐)}𝑑𝑑𝑑𝑑𝑇𝑇

0
𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖=3                           (10) 

 
where 𝑛𝑛ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 13, 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 10, and 𝑇𝑇 is the total time. The 
total time duration T is a specified input parameter, 𝑤𝑤1 and 𝑤𝑤2 
are weighting coefficients for human and robot performance 
measure, respectively. 
 
3.3 Constraints 
 

The basic constraints include (1) joint angle limits, (2) 
torque limits, (3) feet/base contacting position, (4) box forward, 
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(5) box range of motion, (6) box grasping, (7) box global EOM, 
(8) initial and final box locations, and (9) static conditions at the 
start and end of the motion. Constraints (1-4) apply to both the 
human and the robot, while constraints (5-7) only apply to the 
box. The box grasping and box global EOM constraints are 
expressed in the following equations: 
 

𝑝𝑝ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡) − 𝑝𝑝𝑏𝑏𝑜𝑜𝑥𝑥𝐿𝐿 (𝑡𝑡) = 0                                         (11) 
       𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) − 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅 (𝑡𝑡) = 0                                       (12) 

�𝜏𝜏𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏� ≤ 𝜀𝜀,           𝑖𝑖 = 1, 2, 3,4,5,6                                    (13) 
where  𝑝𝑝ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑒𝑒𝑒𝑒𝑒𝑒_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  are the wrist and 
end-effector positions of the human and robot arm, respectively.  
𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝐿𝐿 , and 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅  are the left and right edge positions of the box. 
Furthermore,  𝝉𝝉𝑏𝑏𝑏𝑏𝑏𝑏 is the global joint force and torque values of 
the box, 𝜀𝜀 = 1 N. Two external grasping forces are acting on the 
box edges to keep it in balance. Detail formulations of all the 
constraints are referred to [4]. 

 
4. RESULTS 

 
The NLP problem for human-robot lifting is solved using an 

SQP method in SNOPT [11]. The initial guess for the 
optimization are 𝐏𝐏 = [𝐏𝐏ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,𝐏𝐏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐏𝐏𝑏𝑏𝑏𝑏𝑏𝑏] = 𝟎𝟎, 𝐟𝐟𝟏𝟏𝒄𝒄 = 𝐟𝐟𝟐𝟐𝒄𝒄 = 𝟏𝟏𝟏𝟏. 
There are total 224 design variables and 898 nonlinear 
constraints. The optimal solution is obtained in 15.93 seconds on 
a laptop with an Intel® Core™ i7 2.11 GHz CPU and 16 GB 
RAM. The collaborative box-lifting task required input data such 
as box weight of 2 kg, total time of 2.0 seconds, and initial and 
final box locations. 

 
(a) 

 

 
(b) 

FIGURE 5: (a) SIMULATION SNAPSHOTS AND (b) 
EXPERIMENT FOR HUMAN-ROBOT LIFTING  

First, Figure 5 illustrates a snapshot of the predicted 3D 
human-robot arm lifting motion from the simulation and the 
experimental scenario. Figure 6 presents a comparison of 
experimental and simulation joint angles for human shoulder 
flexion and elbow flexion. Furthermore, the joint torque profiles 
for human shoulder flexion, and elbow flexion are shown in 
Figure 7. Finally, human box grasping forces comparisons are 
presented in Figure 8.  

 

 

FIGURE 6: HUMAN ARM JOINT ANGLE PROFILES 
COMPARISON BETWEEN SIMULATION AND 

EXPERIMENT 
 

 

FIGURE 7: HUMAN ARM JOINT TORQUE PROFILES 
 

 
 

FIGURE 8: HUMAN BOX GRASPING FORCE 
COMPARISON BETWEEN SIMULATION AND 

EXPERIMENT 
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5. DISCUSSION 
 
The trajectory of the simulated human-robot lifting motion 

and the human-robot initial position in the experiment are 
depicted in Figure 5. In this study, the initial and final box 
locations are symmetric, and the optimization predicts a natural 
collaborative lifting motion. In Figure 6, the experimental elbow 
flexion joint angle profile is larger than the simulated joint angle 
profile. The experimental shoulder flexion joint angle is less than 
the simulated joint angle. Both the simulated and experimental 
joint angle profiles show similar trends. The lifting approach 
may differ from subject to subject, and it is quite difficult to 
follow the simulation results precisely in a real-world scenario. 
Furthermore, when the joint angle increases, so does the 
magnitude of the simulated joint torque profile of elbow flexion. 
In the same way, the magnitude of the joint torque profile of 
shoulder flexion follows the joint angle trend, as illustrated in 
Figure 7. 

In the comparison of human box grasping forces, the 
experimental vertical grasping force on the human side is 
initially lower than the simulated force. The experimental force, 
however, follows the simulated grasping force after the first 25% 
of the overall lifting duration. Five force sensors were utilized in 
the experiment, and it is anticipated that naturally, the human did 
not press the sensors adequately at first. But, after a while (25%) 
the human adapted to the robot motion during the lifting process. 

 

6. CONCLUSION 
 
In this study, the lifting motion and grasping forces of 

human-robot were predicted using an inverse dynamics 
optimization formulation. SNOPT, a gradient-based optimizer, 
effectively solved the NLP optimization problems. Simulation 
results were found to be reasonable. The simulation results are 
compared to the experimental data that include joint angle 
profiles from motion capture and hand grasping force profiles 
from force sensors. The proposed grasping force optimization 
formulation can be used to design the best human-robot 
collaborative lifting to prevent human injury. The next goal is to 
establish a lifting database, we will conduct the experiments and 
simulations with different subjects and varying box weights [14] 
in the future. 
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