SciStream: Architecture and Toolkit for Data Streaming
between Federated Science Instruments

Joaquin Chung
chungmiranda@uchicago.edu
The University of Chicago
Chicago, IL, USA
Argonne National Laboratory
Lemont, IL, USA

Zhengchun Liu
zhengchun.liu@anl.gov
Argonne National Laboratory
Lemont, IL, USA
The University of Chicago
Chicago, IL, USA

Wojciech Zacherek
zacherw @rose-hulman.edu
Rose-Hulman Institute of Technology
Terre Haute, IN, USA

Tekin Bicer
tbicer@anl.gov
Argonne National Laboratory
Lemont, IL, USA
The University of Chicago
Chicago, IL, USA

AJ Wisniewski
austinw6 @illinois.edu
University of Illinois at

Urbana-Champaign
Champaign, IL, USA

Raj Kettimuthu
kettimut@mcs.anl.gov
Argonne National Laboratory
Lemont, IL, USA
The University of Chicago
Chicago, IL, USA

Ian Foster
foster @anl.gov
Argonne National Laboratory
Lemont, IL, USA
The University of Chicago
Chicago, IL, USA

ABSTRACT

Modern scientific instruments, such as detectors at synchrotron light
sources, generate data at such high rates that online processing is
needed for data reduction, feature detection, experiment steering,
and other purposes. The same high data rates also demand memory-
to-memory streaming from instrument to remote computer, because
local computational capacity is limited and data transmissions that
engage the file system introduce unacceptable latencies. But effi-
cient and secure memory-to-memory data streaming is challeng-
ing to realize in practice, due to a lack of direct external network
connectivity for scientific instruments; and authentication and se-
curity requirements. In response, we propose here SciStream,
a middlebox-based architecture with appropriate control protocols
to enable efficient and secure memory-to-memory data streaming
between producers and consumers that lack direct network connec-
tivity. We describe the protocols that SciStream uses to estab-
lish authenticated and transparent connections between producers
and consumers, and the extensive experiments that we have con-
ducted to evaluate alternative implementation approaches for key
SciStream’s components. Experiments on the Chameleon Cloud
show that SciStream improves the throughput of a streaming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

HPDC 22, June 27-July 01, 2022, Minneapolis, MN

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00

https://doi.org/XXXXXXX. XXXXXXX

pipeline by an order of magnitude compared to state-of-the-art data
transfer methods, and adds only ~4 psec latency compared to an
ideal scenario in which producers and consumers have direct external
connectivity.

CCS CONCEPTS

* Networks — Middle boxes / network appliances; * Security and
privacy — Access control.

ACM Reference Format:

Joaquin Chung, Wojciech Zacherek, AJ Wisniewski, Zhengchun Liu, Tekin
Bicer, Raj Kettimuthu, and Ian Foster. 2022. SciStream: Architecture and
Toolkit for Data Streaming between Federated Science Instruments. In Pro-
ceedings of The 31st International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’22). ACM, New York, NY,
USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Recent technological advances allow scientific instruments to gener-
ate data at rates that can exceed tens of gigabytes per second [25].
Rapid analysis of generated data, e.g., to permit real-time feedback
and experiment steering, often requires computational capabilities
greater than those available at the experimental facility—and/or the
use of specialized computer systems [39]. Thus, the use of powerful
remote computers (e.g., compute clusters, supercomputers, and in
some circumstances, clouds: what we refer to here, without loss of
generality, as high-performance computing or HPC) for analysis
often becomes a necessity. The speed at which data can be moved
between experiment and HPC then becomes important, particularly
when rapid response is needed for experimental steering.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

‘) ‘)
1 ' 1 1
' ' Il 1
" . ‘ =
|] 1] -l
1 . File-based Data Movement | 9% 1

'

!

DTN

Scientific | Data Transfer | '
________ High-Performance
Computing Cluster

Instrument | Node (OTN) !
Shared File "SRRI, Science
System DMZ Parallel File

Science System

214

(a) State-of-the-art using file staging via intermediate file system

(- (- Memory to memory data Stroaming.. - - {7 -,
1 T .
=" M - WAN ; H

I ! I !
| i | :
I '

Scientific ! Gateway | ¢ 1
{ '

Instrument Node (GN) ! High-Performance
R — Science Computing Cluster

Science bmz

DMz

(b) Secure, memory-to-memory data streaming with intermediate hops.

Figure 1: Data movement approaches for remote data analysis
in scientific environments

For remote data analysis, current practice, as shown in Figure 1(a),
is often to stage data as files from experiment to HPC via an inter-
mediate file system: typically, one accessible from dedicated data
transfer nodes (DTNs) located in a Science DMZ [19] at the perime-
ter of the HPC facility’s campus network. The incoming data from
the wide area network (WAN) are received by services (e.g., Globus
GridFTP [46]) running on the DTNs, which write the data to the file
system; analysis codes running on HPC compute nodes then read the
data from the file system. This use of the intermediate disk-based file
system for data staging has the advantages of simplifying security
and permitting separate optimization of wide area transfer and local
data access [14], but can introduce significant performance degra-
dation, even when using a high-performance parallel file system. In
addition to the need to write and read the data, contention for the
shared file system can result in significant overhead [27].

Real-time analysis of streaming data, a need highlighted in recent
reports from federal agencies [1, 40, 51], requires (1) effective and
reliable methods for acquisition of network and computing resources
at a specific time for a specific period, (2) infrastructure for efficient
and secure data streaming from scientific instruments to remote com-
pute nodes, and (3) analysis of data streams at data generation rates
so that timely decisions can be taken. Methods and tools exist for
(1) [31] and (3) [11, 17], but have been lacking for (2). SciStream
addresses this gap by providing the infrastructure (architecture, sys-
tem software, etc.) necessary to enable memory-to-memory data
streaming between scientific instruments and remote HPC.

We note that scientific applications differ from many other stream-
ing applications in their high throughput requirements (a single
application may require >10 Gbps) and the fact that the data pro-
ducers (e.g., data acquisition applications on scientific instruments,
simulations on supercomputers) and consumers (e.g., data analy-
sis applications on HPC systems) are typically in different secu-
rity domains (and thus require bridging of those domains). The
SciStream system that we describe in this paper establishes the
necessary bridging and end-to-end authentication between source
and destination, while providing efficient memory-to-memory data
streaming. SciStream focuses on addressing these challenges so

J. Chung, et al.

that any data streaming tool that handles high volume and veloc-
ity can be readily used in scientific environments. In other words,
SciStreamis nota data streaming tool per se—rather, it is a tool to
address the infrastructural challenges that otherwise hinder memory-
to-memory data streaming in secure scientific environments.

Though NATs and other techniques provide mechanisms to punch
holes through firewalls and middleboxes have been used to accel-
erate data streaming in other contexts [16], SciStream addresses
unique needs that arise in scientific settings. These unique needs
include a) the ability to handle transfers across multiple security
domains with multiple user identities; b) the ability to support dele-
gated authentication and authorization mechanism as data streaming
is typically a part of larger scientific workflow; and c) the ability
to decouple these sophisticated identity and access management
functionality from the application so as to minimize the changes to
the application as well as to reuse as much of the security architec-
ture currently in place for file based communication. To meet these
needs, SciStream will leverage federated identity systems such
as InCommon [9] and identity and access management platforms
such as Globus Auth [15], which is widely adopted for file transfers.

SciStream intends to utilize the Science DMZ [19] that con-
nects internal and external networks, to host (on-demand) proxies
on specialized gateway nodes (existing DTNs or software-defined
switches can be used in place of gateway nodes where appropri-
ate) for creating bridges between the internal instrument/HPC net-
work and the external wide area network (WAN). The SciStream
toolkit includes negotiation and control protocols that allow users to
request resources from gateway nodes, as well as an implementation
of the on-demand proxy based on a Layer-4 (TCP) proxy with a
reconfigurable circular buffer.

This paper makes three major contributions:

¢ A middlebox-based architecture to enable (third-party initi-
ated) data streaming between nodes (with no direct external
network connection) in multiple security domains in scientific
environments.

o A suite of protocols to establish authenticated and transpar-
ent connection between producer and consumer (in different
security domains) via intermediate gateway nodes (aka mid-
dleboxes or proxies).

e A prototype and evaluation results that show SciStream
improves the throughput of an streaming pipeline by an order
of magnitude compared to file-system-based, state-of-the-art
data transfer methods.

The rest of the paper is organized as follows. We provide applica-
tion drivers on §2. We describe SciStream’s design considerations
in §3, design in §4, and implementation in §5. Section 6 presents
our evaluation results, we discuss challenges in §7, present related
work in §8, and conclude in §9.

2 APPLICATION DRIVERS

Analysis of scientific data as they are being acquired is emerging as
an important requirement in many science fields [23, 24]. Here we
describe such examples to motivate the need in scientific environ-
ments for moving data with low latency and high bandwidth from
memory of a scientific instrument to the memory of remote HPC.

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments

2.1 Light source applications

Light sources are crucial tools for addressing grand challenge prob-
lems in the life sciences, energy, climate change, and information
technology [10, 25]. For instance, the x-rays produced at the Ad-
vanced Photon Source (APS) enable scientists to study internal
morphology of materials and samples with very high spatial (atomic
and molecular scale) and temporal resolutions (<100 ps). These ex-
periments can generate massive amounts of burst data. For example,
tomographic imaging stations can collect 1,500 projections (images
each with 2048x2448 pixels) in 9 seconds with an Oryx detector,
generating data at >8 Gbps. These experiments are performed to ob-
serve time-dependent phenomena that might spread over long time
periods, resulting in very large datasets. Real-time streaming and
analysis of these experimental data enable scientists (or the control
software) to 1) make timely decisions that, in turn, can significantly
accelerate the scientific progress of lengthy experiments, 2) do smart
experimentation, such as changing the parameters interactively or
finalizing experimentation with only sufficient data, and therefore
can enhance the overall efficiency of end-to-end scientific workflow,
as demonstrated in [11, 18]. It has been demonstrated that such a
capability can double data acquisition and analysis speed [11, 45].

2.2 Cosmology workflows

To understand the Universe, cosmologists use large telescopes to
conduct observational surveys [50]. These surveys are becoming in-
creasingly complex as telescopes reach deeper into space, mapping
out the distributions of galaxies at farther distances. Cosmological
simulations that track the detailed evolution of structure in the Uni-
verse over time are essential for interpreting these surveys. In order
to achieve high-quality simulations, high temporal and spatial resolu-
tion are critical. Current (and next-generation) supercomputers (will)
allow them to attain high spatial resolution in large cosmological
volumes by simulating trillions of tracer particles. For example, a
trillion-particle simulation with the Hardware/Hybrid Accelerated
Cosmology Code (HACC) code [32] can generate huge amount of
data (several PBs of data in each run) that they store only one in every
five or ten snapshots. To overcome the storage issue, a pipelined data
analysis has been proposed in which the files are moved to a HPC
for analysis at the end of each snapshot during the simulation [39].
To analyze these snapshots as they are produced, the data needs to
be streamed directly from the memory of the compute nodes that
perform the simulation to the memory of the compute nodes that
perform the analysis.

3 DESIGN CONSIDERATIONS

The considerable success of the Science DMZ architecture is due
in large part to its clean separation of local and wide area concerns.
It allows for the creation of high-throughput, friction-free wide
area paths to data transfer nodes (DTNs) that are placed at the
perimeter of the institutional network. The local communication
between DTN and the scientific instruments or computing systems
typically happens through a file system that is mounted on both the
DTNs and instruments. To support scientific streaming applications,
we want to design an architecture that utilizes the science DMZ
but bypasses the file system and stream data directly to/from the
memory of instruments. Such an architecture needs to consider

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

P N
a et |
= ; - WAN (
HPC + il 1 HPC
Interconnect ! 1 Interconnect
1
1
)

Scientific or Ethernet i
Instrument :

Gateway
Node (GN) ! -

LR Science

21174

High-Performance
Computing Cluster

Science
ODP: On-demand Proxy

Figure 2: SciStream architecture for supporting efficient and
secure data streaming from data producer’s memory to remote
data consumer’s memory using gateway nodes and on-demand
proxies (ODP).

the unique requirements that arise in scientific environments (as
described in the previous section). We consider a middlebox-based
architecture that creates on-demand proxies between an instrument’s
LAN and the WAN as shown in Figure 2. We use on-demand proxies
because infrastructure requirements vary from one experiment to
the other: (1) instruments and HPC resources are reserved for each
individual experiment and (2) IP addressing schemes are not known
until resources are provisioned. Thus we must provide a solution that
can be instantiated for each new experiment request, and removed
upon termination. We next describe high-level design considerations
for the SciStream architecture.

3.1 Third-party streaming

One common data transfer pattern is streaming data between two re-
mote computers (or instruments), initiated by a “third-party” user or
application. This type of streaming allows users to initiate, manage,
and monitor producer-to-consumer data streaming from anywhere.
Further, it provides flexibility for integrating data streaming with
commonly used scientific workflow engines such as Galaxy [29],
Swift/T [57], Kepler [S], Panorama [20], and Pegasus [21], and their
transparent execution on remote resources. Third-party streaming
involves distinct control and data channels, with the control channel
used for sending protocol messages between system components
(e.g., to authenticate and authorize users, and to request initiation of
streaming) and the data channel providing the link between producer
and consumer processes for streaming data. The separation of the
control and data channels improves the extensibility of the data chan-
nel in a transparent way and reduces the impact of a data channel
crash. We want ScisStream to support third-party streaming.

3.2 Secure streaming

Securing the channels is important especially because SciStream
supports streaming data between geographically distributed facilities
with each facility in a different administrative (and thus different
security) domain. There are standard process for authenticating and
authorizing users and (control and data) connections for third-party
file transfers by using a campus identity through InCommon feder-
ation [9] as employed, for example, for Globus file transfers [15].
Such standard process is not sufficient for memory-to-memory data
streaming with intermediate hops.

End-to-end data streaming in SciStream involves four control
connections and three sets of data connections: more than used in
standard services supported on campuses (e.g., Globus uses two con-
trol and one set of data connections for each transfer request). But
SciStream employs four more internal connections - a control

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

connection between the application and SciStream control pro-
cess and a data connection between the application and SciStream
data process at both the producer and consumer side, more details in
§4.4. The authentication and authorization of the connections inter-
nal to a facility require a different approach. SciSt ream requires
a control connection between the application and SciStream con-
trol process and a data connection between the application and
SciStream data process at both the producer and consumer side.
SciStream should authenticate all control and data channels by
default. It should provide the ability to encrypt communication on
control and data channel on a need basis. The authentication and
authorization approaches should be designed to avoid changes to
streaming libraries and minimizes code changes to data producer and
consumer applications. As described in §4.2, SciStream uses a
shared key-based authentication for control connections and source-
based authentication for data connections.

3.3 General and Transparent Streaming

Each end-to-end data stream must traverse three network segments—
data producer to local proxy, local proxy to remote proxy, and remote
proxy to consumer. We consider the following three approaches to
bridging these network segments.

Network layer (L3) network address translation (NAT) or L3
tunnels: A NAT may be the easiest solution to deploy but is difficult
to scale, as it requires load balancers or other supporting technologies
to distribute traffic among several gateways. Furthermore, it is a
known issue that when NAT is deployed on software, it may have
a negative impact on throughtput performance. L3 tunnels avoid
the need to maintain stateful connections, but may introduce larger
header overhead to each IP packet.

Application layer (L7) proxies: L7 proxies would arguably be
the least complicated in terms of connection management, but the
gateway then needs to run multiple proxies, to support both standard
streaming libraries (e.g., ZeroMQ, RabbitMQ, nanosec, DASH) and
custom, application-specific approaches.

Transport layer (L4) proxies: An L4 proxy is agnostic to stream-
ing libraries, but complicates connection management as we need
to ensure that the number of transport layer connections for a given
streaming request is the same in each of the three network segments
listed above.

We want to make SciStream agnostic of streaming application
and avoid HPC resource reconfiguration, while at the same time
creating a flexible design that can support application-specific ap-
proaches. In addition, we want to make the chain of connections
transparent to the applications as much as possible. In §5.2 we
evaluate these approaches and provide our implementation of an
on-demand proxy for SciStream.

3.4 Provisioned vs. Best-effort Resources

Ideally, all network and compute resources needed to stream and
process data at generation rate would always already be acquired
and ready for use when streaming is initiated on SciStream, mak-
ing SciStream design less complicated. In fact, advance reserva-
tion of HPC resources is supported by many facilities, and some
scientific computing facilities even have a real-time queue serv-
ing on-demand requests. Some research and education networks

J. Chung, et al.

(e.g., ESnet, Internet2) support bandwidth reservation [31, 37]; other
efforts extend bandwidth reservations to the last mile inside the
campus [12, 36, 59]. Nevertheless, most applications still wait on
batch queues and use best-effort network transport. We want to make
sure that SciStream supports both scenarios. To support the sce-
nario where HPC and network resources are provisioned on-demand,
SciStream allows for provisioning the necessary gateway (proxy)
resources. To support the best-effort scenario, the SciStream con-
trol design (see §4.4) allows (for a given streaming request) the
third-party client, producer, and consumer to connect independently,
whenever they become ready.

4 SCISTREAM DESIGN

We architect SciStream to meet the design considerations of §3.
The overarching goal is that users be able to request resources for
their streaming analyses; as each scientific facility is an indepen-
dent administrative domain, we design SciStream as a federated
system in which participating facilities make their resources avail-
able through programmatic interfaces. We describe in the following
deployment options for gateway nodes (GNs) (§4.1), the software
components (§4.2), negotiation (§4.3), and control (§4.4) protocols
that compose SciStream.

4.1 Gateway Node deployment options

To switch between the WAN and HPC interconnect, gateway nodes
(GNs) may need to use IP over HPC interconnect and in some cases
HPC interconnect stack over Ethernet (e.g., for RoOCE). GNs should
also be compatible with newer Ethernet-compatible interconnects for
Exascale computers such as Slingshot and Omni-Path. Furthermore,
a wide range of scientific institutions may deploy SciStream,
and what works for a large scientific facility may not be best for
a university campus. A dedicated set of GNs will provide better
performance than repurposing existing DTNs to host SciStream
at the Science DMZ, since file-based data transfers can introduce
additional contention on the resources [43, 44, 47]. Dedicated GNs
will also be easier to maintain and manage. However, repurposing
existing DTNs may be more cost-effective for some institutions.
Figure 3 illustrates two options for deploying gateway nodes on a
Science DMZ. SciStream is designed to work in both scenarios.

4.2 Software components
We realize SciStream using three software components:

SciStream User Client (S2UC) is software with which the end user
and/or workflow engines/tools acting on behalf of the user interact
to orchestrate end-to-end data streaming. A request to S2UC must
provide (at least) the location of producer and consumer, the number
of streaming channels, and the required bandwidth in bps (either
per streaming channel or aggregate). S2UC allows the user to fetch
short-term proxy credentials through integration with federated iden-
tity management and certificate generation systems. It authenticates
(on behalf of the user) with SciStream Control Server (see next)
on the GNs and orchestrates the creation of end-to-end data channel.
It also generates shared keys that the user must pass to producer and
consumer applications in order for the applications to communicate

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments

Border " Core
Router Firewall Switch

Login Nodes

Compute Nodes

DTNs

Science DMZ
f— Iél/m Imi Parallel File
s SAN i HPC Cluster
s Interconnect link System

(a) Deploying gateway nodes (GNs)

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

ﬁ Login Nodes

Compute Nodes

Core
Border Firewall
Router

C s
Stream

DTNs

Science DMZ oY F_H
j— Iél,m ll’“i Parallel File
s SAN lin HPC Cluster
s |nterconnect link System

(b) Repurposing DTNs

Figure 3: Design options for deploying SciStream on a Science DMZ

with control elements of SciStream. Once data channel connec-
tions are established, the S2UC provides monitoring information
(e.g., streaming workflow status and throughput) to the user.

SciStream Control Server (S2CS) runs on a gateway node. It
interacts with S2UC, data producer / consumer and S2DS (see next).
It authenticates the user and producer / consumer applications (using
pre-shared keys) and creates a mapping between them. It manages
gateway node resources and SciStream Data Servers (S2DS),
including initiating, monitoring, and terminating S2DS processes.

SciStream Data Server (S2DS) runs on gateway nodes. It acts as a
proxy between the internal network (LAN or HPC interconnect) and
the external WAN and authenticates external connections between
remote facilities using proxy certificates that the user passes through
S2UC and the internal connections (with the producer/consumer
application) using source-based authentication methods.

4.3 Negotiation Protocol

Before a user can issue a request to SciStream, producer and
consumer systems must agree on the number of streaming channels
and bandwidth required to sustain the streaming data analysis. After
receiving a user request, S2UC will generate a unique ID and pass the
request to both producer and consumer S2CS. Each S2CS will check
available resources and respond by either accepting the request,
declining it, or offering a new allocation of resources. This new
allocation should honor the requested bandwidth but can change
the number of channels. It is possible that S2DS at either end need
to use more than the requested number of channels to satisfy the
bandwidth requirement. In such a scenario, S2CS will propose a
greater number of channels than the requested by the user. S2CS will
split the bandwidth equally among the number of channels. After
receiving all offers, S2UC will compute the maximum of the number
of requested channels by the user and the offers from both producer
and consumer S2CS. The user can accept or decline the offer from
S2UC. Upon acceptance, S2UC will initiate the control protocol as
described in §4.4.

% S2uC
User
I

Prod 52CS Cons 52Cs

Prod and Cons apps
negotiate number
of streaming channels
and expected BW

UserReq(protocol,
user_num_chan,
W,

prod_addr,

cons_addr)

genUniqueld()

par

ProdReq(unique id. num_chan, Bw) _|
>

Resource
Allocation

JI

]
ConsReq(unique_id, num_chan, BW)
|

A4

I

I

I

|

|

|

|

|

| Response(prod_num_chan) I
«
|

L

|

I

I

|

|

|

|
Resource
Allocation
|

|
|
|
|
:
Ig-- - - - - - Responselcons num chan}_________ 1

| |

T T

| |

num_chan = max(user_num_chan, | |
prod_num_chan, | |
cons_num_chan) | |
| |

| |

| |

| |

| |

| |

P |
Il1 Offerfunique id. num _chanj | JI
| offerResplAccept or Decline) |
|

Figure 4: SciStream negotiation protocol

4.4 Control Protocol

Figure 5 outlines the control flow used by SciStream to establish
streaming data channels between two facilities.

Here we assume that the data producer is ProdAPP running at
Facility 1 (F1) on the left side and the data consumer is ConsAPP
running at Facility 2 (F2) on the right. Before initiating an end-to-
end data streaming setup request with S2UC, the user should have
requested appropriate experimental / computing resources from both
facilities. The steps to form authenticated and transparent end-to-
end data streaming connections between ProdAPP and ConsAPP
(labeled with numbers in Figure 5) are shown below:

@ Send request. The user establishes a connection with S2UC
and submits a new request, which includes information such

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

6: SendUUID 1:REQ

L+ o0: Create |
Connection .,
Map

3: REQ

/Facility 1(F1)

J. Chung, et al.

3: REQ

Facility 2 (Fm

8: RESP *
ﬂ_-~N

ProdApp
Controller

& N
. 4:ReqlLstn

-

-

9: SendLstn
- ’

9: SendLstn
~
~

~

~+

Cons S2CS

’
+ 4:Reqlstn *,

’

7: Hello

~

ConsApp
Controller

13: Start

12: UpdT.argets

1
5: RESP

15: Stream Data

- =

14: Connect and Proxy

'\ 12: Ul:’-)dTargets Connection
5: RESP ;
| Cons S2DS | ConsApp
- — "

Figure 5: SciStream control protocol.

as connection details regarding the producer and consumer
facilities and the required bandwidth. For fully provisioned
scenarios, the request should also include a start and end
time. The user authenticates with the facilities via S2UC so
that S2UC obtains X.509 certificates [56], which S2UC can
use to act on the user’s behalf to authenticate and interact
with S2CSs at the producer and consumer. The negotiation
protocol of §4.3 happens within this step, but we omit it for
simplicity.

@ Acknowledge request. The S2UC issues a response to the

user, including connection information about the two facilities
as well as the unique id assigned to their request. The unique
id will be used later by other components, since multiple
incoming requests may be handled at once; it can also be
used to manually release the request.

@ Inform facilities. The S2UC relays the request information

to the S2CS located at each facility. Each S2CS then checks
that enough resources are available to handle the request; if
not, the S2CS raises an error, which is sent to the S2UC so
that the user can be notified.

@ Reserve resources. If enough resources are available, the

S2CS instantiates new S2DS instances and passes relevant
request information to each. Note that these instances need
not be hosted on the same machine.

@ Return listening ports. The S2DS allocates a port for data

to be sent through and will return this information back to
the S2CsS. The port is chosen automatically by the operating
system and can be reused upon termination of the S2DS.

@ Send unique-id. The user needs to give the unique id of

the request to the ProdAPP and ConsAPP controllers so
that they know which request is being set up. Note that this
communication is out-of-band of the SciStream control

protocol but still necessary (i.e., user does not communicate
with S2UC in this step).

@ Relay controller information. Both application controllers

establish communication with the S2CS. In particular, the
ProdAPP controller includes the ports ProdAPP listens on,
as well as other connection and resource information. Note
that steps @ and @ are both performed irrespective of when
the user submits the initial request.

Acknowledge controllers. Each S2CS issues a response

to the respective application controllers. In particular, the
ConsAPP controller includes the ports that the consumer
S2DS instances are listening on.

@ Centralize information. Each S2CS then relays connection

information to the S2UC. This step is needed in order to
bridge the connection between producer and consumer S2DS
over the WAN, but other connection information is also in-
cluded to offer transparency to the user.

Create connection map. The S2UC creates a connection

map defining each data movement path from ProdAPP to
ConsAPP. These paths are based upon available S2DS band-
widths, in order to evenly distribute requested resources.

@ Distribute connection map. The S2UC sends the connection

map to each S2CS so that it can update its internal structures
and propagate the new information to other components.

@ Update connections. Each S2CS relays the update connec-

tion information to the respective S2DS instances. In partic-
ular, the producer S2DS are informed of which consumer
S2DS they are to connect to, and send data to, over the WAN.

Start connection. The ConsAPP controller signals to ConsAPP

that the setup is complete and data is ready to be streamed.

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments

Connect and proxy. Each component in the data movement

path connects to the component from which it is to receive
data, so as to ensure that data are sent to the correct place and
will be received.
Stream data. Once the ProdAPP launches the request as-
sociated with this request’s unique-id and begins collecting
data, it transmits the data to the established producer S2DS
instances, which then forward the data to the consumer S2DS,
and finally to the ConsAPP.

To release a request, the user again submits a request to the S2UC
and includes the desired unique-id of the request to be released.
The s2UC will then relay the information to each S2CS so that the
appropriate resources can be released. This includes terminating
S2DS instances and releasing any ports associated with the request.
Finally, each S2CS will send a response to the S2UC so that it can
clean up any of its own resources allocated to the request.

5 IMPLEMENTATION

We describe the SciSt ream control protocol implementation (§5.1)
and evaluate S2DS implementation approaches (§5.2).

5.1 Control Protocol Implementation

The prototypes for the S2UC, S2CS, and the application controllers
are implemented in Python. The S2UC and S2CS are designed as
finite state machines to help with organization and for smoother error
handling. The S2UC also uses multithreading to handle multiple
incoming requests at once by assigning a dedicated worker thread
to each request. For all the components, any allocated resources for
a request are automatically cleaned up upon user request or error.
Additionally, all resources allocated by a particular component are
released upon program termination.

For preliminary benchmarks, the prototype architecture was tested
locally using a virtual machine running Ubuntu 20.10 with 4GB of
RAM. Initiating a data streaming request as seen in Figure 5 takes
~0.12 s per request, under the assumption that each step is executed
consecutively. Similar performance was achieved regardless of there
being tens of other requests already active. Releasing a request took
on average only 0.003 s. The memory footprint for each component
was also negligible, with values ranging from 10 MB for the S2UC
to 9 MB per S2CS process.

5.2 s2Ds Implementation Approaches

As mentioned in §3.3, SciStream’s S2DS can be implemented
as NAT, an L3 tunnel, an L4 proxy, or an L7 proxy. To maintain
SciStream application-agnostic, we would like to avoid the op-
tion of using L7 proxies as they require the GN to support user’s
libraries. As previously mentioned, NAT could be difficult to scale
as we may need load balancers to steer the traffic to the right GN and
if implemented in software it could hurt performance. Furthermore,
L3 tunnels would not work on all scenarios. Consider for example
the case in which only one end of the streaming pipeline lacks ex-
ternal connectivity. This means that one end of the tunnel should
be deployed/configured inside the user’s resources or application,
breaking the transparency requirement. Moreover, any L3-based so-
lution may require changes to the campus or Science DMZ network
in terms of routing. Thus, L4 proxies are the most general solution

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

Setup 1: Three Ethernet segments connected by two gateway nodes (GN)
—

Prod GN, GN, Cons
Subnet 1 Subnet 2 Subnet 3

Eth @ 10Gbps Eth @ 10Gbps Eth @ 10Gbps

Setup 2: An Infiniband (IB) segment connected to an Ethernet segment through a GN
—

Prod GN,
Subnet 1 Subnet 2

IB @ 56Gbps Eth @ 10Gbps

Cons

Figure 6: Experimental setup on Chameleon Cloud

to support memory-to-memory streaming analysis in an application-
agnostic and transparent way. Nevertheless, in the rest of this section
we present our evaluation of S2DS’s implementation approaches:
NAT for L3, TCP proxy for L4, and ZMQ Pub/Sub proxy for L7.

We evaluate the performance of S2DS implementation approaches
in terms of goodput (or the throughput measured at the consumer
application level) for two scenarios: bridging between two Ethernet-
based networks and between an Infiniband (IB) interconnect and
an Ethernet network. We also evaluate how much latency S2DS
adds to an streaming pipeline and how the presence of S2DS affects
the inter-message delay variation (or jitter) of a scientific streaming
pipeline. For our experiments, we assume that all resources have
been provisioned by the negotiation (§4.3) and control protocols
(§4.4). We conduct our evaluation on a LAN to avoid fluctuations
and transients that could happen on a WAN environment. This en-
sures our results are reproducible and allows us to create controlled
WAN conditions using Linux’s t ¢ and netem tools.

5.2.1 Experimental Setup. We conduct our experiments using
Chameleon, a reconfigurable, open experimental platform for com-
puter science research [38]. Chameleon has two sites connected
by a 100 Gbps WAN: one at the University of Chicago (UC) in
Chicago, IL, and the other at the Texas Advanced Computing Center
(TACC) in Austin, TX. We perform our experiments at TACC as
it has nodes with IB support. Each bare metal node has 48 cores,
128 GB of RAM, and two 10 Gigabit Ethernet network interface
cards (NICs); the nodes with IB support have one 10 Gigabit Eth-
ernet NIC and one 56 Gbps 4X FDR IB adapter card. Each node
runs Linux Ubuntu 20.04 as the OS, Python 3.8 for emulating the
data generation and consumption processes, and ZeroMQ [33] to
implement a Pub/Sub streaming application pipeline in Python. For
the IB nodes, we installed CentOS 7.9 as the OS.

Figure 6 shows our two experimental setups. Setup 1 is composed
of four bare metal servers and three Ethernet segments. The two
edge nodes act as producer and consumer, while the inner nodes
act as gateway nodes (GN). This setup can be reconfigured to use
only three nodes in which only the middle node functions a GN.
Setup 2 is composed of three bare metal servers, an IB segment, and
a Ethernet segment. Again, the edge nodes work as producer and
consumer, while the inner node works as GN.

5.22 Methodology. To evaluate the effect of inserting S2DS on
a scientific streaming analysis pipeline, we compare the application
goodput of SciStream with the ideal scenario in which producer
and consumer have direct connectivity over the network. We also

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

evaluate latency added by S2DS and how the presence S2DS affects
the inter-message delay variation of a scientific streaming analysis
pipeline. Our prototype of the S2DS is a transport layer (L4) proxy
with a reconfigurable circular buffer. We hypothesize that the pres-
ence of this buffer will help amortize the jitter produced by WAN
scenarios. For these experiments we focus on a TCP implementa-
tion, although S2DS could be implemented as a UDP proxy as well.
We further compare this implementation with a L7 proxy that uses
the Python implementation of ZMQ Pub/Sub proxy and L3 NAT
using iptables. We repeat each experiment 10 times and present
average values.

We conduct our evaluation on Chameleon’s TACC LAN with no
cross-traffic in the network. For the goodput evaluation, the producer
generates samples as fast as possible (i.e., no sampling delay). In
each experiment, we transfer 10 GB for a fixed sample size, which
we vary across experiments from 512 bytes to 1 MB in power-of-two
increments. For each experiment, we compute goodput as the size of
the received dataset (num_samples X sample_size) divided by the
elapsed time between the arrival of the first sample and the arrival
of the STOP message (A t = fstop — Ifirst_sample)- We configure
the circular buffer of the L4 S2DS to be 10 MB for all experiments,
corresponding to 10 messages for the largest sample size. We use
default settings for L7 proxy.

For latency and inter-message delay variation experiments the
producer generates 100,000 samples with a sampling delay of 1 ms.
The round-trip time (RTT) of each Ethernet segment is 136 ps (mea-
sured with ICMP ping), so the accumulated RTT from producer to
consumer, passing through two GNs is 408 ps. We compute inter-
message delay by subtracting the arrival time of a message to the
consumer minus the arrival time of the previous message (tj+1 — ;)
and store the result in an array. At the end of the experiment we
compute the average and standard deviation of our measurements to
obtain the latency and inter-message delay variation, respectively.

5.2.3 s2Ds Goodput Evaluation. Our experimental results show
that in the absence of cross-traffic and in the presence of a single
instance of S2DS, both NAT and the L4 proxy closely follow the
goodput of the ideal scenario in LAN environments (see Figure 7(a)).
The L7 proxy shows a bad performance for small to medium sample
sizes, but after 32 KB it starts catching up with the baseline and L4
proxy. We repeat this experiment with two GNs between producer
and consumer (see Figure 6, Setup 1). For the proxies we just run an
instance of the L4/L7 proxy on each GN, while for NAT we configure
the appropriate iptables on each GN. Figure 7(b) shows that the
goodput behavior is consistent with the one S2DS experiment. For
completeness, we evaluate the IB scenario (see Figure 7(c)) using
IP-over-IB (IPoIB).

Note that we optimized neither the OS nor our Pub/Sub appli-
cation for IPoIB, and only collect measurements for the L4 proxy
as this is best candidate for S2DS. For this experiment, we use the
all-Ethernet ideal scenario as comparison, because in real scenarios
the WAN connecting producer and consumer will always be Ethernet
based. We observe that the results are consistent with the previous
experiments and L4 S2DS closely follows the goodput of the ideal
scenario. We conclude that SciStream does not add significant
overhead to a scientific streaming analysis pipeline, although we
recommend to avoid L7 proxies for small-sized messages. We note

J. Chung, et al.

that, L4 proxy enables us to has a buffer to absorb the fluctuation
of WAN congestion (will be validated in §5.2.5). As discussed in
§3.2, L4 proxy also enables transparent secure streaming over WAN
without adding complexity to producer and consumer applications.

5.2.4 Latency and Inter-message Delay Variation. Streaming
analysis pipelines are highly sensitive to latency. Increased appli-
cation latency may result in a workflow missing a phenomenon
and thus not steering an experiment at the right time. We measure
SciStream’s added latency in the presence of two instances of
S2DS over a LAN environment. For these experiments, we generate
samples at 1 kHz on the producer side and measure the inter-message
delay at the consumer side for sample sizes from 512 bytes to 1 MB.
Figure 8(a) shows the average added latency for the ideal scenario
(no SciStream) and our three S2DS implementations: NAT, L4
proxy, and L7 proxy. We compute the added latency as the average
inter-message delay for each run minus 1 ms (sample generation
period); this encompasses the network propagation delay and the
added delay of the two S2DS instances. We observe that the added
latency is negligible. On average, the NAT adds 3.65 ps, the L4
proxy adds 4.23 ps, and the L7 proxy adds 4.30 ps.

Jitter is an important metric for defining the QoS of real time
streaming applications over IP-based networks. It is defined as the
variantion of the inter-packet delay, and can severely affect VoIP
or video streaming applications if it crosses certain threshold (e.g.,
150 ms for VoIP). Analogous to network jitter, the inter-message
delay variation can affect scientific streaming analysis pipelines.
For instance, if samples generated at a remote instrument do not
arrive on time to the supercomputer, precious computation time
may be wasted. Figure 8(b) shows the inter-message delay variation
experiment results. Again, we vary the message size from 512 bytes
to 1 MB in power-of-two increments. We observe that the inter-
message delay variation of the L4 proxy is almost two orders of
magnitude larger than the ideal scenario for small message sizes and
~30 ps larger than the ideal scenario for medium-to-large message
sizes. NAT and L7 proxy remain pretty close (+10 ps) to the ideal
scenario. Nevertheless, when we look at absolute numbers, the worst
case scenario for L4 proxy is ~4 ms, which is negligible when we
consider that the typical WAN RTT for remote analysis is an order
of magnitude larger.

5.2.5 Emulated WAN Evaluation. We study the effect of S2DS
on WAN scenarios by emulating long delays between producer
and consumer GNs using Linux’s tc and netem tools. For these
experiments we use a fixed message size of 256 KB as this provides
one of the best goodput results on previous experiments. We vary the
RTT from 10 ms to 100 ms in 10 ms increments. We measure both
goodput (see Figure 9(a)) and inter-message delay variation (see
Figure 9(b)). The value of zero in the X-axis of the plots represent
the results observed on the WAN environment when no synthetic
delay is added. The goodput results show that for RTTs between
10 ms and 50 ms, both L4 and L7 proxies perform better that the
ideal scenario and NAT. We attribute this performance gain to the
presence of buffering capabilities on the proxies, something that
both the ideal scenario and NAT lack. For the inter-message delay
variation results, the L4 proxy has a variation 400 ps smaller that the
ideal scenario, demonstrating that the presence of the circular buffer

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments HPDC '22, June 27-July 01, 2022, Minneapolis, MN

—— |deal
—o— L4 Proxy

Avg. Streaming Goodput (Gbps)
Avg. Streaming Goodput (Gbps)
Avg. Streaming Goodput (Gbps)

Ideal —— |deal
—o— L4 Proxy —o— L4 Proxy
? —%— L7 Proxy ? —u— L7 Proxy :
—m— NAT —m— NAT
0 0 0
BN o0 B B o B 2o Bo B i B 20 7o B B ot ot B
Sample size (bytes) Sample size (bytes) Sample size (bytes)
(a) One S2DS between two Eth segments (b) Two S2Ds across three Eth segments (c) One S2DS between IB and Eth segments

Figure 7: Streaming goodput performance evaluation in the presence of SciStream over LAN environments.

—&— |deal
—o— L4 Proxy
—#— L7 Proxy
—m— NAT

145 A

103 4
140 A

135 A

Avg. Latency (us)

Inter-message delay variation (us)

—A— |deal 102 |
130 4
—o— L4 Proxy
—%— L7 Proxy
157 —m— NAT
210)12 ol4 216 218 220 210 12 Sl4 16 ls 220
Sample size (bytes) Sample size (bytes)
(a) Added latency (b) Inter-message delay variation

Figure 8: Added latency and inter-message delay variance of a scientific streaming pipeline in the presence of two instances of S2DS.
SciStream adds at most 4 ms of latency with max. ~30 ps inter-message delay variance.

10 -
m —— Ideal 3 —&— ldeal
3 =
8 —o— L4 Proxy s —®— L4 Proxy

8 L
= —#— L7 Proxy = —#— L7 Proxy
a —=— NAT G0 ™ NAT
S S 10%4
O 6
o)
© ©
()] e
£,)
£ S
o 0
v 0
frar) @ 1024
% o £
(@) —
> ()
< €

0+— T T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100
Emulated RTT (ms) Emulated RTT (ms)
(a) Goodput as a function of RTT (b) Inter-message delay variance as a function of RTT

Figure 9: S2DS evaluation on an emulated WAN with a streaming application using a message size of 256 KB.

helps amortize the jitter on the WAN, similar to the effectiveness of
jitter buffer in VoIP scenarios [52, 53].

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

6 SCISTREAM EVALUATION

To demonstrate the benefits of SciStream, we compare a stream-
ing application running on a state-of-the-art scientific environment
configuration (i.e., DTNs and file-based data movement methods)
with the same application running over a SciStream environment
(i.e., GNs and memory-to-memory data streaming). As mentioned
in §1, the state-of-the-practice for data production, consumption,
and analysis in scientific environments involves generating all the
samples at the producer before starting a file-based data transfer to
the consumer. To enable remote streaming over the state-of-the-art
environment, we had to modify the workflow so that a producer
starts transferring samples as soon as they are completely written to
disk. We conduct these experiments on the Chameleon Cloud testbed
(see §5.2.1) using our Setup 1 configuration shown in Figure 6. As
Chameleon nodes do not have high-performance disks, we mount
the disk to RAM using the tmpfs tool. For SciStream we use
our implementation of L4 proxy with circular buffer.

In Figure 10, we emulate a set of synchrotron light source work-
flows to show the performance differences between variety of data
transfer methods. Specifically, we emulate data acquisition of X-
ray images with fixed sizes at 1/T Hz. We conduct experiments
with three sample sizes (small: 1 MB, medium: 4 MB, and large:
10 MB) and three time gaps between each sample production (T =
{1, 10,100} ms; i.e., 1000 Hz, 100 Hz, and 10 Hz.) For SciStream
the buffer size is always 10 times the sample size. We produce 1000
samples in each experiment and run each experiment five times. For
each run we measure the average completion time, i.e., the time
from the generation of the first sample at the producer until the
consumer has received the last sample. We divide the dataset size
(1000 x sample_size) by the completion time to obtain the average
goodput of each approach.

We present the average goodput for both approaches in Fig. 10,
showing the maximum achievable throughput with 100 ms, 10 ms,
and 1 ms gaps between samples, as well as the theoretical maximum
achievable value for each gap value. We observe that the state-of-the-
art method is always below the theoretical maximum for a 100 ms
gap with any sample size. This demonstrate that read/write opera-
tions to the file systems introduce significant delay even when the file
system is mounted in memory. On the contrary, SciStream outper-
forms the state-of-the-art method by an order of magnitude for 1 MB
samples with 1 ms gap between sample production. SciStream
maintains similar performance for the other configurations of the
experiment, and it is always able to achieve a goodput significantly
close to the theoretical maximum.

7 DISCUSSION

We discuss various aspects of the SciStream design.

7.1 Application Code Changes

We design SciStream to require only minimal application code
changes. In particular, S2CS and S2DS processes and the negoti-
ation and control protocols are designed so that application code
changes are required only at the higher level of the producer and
consumer applications and not in the streaming libraries that sit be-
tween the application and SciStream. For example, the consumer
application (with minimal code changes) interacts securely with the

J. Chung, et al.

S2CS and exchanges information that the streaming library (with no
code changes) needs to connect to the local S2DS and start receiving
the data stream from the producer.

7.2 Fault Detection and Recovery

We intend that SciStream provide mechanisms for detecting and
reporting failures, such as packet losses or process failures, via
SciStream control process (S2CS) and user client (S2UC) through-
out the application life cycle. These mechanisms provide necessary
information for applications to recover from failures. We think it
is easier to implement efficient fault recovery methods at the appli-
cation layer than in the infrastructure (SciStream), since appli-
cations have more information about their analysis pipelines. For
example, because a simulation code knows the data structures that
must be checkpointed during its execution, and a suitable checkpoint
frequency, it is well positioned to store that internal state to persistent
storage for failure recovery. In contrast, SciStream sees only a
bit stream, without any application-specific information, and thus
checkpointing within ScisStream would be resource intensive and
inefficient.

7.3 SciStream for Real-time Processing

SciStream mechanisms can also be used to support line-rate data
processing for applications such as Internet of Things (IoT), video
processing, and measurement/monitoring systems where real-time
stream-processing pipelines can be provisioned dynamically across
cloud-like infrastructures. They can benefit such applications in two
ways. First, individual compute nodes (even if they have external
network connectivity) need not be built to handle WAN transfers
optimally; second, individual compute nodes need not be exposed to
the external world.

For instance, SciStream can be applied to a well-known de-
sign pattern in wireless sensor networks where alternate versions
of TCP [58] and other protocols [54] are deployed in the last mile.
These protocols work well for wireless sensor applications, but the
end-to-end data path may also involve high-speed wired connections,
and need to switch to standard TCP versions. With SciStream,
GNes sit close to sensors, receive data from sensors over the wire-
less network using the alternate transport protocols, and send them
to other resources using a transport protocol (e.g., HTCP [42],
UDT [30]) that is optimized for wired WAN transport.

7.4 Resource Management

SciStream’s control protocol is designed to allow S2UC, pro-
ducer, and consumer to connect independently as they become avail-
able, to accommodate best-effort resources. Thus, some resources at
the GN will be held until producer and consumer send their Hel1lo
message (see §4.4). However, if we hold GN resources for the time
A = tHel1o — tREQ- these resources will sit idle. As A becomes larger,
S2CsS will start rejecting requests because of “unavailable resources,”
when in fact it could have been serving other requests.

For fully provisioned requests (i.e., those for which required com-
pute resources and network bandwidth to process the data streams
are provisioned for a specific duration), the user request must include
a start and end time in addition to the required bandwidth (§4.4). The
user request must also indicate whether the request is provisioned or

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

10 P 1ms - 0 T 1ms — Ed S B T R —— Y -
1 10ms \ 10ms 1 10ms
a =5 100ms q | = 100ms a =959 100ms
Qo Q Q
g 100 9 100 9 10°
g o | g g [
o o o
° ° — ° ——
o o N o ~F
8 8 8 |
o107 X _— o107 o107 |
> - y - > >
< < <
1072 1072 1072
State of SciStream State of SciStream State of SciStream
the Art the Art the Art

(a) Small samples (1 MB)

(b) Medium samples (4 MB)

(c) Large samples (10 MB)

Figure 10: Goodput performance evaluation of a streaming application running on a state-of-the-art scientific environment configuration
(i.e., DTNs and file-based data movement methods) vs. running over the SciStream environment (i.e., GNs and memory-to-memory
data streaming) over a LAN. We evaluate three sample sizes (small: 1 MB, medium: 4 MB, and large: 10 MB) and three time gaps
between each sample production (1000 Hz, 100 Hz, and 10 Hz, i.e., T={1, 10, 100} ms.). Colored horizontal lines represent the theoretical
goodput for each configuration, computed as min(8 x sample_size/T, 10 Gbps).

best-effort. If start and end time parameters are not provided (best-
effort request), we assume start time as current time and assign a
default maximum limit so that resources are not retained indefinitely.
For future work, we will consider overbooking GNs for best effort
cases so as to minimize resource wastage; however, that overbooking
should not impact the performance of fully provisioned requests. We
will investigate mechanism to identify misuse of provisioned option
and flag dishonest users.

8 RELATED WORK

Data streaming and analysis methods have been studied and evalu-
ated for a wide range of use cases in industry [4, 7]. In the scientific
context, which is the focus of SciStream, the data rates of indi-
vidual flows are much higher than the data rates of the individual
live streaming flows handled by content delivery networks (CDNs),
e.g., ~20 Gbps from a single (X-ray detector) source [11, 13,22, 45].
Also, CDNs often deliver given content to thousands of users that
are geographically distributed, whereas, in the scientific streaming
context, data is usually streamed to a single (or a small number
of) facility or cluster for analysis. The resources in the scientific
context are also federated across administrative and security do-
mains, and proxies often have to switch traffic between WAN and
HPC interconnects. SciStream provides a suite of protocols to
establish an authenticated and transparent connection between pro-
ducer and consumer via intermediate GNs that are optimized for
memory-to-memory data streaming.

Improving the streaming data throughput has been an active area
of research. Ghasemi et al. [28] focus on performance issues and
their characterizations in data streams, including server-side delays
due to asynchronous disk-reads and cache misses, jitter, buffering
delays, and dropped frames. Melette et al. propose a new network
design, Opera, that can deliver high-throughput connection via a
dynamic network and time-varying expander graphs [48]. AViC [2]
is a caching algorithm for video streams that can perform request
predictions for content delivery systems. Amaro et al. present mech-
anisms for far memory, which allow compute nodes to access other
nodes memory within the cluster, to improve the turnaround time

of the jobs [6]. Bertha is an API for offloading some of the ap-
plication functionalities, such as serialization or fast-path transfers
between containers, to network (or smart NICs) [49]. Ao et al. im-
plemented a parallel data processing framework, Sprocket, that can
utilize serverless cloud resources for video processing framework [8].
SciStreamis atool to address the infrastructural challenges that
otherwise hinder memory-to-memory data streaming in secure sci-
entific environments, and therefore SciStream will enable the
aforementioned tools and optimizations to be used for streaming
large-scale scientific data to remote HPC.

The ability to analyze streaming data in order to provide fast
(quasi-real-time) feedback is crucial for many use cases. Several
high profile streaming data analysis frameworks and systems have
been developed [3, 26, 41, 55]. While these tools provide easy imple-
mentation of streaming data analysis pipelines, e.g., defining DAGs
and mechanically establishing connections and transfers, they can
also provide advanced optimizations such as via domain specific lan-
guages and compilers [34, 35]. Although generally developed for in-
dustrial problems, e.g., cybercrime detection [4] or recommendation
systems [7], these systems can also be used for scientific computing.
Their performance depends not only on the computational resources
on which they operate but also on their use of efficient data transfer
methods. As SciStream is application (and framework) agnostic,
any of these frameworks can be efficiently used in the SciStream
content with little user effort.

9 CONCLUSION

We have presented SciStream, a middlebox-based framework
to enable secure data streaming from a producer’s memory at one
scientific facility to a consumer’s memory at another remote facility.
We described SciStream’s architecture and design, and defined
negotiation and control protocols to establish authenticated and
transparent connection between producer and consumer via interme-
diate gateway nodes. We demonstrated a prototype of SciStream
and evaluated it on the Chameleon cloud on both LAN and emu-
lated WAN environments. Our results show SciStream improves
the throughput of an streaming pipeline by an order of magnitude

HPDC 22, June 27-July 01, 2022, Minneapolis, MN

compared to state-of-the-art data transfer methods in scientific en-
vironments. Moreover, SciStream only adds ~ 4y latency to a
streaming pipeline compared to an ideal scenario in which producers
and consumers have direct external connectivity.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S. National
Science Foundation (NSF), under award 2019073. It was supported
by the U.S. Department of Energy, Office of Science, under contract
DE-AC02-06CH11357.

REFERENCES

[

[2]

3

[4]

[5

[6]

[7]

[8

[9]

[10]

(1]

[12]

[13]

[14]

[15]

Advanced Scientific Computing Research and Basic Energy Sciences, U.S. De-
partment of Energy. 2015. Exascale Requirements Review. https://www.osti.gov/
servlets/purl/1341721. Accessed: 2020-01-06.

Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir Halepovic, Shuai Hao,
Yan Liu, and Subhabrata Sen. 2019. Avic: a cache for adaptive bitrate video.
In Proceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies. 305-317.

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
Millwheel: Fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033-1044.

Mohammed Ali Al-Garadi, Kasturi Dewi Varathan, and Sri Devi Ravana. 2016.
Cybercrime detection in online communications: The experimental case of cy-
berbullying detection in the Twitter network. Computers in Human Behavior 63
(2016), 433-443.

1. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. 2004.
Kepler: an extensible system for design and execution of scientific workflows.
In Proceedings of the 16th International Conference on Scientific and Statistical
Database Management, 2004. 423—424. https://doi.org/10.1109/SSDM.2004.
1311241

Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
2020. Can far memory improve job throughput?. In Proceedings of the Fifteenth
European Conference on Computer Systems. 1-16.

Xavier Amatriain. 2013. Big & personal: data and models behind netflix rec-
ommendations. In Proceedings of the 2nd international workshop on big data,
streams and heterogeneous source Mining: Algorithms, systems, programming
models and applications. 1-6.

Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and George Porter. 2018.
Sprocket: A serverless video processing framework. In Proceedings of the ACM
Symposium on Cloud Computing. 263-274.

William Barnett, Von Welch, Alan Walsh, and Craig A Stewart. 2011. A roadmap
for using NSF cyberinfrastructure with InCommon. Technical Report.

Basic Energy Sciences 2007. Directing Matter and Energy: Five Challenges for
Science and the Imagination. https://science.osti.gov/-/media/bes/pdf/reports/files/
Directing_Matter_and_Energy_rpt.pdf. Accessed: 2021-09-06.

T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede, and F. De
Carlo. 2017. Real-Time Data Analysis and Autonomous Steering of Synchrotron
Light Source Experiments. In IEEE 13th International Conference on e-Science.
59-68. https://doi.org/10.1109/eScience.2017.53

A. Bobyshev, M. Crawford, P. DeMar, V. Grigaliunas, M. Grigoriev, A. Moibenko,
D. Petravick, R. Rechenmacher, H. Newman, J. Bunn, F. Van Lingen, D. Nae,
S. Ravot, C. Steenberg, X. Su, M. Thomas, and Y. Xia. 2006. Lambda Station:
On-Demand Flow Based Routing for Data Intensive Grid Applications Over Mul-
titopology Networks. In 2006 3rd International Conference on Broadband Com-
munications, Networks and Systems. 1-9. https://doi.org/10.1109/BROADNETS.
2006.4374315

Jan-Willem Buurlage, Federica Marone, Dani€l M Pelt, Willem Jan Palenstijn,
Marco Stampanoni, K Joost Batenburg, and Christian M Schlepiitz. 2019. Real-
time reconstruction and visualisation towards dynamic feedback control during
time-resolved tomography experiments at TOMCAT. Scientific reports 9, 1 (2019),
1-11.

Kyle Chard, Eli Dart, Ian Foster, David Shifflett, Steven Tuecke, and Jason
Williams. 2018. The Modern Research Data Portal: A design pattern for net-
worked, data-intensive science. PeerJ Computer Science 4 (2018), e144.

Kyle Chard, Steven Tuecke, and Ian Foster. 2016. Globus: Recent Enhancements
and Future Plans. In Proceedings of the XSEDE16 Conference on Diversity, Big
Data, and Science at Scale (Miami, USA) (XSEDEI6). Association for Computing
Machinery, New York, NY, USA, Article 27, 8 pages. https://doi.org/10.1145/
2949550.2949554

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Chung, et al.

Junguk Cho, Hyunseok Chang, Sarit Mukherjee, T. V. Lakshman, and Jacobus
Van der Merwe. 2017. Typhoon: An SDN Enhanced Real-Time Big Data Stream-
ing Framework. In Proceedings of the 13th International Conference on Emerg-
ing Networking EXperiments and Technologies (Incheon, Republic of Korea)
(CoNEXT ’17). Association for Computing Machinery, New York, NY, USA,
310-322. https://doi.org/10.1145/3143361.3143398

J. Y. Choi, T. Kurc, J. Logan, M. Wolf, E. Suchyta, J. Kress, D. Pugmire, N.
Podhorszki, E. Byun, M. Ainsworth, M. Parashar, and S. Klasky. 2016. Stream
processing for near real-time scientific data analysis. In 2016 New York Scientific
Data Summit (NYSDS). 1-8. https://doi.org/10.1109/NYSDS.2016.7747804

J. Y. Choi, T. Kurc, J. Logan, M. Wolf, E. Suchyta, J. Kress, D. Pugmire, N.
Podhorszki, E. Byun, M. Ainsworth, M. Parashar, and S. Klasky. 2016. Stream
processing for near real-time scientific data analysis. In 2016 New York Scientific
Data Summit (NYSDS). 1-8. https://doi.org/10.1109/NYSDS.2016.7747804

Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2014.
The Science DMZ: A network design pattern for data-intensive science. Scientific
Programming 22,2 (2014), 173-185.

Ewa Deelman, Christopher Carothers, Anirban Mandal, Brian Tierney, Jeffrey S
Vetter, Ilya Baldin, Claris Castillo, Gideon Juve, Dariusz Krdl, Vickie Lynch,
etal. 2017. PANORAMA: An approach to performance modeling and diagnosis
of extreme-scale workflows. The International Journal of High Performance
Computing Applications 31, 1 (2017), 4-18.

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17-35.

Junjing Deng, Curt Preissner, Jeffrey A Klug, Sheikh Mashrafi, Christian Roehrig,
Yi Jiang, Yudong Yao, Michael Wojcik, Max D Wyman, David Vine, et al. 2019.
The velociprobe: An ultrafast hard x-ray nanoprobe for high-resolution ptycho-
graphic imaging. Review of Scientific Instruments 90, 8 (2019), 083701.

DOE, NSF, and AFOSR. 2015. Streaming and Steering Applications: Re-
quirements and Infrastructure STREAM2015 Workshop Final Report. http:
//streamingsystems.org/stream2015finalreport.html. Accessed: 2020-03-01.
DOE, NSF, and AFOSR. 2016. STREAM2016: Streaming Requirements,
Experience, Applications and Middleware Workshop Workshop Final Report.
https://www.osti.gov/servlets/purl/1344785. Accessed: 2020-03-01.

DOE-SC. 2013. The Report of the BES Advisory Subcommittee on Future X-ray
Light Sources. https://science.osti.gov/-/media/bes/besac/pdf/Reports/Future_
Light_Sources_report_ BESAC_approved_72513.pdf. Accessed: 2021-09-06.
Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: self-regulating stream processing in heron. Proceedings
of the VLDB Endowment 10, 12 (2017), 1825-1836.

A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. 2015.
Scheduling the I/O of HPC Applications Under Congestion. In 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium. 1013—1022. https:
/ldoi.org/10.1109/IPDPS.2015.116

Mojgan Ghasemi, Partha Kanuparthy, Ahmed Mansy, Theophilus Benson, and
Jennifer Rexford. 2016. Performance characterization of a commercial video
streaming service. In Proceedings of the 2016 Internet Measurement Conference.
499-511.

Jeremy Goecks, Anton Nekrutenko, James Taylor, Galaxy Team, et al. 2010.
Galaxy: a comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome biology 11, 8
(2010), R86.

Yunhong Gu and Robert L Grossman. 2007. UDT: UDP-based data transfer for
high-speed wide area networks. Computer Networks 51,7 (2007), 1777-1799.
Chin Guok, David Robertson, Mary Thompson, Jason Lee, Brian Tierney, and
William Johnston. 2006. Intra and Interdomain Circuit Provisioning Using the
OSCARS Reservation System. In 3rd International Conference on Broadband
Communications, Networks, and Systems.

Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann,
David Daniel, Patricia Fasel, Vitali Morozov, George Zagaris, Tom Peterka, Venka-
tram Vishwanath, Zarija Luki¢, Saba Sehrish, and Wei-keng Liao. 2016. HACC:
Simulating sky surveys on state-of-the-art supercomputing architectures. New
Astronomy 42 (2016), 49-65.

Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. " O’Reilly
Media, Inc.".

Martin Hirzel, Henrique Andrade, Bugra Gedik, Gabriela Jacques-Silva, Rohit
Khandekar, Vibhore Kumar, Mark Mendell, Howard Nasgaard, Scott Schneider,
Robert Soulé, et al. 2013. IBM streams processing language: Analyzing big data
in motion. IBM Journal of Research and Development 57, 3/4 (2013), 7-1.
Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm.
2014. A catalog of stream processing optimizations. ACM Computing Surveys
(CSUR) 46, 4 (2014), 1-34.

J. Ibarra, J. Bezerra, H. Morgan, L. Fernandez Lopez, M. Stanton, I. Machado, E.
Grizendi, and D.A. Cox. 2015. Benefits brought by the use of OpenFlow/SDN
on the AmLight intercontinental research and education network. In Integrated

https://www.osti.gov/servlets/purl/1341721
https://www.osti.gov/servlets/purl/1341721
https://doi.org/10.1109/SSDM.2004.1311241
https://doi.org/10.1109/SSDM.2004.1311241
https://science.osti.gov/-/media/bes/pdf/reports/files/Directing_Matter_and_Energy_rpt.pdf
https://science.osti.gov/-/media/bes/pdf/reports/files/Directing_Matter_and_Energy_rpt.pdf
https://doi.org/10.1109/eScience.2017.53
https://doi.org/10.1109/BROADNETS.2006.4374315
https://doi.org/10.1109/BROADNETS.2006.4374315
https://doi.org/10.1145/2949550.2949554
https://doi.org/10.1145/2949550.2949554
https://doi.org/10.1145/3143361.3143398
https://doi.org/10.1109/NYSDS.2016.7747804
https://doi.org/10.1109/NYSDS.2016.7747804
http://streamingsystems.org/stream2015finalreport.html
http://streamingsystems.org/stream2015finalreport.html
https://www.osti.gov/servlets/purl/1344785
https://science.osti.gov/-/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
https://science.osti.gov/-/media/bes/besac/pdf/Reports/Future_Light_Sources_report_BESAC_approved_72513.pdf
https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1109/IPDPS.2015.116

SciStream: Architecture and Toolkit for Data Streaming between Federated Science Instruments

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Network Management (IM), 2015 IFIP/IEEE International Symposium on. 942—
947. https://doi.org/10.1109/INM.2015.7140415

Internet2. 2014. Internet’s Advanced Layer 2 Services. https://www.internet2.edu/
products-services/advanced-networking/layer-2-services/.

Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill,] Manbretti, Paul Rad,
and R Paul. 2017. Chameleon: a scalable production testbed for computer science
research. Contemporary High Performance Computing 3 (2017).

Raj Kettimuthu, Zhengchun Liu, David Wheeler, Ian Foster, Katrin Heitmann,
and Franck Cappello. 2017. Transferring a Petabyte in a Day. 4th International
Workshop on Innovating the Network for Data Intensive Science (INDIS) 2017
(Nov. 2017), 1-11.

Anne L. Kinney and Dawn M. Tilbury. 2018. Dear Colleague Letter: Data-
Driven Discovery Science in Chemistry (D3SC). https://www.nsf.gov/pubs/2018/
nsf18075/nsf18075.pdf. Accessed: 2021-03-01.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. 239-250.

Douglas Leith and Robert Shorten. 2004. H-TCP: TCP for high-speed and long-
distance networks. In Proceedings of PFLDnet.

Yuanlai Liu, Zhengchun Liu, Rajkumar Kettimuthu, Nageswara Rao, Zizhong
Chen, and Ian Foster. 2019. Data transfer between scientific facilities—bottleneck
analysis, insights and optimizations. In 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID). 1IEEE, 122-131.
Zhengchun Liu, Prasanna Balaprakash, Rajkumar Kettimuthu, and Ian Foster.
2017. Explaining Wide Area Data Transfer Performance. In 26th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing
(Washington, DC, USA) (HPDC ’17). ACM, New York, NY, USA, 167-178.
https://doi.org/10.1145/3078597.3078605

Zhengchun Liu, Tekin Bicer, Rajkumar Kettimuthu, and Ian Foster. 2019. Deep
learning accelerated light source experiments. In 2019 IEEE/ACM Third Workshop
on Deep Learning on Supercomputers (DLS). IEEE, 20-28.

Zhengchun Liu, Rajkumar Kettimuthu, Joaquin Chung, Rachana Ananthakrishnan,
Michael Link, and Ian Foster. 2021. Design and Evaluation of a Simple Data
Interface for Efficient Data Transfer across Diverse Storage. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 6,
1(2021), 1-25.

Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Nageswara SV Rao. 2018.
Cross-geography scientific data transferring trends and behavior. In Proceedings of
the 27th International Symposium on High-Performance Parallel and Distributed
Computing. 267-278.

William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,
and George Porter. 2020. Expanding across time to deliver bandwidth efficiency
and low latency. In 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI'} 20). 1-18.

Akshay Narayan, Aurojit Panda, Mohammad Alizadeh, Hari Balakrishnan, Arvind
Krishnamurthy, and Scott Shenker. 2020. Bertha: Tunneling through the network
api. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks. 53-59.
NSF. 2012. Advancing Astronomy in the Coming Decade: Opportunities and
Challenges. https://www.nsf.gov/mps/ast/portfolioreview/reports/ast_portfolio_
review_report.pdf. Accessed: 2021-03-01.

NSF’s Big Ideas. 2017. Harnessing Data for 21st Century Science and Engineering.
https://www.nsf.gov/news/special_reports/big_ideas/harnessing.jsp. Accessed:
2020-01-06.

Boris Oklander and Moshe Sidi. 2008. Jitter buffer analysis. In 2008 Proceedings
of 17th International Conference on Computer Communications and Networks.
IEEE, 1-6.

Stefan Paulsen, Tadeus Uhl, and Krzysztof Nowicki. 2011. Influence of the jitter
buffer on the quality of service VoIP. In 2011 3rd International Congress on
Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).
IEEE, 1-5.

Paulo Rogério Pereira et al. 2007. End-to-end reliability in wireless sensor
networks: Survey and research challenges. In EuroFGI Workshop on IP QoS and
Traffic Control, Vol. 54. Citeseer, 67-74.

Bogdan Simion, Daniel N Ilha, Suprio Ray, Leslie Barron, Angela Demke Brown,
and Ryan Johnson. 2015. Slingshot: A modular framework for designing data
processing systems. In 2015 IEEE International Conference on Big Data (Big
Data). IEEE, 421-430.

Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven
Tuecke, Jarek Gawor, Sam Meder, and Frank Siebenlist. 2004. X.509 proxy
certificates for dynamic delegation. In 3rd annual PKI R&D workshop, Vol. 14.
Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing
Lusk, and Tan T Foster. 2013. Swift/T — large-scale applicatino composiion via
distributed-memory dataflow processing. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. IEEE, 95-102.

Ye Tian, Kai Xu, and N. Ansari. 2005. TCP in wireless environments: Problems
and solutions. IEEE Communications Magazine 43, 3 (March 2005), S27-S32.
https://doi.org/10.1109/MCOM.2005.1404595

HPDC '22, June 27-July 01, 2022, Minneapolis, MN

[59] Jason Zurawski, Robert Ball, Artur Barczyk, Mathew Binkley, Jeff Boote, Eric

Boyd, Aaron Brown, Robert Brown, Tom Lehman, Shawn McKee, Benjeman
Meekhof, Azher Mughal, Harvey Newman, Sandor Rozsa, Paul Sheldon, Alan
Tackett, Ramiro Voicu, Stephen Wolff, and Xi Yang. 2012. The DYNES Instru-
ment: A Description and Overview. Journal of Physics: Conference Series 396, 4
(2012), 042065. http://stacks.iop.org/1742-6596/396/i=4/a=042065

https://doi.org/10.1109/INM.2015.7140415
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.nsf.gov/pubs/2018/nsf18075/nsf18075.pdf
https://www.nsf.gov/pubs/2018/nsf18075/nsf18075.pdf
https://doi.org/10.1145/3078597.3078605
https://www.nsf.gov/mps/ast/portfolioreview/reports/ast_portfolio_review_report.pdf
https://www.nsf.gov/mps/ast/portfolioreview/reports/ast_portfolio_review_report.pdf
https://www.nsf.gov/news/special_reports/big_ideas/harnessing.jsp
https://doi.org/10.1109/MCOM.2005.1404595
http://stacks.iop.org/1742-6596/396/i=4/a=042065

	Abstract
	1 Introduction
	2 Application drivers
	2.1 Light source applications
	2.2 Cosmology workflows

	3 Design Considerations
	3.1 Third-party streaming
	3.2 Secure streaming
	3.3 General and Transparent Streaming
	3.4 Provisioned vs. Best-effort Resources

	4 SciStream Design
	4.1 Gateway Node deployment options
	4.2 Software components
	4.3 Negotiation Protocol
	4.4 Control Protocol

	5 Implementation
	5.1 Control Protocol Implementation
	5.2 S2DS Implementation Approaches

	6 SciStream Evaluation
	7 Discussion
	7.1 Application Code Changes
	7.2 Fault Detection and Recovery
	7.3 SciStream for Real-time Processing
	7.4 Resource Management

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

